1
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
2
|
Lee JH, Tsubota H, Tachibana T, Kono N, Kawamura S, Yamana K, Kawasaki R, Yabuki A. Controlled Release of Drug-Encapsulated Protein Films with Various Sodium Dodecyl Sulfate Concentrations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37317054 DOI: 10.1021/acs.langmuir.3c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein-based drug carriers are ideal drug-delivery platforms because of their biocompatibility, biodegradability, and low toxicity. Many types and shapes of protein-based platforms, including nanoparticles, hydrogels, films, and minipellets, have been prepared to deliver drug molecules. In this study, protein films containing the desired amounts of doxorubicin (DOX) as cancer drugs were developed using a simple mixing method. The release ratio and rate of DOXs were dependent on the surfactant concentration. The drug release ratio was controlled within the range of 20-90% depending on the amount of the surfactant used. The protein film surface was analyzed using a microscope before and after drug release, and the relationship between the degree of film swelling and the drug release ratio was discussed. Moreover, the effects of cationic surfactants on the protein film were investigated. Non-toxic conditions of the protein films were confirmed in normal cells, while the toxicity of the drug-encapsulated protein film was confirmed in cancer cells. Remarkably, it was observed that the drug-encapsulated protein film could eliminate 10-70% of cancer cells, with the extent of efficacy varying based on the surfactant amount.
Collapse
Affiliation(s)
- Ji Ha Lee
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Hiroya Tsubota
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Tomoyuki Tachibana
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Nanami Kono
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Shogo Kawamura
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Keita Yamana
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Akihiro Yabuki
- Chemical Engineering Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
3
|
Recent progress in the application of plant-based colloidal drug delivery systems in the pharmaceutical sciences. Adv Colloid Interface Sci 2022; 307:102734. [DOI: 10.1016/j.cis.2022.102734] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
|
4
|
Liao J, Deng S, Essawy H, Bao X, Wang H, Du G, Zhou X. Investigation of Potential Use of Soybean Protein Isolate–Chinese Bayberry Tannin Extract Cross-Linked Films in Packaging Applications. MATERIALS 2022; 15:ma15155260. [PMID: 35955195 PMCID: PMC9369632 DOI: 10.3390/ma15155260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023]
Abstract
The possibility of using commercial bayberry tannin (BT) from a Chinese source as a cross-linker and functional additive to develop soybean protein isolate (SPI)-based films was explored in this study by using the solvent casting method. In particular, the impacts of BT loading on the tensile strength, microstructure, thermal stability, water resistance and antioxidant capacity were fully investigated. The results reveal that SPI incorporated with BT yielded a phenolic–protein hybrid whose relevant films exhibited an improvement in tensile strength of around two times greater compared with native SPI as a result of the formed interactions and covalent cross-links, which could be proven using FTIR spectroscopy. The introduction of BT also led to the compact microstructure of SPI–BT films and enhanced the thermal stability, while the water vapor permeability was reduced compared with the control SPI film, especially at high loading content of tannin. Additionally, the use of BT significantly promoted the antioxidant capacity of the SPI-based films according to DPPH radical scavenging assay results. On this basis, Chinese bayberry tannin is considered a promising natural cross-linker and multifunctional additive that can be dedicated to developing protein-derived films with antioxidant activity for food packaging applications.
Collapse
Affiliation(s)
- Jingjing Liao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (S.D.); (X.B.); (G.D.)
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China
- Correspondence: (J.L.); (X.Z.)
| | - Shuangqi Deng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (S.D.); (X.B.); (G.D.)
| | - Hisham Essawy
- National Research Centre, Department of Polymers and Pigments, Dokki, Cairo 12622, Egypt;
| | - Xiaoyan Bao
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (S.D.); (X.B.); (G.D.)
| | - Hongyan Wang
- Zhejiang Academy of Forestry, Hangzhou 310023, China;
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (S.D.); (X.B.); (G.D.)
| | - Xiaojian Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; (S.D.); (X.B.); (G.D.)
- Correspondence: (J.L.); (X.Z.)
| |
Collapse
|
5
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
6
|
Yu Y, Xu S, Li S, Pan H. Genipin-cross-linked hydrogels based on biomaterials for drug delivery: a review. Biomater Sci 2021; 9:1583-1597. [PMID: 33443245 DOI: 10.1039/d0bm01403f] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Genipin is a naturally occurring nontoxic cross-linker, which has been widely used for drug delivery due to its excellent biocompatibility, admirable biodegradability and stable cross-linked attributes. These advantages led to its extensive application in the fabrication of hydrogels for drug delivery. This review describes the physicochemical characteristics and pharmacological activities of genipin and attempts to elucidate the detailed mechanisms of the cross-linking reaction between genipin and biomaterials. The current article entails a general review of the different biomaterials cross-linked by genipin: chitosan and its derivatives, collagen, gelatin, etc. The genipin-cross-linked hydrogels for various pharmaceutical applications, including ocular drug delivery, buccal drug delivery, oral drug delivery, anti-inflammatory drug delivery, and antibiotic and antifungal drug delivery, are reported. Finally, the future research directions and challenges of genipin-cross-linked hydrogels for pharmaceutical applications are also discussed in this review.
Collapse
Affiliation(s)
- Yibin Yu
- School of Pharmacy, Liaoning University, Shenyang 110036, China. and Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Shuo Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sanming Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Pan
- School of Pharmacy, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
7
|
Cuggino JC, Tártara LI, Gugliotta LM, Palma SD, Alvarez Igarzabal CI. Mucoadhesive and responsive nanogels as carriers for sustainable delivery of timolol for glaucoma therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111383. [PMID: 33254990 DOI: 10.1016/j.msec.2020.111383] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/17/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Topical administration to the eye for the treatment of glaucoma is a convenient route because it increases the patient comfort. Timolol can efficiently diminish the intraocular pressure (IOP) of the eye; however the topical application as a solution of timolol maleate (TM) has poor therapeutic index and presents severe side effects. The encapsulation of timolol in nanomaterials has appeared as a technology to increase its residence time in the eye thus achieving a sustained release and consequently diminishing the doses of this drug and their number. The preparation of nanogels (NGs) based on N-isopropylacrylamide (NIPA) and acrylic acid (AAc), easily synthesized by precipitation/dispersion free radical polymerization, is reported in this paper. Such NGs presented excellent dispersability in eye simulated fluid and ideal size for topical application. NGs can load efficiently timolol through ionic interaction, and the in vitro release showed that NGs deliver timolol in a sustained manner. In vivo sustained efficacy of the NGs-timolol nanoformulations was demonstrated in rabbit's glaucoma model, in which the IOP could be diminished and maintained constant for 48 h with only one application. Overall, the synthesized NGs in combination with timolol have potential as drug delivery system for glaucoma therapy.
Collapse
Affiliation(s)
- Julio C Cuggino
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET-UNL, Güemes 3450, 3000 Santa Fe, Argentina
| | - Luis I Tártara
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Luis M Gugliotta
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), CONICET-UNL, Güemes 3450, 3000 Santa Fe, Argentina
| | - Santiago D Palma
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| | - Cecilia I Alvarez Igarzabal
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET and Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
8
|
Lin HC, Wang BJ, Weng YM. Development and characterization of sodium caseinate edible films cross-linked with genipin. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108813] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Shreffler JW, Pullan JE, Dailey KM, Mallik S, Brooks AE. Overcoming Hurdles in Nanoparticle Clinical Translation: The Influence of Experimental Design and Surface Modification. Int J Mol Sci 2019; 20:E6056. [PMID: 31801303 PMCID: PMC6928924 DOI: 10.3390/ijms20236056] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles are becoming an increasingly popular tool for biomedical imaging and drug delivery. While the prevalence of nanoparticle drug-delivery systems reported in the literature increases yearly, relatively little translation from the bench to the bedside has occurred. It is crucial for the scientific community to recognize this shortcoming and re-evaluate standard practices in the field, to increase clinical translatability. Currently, nanoparticle drug-delivery systems are designed to increase circulation, target disease states, enhance retention in diseased tissues, and provide targeted payload release. To manage these demands, the surface of the particle is often modified with a variety of chemical and biological moieties, including PEG, tumor targeting peptides, and environmentally responsive linkers. Regardless of the surface modifications, the nano-bio interface, which is mediated by opsonization and the protein corona, often remains problematic. While fabrication and assessment techniques for nanoparticles have seen continued advances, a thorough evaluation of the particle's interaction with the immune system has lagged behind, seemingly taking a backseat to particle characterization. This review explores current limitations in the evaluation of surface-modified nanoparticle biocompatibility and in vivo model selection, suggesting a promising standardized pathway to clinical translation.
Collapse
Affiliation(s)
| | | | | | | | - Amanda E. Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA; (J.W.S.); (J.E.P.); (K.M.D.); (S.M.)
| |
Collapse
|
10
|
Construction of Polymer Electrolyte Based on Soybean Protein Isolate and Hydroxyethyl Cellulose for a Flexible Solid-State Supercapacitor. Polymers (Basel) 2019; 11:polym11111895. [PMID: 31744185 PMCID: PMC6918148 DOI: 10.3390/polym11111895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Supercapacitors are a very active research topic. However, liquid electrolytes present several drawbacks on security and packaging. Herein, a gel polymer electrolyte was prepared based on crosslinked renewable and environmentally friendly soybean protein isolate (SPI) and hydroxyethyl cellulose (HEC) with 1.0 mol L−1 Li2SO4. Highly hydrophilic SPI and HEC guaranteed a high ionic conductivity of 8.40 × 10−3 S cm−1. The fabricated solid-state supercapacitor with prepared gel polymer electrolyte exhibited a good electrochemical performance, that is, a high single electrode gravimetric capacitance of 91.79 F g−1 and an energy density of 7.17 W h kg−1 at a current density of 5.0 A g−1. The fabricated supercapacitor exhibited a flexible performance under bending condition superior to liquid supercapacitor and similar electrochemical performance at various bending angles. In addition, it was proved by an almost 100% cycling retention and a coulombic efficiency over 5000 charge–discharge cycles. For comparison, supercapacitors assembled with commercial aqueous PP/PE separator, pure SPI membrane, and crosslinked SPI membrane were also characterized. The obtained gel polymer electrolyte based on crosslinked SPI and HEC may be useful for the design of advanced polymer electrolytes for energy devices.
Collapse
|
11
|
Yu Y, Feng R, Li J, Wang Y, Song Y, Tan G, Liu D, Liu W, Yang X, Pan H, Li S. A hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier ocular drug delivery platform. Asian J Pharm Sci 2018; 14:423-434. [PMID: 32104471 PMCID: PMC7032125 DOI: 10.1016/j.ajps.2018.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 01/26/2023] Open
Abstract
The objective of this study was to develop a novel hybrid genipin-crosslinked dual-sensitive hydrogel/nanostructured lipid carrier (NLC) drug delivery platform. An ophthalmic anti-inflammatory drug, baicalin (BN) was chosen as the model drug. BN-NLC was prepared using melt-emulsification combined with ultra-sonication technique. Additionally, a dual pH- and thermo-sensitive hydrogel composed of carboxymethyl chitosan (CMCS) and poloxamer 407 (F127) was fabricated by a cross-linking reaction with a nontoxic crosslinker genipin (GP). GP-CMCS/F127 hydrogel was characterized by FTIR, NMR, XRD and SEM. The swelling studies showed GP-CMCS/F127 hydrogel was both pH- and thermo-sensitive. The results of in vitro release suggested BN-NLC gel can prolong the release of baicalin comparing with BN eye drops and BN-NLC. Ex vivo cornea permeation study was evaluated using Franz diffusion cells. The apparent permeability coefficient (Papp ) of BN-NLC gel was much higher (4.46-fold) than that of BN eye drops. Through the determination of corneal hydration levels, BN-NLC gel was confirmed that had no significant irritation to cornea. Ex vivo precorneal retention experiments were carried out by a flow-through approach. The results indicated that the NLC-based hydrogel can prolong precorneal residence time. In conclusion, the hybrid NLC-based hydrogel has a promising potential for application in ocular drug delivery.
Collapse
Affiliation(s)
- Yibin Yu
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruoxi Feng
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jinyu Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanyuan Wang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yiming Song
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guoxin Tan
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dandan Liu
- Liaoning Institute of Science and Technology, Benxi 117004, China
| | - Wei Liu
- Zhengzhou University, Zhengzhou 450001, China
| | - Xinggang Yang
- Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Pan
- Liaoning University, Shenyang 110016, China
| | - Sanming Li
- Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
12
|
Tian H, Guo G, Fu X, Yao Y, Yuan L, Xiang A. Fabrication, properties and applications of soy-protein-based materials: A review. Int J Biol Macromol 2018; 120:475-490. [PMID: 30145158 DOI: 10.1016/j.ijbiomac.2018.08.110] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/15/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022]
Abstract
The environmental crisis caused by the use of petroleum-based nondegradable polymers and the impending petroleum finite resources have directly threatened human being's sustainable development. Therefore, ecofriendly polymers based on natural renewable resources are attracting more and more attention. As the byproducts of soy oil industries, soy protein, is regarded as a viable alternative for petroleum-based polymeric products. In order to improve the physical properties, especially the mechanical properties and water resistance that limit their extensive applications, different modifications were adopted. Among these efforts, incorporating nanoparticles and blending with other polymers are proved to be effective ways. The properties of the resulting materials are highly dependent on the processing methods, nature of the components, dispersion status and the compatibility. This review intends to provide a clear overview on preparation, properties, and applications of soy-protein-based materials. These biodegradable materials will find more and more potential applications in biodegradable foams, edible films, packaging materials, biomedical materials, etc.
Collapse
Affiliation(s)
- Huafeng Tian
- School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Gaiping Guo
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xuewei Fu
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| | - Yuanyuan Yao
- School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Li Yuan
- School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Aimin Xiang
- School of Material and Mechanical Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
13
|
Gopi S, Amalraj A, Sukumaran NP, Haponiuk JT, Thomas S. Biopolymers and Their Composites for Drug Delivery: A Brief Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/masy.201800114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sreeraj Gopi
- R&D Centre; Aurea Biolabs (P) Ltd, Kolenchery; Cochin 682311 Kerala India
- Chemical Faculty; Gdansk University of Technology; Gdańsk Poland
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills P. O. Kottayam Kerala 686560 India
| | - Augustine Amalraj
- R&D Centre; Aurea Biolabs (P) Ltd, Kolenchery; Cochin 682311 Kerala India
| | | | | | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology; School of Chemical Sciences; Mahatma Gandhi University; Priyadarshini Hills P. O. Kottayam Kerala 686560 India
| |
Collapse
|
14
|
Cheng X, Qin J, Wang X, Zha Q, Yao W, Fu S, Tang R. Acid-degradable lactobionic acid-modified soy protein nanogels crosslinked by ortho ester linkage for efficient antitumor in vivo. Eur J Pharm Biopharm 2018; 128:247-258. [DOI: 10.1016/j.ejpb.2018.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/28/2018] [Accepted: 05/03/2018] [Indexed: 11/28/2022]
|
15
|
Fernández-Colino A, Quinteros DA, Allemandi DA, Girotti A, Palma SD, Arias FJ. Self-Assembling Elastin-Like Hydrogels for Timolol Delivery: Development of an Ophthalmic Formulation Against Glaucoma. Mol Pharm 2017; 14:4498-4508. [DOI: 10.1021/acs.molpharmaceut.7b00615] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alicia Fernández-Colino
- Bioforge Lab, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Daniela A. Quinteros
- Unidad de Investigación y Desarrollo en Tecnología
Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias
Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniel A. Allemandi
- Unidad de Investigación y Desarrollo en Tecnología
Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias
Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Alessandra Girotti
- Bioforge Lab, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - Santiago D. Palma
- Unidad de Investigación y Desarrollo en Tecnología
Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias
Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - F. Javier Arias
- Bioforge Lab, University of Valladolid, CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| |
Collapse
|
16
|
Liu X, Kang H, Wang Z, Zhang W, Li J, Zhang S. Simultaneously Toughening and Strengthening Soy Protein Isolate-Based Composites via Carboxymethylated Chitosan and Halloysite Nanotube Hybridization. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E653. [PMID: 28773012 PMCID: PMC5554034 DOI: 10.3390/ma10060653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 01/28/2023]
Abstract
Chemical cross-linking modification can significantly enhance the tensile strength (TS) of soy protein isolate (SPI)-based composites, but usually at the cost of a reduction in the elongation at break (EB). In this study, eco-friendly and high-potential hybrid SPI-based nanocomposites with improved TS were fabricated without compromising the reduction of EB. The hybrid of carboxymethylated chitosan (CMCS) and halloysite nanotubes (HNTs) as the enhancement center was added to the SPI and 1,2,3-propanetriol-diglycidyl-ether (PTGE) solution. The chemical structure, crystallinity, micromorphology, and opacity properties of the obtained SPI/PTGE/HNTs/CMCS film was analyzed by the attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV-Vis spectroscopy. The results indicated that HNTs were uniformly dispersed in the SPI matrix without crystal structure damages. Compared to the SPI/PTGE film, the TS and EB of the SPI/PTGE/HNTs/CMCS film were increased by 57.14% and 27.34%, reaching 8.47 MPa and 132.12%, respectively. The synergy of HNTs and CMCS via electrostatic interactions also improved the water resistance of the SPI/PTGE/HNTs/CMCS film. These films may have considerable potential in the field of sustainable and environmentally friendly packaging.
Collapse
Affiliation(s)
- Xiaorong Liu
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Haijiao Kang
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Zhong Wang
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Wei Zhang
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jianzhang Li
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shifeng Zhang
- MOE Key Laboratory of Wood Material Science and Utilization, Beijing Key Laboratory of Wood Science and Engineering, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
17
|
Oliveira MB, Villa Nova M, Bruschi ML. A review of recent developments on micro/nanostructured pharmaceutical systems for intravesical therapy of the bladder cancer. Pharm Dev Technol 2017; 23:1-12. [DOI: 10.1080/10837450.2017.1312441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marcela Brito Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Mônica Villa Nova
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|
18
|
Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, Yang X, Pan W. A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 2017; 155:208-217. [DOI: 10.1016/j.carbpol.2016.08.073] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/02/2016] [Accepted: 08/24/2016] [Indexed: 11/28/2022]
|
19
|
Yu S, Tan G, Liu D, Yang X, Pan W. Nanostructured lipid carrier (NLC)-based novel hydrogels as potential carriers for nepafenac applied after cataract surgery for the treatment of inflammation: design, characterization and in vitro cellular inhibition and uptake studies. RSC Adv 2017. [DOI: 10.1039/c7ra00552k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of the novel formulation (nanostructured lipid carriers-based novel hydrogels) instills into the surface of eyes and the results of cytotoxicity and cell uptake for optimal formulation.
Collapse
Affiliation(s)
- Shihui Yu
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Guoxin Tan
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Dandan Liu
- School of Biomedical & Chemical Engineering
- Liaoning Institute of Science and Technology
- Benxi 117004
- PR China
| | - Xinggang Yang
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Weisan Pan
- Department of Pharmaceutics
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
20
|
Xu R, Teng Z, Wang Q. Development of tyrosinase-aided crosslinking procedure for stabilizing protein nanoparticles. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide) Thermo-Responsive Microgels as Self-Regulated Drug Delivery System. MACROMOL CHEM PHYS 2016. [DOI: 10.1002/macp.201600324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Tansaz S, Boccaccini AR. Biomedical applications of soy protein: A brief overview. J Biomed Mater Res A 2015; 104:553-69. [PMID: 26402327 DOI: 10.1002/jbm.a.35569] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/17/2015] [Indexed: 12/25/2022]
Abstract
Soy protein (SP) based materials are gaining increasing interest for biomedical applications because of their tailorable biodegradability, abundance, being relatively inexpensive, exhibiting low immunogenicity, and for being structurally similar to components of the extracellular matrix (ECM) of tissues. Analysis of the available literature indicates that soy protein can be fabricated into different shapes, being relatively easy to be processed by solvent or melt based techniques. Furthermore soy protein can be blended with other synthetic and natural polymers and with inorganic materials to improve the mechanical properties and the bioactive behavior for several demands. This review discusses succinctly the biomedical applications of SP based materials focusing on processing methods, properties and applications highlighting future avenues for research.
Collapse
Affiliation(s)
- Samira Tansaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr.6, 91058, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr.6, 91058, Erlangen, Germany
| |
Collapse
|