1
|
Lai S, Wu X, Liu Y, Liu B, Wu H, Ma K. Interaction between Th17 and central nervous system in multiple sclerosis. Brain Behav Immun Health 2025; 43:100928. [PMID: 39845807 PMCID: PMC11751430 DOI: 10.1016/j.bbih.2024.100928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025] Open
Abstract
Image 1.
Collapse
Affiliation(s)
- Shixin Lai
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaomin Wu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Yue Liu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Bo Liu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Haiqi Wu
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
2
|
McCaffrey D, Weickert CS, Walker AK. Blood IL-1α and IL-6 predict specific breast cancer-induced increases in hippocampal pro-inflammatory cytokines in mice. Cytokine 2025; 186:156826. [PMID: 39667084 DOI: 10.1016/j.cyto.2024.156826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024]
Abstract
Neuroinflammation is a key factor in cognitive and behavioral changes seen in patients with non-CNS cancers, and cytokine levels in the blood are often used as a proxy for brain inflammation. However, this approach has yielded inconsistent results, and a common inflammatory signature remains elusive. To explore whether a blood-to-brain inflammatory signature exists across breast cancer types, we assessed cytokine and glial protein responses in the hippocampus, prefrontal cortex (PFC), and their relationship to serum cytokines in mice bearing three different mammary cancers (n = 40). While cytokine profiles in both serum and brain varied by cancer type, IL-1β and IL-4 were consistently altered across brain regions. In some cases, elevated serum IL-1α and IL-6 correlated with increased hippocampal IL-6. These findings support the use of blood cytokines to identify cancer patients at risk for cognitive and psychiatric comorbidities. However, our data also suggest that relying solely on serum cytokines may lead to under-diagnosis, as some mice exhibited brain cytokine elevations without changes in serum levels. This underscores the need for a broader range of inflammatory markers in blood to better identify at-risk patients. Brain region-specific differences in the cytokine response to mammary cancer highlighted the hippocampus as more vulnerable to cancer-induced inflammation than the PFC. We observed region-specific glial cell reactivity, however, only astrocyte and oligodendrocyte markers were correlated with cytokine changes within the hippocampus. Elevated serum IL-1α and IL-6 were correlated with reduced cortical astrocyte reactivity, suggesting that these cytokines can inform glial cell-specific changes in this region.
Collapse
Affiliation(s)
- Delyse McCaffrey
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, New South Wales, Australia; Discipline of Psychiatry and Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Cynthia Shannon Weickert
- Discipline of Psychiatry and Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, New South Wales, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, NY, USA
| | - Adam K Walker
- Laboratory of ImmunoPsychiatry, Neuroscience Research Australia, Randwick, New South Wales, Australia; Discipline of Psychiatry and Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia.
| |
Collapse
|
3
|
Zhang N, Song Y, Wang H, Li X, Lyu Y, Liu J, Mu Y, Wang Y, Lu Y, Li G, Fan Z, Wang H, Zhang D, Li N. IL-1β promotes glutamate excitotoxicity: indications for the link between inflammatory and synaptic vesicle cycle in Ménière's disease. Cell Death Discov 2024; 10:476. [PMID: 39567494 PMCID: PMC11579495 DOI: 10.1038/s41420-024-02246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
Ménière's disease (MD) is a complex inner ear disorder characterized by a range of symptoms, with its pathogenesis linked to immune-related mechanisms. Our previous research demonstrated that IL-1β maturation and release can trigger cell pyroptosis, exacerbating the severity of the endolymphatic hydrops in a mouse model; however, the specific mechanism through which IL-1β influences MD symptoms remains unclear. This study conducted on patients with MD examined changes in protein signatures in the vestibular end organs (VO) and endolymphatic sac (ES) using mass spectrometry. Gene ontology and protein pathway analyses showed that differentially expressed proteins in the ES are closely related to adhesion, whereas those in the VO are related to synapse processes. Additionally, the study found elevated expression of Glutaminase (GLS) in the VO of MD patients compared to controls. Further investigations revealed that IL-1β increased glutamate levels by upregulating GLS expression in HEI-OC1 cells. Treatment with a GLS inhibitor or an IL-1β receptor antagonist alleviated auditory-vestibular dysfunction and reduced glutamate levels in mice with endolymphatic hydrops. These findings collectively suggest that imbalanced neurotransmitter release and immune responses contribute to the pathology of MD, potentially explaining the hearing loss and vertigo associated with the disease and offering new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Na Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Provincial Vertigo Dizziness Medical Center, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
| | - Yongdong Song
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Provincial Vertigo Dizziness Medical Center, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
| | - Hanyue Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
| | - Xiaofei Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Provincial Vertigo Dizziness Medical Center, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
| | - Yafeng Lyu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Provincial Vertigo Dizziness Medical Center, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
| | - Jiahui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
| | - Yurong Mu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
| | - Yan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yao Lu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Guorong Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
| | - Zhaomin Fan
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
- Shandong Provincial Vertigo Dizziness Medical Center, Jinan, Shandong, China
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Provincial Vertigo Dizziness Medical Center, Jinan, Shandong, China.
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China.
| | - Daogong Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Provincial Vertigo Dizziness Medical Center, Jinan, Shandong, China.
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China.
| | - Na Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
- Shandong Medical Health Key Laboratory of Vertigo & Vestibular Medicine, Jinan, Shandong, China.
- Center of Clinical Laboratory, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| |
Collapse
|
4
|
MacMahon Copas AN, McComish SF, Petrasca A, McCormack R, Ivers D, Stricker A, Fletcher JM, Caldwell MA. CD4 + T cell-associated cytokines induce a chronic pro-inflammatory phenotype in induced pluripotent stem cell-derived midbrain astrocytes. Glia 2024; 72:2142-2154. [PMID: 39056451 DOI: 10.1002/glia.24601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Astrocytes are mediators of homeostasis but contribute to neuroinflammation in Parkinson's disease (PD). Mounting evidence suggests involvement of peripheral immune cells in PD pathogenesis. Therefore, this study aimed to determine the potential role of peripheral immune secreted cytokines in modulating midbrain astrocyte reactivity. Human iPSC-derived midbrain astrocytes were exposed to 5% and 10% CD4+ T cell conditioned media (CD4CM) for 24 h, 72 h, and 7 days to assess chronic exposure. Additionally, astrocytes were exposed to the Th17 cell cytokine, IL-17A (10 ng/mL), alone and in combination with TNF-α (0.3 ng/mL) to assess potential synergistic effects of both cytokines at 24 h, 72 h, and 7 days. CD4CM induced acute and chronic alterations in midbrain astrocytes. Increased NFκB translocation to the nucleus, increased expression of the pro-inflammatory genes, IL-1β, CXCL10 at 24 h, C3, LCN2, IL-6 at 24 and 48 h, as well as an increase in their release of pro-inflammatory cytokines IL-6 and CXCL10 at both these time points were observed. A synergistic response to the combination of IL-17A and TNF-α on increasing inflammatory gene expression and cytokine release occurred. IL-17A and TNF-α increased intensity of S100β at 24 h, decreased nuclear area and increased circularity of astrocytes at 72 h. A synergistic effect on γH2AX intensity at 72 h and an increase in LDH release at 7 days was observed. Our results demonstrate that IL-17A and TNF-α act synergistically, enhancing midbrain astrocyte reactivity to a similar degree as CD4CM. This highlights the importance of the peripheral immune secreted cytokines in increasing the reactivity status of midbrain astrocytes, implicating their role in PD.
Collapse
Affiliation(s)
- Adina N MacMahon Copas
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College, Dublin, Ireland
| | - Sarah F McComish
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College, Dublin, Ireland
| | - Andreea Petrasca
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel McCormack
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College, Dublin, Ireland
| | - Daniel Ivers
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College, Dublin, Ireland
| | - Anna Stricker
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Maeve A Caldwell
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
5
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2024:revneuro-2024-0090. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
6
|
Chikviladze M, Mamulashvili N, Sepashvili M, Narmania N, Ramsden J, Shanshiashvili L, Mikeladze D. Citrullinated isomer of myelin basic protein can induce inflammatory responses in astrocytes. IBRO Neurosci Rep 2024; 16:127-134. [PMID: 38288135 PMCID: PMC10823069 DOI: 10.1016/j.ibneur.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/15/2023] [Indexed: 01/31/2024] Open
Abstract
Purpose During the course of demyelinating inflammatory diseases, myelin-derived proteins, including myelin basic protein(MBP), are secreted into extracellular space. MBP shows extensive post-translational modifications, including deimination/citrullination. Deiminated MBP is structurally less ordered, susceptible to proteolytic attack, and more immunogenic than unmodified MBP. This study investigated the effect of the deiminated/citrullinated isomer of MBP(C8) and the unmodified isomer of MBP(C1) on cultured primary astrocytes. Methods MBP charge isomers were isolated/purified from bovine brain. Primary astrocyte cultures were prepared from the 2-day-old Wistar rats. For evaluation of glutamate release/uptake a Fluorimetric glutamate assay was used. Expression of peroxisome proliferator-activated receptor-gamma(PPAR-γ), excitatory amino acid transporter 2(EAAT2), the inhibitor of the nuclear factor kappa-B(ikB) and high mobility group-B1(HMGB1) protein were assayed by Western blot analysis. IL-17A expression was determined in cell medium by ELISA. Results We found that MBP(C8) and MBP(C1) acted differently on the uptake/release of glutamate in astrocytes: C1 increased glutamate uptake and did not change its release, whereas C8 decreased glutamate release but did not change its uptake. Both isomers increased the expression of PPAR-γ and EAAT2 to the same degree. Western blots of cell lysates revealed decreased expression of ikB and increased expression of HMGB1 proteins after treatment of astrocytes by C8. Moreover, C8-treated cells released more nitric oxide and proinflammatory IL-17A than C1-treated cells. Conclusions These data suggest that the most immunogenic deiminated isomer C8, in parallel to the decreases in glutamate release, elicits an inflammatory response and enhances the secretion of proinflammatory molecules via activation of nuclear factor kappa B(NF-kB). Summary statement The most modified-citrullinated myelin basic protein charge isomer decreases glutamate release, elicits an inflammatory response and enhances the secretion of proinflammatory molecules via activation of nuclear factor kappa B in astrocytes.
Collapse
Affiliation(s)
| | - Nino Mamulashvili
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - Maia Sepashvili
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nana Narmania
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Jeremy Ramsden
- Department of Biomedical Research, The University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| | - Lali Shanshiashvili
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - David Mikeladze
- Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
- Department of Biochemistry, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
7
|
Dong Y, Zhang X, Wang Y. Interleukins in Epilepsy: Friend or Foe. Neurosci Bull 2024; 40:635-657. [PMID: 38265567 PMCID: PMC11127910 DOI: 10.1007/s12264-023-01170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/28/2023] [Indexed: 01/25/2024] Open
Abstract
Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuan Dong
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
| | - Xia Zhang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Ying Wang
- Neuropsychiatry Research Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Amoriello R, Memo C, Ballerini L, Ballerini C. The brain cytokine orchestra in multiple sclerosis: from neuroinflammation to synaptopathology. Mol Brain 2024; 17:4. [PMID: 38263055 PMCID: PMC10807071 DOI: 10.1186/s13041-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
The central nervous system (CNS) is finely protected by the blood-brain barrier (BBB). Immune soluble factors such as cytokines (CKs) are normally produced in the CNS, contributing to physiological immunosurveillance and homeostatic synaptic scaling. CKs are peptide, pleiotropic molecules involved in a broad range of cellular functions, with a pivotal role in resolving the inflammation and promoting tissue healing. However, pro-inflammatory CKs can exert a detrimental effect in pathological conditions, spreading the damage. In the inflamed CNS, CKs recruit immune cells, stimulate the local production of other inflammatory mediators, and promote synaptic dysfunction. Our understanding of neuroinflammation in humans owes much to the study of multiple sclerosis (MS), the most common autoimmune and demyelinating disease, in which autoreactive T cells migrate from the periphery to the CNS after the encounter with a still unknown antigen. CNS-infiltrating T cells produce pro-inflammatory CKs that aggravate local demyelination and neurodegeneration. This review aims to recapitulate the state of the art about CKs role in the healthy and inflamed CNS, with focus on recent advances bridging the study of adaptive immune system and neurophysiology.
Collapse
Affiliation(s)
- Roberta Amoriello
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Christian Memo
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Laura Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy
| | - Clara Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
9
|
Egunlusi AO, Malan SF, Palchykov VA, Joubert J. Calcium Modulating Effect of Polycyclic Cages: A Suitable Therapeutic Approach Against Excitotoxic-induced Neurodegeneration. Mini Rev Med Chem 2024; 24:1277-1292. [PMID: 38275027 DOI: 10.2174/0113895575273868231128104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 01/27/2024]
Abstract
Neurodegenerative disorders pose a significant challenge to global healthcare systems due to their progressive nature and the resulting loss of neuronal cells and functions. Excitotoxicity, characterized by calcium overload, plays a critical role in the pathophysiology of these disorders. In this review article, we explore the involvement of calcium dysregulation in neurodegeneration and neurodegenerative disorders. A promising therapeutic strategy to counter calcium dysregulation involves the use of calcium modulators, particularly polycyclic cage compounds. These compounds, structurally related to amantadine and memantine, exhibit neuroprotective properties by attenuating calcium influx into neuronal cells. Notably, the pentacycloundecylamine NGP1-01, a cage-like structure, has shown efficacy in inhibiting both N-methyl-D-aspartate (NMDA) receptors and voltage- gated calcium channels (VGCCs), making it a potential candidate for neuroprotection against excitotoxic-induced neurodegenerative disorders. The structure-activity relationship of polycyclic cage compounds is discussed in detail, highlighting their calcium-inhibitory activities. Various closed, open, and rearranged cage compounds have demonstrated inhibitory effects on calcium influx through NMDA receptors and VGCCs. Additionally, these compounds have exhibited neuroprotective properties, including free radical scavenging, attenuation of neurotoxicities, and reduction of neuroinflammation. Although the calcium modulatory activities of polycyclic cage compounds have been extensively studied, apart from amantadine and memantine, none have undergone clinical trials. Further in vitro and in vivo studies and subsequent clinical trials are required to establish the efficacy and safety of these compounds. The development of polycyclic cages as potential multifunctional agents for treating complex neurodegenerative diseases holds great promise.
Collapse
Affiliation(s)
- Ayodeji O Egunlusi
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Sarel F Malan
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vitalii A Palchykov
- Research Institute of Chemistry and Geology, Oles Honchar Dnipropetrovsk National University, 72 Gagarina Av., Dnipro 49010, Ukraine
| | - Jacques Joubert
- Pharmaceutical Chemistry, School of Pharmacy, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
10
|
Li W, Wu J, Zeng Y, Zheng W. Neuroinflammation in epileptogenesis: from pathophysiology to therapeutic strategies. Front Immunol 2023; 14:1269241. [PMID: 38187384 PMCID: PMC10771847 DOI: 10.3389/fimmu.2023.1269241] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Epilepsy is a group of enduring neurological disorder characterized by spontaneous and recurrent seizures with heterogeneous etiology, clinical expression, severity, and prognosis. Growing body of research investigates that epileptic seizures are originated from neuronal synchronized and excessive electrical activity. However, the underlying molecular mechanisms of epileptogenesis have not yet been fully elucidated and 30% of epileptic patients still are resistant to the currently available pharmacological treatments with recurrent seizures throughout life. Over the past two decades years accumulated evidences provide strong support to the hypothesis that neuroinflammation, including microglia and astrocytes activation, a cascade of inflammatory mediator releasing, and peripheral immune cells infiltration from blood into brain, is associated with epileptogenesis. Meanwhile, an increasing body of preclinical researches reveal that the anti-inflammatory therapeutics targeting crucial inflammatory components are effective and promising in the treatment of epilepsy. The aim of the present study is to highlight the current understanding of the potential neuroinflammatory mechanisms in epileptogenesis and the potential therapeutic targets against epileptic seizures.
Collapse
|
11
|
Khantakova JN, Mutovina A, Ayriyants KA, Bondar NP. Th17 Cells, Glucocorticoid Resistance, and Depression. Cells 2023; 12:2749. [PMID: 38067176 PMCID: PMC10706111 DOI: 10.3390/cells12232749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Depression is a severe mental disorder that disrupts mood and social behavior and is one of the most common neuropsychological symptoms of other somatic diseases. During the study of the disease, a number of theories were put forward (monoamine, inflammatory, vascular theories, etc.), but none of those theories fully explain the pathogenesis of the disease. Steroid resistance is a characteristic feature of depression and can affect not only brain cells but also immune cells. T-helper cells 17 type (Th17) are known for their resistance to the inhibitory effects of glucocorticoids. Unlike the inhibitory effect on other subpopulations of T-helper cells, glucocorticoids can enhance the differentiation of Th17 lymphocytes, their migration to the inflammation, and the production of IL-17A, IL-21, and IL-23 in GC-resistant disease. According to the latest data, in depression, especially the treatment-resistant type, the number of Th17 cells in the blood and the production of IL-17A is increased, which correlates with the severity of the disease. However, there is still a significant gap in knowledge regarding the exact mechanisms by which Th17 cells can influence neuroinflammation in depression. In this review, we discuss the mutual effect of glucocorticoid resistance and Th17 lymphocytes on the pathogenesis of depression.
Collapse
Affiliation(s)
- Julia N. Khantakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
| | - Anastasia Mutovina
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia;
| | - Kseniya A. Ayriyants
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
| | - Natalia P. Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia; (K.A.A.); (N.P.B.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russia;
| |
Collapse
|
12
|
Lu Y, Zhang P, Xu F, Zheng Y, Zhao H. Advances in the study of IL-17 in neurological diseases and mental disorders. Front Neurol 2023; 14:1284304. [PMID: 38046578 PMCID: PMC10690603 DOI: 10.3389/fneur.2023.1284304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Interleukin-17 (IL-17), a cytokine characteristically secreted by T helper 17 (Th17) cells, has attracted increasing attention in recent years because of its importance in the pathogenesis of many autoimmune or chronic inflammatory diseases. Recent studies have shown that neurological diseases and mental disorders are closely related to immune function, and varying degrees of immune dysregulation may disrupt normal expression of immune molecules at critical stages of neural development. Starting from relevant mechanisms affecting immune regulation, this article reviews the research progress of IL-17 in a selected group of neurological diseases and mental disorders (autism spectrum disorder, Alzheimer's disease, epilepsy, and depression) from the perspective of neuroinflammation and the microbiota-gut-brain axis, summarizes the commonalities, and provides a prospective outlook of target application in disease treatment.
Collapse
Affiliation(s)
- Yu Lu
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Piaopiao Zhang
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
13
|
Fathallah S, Abdellatif A, Saadeldin MK. Unleashing nature's potential and limitations: Exploring molecular targeted pathways and safe alternatives for the treatment of multiple sclerosis (Review). MEDICINE INTERNATIONAL 2023; 3:42. [PMID: 37680650 PMCID: PMC10481116 DOI: 10.3892/mi.2023.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Driven by the limitations and obstacles of the available approaches and medications for multiple sclerosis (MS) that still cannot treat the disease, but only aid in accelerating the recovery from its attacks, the use of naturally occurring molecules as a potentially safe and effective treatment for MS is being explored in model organisms. MS is a devastating disease involving the brain and spinal cord, and its symptoms vary widely. Multiple molecular pathways are involved in the pathogenesis of the disease. The present review showcases the recent advancements in harnessing nature's resources to combat MS. By deciphering the molecular pathways involved in the pathogenesis of the disease, a wealth of potential therapeutic agents is uncovered that may revolutionize the treatment of MS. Thus, a new hope can be envisioned in the future, aiming at paving the way toward identifying novel safe alternatives to improve the lives of patients with MS.
Collapse
Affiliation(s)
- Sara Fathallah
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Abdellatif
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Mona Kamal Saadeldin
- Biotechnology Program, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo 11835, Egypt
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Ahmed A, Saleem MA, Saeed F, Afzaal M, Imran A, Akram S, Hussain M, Khan A, Al Jbawi E. A comprehensive review on the impact of calcium and vitamin D insufficiency and allied metabolic disorders in females. Food Sci Nutr 2023; 11:5004-5027. [PMID: 37701195 PMCID: PMC10494632 DOI: 10.1002/fsn3.3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 09/14/2023] Open
Abstract
Calcium is imperative in maintaining a quality life, particularly during later ages. Its deficiency results in a wide range of metabolic disorders such as dental changes, cataracts, alterations in brain function, and osteoporosis. These deficiencies are more pronounced in females due to increased calcium turnover throughout their life cycle, especially during pregnancy and lactation. Vitamin D perform a central role in the metabolism of calcium. Recent scientific interventions have linked calcium with an array of metabolic disorders in females including hypertension, obesity, premenstrual dysphoric disorder, polycystic ovary syndrome (PCOS), multiple sclerosis, and breast cancer. This review encompasses these female metabolic disorders with special reference to calcium and vitamin D deficiency. This review article aims to present and elaborate on available data regarding the worldwide occurrence of insufficient calcium consumption in females and allied health risks, to provide a basis for formulating strategies and population-level scientific studies to adequately boost calcium intake and position where required.
Collapse
Affiliation(s)
- Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Awais Saleem
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
- Department of Human Nutrition and DieteticsMirpur University of Science and TechnologyMirpurPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Ali Imran
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Sidra Akram
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aqsa Khan
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
15
|
Ortí JEDLR, Cuerda-Ballester M, Sanchis-Sanchis CE, Lajara Romance JM, Navarro-Illana E, García Pardo MP. Exploring the impact of ketogenic diet on multiple sclerosis: obesity, anxiety, depression, and the glutamate system. Front Nutr 2023; 10:1227431. [PMID: 37693246 PMCID: PMC10485376 DOI: 10.3389/fnut.2023.1227431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Multiple sclerosis (MS) is a neurodegenerative disorder. Individuals with MS frequently present symptoms such as functional disability, obesity, and anxiety and depression. Axonal demyelination can be observed and implies alterations in mitochondrial activity and increased inflammation associated with disruptions in glutamate neurotransmitter activity. In this context, the ketogenic diet (KD), which promotes the production of ketone bodies in the blood [mainly β-hydroxybutyrate (βHB)], is a non-pharmacological therapeutic alternative that has shown promising results in peripheral obesity reduction and central inflammation reduction. However, the association of this type of diet with emotional symptoms through the modulation of glutamate activity in MS individuals remains unknown. Aim To provide an update on the topic and discuss the potential impact of KD on anxiety and depression through the modulation of glutamate activity in subjects with MS. Discussion The main findings suggest that the KD, as a source of ketone bodies in the blood, improves glutamate activity by reducing obesity, which is associated with insulin resistance and dyslipidemia, promoting central inflammation (particularly through an increase in interleukins IL-1β, IL-6, and IL-17). This improvement would imply a decrease in extrasynaptic glutamate activity, which has been linked to functional disability and the presence of emotional disorders such as anxiety and depression.
Collapse
Affiliation(s)
| | | | | | - Jose María Lajara Romance
- Faculty of Legal, Economic and Social Sciences, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | - Esther Navarro-Illana
- Department of Nursing, Catholic University of Valencia San Vicente Mártir, Valencia, Spain
| | | |
Collapse
|
16
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
17
|
Blaylock RL. The biochemical basis of neurodegenerative disease: The role of immunoexcitoxicity and ways to possibly attenuate it. Surg Neurol Int 2023; 14:141. [PMID: 37151454 PMCID: PMC10159298 DOI: 10.25259/sni_250_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/09/2023] Open
Abstract
There is growing evidence that inflammation secondary to immune activation is intimately connected to excitotoxicity. We now know that most peripheral tissues contain fully operational glutamate receptors. While most of the available research deals with excitotoxicity in central nervous system (CNS) tissues, this is no longer true. Even plant has been found to contain glutamate receptors. Most of the immune cells, including mask cells, contain glutamate receptors. The receptors are altered by inflammation, both chemokine and cytokines. A host of new diseases have been found that are caused by immunity to certain glutamate receptors, as we see with Rasmussen's encephalitis. In this paper, I try to explain this connection and possible ways to reduce or even stop the reaction.
Collapse
Affiliation(s)
- Russell L. Blaylock
- Corresponding author: Russell L. Blaylock, M.D. 609 Old Natchez Trace Canton, MS. Retired Neurosurgeon, Department of Neurosurgery, Theoretical Neuroscience Research, LLC, Ridgeland, Mississippi, United States.
| |
Collapse
|
18
|
An J, Li H, Xia D, Xu B, Wang J, Qiu H, He J. The role of interleukin-17 in epilepsy. Epilepsy Res 2022; 186:107001. [PMID: 35994860 DOI: 10.1016/j.eplepsyres.2022.107001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/26/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a common neurological disorder that seriously affects human health. It is a chronic central nervous system dysfunction caused by abnormal discharges of neurons. About 50 million patients worldwide are affected by epilepsy. Although epileptic symptoms of most patients are controllable, some patients with refractory epilepsy have no response to antiseizure medications. It is necessary to investigate the pathogenesis of epilepsy and identify new therapeutic targets for refractory epilepsy. Epileptic disorders often accompany cerebral inflammatory reactions. Recently, the role of inflammation in the onset of epilepsy has increasingly attracted attention. The activation of both innate and adaptive immunity plays a significant role in refractory epilepsy. According to several clinical studies, interleukin-17, an essential inflammatory mediator linking innate and adaptive immunity, increased significantly in the body liquid and epileptic focus of patients with epilepsy. Experimental studies also indicated that interleukin-17 participated in epileptogenesis through various mechanisms. This review summarized the current studies about interleukin-17 in epilepsy and aimed at finding new therapeutic targets for refractory epilepsy.
Collapse
Affiliation(s)
- Jiayin An
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - He Li
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Demeng Xia
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China; Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University, Shanghai, China.
| | - Bin Xu
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Jiayan Wang
- Emergency Department, Naval Hospital of Eastern Theater, Zhejiang, China.
| | - Huahui Qiu
- Zhoushan Hospital, Zhejiang University, Zhoushan, Zhejiang, China.
| | - Jiaojiang He
- Department of Neurosurgery, West China Hospital of Sichuan University, Sichuan, China.
| |
Collapse
|
19
|
Tabra SA, Abd Elghany SE, Amer RA, Fouda MH, Abu-Zaid MH. Serum interleukin-23 levels: relation to depression, anxiety, and disease activity in psoriatic arthritis patients. Clin Rheumatol 2022; 41:3391-3399. [PMID: 35861930 PMCID: PMC9301620 DOI: 10.1007/s10067-022-06300-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Objectives Assessment of serum levels of IL-23 in PsA patients and its correlation with depression, anxiety, and disease activity. Methods Eighty psoriatic arthritis (PsA) patients and eighty healthy volunteers matched for age and gender were included in this observational case–control study. All participants suspected to detailed history, clinical assessment, PsA activity using Disease Activity Index for Psoriatic Arthritis (DAPSA) score, the severity and extent of psoriasis was assessed by the Psoriasis Area and Severity Index (PASI), and ultrasonographic assessments of the entheses were examined according to the Madrid Sonographic Enthesitis Index (MASEI). Depression and anxiety were assessed by Hospital Anxiety and Depression Scale (HADS). Serum IL-23 was measured and correlated with disease activity, depression, and anxiety. Results There was no significant difference between patients and controls regarding demographic data. Thirty-six PsA patients (45%) had anxiety and 28 patients (35%) had depression, while in the control group, 16 persons (20%) had anxiety and 12 (15%) had depression, with significant differences between the 2 groups (p < 0.0001). There were significant differences in HADS anxiety and depression scores between patients and controls with significant positive correlations between HADS depression, anxiety scores and IL-23, DAPSA, PASI, and MASEI scores (p < 0.05). IL-23 was positively correlated with DAPSA, PASI, and HADS scores; we observed that interleukin 23, higher DAPSA, and PASI were independently associated with depression and anxiety. Conclusion Serum interleukin-23 levels were elevated in PsA patients and were found to be correlated with depression, anxiety, and disease activity.
Key Points • Psoriatic arthritis is a multidimensional disorder with psychiatric drawbacks. • Interleukin-23 is a proinflammatory cytokines that was correlated with depression and anxiety in PsA patients. • Interleukin-23 was correlated with disease activity in PsA. • Depression and anxiety were positively correlated with disease activity in PsA. |
Collapse
Affiliation(s)
- Samar Abdalhamed Tabra
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Reham A Amer
- Department of Neuropsychiatry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed H Fouda
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohammed Hassan Abu-Zaid
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Tanta University, Tanta, Egypt.
| |
Collapse
|
20
|
Beurel E, Medina-Rodriguez EM, Jope RS. Targeting the Adaptive Immune System in Depression: Focus on T Helper 17 Cells. Pharmacol Rev 2022; 74:373-386. [PMID: 35302045 PMCID: PMC8973514 DOI: 10.1124/pharmrev.120.000256] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a vital need to understand mechanisms contributing to susceptibility to depression to improve treatments for the 11% of Americans who currently suffer from this debilitating disease. The adaptive immune system, comprising T and B cells, has emerged as a potential contributor to depression, as demonstrated in the context of lymphopenic mice. Overall, patients with depression have reduced circulating T and regulatory B cells, "immunosuppressed" T cells, and alterations in the relative abundance of T cell subtypes. T helper (Th) cells have the capacity to differentiate to various lineages depending on the cytokine environment, antigen stimulation, and costimulation. Regulatory T cells are decreased, and the Th1/Th2 ratio and the Th17 cells are increased in patients with depression. Evidence for changes in each Th lineage has been reported to some extent in patients with depression. However, the evidence is strongest for the association of depression with changes in Th17 cells. Th17 cells produce the inflammatory cytokine interleukin (IL)-17A, and the discovery of Th17 cell involvement in depression evolved from the well established link that IL-6, which is required for Th17 cell differentiation, contributes to the onset, and possibly maintenance, of depression. One intriguing action of Th17 cells is their participation in the gut-brain axis to mediate stress responses. Although the mechanisms of action of Th17 cells in depression remain unclear, neutralization of IL-17A by anti-IL-17A antibodies, blocking stress-induced production, or release of gut Th17 cells represent feasible therapeutic approaches and might provide a new avenue to improve depression symptoms. SIGNIFICANCE STATEMENT: Th17 cells appear as a promising therapeutic target for depression, for which efficacious therapeutic options are limited. The use of neutralizing antibodies targeting Th17 cells has provided encouraging results in depressed patients with comorbid autoimmune diseases.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| | - Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| |
Collapse
|
21
|
Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022; 13:824411. [PMID: 35211120 PMCID: PMC8860818 DOI: 10.3389/fimmu.2022.824411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
22
|
Gomes AKS, Dantas RM, Yokota BY, Silva ALTE, Griesi-Oliveira K, Passos-Bueno MR, Sertié AL. Interleukin-17a Induces Neuronal Differentiation of Induced-Pluripotent Stem Cell-Derived Neural Progenitors From Autistic and Control Subjects. Front Neurosci 2022; 16:828646. [PMID: 35360153 PMCID: PMC8964130 DOI: 10.3389/fnins.2022.828646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Prenatal exposure to maternal immune activation (MIA) has been suggested to increase the probability of autism spectrum disorder (ASD). Recent evidence from animal studies indicates a key role for interleukin-17a (IL-17a) in promoting MIA-induced behavioral and brain abnormalities reminiscent of ASD. However, it is still unclear how IL-17a acts on the human developing brain and the cell types directly affected by IL-17a signaling. In this study, we used iPSC-derived neural progenitor cells (NPCs) from individuals with ASD of known and unknown genetic cause as well as from neurotypical controls to examine the effects of exogenous IL-17a on NPC proliferation, migration and neuronal differentiation, and whether IL-17a and genetic risk factors for ASD interact exacerbating alterations in NPC function. We observed that ASD and control NPCs endogenously express IL-17a receptor (IL17RA), and that IL-17a/IL17RA activation modulates downstream ERK1/2 and mTORC1 signaling pathways. Exogenous IL-17a did not induce abnormal proliferation and migration of ASD and control NPCs but, on the other hand, it significantly increased the expression of synaptic (Synaptophysin-1, Synapsin-1) and neuronal polarity (MAP2) proteins in these cells. Also, as we observed that ASD and control NPCs exhibited similar responses to exogenous IL-17a, it is possible that a more inflammatory environment containing other immune molecules besides IL-17a may be needed to trigger gene-environment interactions during neurodevelopment. In conclusion, our results suggest that exogenous IL-17a positively regulates the neuronal differentiation of human NPCs, which may disturb normal neuronal and synaptic development and contribute to MIA-related changes in brain function and behavior.
Collapse
Affiliation(s)
| | | | - Bruno Yukio Yokota
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo, Brazil
| | | | | | - Maria Rita Passos-Bueno
- Centro de Estudos do Genoma Humano e Células Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Andréa Laurato Sertié
- Hospital Israelita Albert Einstein, Centro de Pesquisa Experimental, São Paulo, Brazil
- *Correspondence: Andréa Laurato Sertié,
| |
Collapse
|
23
|
Sheng L, Luo Q, Chen L. Amino Acid Solute Carrier Transporters in Inflammation and Autoimmunity. Drug Metab Dispos 2022; 50:DMD-AR-2021-000705. [PMID: 35152203 DOI: 10.1124/dmd.121.000705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/27/2022] [Indexed: 02/21/2024] Open
Abstract
The past decade exposed the importance of many homeostasis and metabolism related proteins in autoimmunity disease and inflammation. Solute carriers (SLCs) are a group of membrane channels that can transport amino acids, the building blocks of proteins, nutrients, and neurotransmitters. This review summarizes the role of SLCs amino acid transporters in inflammation and autoimmunity disease. In detail, the importance of Glutamate transporters SLC1A1, SLC1A2, and SLC1A3, mainly expressed in the brain where they help prevent glutamate excitotoxicity, is discussed in the context of central nervous system disorders such as multiple sclerosis. Similarly, the cationic amino acid transporter SLC7A1 (CAT1), which is an important arginine transporter for T cells, and SLC7A2 (CAT2), essential for innate immunity. SLC3 family proteins, which bind with light chains from the SLC7 family (SLC7A5, SLC7A7 and SLC7A11) to form heteromeric amino acid transporters, are also explored to describe their roles in T cells, NK cells, macrophages and tumor immunotherapies. Altogether, the link between SLC amino acid transporters with inflammation and autoimmunity may contribute to a better understanding of underlying mechanism of disease and provide novel potential therapeutic avenues. Significance Statement SIGNIFICANCE STATEMENT In this review, we summarize the link between SLC amino acid transporters and inflammation and immune responses, specially SLC1 family members and SLC7 members. Studying the link may contribute to a better understanding of related diseases and provide potential therapeutic targets and useful to the researchers who have interest in the involvement of amino acids in immunity.
Collapse
Affiliation(s)
| | - Qi Luo
- Tsinghua University, China
| | | |
Collapse
|
24
|
Cao Y, Yu Y, Xue B, Wang Y, Chen X, Beltz TG, Johnson AK, Wei SG. IL (Interleukin)-17A Acts in the Brain to Drive Neuroinflammation, Sympathetic Activation, and Hypertension. Hypertension 2021; 78:1450-1462. [PMID: 34628936 DOI: 10.1161/hypertensionaha.121.18219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yiling Cao
- Department of Internal Medicine (Y.C., Y.Y., S.-G.W.), University of Iowa Carver College of Medicine
| | - Yang Yu
- Department of Internal Medicine (Y.C., Y.Y., S.-G.W.), University of Iowa Carver College of Medicine
| | - Baojian Xue
- Psychological and Brain Sciences (B.X., T.G.B., A.K.J.), University of Iowa Carver College of Medicine
| | - Ye Wang
- Department of Cardiology, the First Affiliated Hospital of Shandong First Medical University, China (Y.W.)
| | - Xiaolei Chen
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China (X.C.)
| | - Terry G Beltz
- Psychological and Brain Sciences (B.X., T.G.B., A.K.J.), University of Iowa Carver College of Medicine
| | - Alan Kim Johnson
- Psychological and Brain Sciences (B.X., T.G.B., A.K.J.), University of Iowa Carver College of Medicine.,Abboud Cardiovascular Research Center (A.K.J., S.-G.W.), University of Iowa Carver College of Medicine.,Iowa Neuroscience Institute (A.K.J., S.-G.W.), University of Iowa Carver College of Medicine
| | - Shun-Guang Wei
- Department of Internal Medicine (Y.C., Y.Y., S.-G.W.), University of Iowa Carver College of Medicine.,Abboud Cardiovascular Research Center (A.K.J., S.-G.W.), University of Iowa Carver College of Medicine.,Department of Cardiology, the First Affiliated Hospital of Shandong First Medical University, China (Y.W.)
| |
Collapse
|
25
|
Cui M, Dai W, Kong J, Chen H. Th17 Cells in Depression: Are They Crucial for the Antidepressant Effect of Ketamine? Front Pharmacol 2021; 12:649144. [PMID: 33935753 PMCID: PMC8082246 DOI: 10.3389/fphar.2021.649144] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Major depressive disorder is associated with inflammation and immune processes. Depressive symptoms correlate with inflammatory markers and alterations in the immune system including cytokine levels and immune cell function. Th17 cells are a T cell subset which exerts proinflammatory effects. Th17 cell accumulation and Th17/Treg imbalances have been reported to be critical in the pathophysiology of major depressive disorder and depressive-like behaviors in animal models. Th17 cells are thought to interfere with glutamate signaling, dopamine production, and other immune processes. Ketamine is a newly characterized antidepressant medication which has proved to be effective in rapidly reducing depressive symptoms. However, the mechanisms behind these antidepressant effects have not been fully elucidated. Method: Literature about Th17 cells and their role in depression and the antidepressant effect of ketamine are reviewed, with the possible interaction networks discussed. Result: The immune-modulating role of Th17 cells may participate in the antidepressant effect of ketamine. Conclusion: As Th17 cells play multiple roles in depression, it is important to explore the mechanisms of action of ketamine on Th17 cells and Th17/Treg cell balance. This provides new perspectives for strengthening the antidepressant effect of ketamine while reducing its side effects and adverse reactions.
Collapse
Affiliation(s)
- Meiying Cui
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Wanlin Dai
- Innovation Institute of China Medical University, Shenyang, China
| | - Jing Kong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongzhi Chen
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Cheng C, Gomez D, McCombe JA, Smyth P, Giuliani F, Blevins G, Baker GB, Power C. Disability progression in multiple sclerosis is associated with plasma neuroactive steroid profile. Neurol Sci 2021; 42:5241-5247. [PMID: 33829329 DOI: 10.1007/s10072-021-05203-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Neuroactive steroids (NASs) exert multiple biological effects on development and inflammation. The effects of NASs on disease progression in multiple sclerosis (MS) are uncertain, prompting analyses of NAS profiles during the transition from clinically isolated syndrome (CIS) to relapsing-remitting (RR) MS. METHODS Subjects with CIS or RRMS and healthy controls (HCs) were recruited; demographic and clinical data as well as disability scores measured by the Expanded Disability Status Scale (EDSS) were recorded. Matched plasma NAS and amino acid (AA) concentrations were measured. RESULTS HC (n = 17), CIS (n = 31), and RRMS (n = 33) groups showed similar ages and sex distribution although disability scores were higher in the RRMS group. The conversion rate of CIS to RRMS group was 51.6% (n = 16) during a mean follow-up period of 1.85 years. The RRMS group showed significantly higher mean allopregnanolone, aspartate, and taurine concentrations with lower epiallopregnanolone concentrations than CIS patients, and higher L-serine-O-phosphate and lower alanine, arginine, and glutamine concentrations than the HC group. Among CIS and RRMS groups, multivariate hierarchical regressions revealed that higher concentrations of plasma tetrahydrodeoxycorticosterone (THDOC) may predict disability worsening. CONCLUSIONS RRMS and CIS patients exhibited differing concentrations of both NASs and AAs in plasma while both THDOC and pregnanolone might serve as biomarkers of disability worsening.
Collapse
Affiliation(s)
- C Cheng
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - D Gomez
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - J A McCombe
- Department of Medicine (Neurology), HMRC 6-11, University of Alberta, Edmonton, AB, Canada
| | - P Smyth
- Department of Medicine (Neurology), HMRC 6-11, University of Alberta, Edmonton, AB, Canada
| | - F Giuliani
- Department of Medicine (Neurology), HMRC 6-11, University of Alberta, Edmonton, AB, Canada
| | - G Blevins
- Department of Medicine (Neurology), HMRC 6-11, University of Alberta, Edmonton, AB, Canada
| | - G B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - C Power
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine (Neurology), HMRC 6-11, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
27
|
Thompson C, Szabo A. Psychedelics as a novel approach to treating autoimmune conditions. Immunol Lett 2020; 228:45-54. [PMID: 33035575 DOI: 10.1016/j.imlet.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/12/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
With a rise in the incidence of autoimmune diseases (AiD), health care providers continue to seek out more efficacious treatment approaches for the AiD patient population. Classic serotonergic psychedelics have recently been gaining public and professional interest as novel interventions to a number of mental health afflictions. Psychedelics have also been shown to be able to modulate immune functions, however, while there has been great interest to researching into their psychotherapeutic applications, there has so far been very little exploration into the potential to treat inflammatory and immune-related diseases with these compounds. A handful of studies from a variety of fields suggest that psychedelics do indeed have effects in the body that may attenuate the outcome of AiD. This literature review explores existing evidence that psychedelic compounds may offer a potential novel application in the treatment of pathologies related to autoimmunity. We propose that psychedelics hold the potential to attenuate or even resolve autoimmunity by targeting psychosomatic origins, maladaptive chronic stress responses, inflammatory pathways, immune modulation and enteric microbiome populations.
Collapse
Affiliation(s)
| | - Attila Szabo
- NORMENT Center of Excellence (CoE), Institute of Clinical Medicine, University of Oslo, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
28
|
Chen J, Liu X, Zhong Y. Interleukin-17A: The Key Cytokine in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:566922. [PMID: 33132897 PMCID: PMC7550684 DOI: 10.3389/fnagi.2020.566922] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by the loss of neurons and/or myelin sheath, which deteriorate over time and cause dysfunction. Interleukin 17A is the signature cytokine of a subset of CD4+ helper T cells known as Th17 cells, and the IL-17 cytokine family contains six cytokines and five receptors. Recently, several studies have suggested a pivotal role for the interleukin-17A (IL-17A) cytokine family in human inflammatory or autoimmune diseases and neurodegenerative diseases, including psoriasis, rheumatoid arthritis (RA), Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and glaucoma. Studies in recent years have shown that the mechanism of action of IL-17A is more subtle than simply causing inflammation. Although the specific mechanism of IL-17A in neurodegenerative diseases is still controversial, it is generally accepted now that IL-17A causes diseases by activating glial cells. In this review article, we will focus on the function of IL-17A, in particular the proposed roles of IL-17A, in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Junjue Chen
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
29
|
Guerrero-García J. The role of astrocytes in multiple sclerosis pathogenesis. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
30
|
Strategies for Neuroprotection in Multiple Sclerosis and the Role of Calcium. Int J Mol Sci 2020; 21:ijms21051663. [PMID: 32121306 PMCID: PMC7084497 DOI: 10.3390/ijms21051663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium ions are vital for maintaining the physiological and biochemical processes inside cells. The central nervous system (CNS) is particularly dependent on calcium homeostasis and its dysregulation has been associated with several neurodegenerative disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD), as well as with multiple sclerosis (MS). Hence, the modulation of calcium influx into the cells and the targeting of calcium-mediated signaling pathways may present a promising therapeutic approach for these diseases. This review provides an overview on calcium channels in neurons and glial cells. Special emphasis is put on MS, a chronic autoimmune disease of the CNS. While the initial relapsing-remitting stage of MS can be treated effectively with immune modulatory and immunosuppressive drugs, the subsequent progressive stage has remained largely untreatable. Here we summarize several approaches that have been and are currently being tested for their neuroprotective capacities in MS and we discuss which role calcium could play in this regard.
Collapse
|
31
|
Baione V, Belvisi D, Cortese A, Cetta I, Tartaglia M, Millefiorini E, Berardelli A, Conte A. Cortical M1 plasticity and metaplasticity in patients with multiple sclerosis. Mult Scler Relat Disord 2020; 38:101494. [DOI: 10.1016/j.msard.2019.101494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022]
|
32
|
Poletti S, Mazza MG, Vai B, Lorenzi C, Colombo C, Benedetti F. Proinflammatory Cytokines Predict Brain Metabolite Concentrations in the Anterior Cingulate Cortex of Patients With Bipolar Disorder. Front Psychiatry 2020; 11:590095. [PMID: 33363485 PMCID: PMC7753118 DOI: 10.3389/fpsyt.2020.590095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric illness characterized by abnormalities in the immune/inflammatory function and in brain metabolism. Evidences suggest that inflammation may affect the levels of brain metabolites as measured by single-proton magnetic resonance spectroscopy (1H-MRS). The aim of the study was to investigate whether a wide panel of inflammatory markers (i.e., cytokines, chemokines, and growth factors) can predict brain metabolite concentrations of glutamate, myo-inositol, N-acetylaspartate, and glutathione in a sample of 63 bipolar patients and 49 healthy controls. Three cytokines influenced brain metabolite concentrations: IL-9 positively predicts glutamate, IL-1β positively predicts Myo-inositol, and CCL5 positively predicts N-acetylaspartate concentrations. Furthermore, patients showed higher concentrations of glutamate, Myo-inositol, and glutathione and lower concentrations of N-acetylaspartate in respect to healthy controls. Our results confirm that inflammation in BD alters brain metabolism, through mechanisms possibly including the production of reactive oxygen species and glia activation.
Collapse
Affiliation(s)
- Sara Poletti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Mario Gennaro Mazza
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Benedetta Vai
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Cristina Lorenzi
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Colombo
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Benedetti
- Psychiatry & Clinical Psychobiology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
33
|
Multiple Sclerosis: Melatonin, Orexin, and Ceramide Interact with Platelet Activation Coagulation Factors and Gut-Microbiome-Derived Butyrate in the Circadian Dysregulation of Mitochondria in Glia and Immune Cells. Int J Mol Sci 2019; 20:ijms20215500. [PMID: 31694154 PMCID: PMC6862663 DOI: 10.3390/ijms20215500] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Abstract
Recent data highlight the important roles of the gut microbiome, gut permeability, and alterations in mitochondria functioning in the pathophysiology of multiple sclerosis (MS). This article reviews such data, indicating two important aspects of alterations in the gut in the modulation of mitochondria: (1) Gut permeability increases toll-like receptor (TLR) activators, viz circulating lipopolysaccharide (LPS), and exosomal high-mobility group box (HMGB)1. LPS and HMGB1 increase inducible nitric oxide synthase and superoxide, leading to peroxynitrite-driven acidic sphingomyelinase and ceramide. Ceramide is a major driver of MS pathophysiology via its impacts on glia mitochondria functioning; (2) Gut dysbiosis lowers production of the short-chain fatty acid, butyrate. Butyrate is a significant positive regulator of mitochondrial function, as well as suppressing the levels and effects of ceramide. Ceramide acts to suppress the circadian optimizers of mitochondria functioning, viz daytime orexin and night-time melatonin. Orexin, melatonin, and butyrate increase mitochondria oxidative phosphorylation partly via the disinhibition of the pyruvate dehydrogenase complex, leading to an increase in acetyl-coenzyme A (CoA). Acetyl-CoA is a necessary co-substrate for activation of the mitochondria melatonergic pathway, allowing melatonin to optimize mitochondrial function. Data would indicate that gut-driven alterations in ceramide and mitochondrial function, particularly in glia and immune cells, underpin MS pathophysiology. Aryl hydrocarbon receptor (AhR) activators, such as stress-induced kynurenine and air pollutants, may interact with the mitochondrial melatonergic pathway via AhR-induced cytochrome P450 (CYP)1b1, which backward converts melatonin to N-acetylserotonin (NAS). The loss of mitochnodria melatonin coupled with increased NAS has implications for altered mitochondrial function in many cell types that are relevant to MS pathophysiology. NAS is increased in secondary progressive MS, indicating a role for changes in the mitochondria melatonergic pathway in the progression of MS symptomatology. This provides a framework for the integration of diverse bodies of data on MS pathophysiology, with a number of readily applicable treatment interventions, including the utilization of sodium butyrate.
Collapse
|
34
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
35
|
Bellozi PMQ, Gomes GF, da Silva MCM, Lima IVDA, Batista CRÁ, Carneiro Junior WDO, Dória JG, Vieira ÉLM, Vieira RP, de Freitas RP, Ferreira CN, Candelario-Jalil E, Wyss-Coray T, Ribeiro FM, de Oliveira ACP. A positive allosteric modulator of mGluR5 promotes neuroprotective effects in mouse models of Alzheimer's disease. Neuropharmacology 2019; 160:107785. [PMID: 31541651 DOI: 10.1016/j.neuropharm.2019.107785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's Disease (AD) is the most prevalent neurodegenerative disorder. Despite advances in the understanding of its pathophysiology, none of the available therapies prevents disease progression. Excess glutamate plays an important role in excitotoxicity by activating ionotropic receptors. However, the mechanisms modulating neuronal cell survival/death via metabotropic glutamate receptors (mGluRs) are not completely understood. Recent data indicates that CDPPB, a positive allosteric modulator of mGluR5, has neuroprotective effects. Thus, this work aimed to investigate CDPPB treatment effects on amyloid-β (Aβ) induced pathological alterations in vitro and in vivo and in a transgenic mouse model of AD (T41 mice). Aβ induced cell death in primary cultures of hippocampal neurons, which was prevented by CDPPB. Male C57BL/6 mice underwent stereotaxic surgery for unilateral intra-hippocampal Aβ injection, which induced memory deficits, neurodegeneration, neuronal viability reduction and decrease of doublecortin-positive cells, a marker of immature neurons and neuronal proliferation. Treatment with CDPPB for 8 days reversed neurodegeneration and doublecortin-positive cells loss and recovered memory function. Fourteen months old T41 mice presented cognitive deficits, neuronal viability reduction, gliosis and Aβ accumulation. Treatment with CDPPB for 28 days increased neuronal viability (32.2% increase in NeuN+ cells) and reduced gliosis in CA1 region (Iba-1+ area by 31.3% and GFAP+ area by 37.5%) in transgenic animals, without inducing hepatotoxicity. However, it did not reverse cognitive deficit. Despite a four-week treatment did not prevent memory loss in aged transgenic mice, CDPPB is protective against Aβ stimulus. Therefore, this drug represents a potential candidate for further investigations as AD treatment.
Collapse
Affiliation(s)
| | - Giovanni Freitas Gomes
- Department of Pharmacology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | | | | | | | - Juliana Guimarães Dória
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Rafael Pinto Vieira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Claudia Natália Ferreira
- Clinical Pathology Sector of COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | | - Tony Wyss-Coray
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | | |
Collapse
|
36
|
Mahmoud S, Gharagozloo M, Simard C, Amrani A, Gris D. NLRX1 Enhances Glutamate Uptake and Inhibits Glutamate Release by Astrocytes. Cells 2019; 8:cells8050400. [PMID: 31052241 PMCID: PMC6562695 DOI: 10.3390/cells8050400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/25/2019] [Accepted: 04/28/2019] [Indexed: 01/24/2023] Open
Abstract
Uptake of glutamate from the extracellular space and glutamate release to neurons are two major processes conducted by astrocytes in the central nervous system (CNS) that protect against glutamate excitotoxicity and strengthen neuronal firing, respectively. During inflammatory conditions in the CNS, astrocytes may lose one or both of these functions, resulting in accumulation of the extracellular glutamate, which eventually leads to excitotoxic neuronal death, which in turn worsens the CNS inflammation. NLRX1 is an innate immune NOD-like receptor that inhibits the major inflammatory pathways. It is localized in the mitochondria and was shown to inhibit cell death, enhance ATP production, and dampen oxidative stress. In the current work, using primary murine astrocyte cultures from WT and Nlrx1-/- mice, we demonstrate that NLRX1 potentiates astrocytic glutamate uptake by enhancing mitochondrial functions and the functional activity of glutamate transporters. Also, we report that NLRX1 inhibits glutamate release from astrocytes by repressing Ca2+-mediated glutamate exocytosis. Our study, for the first time, identified NLRX1 as a potential regulator of glutamate homeostasis in the CNS.
Collapse
Affiliation(s)
- Shaimaa Mahmoud
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Marjan Gharagozloo
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Camille Simard
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Abdelaziz Amrani
- Program of Immunology, Department of Pediatrics, CR-CHUS, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Denis Gris
- Program of Immunology, Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
37
|
Chalah MA, Ayache SS. Is there a link between inflammation and fatigue in multiple sclerosis? J Inflamm Res 2018; 11:253-264. [PMID: 29922081 PMCID: PMC5995280 DOI: 10.2147/jir.s167199] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose Among autoimmune diseases of the central nervous system stands multiple sclerosis (MS), which is characterized by demyelination, synaptopathy, and neurodegeneration. MS fatigue can affect up to 90% of patients and be very disabling, with a drastic impact on their quality of life. To date, the evaluation of MS fatigue has relied mainly on subjective scales, and actual therapeutic interventions are challenged by modest efficacy and numerous undesirable effects. Therefore, finding biomarkers of MS fatigue might help in optimizing evaluation and treatment strategies. The main objective here was to assess the relationship between MS fatigue and inflammatory or other immunomediated markers. Methods Research was conducted according to PRISMA guidelines. Computerized databases (ie, PubMed/Medline and Scopus) were consulted till February 2018 aiming to identify articles that addressed inflammation and MS fatigue. Studies in English and French published at any time were considered. Results A total of 27 studies matched the research criteria. Inconsistency existed regarding the relationship between fatigue and the orexin A system, hypothalamus–pituitary–adrenal axis, and cerebrospinal fluid inflammatory markers. As for peripheral markers, although there was scarcity in the available data, serum proinflammatory cytokines (ie, IL6, TNFα, and IFNγ) seem to be associated with MS fatigue. Finally, no link was found between MS fatigue and T-cell populations (ie, CD3+CD4+ T lymphocytes, regulatory T cells) or other peripheral markers of inflammation (ie, CRP, erythrocyte-sedimentation rate, soluble ICAM1). Conclusion Future large-scale studies would benefit from comparing the relationship between fatigue and immune measures in patients with different disease phenotypes with and without disease-modifying drugs. With the subjective nature of fatigue scales, finding objective biomarkers for fatigue would be of great help.
Collapse
Affiliation(s)
- Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France
| | - Samar S Ayache
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie - Explorations Fonctionnelles, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, Créteil, France.,Neurology Division, Lebanese American University Medical Center, Rizk Hospital, Beirut, Lebanon
| |
Collapse
|
38
|
Guerrero-García JJ. The role of astrocytes in multiple sclerosis pathogenesis. Neurologia 2017; 35:400-408. [PMID: 28958395 DOI: 10.1016/j.nrl.2017.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/31/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. DEVELOPMENT This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. CONCLUSIONS Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS.
Collapse
Affiliation(s)
- J J Guerrero-García
- Doctorado en Ciencias Biomédicas (DCB), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México; Unidad Médica de Alta Especialidad (UMAE), Hospital de Pediatría (HP), Centro Médico Nacional de Occidente (CMNO), IMSS, Guadalajara, Jalisco, México.
| |
Collapse
|
39
|
Editors’ Welcome. Mult Scler Relat Disord 2017; 11:A1-A2. [DOI: 10.1016/j.msard.2016.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|