1
|
Keçecioğlu C, Sarıkaya C, Aydın A, Charehsaz M, Efendi H. Investigation of the Relationship Between Heavy Metals (Cadmium, Arsenic, and Lead) and Metallothionein in Multiple Sclerosis. Cureus 2024; 16:e66754. [PMID: 39268276 PMCID: PMC11392509 DOI: 10.7759/cureus.66754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND AND AIM Multiple sclerosis (MS) is one of the most common neurological disorders. Metals are important for the maintenance and preservation of homeostasis and dysregulated metal homeostasis has an impact on neurodegeneration. Environmental factors are considered to contribute to MS risk and progression. Heavy metals such as arsenic (As), cadmium (Cd), and lead (Pb) are widely found in the environment and because of their toxic nature, they pose a great danger to human health. Metallothioneins (MTs) play important roles in metal homeostasis and detoxification of heavy metals. OBJECTIVE The aim of this study was to investigate the relationship between levels of heavy metals (As, Cd, and Pb) and MT levels in MS patients and also to assess the oxidative stress status of patients. METHOD Fifty subjects (20 healthy subjects and 30 MS patients) were included. Demographic characteristics of the patients, plasma MT levels, blood Cd, As, and Pb levels, as well as iron (Fe), copper (Cu), and zinc (Zn) levels, were determined. Malondialdehyde (MDA) levels were investigated as a marker of oxidative stress. RESULTS MT levels were slightly higher in the MS group (p > 0.05). As Cd and Pb levels were significantly higher in the control subjects. MDA levels were significantly higher in MS patients. CONCLUSION Our results support the relevance of MT and MDA levels in MS. Further clinical studies with larger cohorts will provide more insights into these factors.
Collapse
Affiliation(s)
- Can Keçecioğlu
- Pharmacy Services Program, Istanbul Galata University, Istanbul, TUR
| | - Cansu Sarıkaya
- Neurology, Maltepe University Faculty of Medicine, Istanbul, TUR
| | - Ahmet Aydın
- Pharmaceutical Toxicology, Yeditepe University, Istanbul, TUR
| | | | | |
Collapse
|
2
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
3
|
Ahmadianmoghadam MA, Nematollahi MH, Mehrabani M, Fatemi I, Rostamzadeh F, Dell'Agli M, Mehrabani M, Abolhassani M, Mehrbani M. Effect of an herbal formulation containing Peganum harmala L. and Fraxinus excelsior L. on oxidative stress, memory impairment and withdrawal syndrome induced by morphine. Int J Neurosci 2024; 134:570-583. [PMID: 36168934 DOI: 10.1080/00207454.2022.2130293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 10/17/2022]
Abstract
Background: Traditional Persian medicine has introduced effective remedies in opioid dependence care. One of the most widely used remedies is an herbal formulation containing Peganum harmala L. and Fraxinus excelsior L. (HF). This study investigated the effects of HF to attenuate the withdrawal signs and rewarding effects in morphine-dependent rats. Methods: Forty-nine male Wistar rats were randomly divided into seven groups. The control and vehicle groups received normal saline and sodium carboxymethyl cellulose, respectively. The morphine group received morphine for one week. The single and daily dose of HF groups received morphine similar to the morphine group, and HF (1.4 and 2.8 g/kg) once a day in the daily dose group and only on the last day of the experiment in the single dose of HF group. Finally, the withdrawal signs as well biochemical tests were evaluated. The behavioral parameters were assessed by conditioned place preference (CPP), elevated plus-maze and Y-maze tests. The antioxidant activity of HF was evaluated by measurement of serum contents of malondialdehyde, stable nitric oxide metabolites and total antioxidant capacity (TAC). Moreover, the protein expression of c-fos was assessed by western blotting. Results: Daily treatment with HF significantly reduced the score of CPP behavioral test, all of the withdrawal signs, TAC and the c-fos protein level. Conclusions: The results indicated that HF might be a promising complementary treatment in reducing morphine-induced physical and psychological dependence probably through modulation of c-fos protein expression.
Collapse
Affiliation(s)
- Mohammad Ali Ahmadianmoghadam
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Traditional Medicine, Faculty of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
4
|
Shiri H, Sagha A, Nasri H, Mehdeipour S, Fooladi S, Mehrabani M, Farhadi S, Kharazmi S, Nematollahi MH. Lithium and zinc levels along with oxidative status in myocardial infarction: A case-control study. Heliyon 2023; 9:e21875. [PMID: 38027575 PMCID: PMC10658302 DOI: 10.1016/j.heliyon.2023.e21875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/15/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Background Coronary artery disease (CAD) and myocardial infarction (MI) are the most prevalent diseases globally. While several risk factors for MI are well assessed, the influence of trace elements on MI has not been thoroughly studied. This study aimed to evaluate lithium (Li) and zinc (Zn) levels in MI patients and healthy control and assess their relationship with oxidative stress (OS) parameters, such as nitric oxide (NO) and total antioxidant capacity (TAC). Methods This case-control study was performed on 182 patients with MI and 83 healthy subjects at Shafa Hospital in Kerman, Iran. MI patients were divided into two groups based on the angiography results: those with coronary artery block above 50 % (CAB >50 %, n = 92) and those with coronary artery block below 50 % (CAB <50 %, n = 90). A flame atomic absorption spectrometer was used to detect Li and Zn levels, and biochemical indices were measured by an autoanalyzer. Also, ferric reducing antioxidant power assay and the Griess method were used to measure the amounts of NO and TAC. Results The levels of TAC and Li were significantly higher in the control group than in the patient groups (in both CAB >50 % and CAB <50 % groups). Furthermore, in the CAB <50 % group, TAC and Li levels were significantly higher than in the CAB >50 % group. In the Zn levels evaluation, higher concentration was seen in the CAB >50 % group compared to the CAB <50 % group (P < 0.05). Moreover, Zn and NO levels were significantly higher in both CAB groups compared to controls. In continue, Li levels had a positive association with TAC and ejection fraction percentage (EF%) as well as a negative association with NO levels and Zn levels had a significant positive association with NO and a negative association with TAC. In logistic regression analysis, Li, TAC, and high-density lipoprotein-cholesterol significantly decreased the odds ratio (OR) of MI, whereas Zn, NO, total cholesterol, triglyceride, low-density lipoprotein-cholesterol, and high-sensitivity C-reactive protein (hs-CRP) significantly increased the OR of MI. Furthermore, the area under the curve (AUC) analysis indicated that Li had the highest AUC for the diagnosis of CAB >50 % (Li < 167 ng/mL), and Zn ≥ 1810 μg/mL increased disease severity. Conclusion Our investigation revealed that Li had a protective effect against CAD by decreasing OS and increasing EF%. However, Zn at concentrations higher than 1810 μg/mL was found to be cytotoxic and increased the risk of MI through increased OS. Taken togather, it could be concluded that Li supplementation may decrease the risk of CAD.
Collapse
Affiliation(s)
- Hamidreza Shiri
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Sagha
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Nasri
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, and Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Sobhan Mehdeipour
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Saba Fooladi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Soudabeh Farhadi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sharareh Kharazmi
- Department of Pediatrics, Faculty of Medicine, Islamic Azad University, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
5
|
Pan I, Umapathy S, Issac PK, Rahman MM, Guru A, Arockiaraj J. The bioaccessibility of adsorped heavy metals on biofilm-coated microplastics and their implication for the progression of neurodegenerative diseases. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1264. [PMID: 37782357 DOI: 10.1007/s10661-023-11890-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MP) tiny fragments (< 5 mm) of conventional and specialized industrial polymers are persistent and ubiquitous in both aquatic and terrestrial ecosystem. Breathing, ingestion, consumption of food stuffs, potable water, and skin are possible routes of MP exposure that pose potential human health risk. Various microorganisms including bacteria, cyanobacteria, and microalgae rapidly colonized on MP surfaces which initiate biofilm formation. It gradually changed the MP surface chemistry and polymer properties that attract environmental metals. Physicochemical and environmental parameters like polymer type, dissolved organic matter (DOM), pH, salinity, ion concentrations, and microbial community compositions regulate metal adsorption on MP biofilm surface. A set of highly conserved proteins tightly regulates metal uptake, subcellular distribution, storage, and transport to maintain cellular homeostasis. Exposure of metal-MP biofilm can disrupt that cellular homeostasis to induce toxicities. Imbalances in metal concentrations therefore led to neuronal network dysfunction, ROS, mitochondrial damage in diseases like Alzheimer's disease (AD), Parkinson's disease (PD), and Prion disorder. This review focuses on the biofilm development on MP surfaces, factors controlling the growth of MP biofilm which triggered metal accumulation to induce neurotoxicological consequences in human body and stategies to reestablish the homeostasis. Thus, the present study gives a new approach on the health risks of heavy metals associated with MP biofilm in which biofilms trigger metal accumulation and MPs serve as a vector for those accumulated metals causing metal dysbiosis in human body.
Collapse
Affiliation(s)
- Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India.
| | - Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
6
|
Kumar D, Kumar R, Singh B, Agrawal V. Modulation in the enzymatic antioxidants, MDA level and elicitation in conessine biomolecule in Holarrhena pubescens (medicinal tree) cultures exposed to different heavy metals: Ni, Co, Cr and As. 3 Biotech 2023; 13:307. [PMID: 37608912 PMCID: PMC10441967 DOI: 10.1007/s13205-023-03697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/10/2023] [Indexed: 08/24/2023] Open
Abstract
Nodal explants of Holarrhena pubescens, an important medicinal tree, were cultured on Murashige and Skoog's medium (MS) containing 15 µM BA (control) alone and on medium supplemented with different concentrations (0, 1, 5, 25, 50, 100 and 200 mg/L) of heavy metals such as NiCl2, CoCl2, As2O3 and CrO3 to study their toxic effect. After 28 days of treatments, the nodal segments were harvested to assess the average number of shoots per explants, average shoot length, malondialdehyde content, proline content, conessine accumulation and antioxidant enzymatic activity. Among all the metals tried, best morphogenic response was achieved at 5 mg/L CrO3 where 80% culture differentiated an average of 3.21 ± 0.08 shoots per explant having 0.95 ± 0.018 cm average shoot length. Highest concentration (200 mg/L) of all the heavy metals proved lethal for morphogenesis. Maximum inhibition in average shoot number and average shoot length was observed in nodal explants treated with 25 mg/L As2O3 where an average of 0.49 ± 0.047 shoots having an average shoot length of 0.3 ± 0.02 cm. Contrarily, addition of heavy metals in culture medium proved strong elicitors, exhibiting significant enhancement in the biosynthesis of conessine, an important bioactive compound. HPLC analysis of the crude extract of in vitro grown untreated nodal cultures revealed an average of 117.06 ± 2.59 µg/g d. w. of conessine, whereas those treated with 100 mg/L of CoCl2 accounted for 297.1 ± 7.76 µg/g d. w. (an increase of 156% over control). Among the heavy metals tried, CoCl2 proved to be the best for conessine enhancement which was in the order of CoCl2 > Cr2O3 > NiCl2 > As2O3 in the nodal explants. Concomitantly, MDA content, the antioxidant enzymes activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GR) and ascorbate peroxidase (APX) were also observed to be differentially expressed with the increase in the heavy metals concentration from 1 to 200 mg/L. Free proline, too, increased up to 3.5-fold over control. The results obtained during the present investigation revealed that the overall response of the nodal explants in terms of morphogenesis, conessine content and antioxidant enzyme activities was metal specific as well as dose dependent.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Botany, University of Delhi, Delhi, 110007 India
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077 India
| | | | - Bharat Singh
- ICMR-National Institute of Malaria Research, Dwarka, New Delhi, 110077 India
| | - Veena Agrawal
- Department of Botany, University of Delhi, Delhi, 110007 India
| |
Collapse
|
7
|
Liu S, Zhang L, Luo N, Wang M, Tang C, Jing J, Chen H, Hu Q, Tan L, Ma X, Zou Y. Metal mixture exposure and the risk for immunoglobulin A nephropathy: Evidence from weighted quantile sum regression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87783-87792. [PMID: 37434053 DOI: 10.1007/s11356-023-28706-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common type of glomerulonephritis in adults worldwide. Environmental metal exposure has been reported to be involved in the pathogenic mechanisms of kidney diseases, yet no further epidemiological study has been conducted to assess the effects of metal mixture exposure on IgAN risk. In this study, we conducted a matched case‒control design with three controls for each patient to investigate the association between metal mixture exposure and IgAN risk. A total of 160 IgAN patients and 480 healthy controls were matched for age and sex. Plasma levels of arsenic, lead, chromium, manganese, cobalt, copper, zinc, and vanadium were measured using inductively coupled plasma mass spectrometry. We used a conditional logistic regression model to assess the association between individual metals and IgAN risk, and a weighted quantile sum (WQS) regression model to analyze the effects of metal mixtures on IgAN risk. Restricted cubic splines were used to evaluate overall associations between plasma metal concentrations and estimated glomerular filtration rate (eGFR) levels. We observed that except for Cu, all the metals analyzed were nonlinearly associated with decreased eGFR, and higher concentrations of arsenic and lead were associated with elevated IgAN risk in both single-metal [3.29 (1.94, 5.57), 6.10 (3.39, 11.0), respectively] and multiple-metal [3.04 (1.66, 5.57), 4.70 (2.47, 8.97), respectively] models. Elevated manganese [1.76 (1.09, 2.83)] levels were associated with increased IgAN risk in the single-metal model. Copper was inversely related to IgAN risk in both single-metal [0.392 (0.238, 0.645)] and multiple-metal [0.357 (0.200, 0.638)] models. The WQS indices in both positive [2.04 (1.68, 2.47)] and negative [0.717 (0.603, 0.852)] directions were associated with IgAN risk. Lead, arsenic, and vanadium contributed significant weights (0.594, 0.195, and 0.191, respectively) in the positive direction; copper, cobalt, and chromium carried significant weights (0.538, 0.253, and 0.209, respectively). In conclusion, metal exposure was related to IgAN risk. Lead, arsenic, and copper were all significantly weighted factors of IgAN development, which may require further investigation.
Collapse
Affiliation(s)
- Shaohui Liu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Li'e Zhang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Na Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
- Department of Clinical Nutriology, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, China
| | - Mingjun Wang
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Chuanqiao Tang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Jiajun Jing
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Hao Chen
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Qiuhua Hu
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Lina Tan
- Department of Nephrology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Xiaoli Ma
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
8
|
Momeni-Moghaddam MA, Asadikaram G, Masoumi M, Sadeghi E, Akbari H, Abolhassani M, Farsinejad A, Khaleghi M, Nematollahi MH, Dabiri S, Arababadi MK. Opium may affect coronary artery disease by inducing inflammation but not through the expression of CD9, CD36, and CD68. J Investig Med 2023; 71:191-201. [PMID: 36708288 DOI: 10.1177/10815589221145030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The molecular mechanisms of opium action with regard to coronary artery disease (CAD) have not yet been determined. The aim of this study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NOx) in CAD patients with and without opium addiction. This case-control study was conducted on three groups: (1) opium-addicted CAD patients (CAD + OA, n = 30); (2) CAD patients with no opium addiction (CAD, n = 30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n = 17). The protein and mRNA levels of CD9, CD36, and CD68 were evaluated by the flow cytometry and quantitative polymerase chain reaction (RT-qPCR) methods, respectively. The consumption of atorvastatin, aspirin, and glyceryl trinitrate was found be higher in the CAD groups compared with the control group. The plasma level of TNF-α was significantly higher in the CAD + OA group than in the CAD and Ctrl groups (p = 0.001 and p = 0.005, respectively). MDA levels significantly increased in CAD and CAD + OA patients in comparison with the Ctrl group (p = 0.010 and p = 0.002, respectively). No significant differences were found in CD9, CD36, CD68, IFN-γ, and NOx between the three groups. The findings demonstrated that opium did not have a significant effect on the expression of CD36, CD68, and CD9 at gene and protein levels, but it might be involved in the development of CAD by inducing inflammation through other mechanisms.
Collapse
Affiliation(s)
- Mohammad Amin Momeni-Moghaddam
- Department of Nutrition and Biochemistry, Gonabad University of Medical Sciences, Gonabad, Iran.,Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Masoumi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Erfan Sadeghi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamed Akbari
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Khaleghi
- Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Kazemi Arababadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
9
|
Sagha A, Shiri H, Juybari KB, Mehrabani M, Nasri HR, Nematollahi MH. The Association Between Arsenic Levels and Oxidative Stress in Myocardial Infarction: A Case-Control Study. Cardiovasc Toxicol 2023; 23:61-73. [PMID: 36648739 DOI: 10.1007/s12012-022-09778-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023]
Abstract
Cardiovascular diseases (CVDs) are known as the first causes of death throughout the world, and mainly myocardial infarction (MI), lead to 7.4 million deaths annually. Atherosclerosis is the major underlying cause of most CVDs. However, exposure to heavy metals, among other factors, deserves further attention as a risk factor for CVDs. This study was designed to evaluate the levels of arsenic (Ars) in myocardial infarction (MI) patients and healthy individuals as well as assess the association between the incidence of MI and Ars, total antioxidant capacity (TAC), and oxidative stress. This case-control study was conducted among patients with MI (n = 164) and normal individuals (n = 61) at Shafa Hospital in Kerman, Iran. Patients were classified into two groups, including coronary artery blocks above 50% (CAB > 50%, n = 83) and coronary artery blocks less than 50% (CAB < 50%, n = 83) based on their angiography findings. The demographic characteristics, clinical history, biochemical parameters, and serum Ars and TAC levels were evaluated. In the present study, both CAB groups had significantly reduced levels of TAC compared with the control. Furthermore, TAC was lower in the CAB > %50 group compared to the CAB < %50 group. Ars levels were significantly higher in both CAB groups compared with the control. There was a significant positive relationship between CAB and Ars, BG, HbA1c, urea, creatinine, TG, TC, and LDL-c, as well as a negative relationship between HDL-c and TAC. Moreover, TAC levels showed a significant inverse correlation with Ars, HbA1c, and creatinine, and a positive correlation with HDL-c. As risk factors, Ars, hs-CRP, TG, TC, and LDL-c enhance the severity of the disease, and HDL-c and TAC decrease the disease severity. Moreover, ROC curve analysis revealed that the highest AUC for the CAB > %50 (AUC = 78.29), and cytotoxic levels for both CAB groups (Ars ≥ 0.105 ppm), and no significant differences were found between the two groups. Our findings suggest that Ars at ≥ 0.105 ppm is able to increase the risk of MI through the increased OS and decreased TAC.
Collapse
Affiliation(s)
- Arian Sagha
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamidreza Shiri
- Department of Clinical Biochemistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Reza Nasri
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, and Shafa Hospital, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
10
|
Bastin A, Fooladi S, Doustimotlagh AH, Vakili S, Aminizadeh AH, Faramarz S, Shiri H, Nematollahi MH. A comparative study on the effect of blood collection tubes on stress oxidative markers. PLoS One 2022; 17:e0266567. [PMID: 35385561 PMCID: PMC8985951 DOI: 10.1371/journal.pone.0266567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 12/01/2022] Open
Abstract
Oxidative stress has a major role in disease pathogenesis. However, limited studies have investigated the effect of various sample collection tubes on oxidative biomarkers. The present study aimed to evaluate the effect of different collection tubes on the variation of malondialdehyde (MDA), nitric oxide (NO), total thiol (t-SH), and ferric reducing ability of plasma (FRAP) levels. A total of 35 individuals participated in this study and each collected sample was separated into three different tubes: glass tubes (GTs), plain plastic tubes (PTs), and gel separator tubes (GSTs). The results of PTs and GSTs were compared to those of GTs as the reference tube. The comparison between the means of biomarkers in various tubes indicated that there was no significant difference in MDA results between tubes. In contrast, t-SH and NO content were significantly decreased in GSTs and PTs compared to GTs. However, the Bland-Altman analysis showed an acceptable concordance for the mentioned analytes and the statistically significant differences were not clinically significant for NO, MDA, and t-SH antioxidant parameters. Moreover, the FRAP level was considerably lower in GSTs compared to GTs. Nevertheless, the Bland-Altman analysis showed a high bias percentage for the FRAP assay when using PTs and GSTs. According to the present results, it can be concluded that switching to plastic blood collection tubes or serum separation tubes could influence the FRAP results. However, there was no interference for the interpretation of other antioxidant assays in different types of collection tubes. Hence, it is suggested to use GTs for total antioxidant capacity evaluations, especially the FRAP assay.
Collapse
Affiliation(s)
- Alireza Bastin
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Amir Hossein Doustimotlagh
- Department of Clinical Biochemistry Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Faramarz
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamidreza Shiri
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- * E-mail: ,
| |
Collapse
|
11
|
Momeni-Moghaddam MA, Asadikaram G, Masoumi M, Sadeghi E, Akbari H, Abolhassani M, Farsinejad A, Khaleghi M, Nematollahi MH, Dabiri S, Arababadi MK. Opium may affect coronary artery disease by inducing inflammation but not through the expression of CD9, CD36, and CD68. J Investig Med 2021; 70:1728-1735. [PMID: 34872933 DOI: 10.1136/jim-2021-001935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 11/04/2022]
Abstract
The molecular mechanisms of opium with regard to coronary artery disease (CAD) have not yet been determined. The aim of the present study was to evaluate the effect of opium on the expression of scavenger receptors including CD36, CD68, and CD9 tetraspanin in monocytes and the plasma levels of tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), malondialdehyde (MDA), and nitric oxide metabolites (NOx) in patients with CAD with and without opium addiction. This case-control study was conducted in three groups: (1) opium-addicted patients with CAD (CAD+OA, n=30); (2) patients with CAD with no opium addiction (CAD, n=30); and (3) individuals without CAD and opium addiction as the control group (Ctrl, n=17). Protein and messenger RNA (mRNA) levels of CD9, CD36, and CD68 were evaluated by flow cytometry and reverse transcription-quantitative PCR methods, respectively. Consumption of atorvastatin, aspirin, and glyceryl trinitrate was found to be higher in the CAD groups compared with the control group. The plasma level of TNF-α was significantly higher in the CAD+OA group than in the CAD and Ctrl groups (p=0.001 and p=0.005, respectively). MDA levels significantly increased in the CAD and CAD+OA groups in comparison with the Ctrl group (p=0.010 and p=0.002, respectively). No significant differences were found in CD9, CD36, CD68, IFN-γ, and NOx between the three groups. The findings demonstrated that opium did not have a significant effect on the expression of CD36, CD68, and CD9 at the gene and protein levels, but it might be involved in the development of CAD by inducing inflammation through other mechanisms.
Collapse
Affiliation(s)
- Mohammad Amin Momeni-Moghaddam
- Nutrition and Biochemistry, Gonabad University of Medical Sciences, Gonabad, Iran (the Islamic Republic of).,Department of Clinical Biochemistry, Afzalipur Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran (the Islamic Republic of)
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, Afzalipur Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran (the Islamic Republic of) .,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran (the Islamic Republic of)
| | - Mohammad Masoumi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Erfan Sadeghi
- Fasa University of Medical Sciences, Fasa, Iran (the Islamic Republic of)
| | - Hamed Akbari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences,Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Morteza Khaleghi
- Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Kazemi Arababadi
- Rafsanjan University of Medical Sciences, Rafsanjan, Iran (the Islamic Republic of).,Department of Laboratory Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran (the Islamic Republic of)
| |
Collapse
|
12
|
Cerexhe L, Easton C, Macdonald E, Renfrew L, Sculthorpe N. Blood lactate concentrations during rest and exercise in people with Multiple Sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2021; 57:103454. [PMID: 34915317 DOI: 10.1016/j.msard.2021.103454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Multiple Sclerosis (MS) is a chronic disorder which irreversibly damages axons within brain matter. Blood lactate concentration could be a biomarker of MS onset and progression, but no systematic review has yet sought to confirm or dispute the elevation and biomarker potential of blood lactate in people with MS (PwMS) or to consolidate understanding of lactate production during exercise in PwMS. OBJECTIVE To perform a systematic review and meta-analysis on blood lactate in PwMS during rest and exertion compared to Healthy Controls (HC) and following chronic exercise intervention. METHODS A systematic search of six electronic databases (PubMed, CINAHL, Science Direct, Cochrane Library, SPORTDiscus and PEDro) was performed on 10th April 2020. Mean, standard deviation and sample size for lactate measures at rest and during exercise were pooled to determine overall effect size using a random effects model. The 20-point Appraisal tool for Cross-Sectional Studies was utilised to assess study quality and inherent risk of bias. To qualify for inclusion, studies had to include human adults (>18 years) with a confirmed clinical diagnosis of MS, be published in English, have undergone peer review, report absolute blood lactate values for data extraction, and if involving testing during/after exercise, to do so during bilateral exercise methods. RESULTS 18 studies were qualitatively analysed and 15 studies quantitatively analysed. Outcome data was available for 1986 participants (nMS = 1129). A total of 7 papers tested blood lactate during rest (LactateREST), 7 papers tested during sub-maximal intensity exercise (LactateSUB-MAX), and 8 papers tested during maximal intensity exercise (LactateMAX). Meta analyses showed elevated LactateREST and reduced LactateMAX in PwMS compared to HC, higher LactateMAX in lower EDSS-scoring PwMS compared to higher EDSS-scoring PwMS, and that LactateSUB-MAX decreases and LactateMAX increases in PwMS following a chronic exercise intervention. Qualitative analysis reported LactateREST to be reduced in PwMS following a chronic exercise intervention. CONCLUSIONS LactateREST is elevated in PwMS compared to HC. LactateMAX is lower in PwMS compared to HC and lower still in higher compared to lower EDSS-scoring groups of PwMS. Chronic exercise interventions have the potential to reduce LacatateSUB-MAX for a given power output and increase LactateMAX in PwMS compared to baseline values. LactateREST may be reduced in PwMS following a chronic exercise intervention but more research is required for confirmation. The results of this review were limited by small sample sizes and number of studies available for each testing condition, limited data available for potentially confounding/correlating factors (eg. VO2 and power output) as well as heterogeneity of methodology adopted across studies, often due to lactate testing being a secondary outcome measure. PLS: Lactate levels in the blood are different during rest and at intense exercise levels in people with Multiple Sclerosis (MS) compared to healthy counterparts, with people with MS showing a smaller jump in lactate during intense exercise from a higher resting level. After exercising for at least 3 months, blood lactate levels during exercise may become more similar to the levels seen in people without Multiple Sclerosis, but more research is required to give a clearer picture of this. We can hopefully use blood lactate in future to measure the progression of MS in an individual as well as the effectiveness of their exercise programme.
Collapse
Affiliation(s)
- Luke Cerexhe
- Institute of Clinical Exercise & Health Sciences, School of Health and Life Sciences, University of the West of Scotland, Stephenson Place, Hamilton International Technology Park, South Lanarkshire G72 0HL, United Kingdom.
| | - Chris Easton
- Institute of Clinical Exercise & Health Sciences, School of Health and Life Sciences, University of the West of Scotland, Stephenson Place, Hamilton International Technology Park, South Lanarkshire G72 0HL, United Kingdom
| | - Eilidh Macdonald
- Institute of Clinical Exercise & Health Sciences, School of Health and Life Sciences, University of the West of Scotland, Stephenson Place, Hamilton International Technology Park, South Lanarkshire G72 0HL, United Kingdom
| | - Linda Renfrew
- Douglas Grant Rehabilitation Unit, Ayrshire Central Hospital, Kilwinning Rd, Irvine, Ayrshire KA12 8SS, United Kingdom
| | - Nicholas Sculthorpe
- Institute of Clinical Exercise & Health Sciences, School of Health and Life Sciences, University of the West of Scotland, Stephenson Place, Hamilton International Technology Park, South Lanarkshire G72 0HL, United Kingdom
| |
Collapse
|
13
|
Arab YarMohammadi A, Arbabi Bidgoli S, Ziarati P. Increased urinary arsenic concentration in newly diagnosed type 2 diabetes mellitus: a gender-independent, smoking-dependent exposure biomarker in older adults in Tehran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:27769-27777. [PMID: 33517531 DOI: 10.1007/s11356-020-10261-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/22/2020] [Indexed: 06/12/2023]
Abstract
Arsenic is ranked in the top ten environmental toxicants but its impact on type 2 diabetes mellitus (T2DM) and its association with other human health effects is contradictory. We aimed in this study to compare the urinary arsenic concentration (u As) in older age adults (> 40 years) and their T2DM subgroup in an age and gender-matched case control study to find the association of u As with, diet, oxidative stress, smoking, anthropometric factors, and lifestyle in our study participants. Face-to-face interviews based on structured questionnaires were conducted on 200 female and male volunteers (100 cases and 100 control). Considering the exclusion criteria, u As concentration and serum biomarkers of oxidative stress (malondialdehyde, superoxide dismutase, catalase) of 30 newly diagnosed T2DM and 30 control were determined by ICP-mass analysis and ELISA reader respectively. Despite the similarities in sociodemographic, diet, and lifestyle factors in males and females and their T2DM subgroups, a 4 times difference in u As levels between T2DM (93.7 ng/L (32)) and their healthy counterparts (23.7 ng/L (2.3)) without meaningful associations with gender, age, BMI, diet, and lifestyle was observed. Mean u As concentration in total population of smokers was significantly higher than non-smokers ((119 ng/L vs. 22.5 ng/L (p = 0.03)) and oxidative stress markers were not significantly higher in T2DM smokers than non-smokers. Chronic arsenic exposure through smoking could be contributed to the incidence of T2DM in older age adults. Oxidative stress markers were not significantly increased in smoker subgroup compared with non-smokers but except smoking pattern, other variables did not affect u As concentration. Precautionary measure to reduce the exposure of people with this element is recommended to prevent the arsenic-induced T2DM in human populations.
Collapse
Affiliation(s)
- Atena Arab YarMohammadi
- Pharmaceutical Sciences Research Center, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
| | - Sepideh Arbabi Bidgoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Dr. Shariati St., Gholhak, Yakhchal, Pharmaceutical Science Branch, Tehran, Iran.
| | - Parisa Ziarati
- Nutrition and Food Sciences Research Center, Faculty of Pharmacy and Pharmaceutical Sciences, Islamic Azad University, Tehran Medical Sciences University (IAUTMU), Tehran, Iran
| |
Collapse
|
14
|
Saravani M, Nematollahi MH, Shahroudi MJ, Heidary Z, Sandoughi M, Maruei-Milan R, Mehrabani M. Polymorphism of the DNA repair gene XDP increases the risk of systemic lupus erythematosus but not multiple sclerosis in the Iranian population. Mult Scler Relat Disord 2021; 52:102985. [PMID: 33984652 DOI: 10.1016/j.msard.2021.102985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Xeroderma pigmentosum group D ( XPD ) is an essential component of the nucleotide excision repair (NER) pathway, which can play a major role in DNA repair processes. A deficiency in this pathway was suggested as a causative factor of autoimmune diseases. Therefore, the current study aimed to investigate the relationship between XPD Lys751Gln polymorphism (rs13181) as one of the most common XDP polymorphisms and the risk of two important auto-immune diseases,namely systemic lupus erythematosus (SLE) and multiple sclerosis (MS) in the Iranian population. METHODS 165 SLE patients and 165 age- and gender-matched healthy controls, and 150 MS patients and 150 age- and gender-matched healthy controls were genotyped for XPD rs13181 A/C polymorphism using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS The results of the present study have indicated that both C allele frequency ( P = 0.012; odds ratio: 1.5; 95% confidence interval: 1.1-2.07) and CC genotype ( P = 0.007; odds ratio: 2.46; 95% confidence interval: 1.2-4.7) in SLE patient were significantly higher than those in control group. Furthermore, there were no significant differences between MS patients and normal subjects concerning the genotype and the allele frequencies. CONCLUSION Our findings suggested that XPD rs13181 A/C polymorphism may be a crucial risk factor for the development of SLE but not MS in Iranian patients.
Collapse
Affiliation(s)
- Mohsen Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Biochemistry, Faculty of Medicine, Kerman University of medical sciences, Kerman, Iran
| | - Mahdieh Jafari Shahroudi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zohreh Heidary
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sandoughi
- Department of Internal Medicine, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rostam Maruei-Milan
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
15
|
Dales JP, Desplat-Jégo S. Metal Imbalance in Neurodegenerative Diseases with a Specific Concern to the Brain of Multiple Sclerosis Patients. Int J Mol Sci 2020; 21:E9105. [PMID: 33266021 PMCID: PMC7730295 DOI: 10.3390/ijms21239105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence that deregulation of metals contributes to a vast range of neurodegenerative diseases including multiple sclerosis (MS). MS is a chronic inflammatory disease of the central nervous system (CNS) manifesting disability and neurological symptoms. The precise origin of MS is unknown, but the disease is characterized by focal inflammatory lesions in the CNS associated with an autoimmune reaction against myelin. The treatment of this disease has mainly been based on the prescription of immunosuppressive and immune-modulating agents. However, the rate of progressive disability and early mortality is still worrisome. Metals may represent new diagnostic and predictive markers of severity and disability as well as innovative candidate drug targets for future therapies. In this review, we describe the recent advances in our understanding on the role of metals in brain disorders of neurodegenerative diseases and MS patients.
Collapse
Affiliation(s)
- Jean-Philippe Dales
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Pavillon Etoile, Pôle de Biologie, Service d’anatomie-pathologie, CEDEX 20, 13915 Marseille, France
| | - Sophie Desplat-Jégo
- Institute of Neurophysiopathology, CNRS, INP, Aix-Marseille University, 13005 Marseille, France;
- Assistance Publique-Hôpitaux de Marseille, Hôpital de la Conception, Pôle de Biologie, Service d’Immunologie, 13005 Marseille, France
| |
Collapse
|
16
|
Tanaka M, Vécsei L. Monitoring the Redox Status in Multiple Sclerosis. Biomedicines 2020; 8:E406. [PMID: 33053739 PMCID: PMC7599550 DOI: 10.3390/biomedicines8100406] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Worldwide, over 2.2 million people suffer from multiple sclerosis (MS), a multifactorial demyelinating disease of the central nervous system. MS is characterized by a wide range of motor, autonomic, and psychobehavioral symptoms, including depression, anxiety, and dementia. The blood, cerebrospinal fluid, and postmortem brain samples of MS patients provide evidence on the disturbance of reduction-oxidation (redox) homeostasis, such as the alterations of oxidative and antioxidative enzyme activities and the presence of degradation products. This review article discusses the components of redox homeostasis, including reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products. The reactive chemical species cover frequently discussed reactive oxygen/nitrogen species, infrequently featured reactive chemicals such as sulfur, carbonyl, halogen, selenium, and nucleophilic species that potentially act as reductive, as well as pro-oxidative stressors. The antioxidative enzyme systems cover the nuclear factor erythroid-2-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 (KEAP1) signaling pathway. The NRF2 and other transcriptional factors potentially become a biomarker sensitive to the initial phase of oxidative stress. Altered components of the redox homeostasis in MS were discussed in search of a diagnostic, prognostic, predictive, and/or therapeutic biomarker. Finally, monitoring the battery of reactive chemical species, oxidative enzymes, antioxidative enzymes, and degradation products helps to evaluate the redox status of MS patients to expedite the building of personalized treatment plans for the sake of a better quality of life.
Collapse
Affiliation(s)
- Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary;
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
17
|
Bastin A, Sadeghi A, Nematollahi MH, Abolhassani M, Mohammadi A, Akbari H. The effects of malvidin on oxidative stress parameters and inflammatory cytokines in LPS-induced human THP-1 cells. J Cell Physiol 2020; 236:2790-2799. [PMID: 32914418 DOI: 10.1002/jcp.30049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 01/29/2023]
Abstract
Malvidin is an anthocyanin which is involved in inhibiting inflammatory-related mediators in inflammatory diseases; however, its mechanism of action in THP-1 cells is not yet known. THP-1 is a human monocytic cell line that is derived from patients with acute monocytic leukemia. The present study aimed to investigate the effect of malvidin on inflammatory responses and oxidative stress in lipopolysaccharide (LPS)-induced THP-1 cells. THP-1 cells were stimulated with LPS (50 ng/ml) to induce inflammation in the presence or absence of malvidin. The anti/proinflammatory cytokines were evaluated by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Total protein levels/phosphorylation of c-Jun N-terminal kinase (JNK), P65-NF-κB, and IKKα/IKKβ were evaluated by western blot analysis. Malondialdehyde (MDA) and nitric oxide (NO) metabolite levels, ferric reducing antioxidant power (FRAP), total thiol (T-SH) content, and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity were measured to evaluate the antioxidant activity of malvidin in THP-1 cells. Treatment of LPS-stimulated THP-1 cells with malvidin (100 and 200 μM) led to the significant inhibition of interleukin-6 (IL-6), tumor necrosis factor-α, and IL-1β messenger RNA (mRNA) expression and protein levels as well as a significant increase in the IL-10 mRNA expression and protein secretion. Moreover, 200 μM malvidin treatment reduced the phosphorylation of JNK, IKKα/IKKβ, and P65-NF-κB. These findings showed that malvidin not only decreased the MDA and NO metabolite levels but also increased the FRAP and T-SH content as well as SOD and GPx activities. The findings of the present study demonstrated the potential role of malvidin in blocking inflammation and oxidative stress induced by LPS in THP-1 cell line, suggesting that malvidin is likely to be a therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- Alireza Bastin
- Herbal and Traditional Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Asie Sadeghi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Mohammadi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Akbari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
18
|
Zhang SY, Gui LN, Liu YY, Shi S, Cheng Y. Oxidative Stress Marker Aberrations in Multiple Sclerosis: A Meta-Analysis Study. Front Neurosci 2020; 14:823. [PMID: 32982663 PMCID: PMC7479227 DOI: 10.3389/fnins.2020.00823] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress has been suggested to play a key role in multiple sclerosis (MS), but clinical data on oxidative stress markers in MS patients were inconsistent. This study sought to quantitatively summarize the data of oxidative stress markers in the blood and cerebrospinal fluid (CSF) of patients with MS in the literature. We conducted a systematic search of PubMed and Web of Science and included studies if they provided data on the concentrations of oxidative stress markers in the peripheral blood and CSF of MS patients and healthy control (HC) subjects. The systematic search resulted in the inclusion of 31 studies with 2,001 MS patients and 2,212 HC subjects for meta-analysis. Random-effects meta-analysis demonstrated that patients with MS had significantly increased concentrations of blood oxidative stress markers compared with HC subjects for malondialdehyde (MDA; Hedges' g, 2.252; 95% CI, 1.080 to 3.424; p < 0.001) and lipid hydroperoxide by tert-butyl hydroperoxide-initiated chemiluminescence (CL-LOOH; Hedges' g, 0.383; 95% CI, 0.065 to 0.702; p = 0.018). In contrast, concentrations of albumin (Hedges' g, −1.036; CI, −1.679 to −0.394; p = 0.002) were significantly decreased in MS patients when compared with those in HC subjects. However, the other analyzed blood oxidative stress markers did not show significant differences between cases and controls. Furthermore, this meta-analysis showed significant association between CSF MDA and MS (Hedges' g, 3.275; 95% CI, 0.859 to 5.691; p = 0.008). Taken together, our results revealed increased blood and CSF MDA and decreased blood albumin levels in patients with MS, strengthening the clinical evidence of increased oxidative stress in MS.
Collapse
Affiliation(s)
- Shu-Yao Zhang
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lue-Ning Gui
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yi-Ying Liu
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sha Shi
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- Key Laboratory of Ethnomedicine for Ministry of Education, Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
19
|
Aminzadeh A, Tekiyeh Maroof N, Mehrabani M, Bahrampour Juybari K, Sharifi AM. Investigating The Alterations of Oxidative Stress Status, Antioxidant Defense Mechanisms, MAP Kinase and Mitochondrial Apoptotic Pathway in Adipose-Derived Mesenchymal Stem Cells from STZ Diabetic Rats. CELL JOURNAL 2020; 22:38-48. [PMID: 32779432 PMCID: PMC7481893 DOI: 10.22074/cellj.2020.6958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/13/2019] [Indexed: 01/22/2023]
Abstract
Objective This study aimed to investigate the reliability of diabetic adipose-derived stem cells (ADSCs) for autologous
cell-based therapies by exploring the functionality of signalling pathways involved in regulating oxidative stress and
apoptosis.
Materials and Methods In this experimental study, ADSCs were isolated from streptozotocin (STZ)-induced diabetic
rats (dADSCs) and normal rats (nADSCs). The colonies derived from dADSCs and nADSCs were compared by
colony-forming unit (CFU) assay. Reactive oxygen species (ROS) formation and total antioxidant power (TAP) were
also measured. Furthermore, the expression of antioxidant enzymes, including catalase (Cat), superoxide dismutase
(Sod)-1 and -3, glutathione peroxidase (Gpx)-1, -3 and -4 was measured at mRNA level by semi-quantitative reverse
transcriptase polymerase chain reaction assay. The expression of Bax, Bcl2, caspase-3, total and phosphorylated
c-Jun N-terminal kinase (JNK) and P38 Mitogen-Activated Protein Kinase (MAPK) at protein level was analyzed by
western blotting.
Results The results of this study indicated that viability and plating efficiency of dADSCs were significantly lower than
those of nADSCs. ROS generation and TAP level were respectively higher and lower in dADSCs. The gene expression
of antioxidant enzymes, including Cat, Sod-1, Gpx-3 and Gpx-4 in dADSCs was significantly greater than that in
nADSCs. However, Sod-3 and Gpx-1 mRNA levels were decreased in dADSCs. Moreover, Bax/Bcl-2 protein ratio,
caspase-3 protein expression and phosphorylation of JNK and P38 proteins were increased in dADSCs compared to
nADSCs.
Conclusion Taken together, diabetes might impair the cellular functions of dADSCs as candidates for autologous cell-
based therapies. This impairment seems to be mediated by JNK, P38 MAPKs, and mitochondria pathway of apoptosis
and partly by disruption of antioxidant capacity.
Collapse
Affiliation(s)
- Azadeh Aminzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Neda Tekiyeh Maroof
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Ali Mohammad Sharifi
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
20
|
A preliminary study of the concentration of metallic elements in the blood of patients with multiple sclerosis as measured by ICP-MS. Sci Rep 2020; 10:13112. [PMID: 32753601 PMCID: PMC7403292 DOI: 10.1038/s41598-020-69979-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022] Open
Abstract
It is estimated that multiple sclerosis (MS) affects 35,000 Brazilians and 2.5 million individuals worldwide. Many studies have suggested a possible role of metallic elements in the etiology of MS, but their concentration in the blood of MS patients is nonetheless little investigated in Brazil. In this work, these elements were studied through Inductively Coupled Plasma Mass Spectrometry (ICP-MS), whose analysis provides a tool to quantify the concentrations of metal elements in the blood samples of individuals with neurodegenerative disorders. This study aimed to compare the concentration of metallic elements in blood samples from patients with MS and healthy individuals. Blood was collected from 30 patients with multiple sclerosis and compared with the control group. Blood samples were digested in closed vessels using a microwave and ICP-MS was used to determine the concentrations of 12 metallic elements (Ba, Be, Ca, Co, Cr, Cu, Fe, Mg, Mo, Ni, Pb and Zn). In MS patients, we observed a reduction in the concentrations of beryllium, copper, chromium, cobalt, nickel, magnesium and iron. The mean concentration of lead in blood was significantly elevated in the MS group. However, no difference was observed in the concentrations of Mo, Ba, Ca and Zn in blood samples from MS patients and the control group. According to our data, there is a possible role for the concentrations of 8 of the 12 evaluated metallic elements in multiple sclerosis. Abnormalities in transition metals levels in biological matrices have been reported in several neurological diseases.
Collapse
|
21
|
Mehrabani M, Nematollahi MH, Tarzi ME, Juybari KB, Abolhassani M, Sharifi AM, Paseban H, Saravani M, Mirzamohammadi S. Protective effect of hydralazine on a cellular model of Parkinson’s disease: a possible role of hypoxia-inducible factor (HIF)-1α. Biochem Cell Biol 2020; 98:405-414. [DOI: 10.1139/bcb-2019-0117] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease accompanied by a low expression level of cerebral hypoxia-inducible factor (HIF-1α). Hence, activating the hypoxia-signaling pathway may be a favorable therapeutic approach for curing PD. This study explored the efficacy of hydralazine, a well-known antihypertensive agent, for restoring the impaired HIF-1 signaling in PD, with the aid of 6-hydroxydopamine (6-OHDA)-exposed SH-SY5Y cells. The cytotoxicity of hydralazine and 6-OHDA on the SH-SY5Y cells were evaluated by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and apoptosis detection assays. The activities of malondialdehyde, nitric oxide (NO), ferric reducing antioxidant power (FRAP), and superoxide dismutase (SOD) were also measured. Expression levels of HIF-1α and its downstream genes at the protein level were assessed by Western blotting. Hydralazine showed no toxic effects on SH-SY5Y cells, at the concentration of ≤50 μmol/L. Hydralazine decreased the levels of apoptosis, malondialdehyde, and NO, and increased the activities of FRAP and SOD in cells exposed to 6-OHDA. Furthermore, hydralazine up-regulated the protein expression levels of HIF-1α, vascular endothelial growth factor, tyrosine hydroxylase, and dopamine transporter in the cells also exposed to 6-OHDA, by comparison with the cells exposed to 6-OHDA alone. In summary, hydralazine priming could attenuate the deleterious effects of 6-OHDA on SH-SY5Y cells by increasing cellular antioxidant capacity, as well as the protein levels of HIF-1α and its downstream target genes.
Collapse
Affiliation(s)
- Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojde Esmaeili Tarzi
- Cardiovascular research center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Kobra Bahrampour Juybari
- Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Moslem Abolhassani
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University Medical Sciences, Kerman, Iran
| | - Ali Mohammad Sharifi
- Department of Pharmacology and Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamze Paseban
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohsen Saravani
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
22
|
An K, Xue MJ, Zhong JY, Yu SN, Lan TS, Qi ZQ, Xia JJ. Arsenic trioxide ameliorates experimental autoimmune encephalomyelitis in C57BL/6 mice by inducing CD4 + T cell apoptosis. J Neuroinflammation 2020; 17:147. [PMID: 32375831 PMCID: PMC7201567 DOI: 10.1186/s12974-020-01829-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of its complex pathogenesis, there is no definite cure for MS. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Arsenic trioxide (ATO) is an ancient Chinese medicine used for its therapeutic properties with several autoimmune diseases. It is also used to inhibit acute immune rejection due to its anti-inflammatory and immunosuppressive properties. However, it is unclear whether ATO has a therapeutic effect on EAE, and the underlying mechanisms have not yet been clearly elucidated. In this study, we attempted to assess whether ATO could be used to ameliorate EAE in mice. METHODS ATO (0.5 mg/kg/day) was administered intraperitoneally to EAE mice 10 days post-immunization for 8 days. On day 22 post-immunization, the spinal cord, spleen, and blood were collected to analyze demyelination, inflammation, microglia activation, and the proportion of CD4+ T cells. In vitro, for mechanistic studies, CD4+ T cells were sorted from the spleen of naïve C57BL/6 mice and treated with ATO and then used for an apoptosis assay, JC-1 staining, imaging under a transmission electron microscope, and western blotting. RESULTS ATO delayed the onset of EAE and alleviated the severity of EAE in mice. Treatment with ATO also attenuated demyelination, alleviated inflammation, reduced microglia activation, and decreased the expression levels of IL-2, IFN-γ, IL-1β, IL-6, and TNF-α in EAE mice. Moreover, the number and proportion of CD4+ T cells in the spinal cord, spleen, and peripheral blood were reduced in ATO-treated EAE mice. Finally, ATO induced CD4+ T cell apoptosis via the mitochondrial pathway both in vitro and in vivo. Additionally, the administration of ATO had no adverse effect on the heart, liver, or kidney function, nor did it induce apoptosis in the spinal cord. CONCLUSIONS Overall, our findings indicated that ATO plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.
Collapse
Affiliation(s)
- Ke An
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Meng-Jiao Xue
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jia-Ying Zhong
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Sheng-Nan Yu
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian, China
| | - Tian-Shu Lan
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
| | - Zhong-Quan Qi
- School of Medicine, Guangxi University, Nanning, Guangxi, China.
| | - Jun-Jie Xia
- Organ Transplantation Institute of Xiamen University, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
23
|
Hamamcı M, Göcmen AY, Say B, Alpua M, Badem ND, Ergün U, Ertuğrul İnan L. Why do multiple sclerosis and migraine coexist? Mult Scler Relat Disord 2020; 40:101946. [DOI: 10.1016/j.msard.2020.101946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/30/2019] [Accepted: 01/10/2020] [Indexed: 01/15/2023]
|
24
|
Saravani M, Rokni M, Mehrbani M, Amirkhosravi A, Faramarz S, Fatemi I, Esmaeili Tarzi M, Nematollahi MH. The evaluation of VEGF and HIF-1α gene polymorphisms and multiple sclerosis susceptibility. J Gene Med 2019; 21:e3132. [PMID: 31652374 DOI: 10.1002/jgm.3132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disease that leads to myelin sheath destruction. Hypoxia-inducible factor 1 (HIF-1) has several roles in cells, such as inducing inflammation and angiogenesis. Recently, several lines of evidence have indicated the role of the hypoxia response and the HIF-1 signaling pathway in an autoimmune disease such as MS. The present study aimed to evaluate the effects of HIF-1α gene polymorphisms and vascular endothelial growth factor (VEGF) (as a major target gene of HIF-1α) gene polymorphism on MS susceptibility. METHODS In total, 150 MS patients and 150 healthy age- and gender-matched people as a control group participated in the present study. The polymerase chain reaction-restriction fragment length polymorphism method was used for genotyping. RESULTS The results obtained showed that the CC genotype of the VEGF rs699947 polymorphism was significantly higher in the case group than in the control group (p = 0.004). Also, we showed a significant relationship between the VEGF rs699947 polymorphism and MS in a dominant inheritance model (p = 0.005). Regarding the VEGF rs699947 polymorphism allelic distribution, the C allele frequency was significantly higher in the control group than in the case group (71.3% versus 61%, respectively, p = 0.009) and decreased the MS susceptibility by 1.6-fold (odds ratio = 1.6, 95% confidence interval = 1.2-2.2). There was no significant difference between the two groups with respect to HIF-1α rs11549465 genotypic distribution. The HIF-1α C111A polymorphism was non-polymorphic in our study population, except in the case group where nine subjects carried the CA genotype. CONCLUSIONS We show a significant association between VEGF rs60047 polymorphism and MS susceptibility. However, our results do not show a significant association between MS and HIF-1α polymorphisms.
Collapse
Affiliation(s)
- Mohsen Saravani
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrzad Mehrbani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Traditional Medicine, School of Persian Medicine, Kerman University of Medical Sciences, Tehran, Iran
| | - Arian Amirkhosravi
- Food, Drug and Cosmetic Safety Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Faramarz
- Kerman Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojdeh Esmaeili Tarzi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.,Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
25
|
Ahmadi Z, Moradabadi A, Abdollahdokht D, Mehrabani M, Nematollahi MH. Association of environmental exposure with hematological and oxidative stress alteration in gasoline station attendants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20411-20417. [PMID: 31102212 DOI: 10.1007/s11356-019-05412-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Gasoline station attendants spend a great deal of their time in the direct exposure to noxious substances such as benzene and byproducts of gasoline combustion. Such occupational exposure increases the risk of oxidative stress. This study aimed to evaluate hematological and biochemical alterations among petrol station workers. Forty gas station attendants and 39 non-attendants were recruited as exposed and control subjects, respectively. Plasma samples were evaluated for hemoglobin, hematocrit, and red blood cell count via the Sysmex KX-21 analyzer. Then, oxidized hemoglobin, methemoglobin, and hemichrome were measured spectrophotometrically. Moreover, serum antioxidant capacity and protein oxidation were evaluated. The means ± SD of hemoglobin (16.76 ± 0.14 g/dl vs 15.25 ± 0.14 g/dl), hematocrit (49.11 ± 0.36% vs 45.37 ± 0.31%), RBC count (5.85 ± 0.06 mil/μl vs 5.33 ± 0.06 mil/μl), Met-HB (1.07 ± 0.07 g/dl vs 0.39 ± 0.04 g/dl), and hemichrome (0.80 ± 0.07 g/dl vs 0.37 ± 0.02 g/dl) in the exposed group were significantly greater than the control group (P < 0.001). The results of the independent-sample t test illustrated that the FRAP test value in the exposed group (0.23 ± 0.01 mM) was significantly lower than the control group (0.34 ± 0.01 mM), while the value of the plasma protein carbonyl test in the exposed group (7.47 ± 0.33 mmol/mg protein) was meaningfully greater than the control group (5.81 ± 0.19 mmol/mg protein) (P < 0.001). In conclusion, gas station attendants suffer from higher levels of oxidative stress, and they need to take antioxidants in order to minimize the effects of oxidative stress.
Collapse
Affiliation(s)
- Zahed Ahmadi
- Department of Occupational Health Engineering, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Moradabadi
- Hematology and blood banking, arak University of Medical Sciences, Arak, Iran
| | - Danial Abdollahdokht
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
26
|
Mehrzadi S, Bahrami N, Mehrabani M, Motevalian M, Mansouri E, Goudarzi M. Ellagic acid: A promising protective remedy against testicular toxicity induced by arsenic. Biomed Pharmacother 2018; 103:1464-1472. [PMID: 29864931 DOI: 10.1016/j.biopha.2018.04.194] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/29/2022] Open
Abstract
Chronic exposure to arsenic, an inducer of oxidative stress, is one of the major causes of male infertility. Therefore, the present study investigated the protective role of Ellagic acid (EA), as a natural antioxidant, against testicular toxicity evoked by arsenic. Thirty-five male Wistar rats were divided into 5 treatment groups. Group 1 served as control, group 2 were orally exposed to sodium arsenite (SA, 10 mg/kg; 21 days), groups 3 and 4 were initially exposed to SA for 7 days and then were treated with both EA (10 and 30 mg/kg) and SA up to 21 days, and group 5 was treated with EA for 14 days. After this period, biochemical and histopathological parameters were evaluated in serum samples and testicular tissue. SA markedly reduced levels of serum testosterone, total antioxidant capacity, reduced glutathione as well as the activity of antioxidant enzymes. Furthermore, SA enhanced levels of malondialdehyde, tumor necrosis factor-α, interleukin-1β and nitric oxide in testes. Treatment with EA was found to reduce testicular arsenic accumulation and oxidative stress parameters. In addition, EA improved the serum testosterone level, testicular antioxidant markers and histological parameters after exposure to SA. EA may emerge as a promising therapeutic option to protect testes from arsenic-induced toxicity through reducing oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nosrat Bahrami
- Department of Midwifery, Faculty of Nursing and Midwifery, Dezful University of Medical Sciences, Dezful, Iran
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Manijeh Motevalian
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|