1
|
Sonia J, Kumara BN, Pinto KJ, Hashim A, Priya ESS, Kalpana B, Thomas R, Sudhakara Prasad K. Disposable paper electrodes for detection of changes in dopamine concentrations in rat brain homogenates. Talanta 2024; 274:125940. [PMID: 38537354 DOI: 10.1016/j.talanta.2024.125940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/09/2024] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Dopamine, the main catecholamine neurotransmitter plays an important role in renal, cardiovascular, central nervous systems, and pathophysiological processes. The abnormal dopamine levels can result in neurological disorders such as Parkinson's, Alzheimer's, schizophrenia, acute anxiety, neuroblastoma and also contribute to cognitive dysfunctions. Given the widespread importance of dopamine concentration levels, it is imperative to develop sensors that are able to monitor dopamine. Herein, we have developed pre-anodized disposable paper electrode modified with 1-pyrenebutyric acid, for the selective and sensitive determination of dopamine. The sensor was characterized with Fourier transform infrared spectroscopy, Energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electrochemical techniques for addressing the robust formation and electrochemical activity. The modified electrode exhibited excellent electrocatalytic activity towards dopamine without the common interference from ascorbic acid. The calibration plot for the dopamine sensor resulted linear range from 0.003 μM to 0.5 μM with a detection limit of 0.11 nM. The sensor's potential utility was tested by monitoring dopamine concentration changes in rat brain homogenates when subjected to neurotoxicity. The developed sensor was validated with gold-standard UV-Vis spectroscopy studies and computational studies were performed to understand the interaction between 1-pyrenebutyric acid and dopamine.
Collapse
Affiliation(s)
- J Sonia
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - B N Kumara
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India
| | - Kevin Joakim Pinto
- Department of Physiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - A Hashim
- Department of Forensic Medicine and Toxicology, Yenepoya Medical College, Yenepoya Deemed to be University, Mangalore, Dakshina, Karnataka, 575018, India
| | - E S Sindhu Priya
- Department of Pharmacology, Yenepoya Pharmacy College and Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, Karnataka, India
| | - B Kalpana
- Department of Physiology, Yenepoya Medical College, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Renjith Thomas
- Department of Chemistry, St Berchmans College (Autonomous), Mahatma Gandhi University, Changanassery, Kerala, India
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory (NMRL), Nano Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India; Centre for Nutrition Studies, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575 018, India.
| |
Collapse
|
2
|
Chen Y, Xu A, Li J, Zhu X, Zou M, Liu S. Highly sensitive paper-based immunoassay: Combining nanomaterials modified cellulose with covalent and oriented immobilization of antibody. J Pharm Biomed Anal 2023; 231:115389. [PMID: 37087775 DOI: 10.1016/j.jpba.2023.115389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/25/2023]
Abstract
Among the analytical tools, paper-based analytical devices (PADs) have become a leading alternative for point-of care testing (POCT). In this study, PADs were fabricated using an office laser printer. Then, the paper zone was modified with graphene oxide (GO) and pyrene derivatives, which provide a sufficient amount of carboxylic groups for conjugating antibodies. At an optimal pH, antibodies were covalently bound onto carboxylated cellulose surface in an oriented manner through a two-step strategy: electrostatic adsorption was followed by EDC/NHS coupling. α-fetoprotein (AFP) as a detection model, we compared with cellulose powder modified and unmodified paper zone. The results showed the color intensity and color uniformity on GO modified paper was improved. The activity of immobilized antibodies on GO/1-pyrenebutyric acid (GO/PBA) modified was three times higher than that of GO modified and about 1.8-fold higher than that of GO/1-pyrenecarboxylic acid (GO/PCA) modified. The GO/PBA modified paper-based immunoassay has enhanced sensitivity and low detection limit. A linear correlation between color intensity and concentration of AFP in the range of 0.01~16.5 ng mL-1 with a detection limit of 9.0 pg mL-1 were achieved, respectively. The obtained results point towards rapid, sensitive, and specific early diagnosis of liver cancer at the point of care and other low-resource settings.
Collapse
Affiliation(s)
- Yafang Chen
- School of Public Health, Nantong University, Nantong 226019, China
| | - Anan Xu
- School of Public Health, Nantong University, Nantong 226019, China
| | - Jiajia Li
- School of Life Sciences, Nantong University, Nantong 226019, China
| | - Xiaoxia Zhu
- School of Public Health, Nantong University, Nantong 226019, China.
| | - Meiyin Zou
- The Third People's Hospital of Nantong, Nantong 226007, China.
| | - Shan Liu
- The Ninth People's Hospital of Suzhou, Suzhou 215200, China
| |
Collapse
|
3
|
Chandrasekar N, Balaji R, Perala RS, Nik Humaidi NZ, Shanmugam K, Liao YC, Hwang MT, Govindaraju S. A Brief Review of Graphene-Based Biosensors Developed for Rapid Detection of COVID-19 Biomarkers. BIOSENSORS 2023; 13:307. [PMID: 36979519 PMCID: PMC10046683 DOI: 10.3390/bios13030307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 05/24/2023]
Abstract
The prevalence of mutated species of COVID-19 antigens has provided a strong impetus for identifying a cost-effective, rapid and facile strategy for identifying the viral loads in public places. The ever-changing genetic make-up of SARS-CoV-2 posts a significant challenfge for the research community to identify a robust mechanism to target, bind and confirm the presence of a viral load before it spreads. Synthetic DNA constructs are a novel strategy to design complementary DNA sequences specific for antigens of interest as in this review's case SARS-CoV-2 antigens. Small molecules, complementary DNA and protein-DNA complexes have been known to target analytes in minimal concentrations. This phenomenon can be exploited by nanomaterials which have unique electronic properties such as ballistic conduction. Graphene is one such candidate for designing a device with a very low LOD in the order of zeptomolar and attomolar concentrations. Surface modification will be the significant aspect of the device which needs to have a high degree of sensitivity at the same time as providing a rapid signaling mechanism.
Collapse
Affiliation(s)
- Narendhar Chandrasekar
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Ramachandran Balaji
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Ramaswamy Sandeep Perala
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Nik Zulkarnine Nik Humaidi
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Kirubanandan Shanmugam
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Ying-Chih Liao
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Michael Taeyoung Hwang
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
| | - Saravanan Govindaraju
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-si 13120, Republic of Korea
- Department of Bio Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| |
Collapse
|
4
|
Yamacli S, Avci M. Investigation and comparison of graphene nanoribbon and carbon nanotube based SARS-CoV-2 detection sensors: An ab initio study. PHYSICA. B, CONDENSED MATTER 2023; 648:414438. [PMID: 36281340 PMCID: PMC9582926 DOI: 10.1016/j.physb.2022.414438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The rapid detection of SARS-CoV-2, the pathogen of the Covid-19 pandemic, is obviously of great importance for stopping the spread of the virus by detecting infected individuals. Here, we report the ab initio analysis results of graphene nanoribbon (GNR) and carbon nanotube (CNT) based SARS-CoV-2 detection sensors which are experimentally demonstrated in the literature. The investigated structures are the realistic molecular models of the sensors that are employing 1-pyrenebutyric acid N-hydroxysuccinimide ester as the antibody linker. Density functional theory in conjunction with non-equilibrium Green's function formalism (DFT-NEGF) is used to obtain the transmission spectra, current-voltage and resistance-voltage characteristics of the sensors before and after the attachment of the SARS-CoV-2 spike protein. The operation mechanism of the GNR and CNT based SARS-CoV-2 sensors are exposed using the transmission spectrum analysis. Moreover, it is observed that GNR based sensor has more definitive detection characteristics compared to its CNT based counterpart.
Collapse
Affiliation(s)
- Serhan Yamacli
- Nuh Naci Yazgan University, Dept. of Electrical-Electronics Engineering, Kayseri, Turkey
| | - Mutlu Avci
- Cukurova University, Dept. of Biomedical Engineering, Adana, Turkey
| |
Collapse
|
5
|
Ma C, Lu D, Gan H, Yao Z, Zhu DZ, Luo J, Fu Q, Kurup P. The critical experimental aspects for developing pathogen electrochemical biosensors: A lesson during the COVID-19 pandemic. Talanta 2022:124009. [PMCID: PMC9562616 DOI: 10.1016/j.talanta.2022.124009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Though the bitter global pandemic posed a severe public health threat, it set an unprecedented stage for different research teams to present various technologies for detecting SARS-CoV-2, providing a rare and hard-won lesson for one to comprehensively survey the core experimental aspects in developing pathogens electrochemical biosensors. Apart from collecting all the published biosensor studies, we focused on the effects and consequences of using different receptors, such as antibodies, aptamers, ACE 2, and MIPs, which are one of the core topics of developing a pathogen biosensor. In addition, we tried to find an appropriate and distinctive application scenario (e.g., wastewater-based epidemiology) to maximize the advantages of using electrochemical biosensors to detect pathogens. Based on the enormous amount of information from those published studies, features that fit and favor wastewater pathogen detection can be picked up and integrated into a specific strategy to perform quantitative measurements in wastewater samples.
Collapse
Affiliation(s)
- Chen Ma
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Dingnan Lu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author. Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Huihui Gan
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Zhiyuan Yao
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - David Z. Zhu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Pradeep Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author
| |
Collapse
|
6
|
On the interface between biomaterials and two-dimensional materials for biomedical applications. Adv Drug Deliv Rev 2022; 186:114314. [PMID: 35568105 DOI: 10.1016/j.addr.2022.114314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Two-dimensional (2D) materials have garnered significant attention due to their ultrathin 2D structures with a high degree of anisotropy and functionality. Reliable manipulation of interfaces between 2D materials and biomaterials is a new frontier for biomedical nanoscience and combining biomaterials with 2D materials offers a promising way to fabricate innovative 2D biomaterials composites with distinct functionality for biomedical applications. Here, we focus exclusively on a summary of the current work in the interface investigation of 2D biomaterials. Specifically, we highlight extraordinary features that make 2D materials so desirable, as well as the molecular level interactions between 2D materials and biomaterials that have been studied thus far. Furthermore, the approaches for investigating the interface characteristics of 2D biomaterials are presented and described in depth. To capture the emerging trend in mass manufacturing of 2D materials, we review the research progress on biomaterial-assisted exfoliation. Finally, we present a critical assessment of newly developed 2D biomaterials in biomedical applications.
Collapse
|
7
|
Machado M, Oliveira AML, Silva GA, Bitoque DB, Tavares Ferreira J, Pinto LA, Ferreira Q. Graphene Biosensors-A Molecular Approach. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1624. [PMID: 35630845 PMCID: PMC9145856 DOI: 10.3390/nano12101624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/19/2022]
Abstract
Graphene is the material elected to study molecules and monolayers at the molecular scale due to its chemical stability and electrical properties. The invention of scanning tunneling microscopy has deepened our knowledge on molecular systems through imaging at an atomic resolution, and new possibilities have been investigated at this scale. Interest on studies on biomolecules has been demonstrated due to the possibility of mimicking biological systems, providing several applications in nanomedicine: drug delivery systems, biosensors, nanostructured scaffolds, and biodevices. A breakthrough came with the synthesis of molecular systems by stepwise methods with control at the atomic/molecular level. This article presents a review on self-assembled monolayers of biomolecules on top of graphite with applications in biodevices. Special attention is given to porphyrin systems adsorbed on top of graphite that are able to anchor other biomolecules.
Collapse
Affiliation(s)
- Mónica Machado
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
| | - Alexandra M. L. Oliveira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Gabriela A. Silva
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, CEDOC Chronic Diseases Research Center, NOVA Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal; (G.A.S.); (D.B.B.)
- Faculdade de Ciências Médicas, Nova Medical School, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisbon, Portugal
| | - Joana Tavares Ferreira
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisbon, 1649-028 Lisbon, Portugal
| | - Luís Abegão Pinto
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, 1649-035 Lisbon, Portugal; (J.T.F.); (L.A.P.)
- Visual Sciences Study Centre, Faculty of Medicine, Universidade de Lisbon, 1649-028 Lisbon, Portugal
| | - Quirina Ferreira
- Instituto de Telecomunicações, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal;
| |
Collapse
|
8
|
Tan PS, Vaughan E, Islam J, Burke N, Iacopino D, Tierney JB. Laser Scribing Fabrication of Graphitic Carbon Biosensors for Label-Free Detection of Interleukin-6. NANOMATERIALS 2021; 11:nano11082110. [PMID: 34443939 PMCID: PMC8399033 DOI: 10.3390/nano11082110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 01/19/2023]
Abstract
Interleukin-6 (IL-6) is an important immuno-modulating cytokine playing a pivotal role in inflammatory processes in disease induction and progression. As IL-6 serves as an important indicator of disease state, it is of paramount importance to develop low cost, fast and sensitive improved methods of detection. Here we present an electrochemical immunosensor platform based on the use of highly porous graphitic carbon electrodes fabricated by direct laser writing of commercial polyimide tapes and chemically modified with capture IL-6 antibodies. The unique porous and 3D morphology, as well as the high density of edge planes of the graphitic carbon electrodes, resulted in a fast heterogeneous electron transfer (HET) rate, k0 = 0.13 cm/s. The resulting immunosensor showed a linear response to log of concentration in the working range of 10 to 500 pg/mL, and low limit of detection (LOD) of 5.1 pg/mL IL-6 in phosphate buffer saline. The total test time was approximately 90 min, faster than the time required for ELISA testing. Moreover, the assay did not require additional sample pre-concentration or labelling steps. The immunosensor shelf-life was long, with stable results obtained after 6 weeks of storage at 4 °C, and the selectivity was high, as no response was obtained in the presence of another inflammatory cytokine, Interlukin-4. These results show that laser-fabricated graphitic carbon electrodes can be used as selective and sensitive electrochemical immunosensors and offer a viable option for rapid and low-cost biomarker detection for point-of-care analysis.
Collapse
Affiliation(s)
- Pei Shee Tan
- Shannon Applied Biotechnology Centre, Munster Technological University, Tralee, V92KA43 Kerry, Ireland; (P.S.T.); (N.B.); (J.B.T.)
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Tralee, V92KA43 Kerry, Ireland
| | - Eoghan Vaughan
- Tyndall National Institute, University College Cork, Dyke Parade, T12R5CP Cork, Ireland; (E.V.); (J.I.)
| | - Jahidul Islam
- Tyndall National Institute, University College Cork, Dyke Parade, T12R5CP Cork, Ireland; (E.V.); (J.I.)
| | - Niall Burke
- Shannon Applied Biotechnology Centre, Munster Technological University, Tralee, V92KA43 Kerry, Ireland; (P.S.T.); (N.B.); (J.B.T.)
| | - Daniela Iacopino
- Tyndall National Institute, University College Cork, Dyke Parade, T12R5CP Cork, Ireland; (E.V.); (J.I.)
- Correspondence:
| | - Joanna B. Tierney
- Shannon Applied Biotechnology Centre, Munster Technological University, Tralee, V92KA43 Kerry, Ireland; (P.S.T.); (N.B.); (J.B.T.)
- Department of Biological and Pharmaceutical Sciences, Munster Technological University, Tralee, V92KA43 Kerry, Ireland
| |
Collapse
|
9
|
Torrente-Rodríguez RM, Lukas H, Tu J, Min J, Yang Y, Xu C, Rossiter HB, Gao W. SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. MATTER 2020; 3:1981-1998. [PMID: 33043291 PMCID: PMC7535803 DOI: 10.1016/j.matt.2020.09.027] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 05/15/2023]
Abstract
The COVID-19 pandemic is an ongoing global challenge for public health systems. Ultrasensitive and early identification of infection is critical in preventing widespread COVID-19 infection by presymptomatic and asymptomatic individuals, especially in the community and in-home settings. We demonstrate a multiplexed, portable, wireless electrochemical platform for ultra-rapid detection of COVID-19: the SARS-CoV-2 RapidPlex. It detects viral antigen nucleocapsid protein, IgM and IgG antibodies, as well as the inflammatory biomarker C-reactive protein, based on our mass-producible laser-engraved graphene electrodes. We demonstrate ultrasensitive, highly selective, and rapid electrochemical detection in the physiologically relevant ranges. We successfully evaluated the applicability of our SARS-CoV-2 RapidPlex platform with COVID-19-positive and COVID-19-negative blood and saliva samples. Based on this pilot study, our multiplexed immunosensor platform may allow for high-frequency at-home testing for COVID-19 telemedicine diagnosis and monitoring.
Collapse
Affiliation(s)
- Rebeca M Torrente-Rodríguez
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Raja Jamaluddin RZA, Tan LL, Chong KF, Heng LY. An electrochemical DNA biosensor fabricated from graphene decorated with graphitic nanospheres. NANOTECHNOLOGY 2020; 31:485501. [PMID: 32748805 DOI: 10.1088/1361-6528/abab2e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.
Collapse
Affiliation(s)
- Raja Zaidatul Akhmar Raja Jamaluddin
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Darul Ehsan 43600, Malaysia
| | | | | | | |
Collapse
|
11
|
Fu W, Wang L, Luo J, Deng J, Liu Q. Dodecylbenzene‐modified graphite oxide via π‐π interaction to reinforce EPDM. J Appl Polym Sci 2019. [DOI: 10.1002/app.48261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen Fu
- College of Material Science, Guangdong University of Petrochemical Technology Maoming 525000 Guangdong China
| | - Li Wang
- College of Chemical Engineering, Guangdong University of Petrochemical Technology Maoming 525000 Guangdong China
| | - Jun‐lin Luo
- College of Material Science, Guangdong University of Petrochemical Technology Maoming 525000 Guangdong China
| | - Jian‐yi Deng
- College of Material Science, Guangdong University of Petrochemical Technology Maoming 525000 Guangdong China
| | - Quan‐wen Liu
- College of Petroleum Engineering, Guangdong University of Petrochemical Technology Maoming 525000 Guangdong China
| |
Collapse
|
12
|
Basu N, Ho TH, Guillon F, Zhang Y, Bigey P, Navakanta B, Bedioui F, Lazerges M. Coupling Electrochemical Adsorption and Long‐range Electron Transfer: Label‐free DNA Mismatch Detection with Ultramicroelectrode (UME). ELECTROANAL 2019. [DOI: 10.1002/elan.201900357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nivedita Basu
- Chimie ParisTech, PSL UniversityCNRSInstitute of Chemistry for Life and Health Sciences (i-CLeHS) Paris France
- Centre for Nano Science and Engineering (CeNSE), Department of Electrical Communication EngineeringIndian Institute of Science Bangalore 560012 India
| | - Thu Huong Ho
- Chimie ParisTech, PSL UniversityCNRSInstitute of Chemistry for Life and Health Sciences (i-CLeHS) Paris France
| | - François‐Xavier Guillon
- Chimie ParisTech, PSL UniversityCNRSInstitute of Chemistry for Life and Health Sciences (i-CLeHS) Paris France
| | - Yuanyuan Zhang
- Chimie ParisTech, PSL UniversityCNRSInstitute of Chemistry for Life and Health Sciences (i-CLeHS) Paris France
| | - Pascal Bigey
- UTCBS, U 1263 INSERMUniversité Paris Descartes, Université Sorbonne Paris Cité Paris 75006 France
- UTCBS, UMR 8258 CNRSUniversité Paris Descartes, Université Sorbonne Paris Cité Paris 75006 France
| | - Bhat Navakanta
- Centre for Nano Science and Engineering (CeNSE), Department of Electrical Communication EngineeringIndian Institute of Science Bangalore 560012 India
| | - Fethi Bedioui
- Chimie ParisTech, PSL UniversityCNRSInstitute of Chemistry for Life and Health Sciences (i-CLeHS) Paris France
| | - Mathieu Lazerges
- Chimie ParisTech, PSL UniversityCNRSInstitute of Chemistry for Life and Health Sciences (i-CLeHS) Paris France
- UTCBS, U 1263 INSERMUniversité Paris Descartes, Université Sorbonne Paris Cité Paris 75006 France
- UTCBS, UMR 8258 CNRSUniversité Paris Descartes, Université Sorbonne Paris Cité Paris 75006 France
| |
Collapse
|
13
|
Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides. Molecules 2017; 22:E2108. [PMID: 29189716 PMCID: PMC6150046 DOI: 10.3390/molecules22122108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Olga A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
14
|
Rashid JIA, Yusof NA. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2017.09.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
15
|
Sensitivity enhancement of graphene/zinc oxide nanocomposite-based electrochemical impedance genosensor for single stranded RNA detection. Biosens Bioelectron 2017; 94:365-373. [DOI: 10.1016/j.bios.2017.02.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/02/2017] [Accepted: 02/23/2017] [Indexed: 12/25/2022]
|
16
|
Analysis of the evolution of the detection limits of electrochemical nucleic acid biosensors II. Anal Bioanal Chem 2017; 409:4335-4352. [DOI: 10.1007/s00216-017-0377-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 01/07/2023]
|
17
|
Tabasi A, Noorbakhsh A, Sharifi E. Reduced graphene oxide-chitosan-aptamer interface as new platform for ultrasensitive detection of human epidermal growth factor receptor 2. Biosens Bioelectron 2017; 95:117-123. [PMID: 28433858 DOI: 10.1016/j.bios.2017.04.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/15/2017] [Accepted: 04/17/2017] [Indexed: 12/20/2022]
Abstract
The present work describes an ultrasensitive electrochemical aptamer-based assay for detection of human epidermal growth factor receptor 2 protein (HER2) cancer biomarker as a model analyte. Results show that the reduced graphene oxide-chitosan (rGO-Chit) film as a suitable electrode material possesses great favorable properties including high homogeneity, good stability, large surface area and high fraction of amine groups as aptamer binding sites. Various steps of aptasensor fabrication were characterized using microscopic, energy-dispersive X-ray spectroscopy (EDAX), Fourier transform infrared (FTIR) spectroscopy and electrochemical techniques. Using methylene blue (MB) as an electrochemical probe and differential pulse voltammetry (DPV) technique, two linear concentration ranges of 0.5-2ngml-1 and 2-75ngml-1 were obtained with a high sensitivity of 0.14μAng-1ml and a very low detection limit of 0.21ngml-1 (very lower than the clinical cut-off). The fabricated aptasensor showed excellent selectivity for detection of HER2 in complex matrix of human serum samples. The sensitive detection of HER2 can be attributed to the multiple signal amplification of MB during its accumulation to the modified electrode surface via both affinity interaction to aptamer molecules and electrostatic adsorption to the HER2 analyte as well as high charge transfer kinetic properties of the applied rGO-Chit film. The rapid and simple preparation of the proposed aptasensor as well as its high selectivity, stability and reproducibility provided a promising protocol for non-invasive diagnosis for various points of care application. The proposed aptasensor showed excellent analytical performance in comparison with current HER2 biosensors.
Collapse
Affiliation(s)
- Arezoo Tabasi
- Department of Nanotechnology Engineering, Faculty of Advanced Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Abdollah Noorbakhsh
- Department of Nanotechnology Engineering, Faculty of Advanced Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Ensiyeh Sharifi
- Department of Nanotechnology Engineering, Faculty of Advanced Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
18
|
Hinnemo M, Zhao J, Ahlberg P, Hägglund C, Djurberg V, Scheicher RH, Zhang SL, Zhang ZB. On Monolayer Formation of Pyrenebutyric Acid on Graphene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3588-3593. [PMID: 28350965 DOI: 10.1021/acs.langmuir.6b04237] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
As a two-dimensional material with high charge carrier mobility, graphene may offer ultrahigh sensitivity in biosensing. To realize this, the first step is to functionalize the graphene. This is commonly done by using 1-pyrenebutyric acid (PBA) as a linker for biomolecules. However, the adsorption of PBA on graphene remains poorly understood despite reports of successful biosensors functionalized via this route. Here, the PBA adsorption on graphene is characterized through a combination of Raman spectroscopy, ab initio calculations, and spectroscopic ellipsometry. The PBA molecules are found to form a self-assembled monolayer on graphene, the formation of which is self-limiting and Langmuirian. Intriguingly, in concentrated solutions, the PBA molecules are found to stand up and stack horizontally with their edges contacting the graphene surface. This morphology could facilitate a surface densely populated with carboxylic functional groups. Spectroscopic analyses show that the monolayer saturates at 5.3 PBA molecules per nm2 and measures ∼0.7 nm in thickness. The morphology study of this PBA monolayer sheds light on the π-π stacking of small-molecule systems on graphene and provides an excellent base for optimizing functionalization procedures.
Collapse
Affiliation(s)
- Malkolm Hinnemo
- Division of Solid State Electronics, Department of Engineering Sciences, Uppsala University , SE-751 21 Uppsala, Sweden
| | - Jie Zhao
- Division of Solid State Electronics, Department of Engineering Sciences, Uppsala University , SE-751 21 Uppsala, Sweden
| | - Patrik Ahlberg
- Division of Solid State Electronics, Department of Engineering Sciences, Uppsala University , SE-751 21 Uppsala, Sweden
| | - Carl Hägglund
- Division of Solid State Electronics, Department of Engineering Sciences, Uppsala University , SE-751 21 Uppsala, Sweden
| | - Viktor Djurberg
- Division of Materials Theory, Department of Physics and Astronomy, Uppsala University , SE-751 20 Uppsala, Sweden
| | - Ralph H Scheicher
- Division of Materials Theory, Department of Physics and Astronomy, Uppsala University , SE-751 20 Uppsala, Sweden
| | - Shi-Li Zhang
- Division of Solid State Electronics, Department of Engineering Sciences, Uppsala University , SE-751 21 Uppsala, Sweden
| | - Zhi-Bin Zhang
- Division of Solid State Electronics, Department of Engineering Sciences, Uppsala University , SE-751 21 Uppsala, Sweden
| |
Collapse
|
19
|
Li D, Zhang W, Yu X, Wang Z, Su Z, Wei G. When biomolecules meet graphene: from molecular level interactions to material design and applications. NANOSCALE 2016; 8:19491-19509. [PMID: 27878179 DOI: 10.1039/c6nr07249f] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Graphene-based materials have attracted increasing attention due to their atomically-thick two-dimensional structures, high conductivity, excellent mechanical properties, and large specific surface areas. The combination of biomolecules with graphene-based materials offers a promising method to fabricate novel graphene-biomolecule hybrid nanomaterials with unique functions in biology, medicine, nanotechnology, and materials science. In this review, we focus on a summarization of the recent studies in functionalizing graphene-based materials using different biomolecules, such as DNA, peptides, proteins, enzymes, carbohydrates, and viruses. The different interactions between graphene and biomolecules at the molecular level are demonstrated and discussed in detail. In addition, the potential applications of the created graphene-biomolecule nanohybrids in drug delivery, cancer treatment, tissue engineering, biosensors, bioimaging, energy materials, and other nanotechnological applications are presented. This review will be helpful to know the modification of graphene with biomolecules, understand the interactions between graphene and biomolecules at the molecular level, and design functional graphene-based nanomaterials with unique properties for various applications.
Collapse
Affiliation(s)
- Dapeng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Wensi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Xiaoqing Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Zhenping Wang
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Gang Wei
- Faculty of Production Engineering, University of Bremen, D-28359 Bremen, Germany.
| |
Collapse
|
20
|
Hajihosseini S, Nasirizadeh N, Hejazi MS, Yaghmaei P. A sensitive DNA biosensor fabricated from gold nanoparticles and graphene oxide on a glassy carbon electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:506-15. [DOI: 10.1016/j.msec.2015.12.091] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/14/2015] [Accepted: 12/28/2015] [Indexed: 12/12/2022]
|
21
|
Mazloum-Ardakani M, Hosseinzadeh L, Heidari MM. Detection of the M268T Angiotensinogen A3B2 mutation gene based on screen-printed electrodes modified with a nanocomposite: application to human genomic samples. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1616-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Umemura K. Hybrids of Nucleic Acids and Carbon Nanotubes for Nanobiotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:321-350. [PMID: 28347014 PMCID: PMC5312852 DOI: 10.3390/nano5010321] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/25/2015] [Accepted: 03/05/2015] [Indexed: 12/17/2022]
Abstract
Recent progress in the combination of nucleic acids and carbon nanotubes (CNTs) has been briefly reviewed here. Since discovering the hybridization phenomenon of DNA molecules and CNTs in 2003, a large amount of fundamental and applied research has been carried out. Among thousands of papers published since 2003, approximately 240 papers focused on biological applications were selected and categorized based on the types of nucleic acids used, but not the types of CNTs. This survey revealed that the hybridization phenomenon is strongly affected by various factors, such as DNA sequences, and for this reason, fundamental studies on the hybridization phenomenon are important. Additionally, many research groups have proposed numerous practical applications, such as nanobiosensors. The goal of this review is to provide perspective on biological applications using hybrids of nucleic acids and CNTs.
Collapse
Affiliation(s)
- Kazuo Umemura
- Biophysics Section, Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 1628601, Japan.
| |
Collapse
|
23
|
Chen X, Wang Q, Wang L, Guo H, Yang Y, Li F, Gao F. Construction of a Novel Colitoxin DNA Biosensor Based on Cross-Linker-Free Fixation of Probe Fragments on the Interface of Rugby-Ball-Shaped CoS2 Submicroparticles and Poly(2-thiophenesulfonyl chloride) Composite Film. Ind Eng Chem Res 2015. [DOI: 10.1021/ie503831k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaoqian Chen
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Qingxiang Wang
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Liheng Wang
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Hongxu Guo
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Yizhen Yang
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Feiming Li
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| | - Feng Gao
- Department of
Chemistry and Environment, Fujian
Provincal Key Laboratory of Modern Analytical Science and Separation
Technology, Minnan Normal University, Zhangzhou 363000, PR China
| |
Collapse
|
24
|
Filip J, Kasák P, Tkac J. Graphene as a signal amplifier for preparation of ultrasensitive electrochemical biosensors. CHEMICKE ZVESTI 2015; 69:112-133. [PMID: 27242391 PMCID: PMC4884446 DOI: 10.1515/chempap-2015-0051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Early diagnostics of diseases performed with minimal money and time consumption has become achievable due to recent advances in development of biosensors. These devices use biorecognition elements for selective interaction with an analyte and signal readout is obtained via different types of transducers. Operational characteristics of biosensors have been reported to improve substantially, when a diverse range of nanomaterials was employed. This review presents construction of electrochemical biosensors based on graphene, atomically thin 2D carbon crystals, which is currently intensively studied nanomaterial. The most attractive directions of graphene applications in biosensor preparation are discussed here including novel detection and amplification schemes exploiting graphene's unique electrochemical, physical and chemical properties. The future of graphene-based biosensors is most likely bright, but there is still a lot of work to do to fulfill high expectations.
Collapse
Affiliation(s)
- Jaroslav Filip
- Slovak academy of sciences, Institute of Chemistry, Department of
Glycobiotechnology, Dúbravská cesta 9, Bratislava, SK-84538
| | - Peter Kasák
- Center for Advanced Materials, Qatar University, P.O. Box 2713 Doha,
Qatar
| | - Jan Tkac
- Slovak academy of sciences, Institute of Chemistry, Department of
Glycobiotechnology, Dúbravská cesta 9, Bratislava, SK-84538
| |
Collapse
|
25
|
Wang L, Liao X, Ding Y, Gao F, Wang Q. DNA biosensor based on a glassy carbon electrode modified with electropolymerized Eriochrome Black T. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1085-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|