1
|
Lu Q. Bioresponsive and multifunctional cyclodextrin-based non-viral nanocomplexes in cancer therapy: Building foundations for gene and drug delivery, immunotherapy and bioimaging. ENVIRONMENTAL RESEARCH 2023; 234:116507. [PMID: 37364628 DOI: 10.1016/j.envres.2023.116507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The interest towards application of nanomaterials in field of cancer therapy is that the drawbacks of conventional therapies including chemoresistance, radio-resistance and lack of specific targeting of tumor cells can be solved by nanotechnology. Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides that can be present in three forms of α-, β- and γ-CDs, and they can be synthesized from natural sources. The application of CDs in cancer shows an increasing trend due to benefits of these nanocomplexes in improving solubility and bioavailability of current bioactives and therapeutics for cancer. CDs are widely utilized in delivery of drugs and genes in cancer therapy, and by targeted delivery of these therapeutics into target site, they improve anti-proliferative and anti-cancer potential. The blood circulation time and tumor site accumulation of therapeutics can be improved using CD-based nanostructures. More importantly, the stimuli-responsive types of CDs including pH-, redox- and light-sensitive types can accelerate release of bioactive compound at tumor site. Interestingly, the CDs are able to mediate photothermal and photodynamic impact in impairing tumorigenesis in cancer, enhancing cell death and improving response to chemotherapy. In improving the targeting ability of CDs, their surface functionalization with ligands has been conducted. Moreover, CDs can be modified with green products such as chitosan and fucoidan, and they can be embedded in green-based nanostructures to suppress tumorigenesis. The internalization of CDs into tumor cells can occur through endocytosis and this can be clethrin-, caveolae- or receptor-mediated endocytosis. Furthermore, CDs are promising candidates in bioimaging, cancer cell and organelle imaging as well as isolating tumor cells. The main benefits of using CDs in cancer therapy including sustained and low release of drugs and genes, targeted delivery, bioresponsive release of cargo, ease of surface functionalization and complexation with other nanostructures. The application of CDs in overcoming drug resistance requires more investigation.
Collapse
Affiliation(s)
- Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
2
|
Wang CY, Liu YQ, Jia C, Zhang MZ, Song CL, Xu C, Hao R, Qin JC, Yang YW. An integrated supramolecular fungicide nanoplatform based on pH-sensitive metal–organic frameworks. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Nanoformulation mediated silencing of P-gp efflux protein for the efficient oral delivery of anti-leishmanial drugs. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Rahimi S, Chen Y, Zareian M, Pandit S, Mijakovic I. Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells. Adv Drug Deliv Rev 2022; 189:114467. [PMID: 35914588 DOI: 10.1016/j.addr.2022.114467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023]
Abstract
Despite significant advances in early detection and personalized treatment, cancer is still among the leading causes of death globally. One of the possible anticancer approaches that is presently receiving a lot of attention is the development of nanocarriers capable of specific and efficient delivery of anticancer drugs. Graphene-based materials are promising nanocarriers in this respect, due to their high drug loading capacity and biocompatibility. In this review, we present an overview on the interactions of graphene-based materials with normal mammalian cells at the molecular level as well as cellular and subcellular levels, including plasma membrane, cytoskeleton, and membrane-bound organelles such as lysosomes, mitochondria, nucleus, endoplasmic reticulum, and peroxisome. In parallel, we assemble the knowledge about the interactions of graphene-based materials with cancerous cells, that are considered as the potential applications of these materials for cancer therapy including metastasis treatment, targeted drug delivery, and differentiation to non-cancer stem cells. We highlight the influence of key parameters, such as the size and surface chemistry of graphene-based materials that govern the efficiency of internalization and biocompatibility of these particles in vitro and in vivo. Finally, this review aims to correlate the key parameters of graphene-based nanomaterials specially graphene oxide, such as size and surface modifications, to their interactions with the cancerous and non-cancerous cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
Collapse
Affiliation(s)
- Shadi Rahimi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Yanyan Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Mohsen Zareian
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden; State Key Laboratory of Bio-based Material and Green Paper-making, Qilu University of Technology, Jinan, China
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Shukla A, Maiti P. Nanomedicine and versatile therapies for cancer treatment. MedComm (Beijing) 2022; 3:e163. [PMID: 35992969 PMCID: PMC9386439 DOI: 10.1002/mco2.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/19/2022] Open
Abstract
The higher prevalence of cancer is related to high rates of mortality and morbidity worldwide. By virtue of the properties of matter at the nanoscale, nanomedicine is proven to be a powerful tool to develop innovative drug carriers with greater efficacies and fewer side effects than conventional therapies. In this review, different nanocarriers for controlled drug release and their routes of administration have been discussed in detail, especially for cancer treatment. Special emphasis has been given on the design of drug delivery vehicles for sustained release and specific application methods for targeted delivery to the affected areas. Different polymeric vehicles designed for the delivery of chemotherapeutics have been discussed, including graft copolymers, liposomes, hydrogels, dendrimers, micelles, and nanoparticles. Furthermore, the effect of dimensional properties on chemotherapy is vividly described. Another integral section of the review focuses on the modes of administration of nanomedicines and emerging therapies, such as photothermal, photodynamic, immunotherapy, chemodynamic, and gas therapy, for cancer treatment. The properties, therapeutic value, advantages, and limitations of these nanomedicines are highlighted, with a focus on their increased performance versus conventional molecular anticancer therapies.
Collapse
Affiliation(s)
- Aparna Shukla
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| | - Pralay Maiti
- School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia
| |
Collapse
|
6
|
Ferreira L, Campos J, Veiga F, Cardoso C, Cláudia Paiva-Santos A. Cyclodextrin-based delivery systems in parenteral formulations: a critical update review. Eur J Pharm Biopharm 2022; 178:35-52. [PMID: 35868490 DOI: 10.1016/j.ejpb.2022.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/28/2022] [Accepted: 07/17/2022] [Indexed: 11/04/2022]
Abstract
Parenteral formulations are indispensable in clinical practice and often are the only option to administer drugs that cannot be administrated through other routes, such as proteins and certain anticancer drugs - which are indispensable to treat some of the most prevailing chronic diseases worldwide (like diabetes and cancer). Additionally, parenteral formulations play a relevant role in emergency care since they are the only ones that provide an immediate action of the drug after its administration. However, the development of parenteral formulations is a complex task owing to the specific quality and safety requirements set for these preparations and the intrinsic properties of the drugs. Amongst all the strategies that can be useful in the development of parenteral formulations, the formation of water-soluble host-guest inclusion complexes with cyclodextrins (CDs) has proven to be one of the most advantageous. CDs are multifunctional pharmaceutical excipients able to form water-soluble host-guest inclusion complexes with a wide variety of molecules, particularly drugs, and thus improve their apparent water-solubility, chemical stability, and bioavailability, to make them suitable for parenteral administration. Besides, CDs can be employed as building blocks of more complex injectable drug delivery systems with enhanced characteristics, such as nanoparticles and supramolecular hydrogels, that has been found particularly beneficial for the delivery of anticancer drugs. However, only a few CDs are considered safe when parenterally administered, and some of these types are already approved to be used in parenteral dosage forms. Therefore, the application of CDs in the development of parenteral formulations has been a more common practice in the last few years, due to their significant worldwide acceptance by the health authorities, promoting the development of safer and more efficient injectable drug delivery systems.
Collapse
Affiliation(s)
- Laura Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Joana Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Catarina Cardoso
- Laboratórios Basi, Parque Industrial Manuel Lourenço Ferreira, lote 15, 3450-232 Mortágua, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Sheng TM, Kumar PV. A New Approach for β-Cyclodextrin Conjugated Drug Delivery System in Cancer Therapy. Curr Drug Deliv 2021; 19:266-300. [PMID: 34620064 DOI: 10.2174/1567201818666211006103452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Natural cyclodextrins (CDs) are macrocyclic starch molecules discovered a decade ago, in which α-, β-, and γ-CD were commonly used. They originally acted as pharmaceutical excipients to enhance the aqueous solubility and alter the physicochemical properties of drugs that fall under class II and IV categories according to the Biopharmaceutics Classification System (BPS). The industrial significance of CDs became apparent during the 1970s as scientists started to discover more of CD's potential in chemical modifications and the formation of inclusion complexes. CDs can help in masking and prolonging the half-life of drugs used in cancer. Multiple optimization techniques were discovered to prepare the derivatives of CDs and increase their complexation and drug delivery efficiency. In recent years, due to the advancement of nanotechnology in pharmaceutical sectors, there has been growing interest in CDs. This review mainly focuses on the formulation of cyclodextrin conjugated nanocarriers using graphenes, carbon nanotubes, nanosponges, hydrogels, dendrimers, and polymers to achieve drug-release characteristics specific to cells. These approaches benefit the discovery of novel anti-cancer treatments, solubilization of new drug compounds, and cell specific drug delivery properties. Due to these unique properties of CDs, they are essential in achieving and enhancing tumor-specific cancer treatment.
Collapse
Affiliation(s)
- Teng Meng Sheng
- Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, 56000 Kuala Lumpur. Malaysia
| | - Palanirajan Vijayaraj Kumar
- Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, 56000 Kuala Lumpur. Malaysia
| |
Collapse
|
8
|
Jiang C, Zhao H, Xiao H, Wang Y, Liu L, Chen H, Shen C, Zhu H, Liu Q. Recent advances in graphene-family nanomaterials for effective drug delivery and phototherapy. Expert Opin Drug Deliv 2020; 18:119-138. [PMID: 32729733 DOI: 10.1080/17425247.2020.1798400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Owing to the unique properties of graphene, including large specific surface area, excellent thermal conductivity, and optical absorption, graphene-family nanomaterials (GFNs) have attracted extensive attention in biomedical applications, particularly in drug delivery and phototherapy. AREAS COVERED In this review, we point out several challenges involved in the clinical application of GFNs. Then, we provide an overview of the most recent publications about GFNs in biomedical applications, including diverse strategies for improving the biocompatibility, specific targeting and stimuli-responsiveness of GFNs for drug delivery, codelivery of drug and gene, photothermal therapy, photodynamic therapy, and multimodal combination therapy. EXPERT OPINION Although the application of GFNs is still in the preclinical stage, rational modification of GFNs with functional elements or making full use of GFNs-based multimodal combination therapy might show great potential in biomedicine for clinical application.
Collapse
Affiliation(s)
- Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Haiyue Zhao
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Haiyan Xiao
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Huoji Chen
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Hongxia Zhu
- Combining Traditional Chinese and Western Medicine Hospital, Southern Medical University , 510315, Guangzhou, P. R. China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| |
Collapse
|
9
|
Wang W, Zheng T, Zhang M, Zhang Q, Wu F, Liu Y, Zhang L, Zhang J, Wang M, Sun Y. Tumor-targeting multi-shelled hollow nanospheres as drug loading platforms for imaging-guided combinational cancer therapy. Biomater Sci 2020; 8:1748-1758. [PMID: 32002530 DOI: 10.1039/c9bm01881f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this work, we developed multi-shelled hollow nanospheres [RGD@am-ZnO@CuO@Au@DOX HNSs] as multifunctional therapeutic agents to achieve effective and targeted Zn2+/Cu2+ therapy, induced drug delivery under low pH/red-light conditions, and enhanced phototherapy under single red-light. The photothermal and photodynamic performance of am-ZnO@CuO@Au HNSs was enhanced relative to that of am-ZnO nanoparticles (NPs) or am-ZnO@CuO HNSs by utilizing the resonance energy transfer process and broad red-light absorption. The pH-sensitive am-ZnO@CuO@Au HNSs were dissolved to Zn2+/Cu2+ in the acidic endosomes/lysosomes of cancer cells, resulting in a cancer cell killing effect. The release performance of doxorubicin (DOX) from RGD@am-ZnO@CuO@Au@DOX HNSs was evaluated under low pH and red-light-irradiated conditions, and targeting of HNSs was confirmed by dual-modal imaging (magnetic resonance/fluorescence) of the tumor area. Moreover, in vivo synergistic therapy using RGD@am-ZnO@CuO@Au@DOX HNSs was further evaluated in mice bearing human pulmonary adenocarcinoma (A549) cells, achieving a remarkable synergistic antitumor effect superior to that obtained by monotherapy. This study validated that RGD@am-ZnO@CuO@Au@DOX HNSs can be a promising candidate for efficient postoperative cancer therapy.
Collapse
Affiliation(s)
- Wentao Wang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| | - Ming Zhang
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark. and Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fan Wu
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yihan Liu
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lin Zhang
- Wuxi Children's Hospital, Wuxi, 210023, China
| | - Jun Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mingqian Wang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
10
|
Trusek A, Kijak E, Granicka L. Graphene oxide as a potential drug carrier - Chemical carrier activation, drug attachment and its enzymatic controlled release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111240. [PMID: 32806281 DOI: 10.1016/j.msec.2020.111240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/21/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
Abstract
Graphene oxide (GO), due to its properties, such as nanometric dimensions, large specific surface area, and biocompatibility, can be used as a carrier in controlled drug release systems. The method of its chemical activation before drug molecules binding was elaborated. Doxorubicin (DOX), an anticancer drug, was attached to the surface of GO via the Gly-Gly-Leu linker. Approximately 3.07 · 1020 molecules of the tripeptide were attached to 1 g of GO and subsequently almost the same number of DOX molecules. GO was suspended inside a sol surrounded by a thin porous membrane. The bound DOX was effectively released using thermolysin, an enzyme cleaving peptide bonds between Gly and Leu inside the linker structure. The membrane, as the shell was responsible for keeping enzyme molecules in their native form and GO flakes inside the carrier, simultaneously allowed the released drug molecules to diffuse outside. The rate of drug release was described as a function of the enzyme concentration and mass of DOX expressed on carrier volume; thus, the daily dose and length of the therapy can be controlled. Studies involving the cell line of mice fibrosarcoma WEHI 164 have shown that the prepared carrier itself is not toxic and only the introduction of DOX-releasing enzyme into it causes cell death.
Collapse
Affiliation(s)
- Anna Trusek
- Wroclaw University of Science and Technology, Group of Micro, Nano and Bioprocess Engineering, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland.
| | - Edward Kijak
- Wroclaw Medical University, Department of Dental Prosthetics, Krakowska 26, 50-425 Wroclaw, Poland.
| | - Ludomira Granicka
- The Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences Ks, Trojdena 4, 02-109 Warsaw, Poland.
| |
Collapse
|
11
|
Cyclodextrin as a magic switch in covalent and non-covalent anticancer drug release systems. Carbohydr Polym 2020; 242:116401. [PMID: 32564836 DOI: 10.1016/j.carbpol.2020.116401] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/25/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023]
Abstract
Cancer has been a threat to human health, so its treatment is a huge challenge to the present medical field. One of commonly used methods is the controlled release of anticancer drug to reduce the dose for patients, increase the stability of drug treatment and minimize side effects. Cyclodextrin is a kind of cyclic oligosaccharide produced by amylase hydrolysis. Because cyclodextrin contains a cavity structure and active hydroxyl groups, it has a positive effect on the study of the controlled release of anticancer drugs. This article reviews the controlled release of current anticancer drugs based on cyclodextrins as a "flexible switch", and discusses the classification of different types of release systems, highlighting their role in cancer treatment. Moreover, the opportunities and challenges of cyclodextrin as a magic switch in the controlled release of anticancer drugs are discussed.
Collapse
|
12
|
Tian B, Hua S, Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr Polym 2020; 232:115805. [DOI: 10.1016/j.carbpol.2019.115805] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
13
|
|
14
|
Vinothini K, Rajendran NK, Munusamy MA, Alarfaj AA, Rajan M. Development of biotin molecule targeted cancer cell drug delivery of doxorubicin loaded κ-carrageenan grafted graphene oxide nanocarrier. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:676-687. [PMID: 30948104 DOI: 10.1016/j.msec.2019.03.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 01/17/2023]
Abstract
Cervical cancer is one of the most occurring cancers and the fourth leading occurrence of cancer in women, worldwide. In this study, we planned to synthesis κ-Carrageenan grafted graphene oxide nanocarrier conjugated with biotin (GO-κ-Car-biotin) for targeted cervical cancer. Doxorubicin (DOX) is a well-known anticancer drug for any type of cancer and it is used to entrap over on the graphene oxide surface via π-π stacking interaction. The chemical function and crystalline nature of the synthesized nanocarrier was characterized by Fourier Transformed Infrared Spectroscopy (FT-IR) and X-ray diffraction Analysis (XRD). The surface morphological study was carried out through Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM) and Atomic force microscopy (AFM). The in-vitro drug release profile of DOX was carried out by UV-Vis spectrometer at the λmax value of 480 nm. The entrapment of DOX on GO-κ-car-biotin has been observed at 94%. The hydrophilic DOX drug has excellent pH-sensitive drug released in an in-vitro study. The anticancer efficiency of the synthesized GO-based nanocarrier was examined using HeLa cell line in-vitro. Cell viability, proliferation, cytotoxicity, and nuclear chromatin condensation was studied by trypan blue assay, triphosphate assay (ATP), lactate dehydrogenase assay (LDH) and Hoechst staining respectively. Finally, biotin leading GO-κ-Car carrier demonstrated is a promising drug delivery system for cervical cancer treatment.
Collapse
Affiliation(s)
- Kandasamy Vinothini
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Naresh Kumar Rajendran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Murugan A Munusamy
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Abdulla A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| |
Collapse
|
15
|
Zhang J, Chen L, Chen J, Zhang Q, Feng J. Stability, Cellular Uptake, and in Vivo Tracking of Zwitterion Modified Graphene Oxide as a Drug Carrier. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1495-1502. [PMID: 30089359 DOI: 10.1021/acs.langmuir.8b01995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a novel kind of zwitterion modified graphene oxide (GO) for promoting stability and reducing aggregation of GO as a drug carrier was proposed and demonstrated. Specifically, the GO was functionalized with a kind of zwitterion based silane, 3-(dimethyl(3-(trimethoxysilyl)propyl)-ammonio)propane-1-sulfonate (SBS). After zwitterion modification, the SBS functionalized GO (GO-SB) shows significantly enhanced stability in both serum-free and serum-containing solution, especially after loading doxorubicin hydrochloride (DOX). According to drug release profiles, the drug-loaded GO-SB exhibits thermosensitive and sustained release behavior. Meanwhile, in vitro studies show that the DOX loaded GO-SB could be easily internalized by HepG2 cells and exhibit obvious cytotoxicity on the cells. And, in vivo studies demonstrate that the GO-SB drug carrier is capable of being taken by the larvae of zebrafish and can be eliminated from the body within several days.
Collapse
|
16
|
Menezes PDP, Andrade TDA, Frank LA, de Souza EPBSS, Trindade GDGG, Trindade IAS, Serafini MR, Guterres SS, Araújo AADS. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 2019; 559:312-328. [PMID: 30703500 DOI: 10.1016/j.ijpharm.2019.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
For many years, researchers have worked with supramolecular structures involving inclusion complexes with cyclodextrins. These studies have resulted in new commercially available drugs which have been of great benefit. More recently, studies using nanoparticles, including nanosystems containing cyclodextrins, have become a focus of academic research due to the versatility of the systems and their remarkable therapeutic potential. This review focuses on studies published between 2002 and 2018 involving nanosystems containing cyclodextrins. We consider the type of nanosystems, their importance in a health context, the physicochemical techniques used to show the quality of these systems and their potential for the development of novel pharmaceutical formulations. These have been developed in recent studies which have mainly been focusing on basic science with no clinical trials as yet being performed. This is important to note because it means that the studies do not include any toxicity tests. Despite this limitation, the characterization assays performed suggest that these new formulations may have therapeutic potential. However, more research is required to assess the efficacy and safety of these nanosystems.
Collapse
Affiliation(s)
| | | | - Luiza Abrahão Frank
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
17
|
Shukla A, Maiti P. Biodegradable Polymer-Based Nanohybrids for Controlled Drug Delivery and Implant Applications. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2019:3-19. [DOI: 10.1007/978-981-32-9804-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Xiao Y, Zhang M, Fan Y, Zhang Q, Wang Y, Yuan W, Zhou N, Che J. Novel controlled drug release system engineered with inclusion complexes based on carboxylic graphene. Colloids Surf B Biointerfaces 2018; 175:18-25. [PMID: 30513470 DOI: 10.1016/j.colsurfb.2018.11.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/14/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022]
Abstract
A novel drug carrier is constructed by compositing hydrophilic hydroxypropyl-β-cyclodextrins (HP-β-CD) and carboxylated graphene nanomaterial (GO-COOH). Fourier transform infrared spectroscopy confirms that the two materials are successfully combined via chemical bonds. Further, a crosslinking agent of glutaraldehyde is applied to fabricate composite GO-COO-HP-β-CD nanospheres, as demonstrated by an atomic force microscope. Dexamethasone (DEX) is selected as the model drug, and the drug loading efficiency and water solubility of the nanospheres greatly increased. Additionally, the achieved DEX/nanosphere inclusion complex exhibits better heat resistance compared with pure DEX, which is a desired property for drug processing. More importantly, different models are applied to different releasing durations to investigate in detail the release profile of DEX. The best fitting release kinetics model is given to reveal the release mechanism of the drug delivery system. The highest hemolysis rate of the DEX/nanosphere inclusion is 0.44%, far lower than the standard of 5% delivered by the American Society for Testing and Materials, ensuring its safety in practical applications. Meanwhile, recalcification tests indicate that DEX/nanosphere retains the normal blood coagulation function. In vitro cytotoxicity tests of the inclusion demonstrate that the nanospheres have no toxicity and are qualified for intravenous applications with good blood compatibility. Finally, the bioactivity of DEX after release from the carriers is investigated. Results corroborate that the drug anti-inflammation efficacy is not affected and that the biomedical function can be well retained. The engineered controlled drug release system represents a promising formulation platform for a broad range of therapeutic medicine in pharmaceutical technology.
Collapse
Affiliation(s)
- Yinghong Xiao
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ming Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yunting Fan
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yuli Wang
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wenwen Yuan
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Jianfei Che
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
19
|
Zhou J, Yu G, Huang F. Supramolecular chemotherapy based on host-guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chem Soc Rev 2018; 46:7021-7053. [PMID: 28980674 DOI: 10.1039/c6cs00898d] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy is currently one of the most effective ways to treat cancer. However, traditional chemotherapy faces several obstacles to clinical trials, such as poor solubility/stability, non-targeting capability and uncontrollable release of the drugs, greatly limiting their anticancer efficacy and causing severe side effects towards normal tissues. Supramolecular chemotherapy integrating non-covalent interactions and traditional chemotherapy is a highly promising candidate in this regard and can be appropriately used for targeted drug delivery. By taking advantage of supramolecular chemistry, some limitations impeding traditional chemotherapy for clinical applications can be solved effectively. Therefore, we present here a review summarizing the progress of supramolecular chemotherapy in cancer treatment based on host-guest recognition and provide guidance on the design of new targeting supramolecular chemotherapy combining diagnostic and therapeutic functions. Based on a large number of state-of-the-art studies, our review will advance supramolecular chemotherapy on the basis of host-guest recognition and promote translational clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | |
Collapse
|
20
|
Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 2018; 286:64-73. [DOI: 10.1016/j.jconrel.2018.07.034] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/12/2022]
|
21
|
Kasprzak A, Zuchowska A, Poplawska M. Functionalization of graphene: does the organic chemistry matter? Beilstein J Org Chem 2018; 14:2018-2026. [PMID: 30202456 PMCID: PMC6122221 DOI: 10.3762/bjoc.14.177] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/18/2018] [Indexed: 01/26/2023] Open
Abstract
Reactions applying amidation- or esterification-type processes and diazonium salts chemistry constitute the most commonly applied synthetic approaches for the modification of graphene-family materials. This work presents a critical assessment of the amidation and esterification methodologies reported in the recent literature, as well as a discussion of the reactions that apply diazonium salts. Common misunderstandings from the reported covalent functionalization methods are discussed, and a direct link between the reaction mechanisms and the basic principles of organic chemistry is taken into special consideration.
Collapse
Affiliation(s)
- Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Agnieszka Zuchowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Magdalena Poplawska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| |
Collapse
|
22
|
Li X, Wang L, She L, Sun L, Ma Z, Chen M, Hu P, Wang D, Yang F. Immunotoxicity assessment of ordered mesoporous carbon nanoparticles modified with PVP/PEG. Colloids Surf B Biointerfaces 2018; 171:485-493. [PMID: 30077906 DOI: 10.1016/j.colsurfb.2018.07.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 10/28/2022]
Abstract
With large surface area and three-dimensional pore structure, mesoporous carbon nanoparticles (MCN) have attracted enormous interests as potential drug carriers. However, MCN immunotoxicity has not been clarified clearly up to now. Herein we reported the effect of MCN with and without PVP or DSPE mPEG2000 (PEG) modification on immune cells including dendritic cells (DCs), T lymphocytes and RAW264.7 macrophages in vitro. Furthermore, blood biochemical tests, alexin C3 assay and histological analysis were used to investigate the toxicity of MCN in vivo. The synthesized MCN with average particle size about 90 nm was naturally insoluble in water. Surface modification with PVP (MCN-PVP) or PEG (MCN-PEG) slightly increased the particle size and Zeta potential, and effectively improved the dispersion of mesoporous carbon. MCN, MCN-PVP and MCN-PEG promoted the differentiation and maturation of the DCs, while the levels of secreted TNF-α and IL-6 were significantly suppressed by MCN-PVP and MCN-PEG. These materials significantly induced apoptosis of T lymphocytes. The histopathologic results showed that there was no significant difference between nanoparticles with or without modification. Importantly, the materials deposition was observed in the lung, which could potentially inhibit lung metastasis. In conclusion, the ordered mesoporous carbon nanoparticles superficially modified by PVP or PEG perform well in immunological biocompatibility, and are likely to be a promising candidate as medicine carrier in pharmaceutics and clinic.
Collapse
Affiliation(s)
- Xinfang Li
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Linzhao Wang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, People's Republic of China
| | - Lan She
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Linhong Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhiqiang Ma
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Min Chen
- Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Pengwei Hu
- Department of Pharmacy, Hebei North University, Zhangjiakou, Hebei, People's Republic of China
| | - Dan Wang
- Department of Obstetrics and Gynecology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| | - Feng Yang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
23
|
Interaction of antitumoral drug erlotinib with biodegradable triblock copolymers: a molecular modeling study. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0413-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Thermal Analyses of Cyclodextrin Complexes. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2018. [DOI: 10.1007/978-3-319-76159-6_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
He Y, Liang S, Long M, Xu H. Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:12-17. [DOI: 10.1016/j.msec.2017.04.049] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/21/2023]
|
26
|
Folate receptor targeted bufalin/β-cyclodextrin supramolecular inclusion complex for enhanced solubility and anti-tumor efficiency of bufalin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:609-618. [DOI: 10.1016/j.msec.2017.04.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/14/2017] [Accepted: 04/16/2017] [Indexed: 11/20/2022]
|
27
|
Zhang M, Chi C, Yuan P, Su Y, Shao M, Zhou N. A hydrothermal route to multicolor luminescent carbon dots from adenosine disodium triphosphate for bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1146-1153. [PMID: 28482480 DOI: 10.1016/j.msec.2017.03.144] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/29/2022]
Abstract
In this work, phosphor and nitrogen co-doped carbon dots (N-P-doped CDs) were developed for bioimaging. The as-synthesized N-P-doped CDs emit a bright blue coloured fluorescence after exposure to a 365nm UV-lamp illumination. It is also demonstrated that the fluorescence of CDs is resistant to the interference of metal ions, saline solution, and high ionic strength environments. The bright fluorescence nature of the N-P-doped CDs has proven them to be excellent probes for cellular imaging. And this guess is further confirmed by using a laser scanning confocal microscope (LSCM). The viability study was carried out by MTT assay, suggesting the high biocompatibility of N-P-doped CDs. The results demonstrated that N-P-doped CDs may be considered as a safe material for bio-imaging and drug delivery in cancer cells.
Collapse
Affiliation(s)
- Ming Zhang
- Jiangsu Collaborative Innovation Center for biological functional materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Cheng Chi
- Jiangsu Collaborative Innovation Center for biological functional materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Ping Yuan
- Jiangsu Collaborative Innovation Center for biological functional materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Yutian Su
- Jiangsu Collaborative Innovation Center for biological functional materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Maoni Shao
- Jiangsu Collaborative Innovation Center for biological functional materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for biological functional materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023, China; Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505, China.
| |
Collapse
|
28
|
Characterization of glabridin/hydroxypropyl-β-cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr Polym 2017; 159:152-160. [DOI: 10.1016/j.carbpol.2016.11.093] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022]
|
29
|
Augustine S, Singh J, Srivastava M, Sharma M, Das A, Malhotra BD. Recent advances in carbon based nanosystems for cancer theranostics. Biomater Sci 2017; 5:901-952. [DOI: 10.1039/c7bm00008a] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review deals with four different types of carbon allotrope based nanosystems and summarizes the results of recent studies that are likely to have applications in cancer theranostics. We discuss the applications of these nanosystems for cancer imaging, drug delivery, hyperthermia, and PDT/TA/PA.
Collapse
Affiliation(s)
- Shine Augustine
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Jay Singh
- Department of Applied Chemistry & Polymer Technology
- Delhi Technological University
- Delhi 110042
- India
| | - Manish Srivastava
- Department of Physics & Astrophysics
- University of Delhi
- Delhi 110007
- India
| | - Monica Sharma
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Asmita Das
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| | - Bansi D. Malhotra
- NanoBioelectronics Laboratory
- Department of Biotechnology
- Delhi Technological University
- Delhi 110042
- India
| |
Collapse
|
30
|
Zhang M, Zhou N, Yuan P, Su Y, Shao M, Chi C. Graphene oxide and adenosine triphosphate as a source for functionalized carbon dots with applications in pH-triggered drug delivery and cell imaging. RSC Adv 2017. [DOI: 10.1039/c6ra27887f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A folate-functionalized carbon dot-based nanocarrier system has been successfully synthesized for cancer cell targeted drug delivery.
Collapse
Affiliation(s)
- Ming Zhang
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Ping Yuan
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Yutian Su
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Maoni Shao
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| | - Cheng Chi
- Jiangsu Collaborative Innovation Center for Biological Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing 210023
- China
| |
Collapse
|
31
|
Wang J, Fang J, Fang P, Li X, Wu S, Zhang W, Li S. Preparation of hollow core/shell Fe3O4@graphene oxide composites as magnetic targeting drug nanocarriers. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 28:337-349. [DOI: 10.1080/09205063.2016.1268463] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Junmei Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jianjun Fang
- Institute of Applied of Bioresource Research, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Pan Fang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xian Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shijie Wu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Wenjing Zhang
- Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, WenZhou Medical University, Wenzhou, China
| | - Sufang Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
32
|
Xiao S, Zhou D, Luan P, Gu B, Feng L, Fan S, Liao W, Fang W, Yang L, Tao E, Guo R, Liu J. Graphene quantum dots conjugated neuroprotective peptide improve learning and memory capability. Biomaterials 2016; 106:98-110. [DOI: 10.1016/j.biomaterials.2016.08.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/14/2016] [Indexed: 12/19/2022]
|
33
|
Wang Y, Zhang B, Zhai G. The effect of incubation conditions on the hemolytic properties of unmodified graphene oxide with various concentrations. RSC Adv 2016. [DOI: 10.1039/c6ra13607a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The hemolytic properties of graphene oxide (GO) were evaluated from the novel view of the incubation conditions.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmaceutics
- College of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- China
| | - Baomei Zhang
- Department of Pharmaceutics
- College of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- China
| | - Guangxi Zhai
- Department of Pharmaceutics
- College of Pharmaceutical Sciences
- Shandong University
- Jinan 250012
- China
| |
Collapse
|