1
|
Dos Santos FV, Siqueira RL, de Morais Ramos L, Yoshioka SA, Branciforti MC, Correa DS. Silk fibroin-derived electrospun materials for biomedical applications: A review. Int J Biol Macromol 2024; 254:127641. [PMID: 37913875 DOI: 10.1016/j.ijbiomac.2023.127641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Electrospinning is a versatile technique for fabricating polymeric fibers with diameters ranging from micro- to nanoscale, exhibiting multiple morphologies and arrangements. By combining silk fibroin (SF) with synthetic and/or natural polymers, electrospun materials with outstanding biological, chemical, electrical, physical, mechanical, and optical properties can be achieved, fulfilling the evolving biomedical demands. This review highlights the remarkable versatility of SF-derived electrospun materials, specifically focusing on their application in tissue regeneration (including cartilage, cornea, nerves, blood vessels, bones, and skin), disease treatment (such as cancer and diabetes), and the development of controlled drug delivery systems. Additionally, we explore the potential future trends in utilizing these nanofibrous materials for creating intelligent biomaterials, incorporating biosensors and wearable sensors for monitoring human health, and also discuss the bottlenecks for its widespread use. This comprehensive overview illuminates the significant impact and exciting prospects of SF-derived electrospun materials in advancing biomedical research and applications.
Collapse
Affiliation(s)
- Francisco Vieira Dos Santos
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Renato Luiz Siqueira
- Materials Engineering Department, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Lucas de Morais Ramos
- São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Sérgio Akinobu Yoshioka
- Laboratory of Biochemistry and Biomaterials, São Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Carlos, SP, Brazil
| | - Márcia Cristina Branciforti
- Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture, Embrapa Instrumentação, 13560-970 São Carlos, SP, Brazil; Materials Engineering Department, São Carlos School of Engineering, University of São Paulo, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Kim YE, Bae YJ, Jang MJ, Um IC. Effect of Sericin Content on the Structural Characteristics and Properties of New Silk Nonwoven Fabrics. Biomolecules 2023; 13:1186. [PMID: 37627251 PMCID: PMC10452508 DOI: 10.3390/biom13081186] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, natural silk nonwoven fabrics have attracted attention in biomedical and cosmetic applications because of their excellent biocompatibility, mechanical properties, and easy preparation. Herein, silk nonwoven fabrics were prepared by carding silk filaments to improve their productivity, and the effect of sericin content on the structure and properties of silk nonwoven fabrics was investigated. Owing to the binding effect of sericin in silk, a natural silk nonwoven fabric was successfully prepared through carding, wetting, and hot press treatments. Sericin content affected the structural characteristics and properties of the silk nonwoven fabrics. As the sericin content increased, the silk nonwoven fabrics became more compact with reduced porosity and thickness. Further, with increasing sericin content, the crystallinity and elongation of the silk nonwoven fabrics decreased while the moisture regain and the maximum stress increased. The thermal stability of most silk nonwoven fabrics was not affected by the sericin content. However, silk nonwoven fabrics without sericin had a lower thermal decomposition temperature than other nonwoven fabrics. Regardless of the sericin content, all silk nonwoven fabrics exhibited optimal cell viability and are promising candidates for cosmetic and biomedical applications.
Collapse
Affiliation(s)
- Ye Eun Kim
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| | - Yu Jeong Bae
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea (Y.J.B.)
| |
Collapse
|
3
|
Chen K, Li Y, Li Y, Pan W, Tan G. Silk Fibroin Combined with Electrospinning as a Promising Strategy for Tissue Regeneration. Macromol Biosci 2023; 23:e2200380. [PMID: 36409150 DOI: 10.1002/mabi.202200380] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/14/2022] [Indexed: 11/23/2022]
Abstract
The development of tissue engineering scaffolds is of great significance for the repair and regeneration of damaged tissues and organs. Silk fibroin (SF) is a natural protein polymer with good biocompatibility, biodegradability, excellent physical and mechanical properties and processability, making it an ideal universal tissue engineering scaffold material. Nanofibers prepared by electrospinning have attracted extensive attention in the field of tissue engineering due to their excellent mechanical properties, high specific surface area, and similar morphology as to extracellular matrix (ECM). The combination of silk fibroin and electrospinning is a promising strategy for the preparation of tissue engineering scaffolds. In this review, the research progress of electrospun silk fibroin nanofibers in the regeneration of skin, vascular, bone, neural, tendons, cardiac, periodontal, ocular and other tissues is discussed in detail.
Collapse
Affiliation(s)
- Kai Chen
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Yonghui Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Youbin Li
- Hainan Provincial Key Laboratory of R&D on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, 571199, P. R. China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Guoxin Tan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmacy, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
4
|
Hai AM, Yue Z, Beirne S, Wallace G. Electrowriting of silk fibroin: Towards
3D
fabrication for tissue engineering applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Abdul Moqeet Hai
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
- Institute of Polymer and Textile Engineering University of the Punjab Lahore Pakistan
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
| | - Stephen Beirne
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
| | - Gordon Wallace
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM, Innovation Campus University of Wollongong Wollongong New South Wales Australia
| |
Collapse
|
5
|
Development of New Bio-Composite of PEO/Silk Fibroin Blends Loaded with Piezoelectric Material. Polymers (Basel) 2022; 14:polym14194209. [PMID: 36236157 PMCID: PMC9571570 DOI: 10.3390/polym14194209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
New bio-composite nanofibers composed of polyethylene oxide (PEO)/silk fibroin (SF)/barium titanate (BaTiO3) are introduced in this study. The SF solution was added to the PEO solution to form a PEO/SF blend with different weight percentages (5, 10, 15, 20 wt.%). The PEO/15 wt.% SF blend was selected to continue the experimental plan based on the optimum nanofiber morphology. Different wt.% of BaTiO3 particles (0.2, 0.4, 0.8, 1 wt.%) were added to the PEO/15 wt.% SF blend solution, and the suspensions obtained were introduced to an electrospinning device. The fabricated tissue was characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy. The zeta potential of the solution and the piezoelectric performance of the fabricated tissue were characterized. A newly designed pizoTester was used to investigate piezoelectric properties. The results showed that a well-organized, smooth PEO/15 wt.% SF/0.2 wt.% BaTiO3 nanofiber composite with low bead contents was obtained. Improved properties and electrical coupling were achieved in the newly introduced material. Electrospun PEO/15 wt.% SF/0.2 wt.% BaTiO3 mats increased the output voltage (1150 mV) compared to pristine PEO and PEO/SF composite fibers (410 and 290 mV, respectively) upon applying 20 N force at 5 Hz frequency. The observed enhancement in piezoelectric properties suggests that the prepared composite could be a promising material in cardiac tissue engineering (CTE).
Collapse
|
6
|
Yao X, Zou S, Fan S, Niu Q, Zhang Y. Bioinspired silk fibroin materials: From silk building blocks extraction and reconstruction to advanced biomedical applications. Mater Today Bio 2022; 16:100381. [PMID: 36017107 PMCID: PMC9395666 DOI: 10.1016/j.mtbio.2022.100381] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/27/2022]
Abstract
Silk fibroin has become a promising biomaterial owing to its remarkable mechanical property, biocompatibility, biodegradability, and sufficient supply. However, it is difficult to directly construct materials with other formats except for yarn, fabric and nonwoven based on natural silk. A promising bioinspired strategy is firstly extracting desired building blocks of silk, then reconstructing them into functional regenerated silk fibroin (RSF) materials with controllable formats and structures. This strategy could give it excellent processability and modifiability, thus well meet the diversified needs in biomedical applications. Recently, to engineer RSF materials with properties similar to or beyond the hierarchical structured natural silk, novel extraction and reconstruction strategies have been developed. In this review, we seek to describe varied building blocks of silk at different levels used in biomedical field and their effective extraction and reconstruction strategies. This review also present recent discoveries and research progresses on how these functional RSF biomaterials used in advanced biomedical applications, especially in the fields of cell-material interactions, soft tissue regeneration, and flexible bioelectronic devices. Finally, potential study and application for future opportunities, and current challenges for these bioinspired strategies and corresponding usage were also comprehensively discussed. In this way, it aims to provide valuable references for the design and modification of novel silk biomaterials, and further promote the high-quality-utilization of silk or other biopolymers.
Collapse
|
7
|
Yazawa K, Hidaka K, Negishi J. Cell Adhesion Behaviors on Spider Silk Fibers, Films, and Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7766-7774. [PMID: 35687821 DOI: 10.1021/acs.langmuir.2c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silk-based materials have garnered attention for use as medical supplies due to their mechanical toughness and low cytotoxicity. Silkworm silk has been applied as surgical sutures for decades. In contrast, the utilization of spider silk is limited mainly because of its scarcity. Although the biomimicry of spider silk has been developed using recombinant protein expression systems with the use of genetic engineering, the product often results in lower molecular weight and a lack of the N- or C-terminal regions. The incomplete sequence of the spider silk-like protein prevents the objective evaluation of the native spider silk as a medical application and retards the development of spider silk-inspired materials. Here, we reeled the native spider silk directly from live spiders and investigated the cell adhesion behavior based on three kinds of surface topography of spider silk-based substrates, namely, fibers, films, and non-woven fabrics. The cell adhesion behavior was largely influenced by the surface micro/nanostructure rather than the wettability of the surface. This study will contribute to promote the utilization of spider silk in the medical field as a candidate for promising bio-based fibers in the context of sustainable development goals.
Collapse
Affiliation(s)
- Kenjiro Yazawa
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
- Division of Biological and Medical Fibers, Interdisciplinary Cluster for Cutting Edge Research, Institute for Fiber Engineering, Shinshu University, 3-15-1, Tokida, Ueda City, Nagano 386-8567, Japan
| | - Kosuke Hidaka
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Jun Negishi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan
| |
Collapse
|
8
|
Yazawa K, Mizukami S, Aoki M, Tamada Y. Electrospinning of spider silk‐based nanofibers. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kenjiro Yazawa
- Department of Applied Biology, Faculty of Textile Science and Technology Shinshu University Ueda Nagano Japan
- Division of Biological and Medical Fiber, Institute for Fiber Engineering Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Ueda Nagano Japan
| | - Saeka Mizukami
- Department of Applied Biology, Faculty of Textile Science and Technology Shinshu University Ueda Nagano Japan
| | - Masaaki Aoki
- Department of Applied Biology, Faculty of Textile Science and Technology Shinshu University Ueda Nagano Japan
| | - Yasushi Tamada
- Department of Applied Biology, Faculty of Textile Science and Technology Shinshu University Ueda Nagano Japan
- Division of Biological and Medical Fiber, Institute for Fiber Engineering Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Ueda Nagano Japan
| |
Collapse
|
9
|
Heseltine PL, Bayram C, Gultekinoglu M, Homer-Vanniasinkam S, Ulubayram K, Edirisinghe M. Facile One-Pot Method for All Aqueous Green Formation of Biocompatible Silk Fibroin-Poly(Ethylene Oxide) Fibers for Use in Tissue Engineering. ACS Biomater Sci Eng 2022; 8:1290-1300. [PMID: 35232011 PMCID: PMC9096800 DOI: 10.1021/acsbiomaterials.1c01555] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silk fibroin (SF) fibers are highly regarded in tissue engineering because of their outstanding biocompatibility and tunable properties. A challenge remains in overcoming the trade-off between functioning and biocompatible fibers and the use of cytotoxic, environmentally harmful organic solvents in their processing and formation. The aim of this research was to produce biocompatible SF fibers without the use of cytotoxic solvents, via pressurized gyration (PG). Aqueous SF was blended with poly(ethylene oxide) (PEO) in ratios of 80:20 (labeled SF-PEO 80:20) and 90:10 (labeled SF-PEO 90:10) and spun into fibers using PG, assisted by a range of applied pressures and heat. Pure PEO (labeled PEO-Aq) and SF solubilized in hexafluoro-isopropanol (HFIP) (labeled SF-HFIP) and aqueous SF (labeled SF-Aq) were also prepared for comparison. The resulting fibers were characterized using SEM, TGA, and FTIR. Their in vitro cell behavior was analyzed using a Live/Dead assay and cell proliferation studies with the SaOS-2 human bone osteosarcoma cell line (ATCC, HTB-85) and human fetal osteoblast cells (hFob) (ATCC, CRL-11372) in 2D culture conditions. Fibers in the micrometer range were successfully produced using SF-PEO blends, SF-HFIP, and PEO-Aq. The fiber thickness ranged from 0.71 ± 0.17 μm for fibers produced using SF-PEO 90:10 with no applied pressure to 2.10 ± 0.78 μm for fibers produced using SF-PEO 80:10 with 0.3 MPa applied pressure. FTIR confirmed the presence of SF via amide I and amide II bands in the blend fibers because of a change in structural conformation. No difference was observed in thermogravimetric properties among varying pressures and no significant difference in fiber diameters for pressures. SaOS-2 cells and hFOb cell studies demonstrated higher cell densities and greater live cells on SF-PEO blends when compared to SF-HFIP. This research demonstrates a scalable and green method of producing SF-based constructs for use in bone-tissue engineering applications.
Collapse
Affiliation(s)
- Phoebe Louiseanne Heseltine
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| | - Cem Bayram
- Institute of Science and Technology, Department of Nanotechnology and Nanomedicine, Hacettepe University, Ankara 06800, Turkey
| | - Merve Gultekinoglu
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara 06800, Turkey
| | | | - Kezban Ulubayram
- Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Hacettepe University, Ankara 06800, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
10
|
Wang BX, Li J, Cheng DH, Lu YH, Liu L. Fabrication of Antheraea pernyi Silk Fibroin-Based Thermoresponsive Hydrogel Nanofibers for Colon Cancer Cell Culture. Polymers (Basel) 2021; 14:108. [PMID: 35012130 PMCID: PMC8747543 DOI: 10.3390/polym14010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 11/17/2022] Open
Abstract
Antheraea pernyi silk fibroin (ASF)-based nanofibers have wide potential for biomaterial applications due to superior biocompatibility. It is not clear whether the ASF-based nanofibers scaffold can be used as an in vitro cancer cell culture platform. In the current study, we fabricated novel ASF-based thermoresponsive hydrogel nanofibers by aqueous electrospinning for colon cancer (LoVo) cells culture. ASF was reacted with allyl glycidyl ether (AGE) for the preparation of allyl silk fibroin (ASF-AGE), which provided the possibility of copolymerization with allyl monomer. The investigation of ASF-AGE structure by 1H NMR revealed that reactive allyl groups were successfully linked with ASF. ASF-based thermoresponsive hydrogel nanofibers (p (ASF-AGE-NIPAAm)) were successfully manufactured by aqueous electrospinning with the polymerization of ASF and N-isopropylacrylamide (NIPAAm). The p (ASF-AGE-NIPAAm) spinning solution showed good spinnability with the increase of polymerization time, and uniform nanofibers were formed at the polymerization time of 360 min. The obtained hydrogel nanofibers exhibited good thermoresponsive that the LCST was similar with PNIPAAm at about 32 °C, and good degradability in protease XIV PBS solution. In addition, the cytocompatibility of colon cancer (LoVo) cells cultured in hydrogel nanofibers was assessed. It was demonstrated that LoVo cells grown on hydrogel nanofibers showed improved cell adhesion, proliferation, and viability than those on hydrogel. The results suggest that the p (ASF-AGE-NIPAAm) hydrogel nanofibers have potential application in LoVo cells culture in vitro. This study demonstrates the feasibility of fabricating ASF-based nanofibers to culture LoVo cancer cells that can potentially be used as an in vitro cancer cell culture platform.
Collapse
Affiliation(s)
- Bo-Xiang Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong 118003, China; (J.L.); (D.-H.C.)
- School of Chemical Engineering, Eastern Liaoning University, Dandong 118003, China
| | - Jia Li
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong 118003, China; (J.L.); (D.-H.C.)
- School of Chemical Engineering, Eastern Liaoning University, Dandong 118003, China
| | - De-Hong Cheng
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong 118003, China; (J.L.); (D.-H.C.)
- School of Chemical Engineering, Eastern Liaoning University, Dandong 118003, China
| | - Yan-Hua Lu
- Liaoning Provincial Key Laboratory of Functional Textile Materials, Eastern Liaoning University, Dandong 118003, China; (J.L.); (D.-H.C.)
- School of Chemical Engineering, Eastern Liaoning University, Dandong 118003, China
| | - Li Liu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
11
|
Fujita S, Xu H, Dong Y, Okahisa Y. Reconstruction of Fibroin Nanofibers (FNFs) via Electrospinning: Fabrication of Poly(vinyl alcohol)/FNFs Composite Nanofibers from Aqueous Solution. Polymers (Basel) 2021; 14:polym14010043. [PMID: 35012065 PMCID: PMC8747545 DOI: 10.3390/polym14010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/08/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Fibroin nanofibers (FNFs) achieved from physical treated silk can keep its original crystal structure, showing excellent mechanical properties, however, processing the FNFs into fibers is still a challenge. Herein, a brand-new environmentally friendly approach is proposed to manufacture FNFs-based composite nanofibers. The water-soluble polymer, poly(vinyl alcohol) PVA, was applied to increase the viscoelasticity of the spinning dope, and the content of FNFs can reach up to 20 wt%. The established phase image of spinning suggested that the concentrations ranging from 6 wt% to 8 wt% are premium to achieving relatively homogenous FNFs/PVA nanofibers. Random fibers were deposited on a fixed collector, while the fiber orientation intensity increased with the rotational speed of drum and started decreasing after 12 m/s. The mechanical properties of the composite nanofibers showed the similar tendency of variation of fiber orientation. In addition, chemical changes, crystallinity, and thermal properties of the composite nanofibers were further clarified by means of FTIR, DSC, and TG. As a result, high FNFs contained nanofibers with excellent thermal properties were created from an aqueous solution. This study is the first original work to realize the spinnability of FNFs, which provides a new insight of the FNFs.
Collapse
Affiliation(s)
- Shohei Fujita
- Department of Biobased Materials Science, Kyoto Institute of Technology, Sakyoku, Kyoto 606-8585, Japan;
| | - Huaizhong Xu
- Department of Biobased Materials Science, Kyoto Institute of Technology, Sakyoku, Kyoto 606-8585, Japan;
- Correspondence: (H.X.); (Y.O.); Tel.: +81-80-9754-6898 (H.X.); +81-75-724-7640 (Y.O.)
| | - Yubing Dong
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Yoko Okahisa
- Department of Biobased Materials Science, Kyoto Institute of Technology, Sakyoku, Kyoto 606-8585, Japan;
- Correspondence: (H.X.); (Y.O.); Tel.: +81-80-9754-6898 (H.X.); +81-75-724-7640 (Y.O.)
| |
Collapse
|
12
|
Wang Q, Ji S, Li S, Zhou X, Yin J, Liu P, Shi W, Wu M, Shen L. Electrospinning visible light response Bi2MoO6/Ag3PO4 composite photocatalytic nanofibers with enhanced photocatalytic and antibacterial activity. APPLIED SURFACE SCIENCE 2021; 569:150955. [DOI: 10.1016/j.apsusc.2021.150955] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
13
|
Aoki M, Masuda Y, Ishikawa K, Tamada Y. Fractionation of Regenerated Silk Fibroin and Characterization of the Fractions. Molecules 2021; 26:6317. [PMID: 34684897 PMCID: PMC8540890 DOI: 10.3390/molecules26206317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
The molecular weight (MW) of regenerated silk fibroin (RSF) decreases during degumming and dissolving processes. Although MW and the MW distribution generally affect polymer material processability and properties, few reports have described studies examining the influences of MW and the distribution on silk fibroin (SF) material. To prepare different MW SF fractions, the appropriate conditions for fractionation of RSF by ammonium sulfate (AS) precipitation process were investigated. The MW and the distribution of each fraction were found using gel permeation chromatography (GPC) and SDS-polyacrylamide electrophoresis (SDS-PAGE). After films of the fractionated SFs formed, the secondary structure, surface properties, and cell proliferation of films were evaluated. Nanofiber nonwoven mats and 3D porous sponges were fabricated using the fractionated SF aqueous solution. Then, their structures and mechanical properties were analyzed. The results showed AS precipitation using a dialysis membrane at low temperature to be a suitable fractionation method for RSF. Moreover, MW affects the nanofiber and sponge morphology and mechanical properties, although no influence of MW was observed on the secondary structure or crystallinity of the fabricated materials.
Collapse
Affiliation(s)
| | | | | | - Yasushi Tamada
- Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano, Japan; (M.A.); (Y.M.); (K.I.)
| |
Collapse
|
14
|
Gough CR, Hu X. Air-Spun Silk-Based Micro-/Nanofibers and Thin Films for Drug Delivery. Int J Mol Sci 2021; 22:9588. [PMID: 34502496 PMCID: PMC8430899 DOI: 10.3390/ijms22179588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-/nanofibers have shown high promise as drug delivery vehicles due to their high porosity and surface-area-to-volume ratio. The current study utilizes air-spraying, a novel fiber fabrication technique, to create silk micro-/nanofibers without the need for a high voltage power source. Air-spraying was used to create silk fibrous mats embedded with several model drugs with high efficiency. In order to compare the effect of biomaterial geometry on the release of the model drugs, silk films were also created and characterized. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and a drug release study were performed on both fiber and film samples to study how the model drugs interact with the protein structure. FTIR analysis showed that while drugs could interact with the protein structure of porous silk fibers, they could not interact with the flat geometry of silk films. As a result, fibers could protect select model drugs from thermal degradation and slow their release from the fiber network with more control than the silk films. A trend was also revealed where hydrophobic drugs were better protected and had a slower release than hydrophilic drugs. The results suggest that the physical and chemical properties of drugs and protein-based biomaterials are important for creating drug delivery vehicles with tailored release profiles and that fibers provide better tunability than films do.
Collapse
Affiliation(s)
- Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
15
|
Santos FV, Yoshioka SA, Branciforti MC. Large‐area thin films of silk fibroin prepared by two methods with formic acid as solvent and glycerol as plasticizer. J Appl Polym Sci 2021. [DOI: 10.1002/app.50759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francisco Vieira Santos
- Department of Materials Engineering, Sao Carlos School of Engineering University of Sao Paulo Sao Carlos Brasil Brazil
| | | | - Marcia Cristina Branciforti
- Department of Materials Engineering, Sao Carlos School of Engineering University of Sao Paulo Sao Carlos Brasil Brazil
| |
Collapse
|
16
|
Sahi AK, Varshney N, Poddar S, Gundu S, Mahto SK. Fabrication and Characterization of Silk Fibroin-Based Nanofibrous Scaffolds Supplemented with Gelatin for Corneal Tissue Engineering. Cells Tissues Organs 2021; 210:173-194. [PMID: 34252899 DOI: 10.1159/000515946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Tissue engineering is a promising approach to overcome the severe worldwide shortage of healthy donor corneas. In this work, we have developed a silk-gelatin composite scaffold using electrospinning and permeation techniques to achieve the properties comparable to cornea analog. In particular, we present the fabrication and comparative evaluation of the novel gelatin sheets consisting of silk fibroin nanofibers, which are prepared using silk fibroin (SF) (in formic acid) and SF (in aqueous) electrospun scaffolds, for its suitability as corneal stromal analogs. All the fabricated samples were treated with ethanol vapor (T) to physically crosslink the silk nanofibers. Micro/nano-scale features of the fabricated scaffolds were analyzed using scanning electron microscopy micrographs. Fourier transform infrared spectroscopy revealed characteristic peaks of polymeric functional groups and modifications upon ethanol vapor treatment. Transparency of the scaffolds was determined using UV-visible spectra. Among all the fabricated samples, the gelatin-permeated SF (in formic acid; T) scaffold showed the highest level of transparency, i.e., 77.75 ± 2.3%, which is similar to that of the native cornea (∼70%-90% [variable with age group]) with healthy acute vision. Contact angle of the samples was studied to estimate the hydrophilicity of the scaffolds. All the scaffolds except non-treated SF (in aqueous; NT) were found to be significantly stable up to 14 days when incubated in phosphate buffered saline at 37°C. Treated samples showed significantly better stability, both physically and microscopically, in comparison to nontreated samples. Proliferation and viability assays of rabbit corneal fibroblast cells (SIRC) and mouse fibroblast cells (L929 RFP) when cultured on fabricated scaffolds revealed remarkable cellular compatibility with gelatin-permeated SF (in formic acid; T) scaffolds compared to SF (in aqueous; T). Unlike other reports in the existing literature, this work presents the design and development of a nanofibrous silk-gelatin composite that exhibits acceptable transparency, cellular biocompatibility, as well as improved mechanical stability comparable to that of native cornea. Therefore, we anticipate that the fabricated novel scaffold is likely to be a good candidate for corneal tissue construct. Moreover, among the fabricated scaffolds, the outcomes depict gelatin-permeated SF (in formic acid; T) composite scaffold to be a better candidate as a corneal stromal analog that carries properties of both the silk and gelatin, i.e., optimal transparency, better stability, and enhanced cytocompatibility.
Collapse
Affiliation(s)
- Ajay Kumar Sahi
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Neelima Varshney
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Suruchi Poddar
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Shravanya Gundu
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.,Centre for Advanced Biomaterials and Tissue Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
17
|
Bae YS, Um IC. Effects of Fabrication Conditions on Structure and Properties of Mechanically Prepared Natural Silk Web and Non-Woven Fabrics. Polymers (Basel) 2021; 13:polym13101578. [PMID: 34069044 PMCID: PMC8156477 DOI: 10.3390/polym13101578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, natural silk web and natural silk non-woven fabric were prepared mechanically using the binding character of the sericin in silk. The effect of process variables on the preparation, structure, and properties of the silk web and the non-woven fabric was examined. The reeling velocity affected the morphology and mechanical properties of the web but had almost no influence on the crystalline structure of the silk. From the viewpoint of reel-ability and the mechanical properties (work of rupture) of silk web, a reeling velocity of 39.2 m/min represented the optimal processing velocity. The porosity and swelling ratio of the silk web decreased slightly with increasing reeling velocity. Furthermore, the reeling bath temperature had a significant effect on the reel-ability of silk filaments from a silkworm cocoon. Bath temperatures ≥50 °C yielded good reel-ability (>900 m reeling length). The porosity, swelling ratio in water, and mechanical properties of the silk web and silk non-woven fabric changed only slightly with the reeling bath temperature but changed significantly with the hot press treatment. The hot-pressed silk web (i.e., silk non-woven fabric) exhibited higher tensile strength as well as lower elongation at break, porosity, and swelling ratio than the silk web.
Collapse
Affiliation(s)
- Yeon-Su Bae
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea;
| | - In-Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Korea;
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Korea
- Correspondence: ; Tel.: +82-53-950-7757; Fax: +82-53-950-6744
| |
Collapse
|
18
|
Gough C, Callaway K, Spencer E, Leisy K, Jiang G, Yang S, Hu X. Biopolymer-Based Filtration Materials. ACS OMEGA 2021; 6:11804-11812. [PMID: 34056334 PMCID: PMC8153993 DOI: 10.1021/acsomega.1c00791] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/15/2021] [Indexed: 05/25/2023]
Abstract
Biobased materials such as cellulose, chitin, silk, soy, and keratin are attractive alternatives to conventional synthetic materials for filtration applications. They are cheap, naturally abundant, and easily fabricated with tunable surface chemistry and functionality. With the planet's increasing crisis due to pollution, the need for proper filtration of air and water is undeniably urgent. Additionally, fibers that are antibacterial and antiviral are critical for public health and in medical environments. The current COVID-19 pandemic has highlighted the necessity for cheap, easily mass-produced antiviral fiber materials. Biopolymers can fill these roles very well by utilizing their intrinsic material properties, surface chemistry, and hierarchical fiber morphologies for efficient and eco-friendly filtration of physical, chemical, and biological pollutants. Further, they are biodegradable, making them attractive as sustainable, biocompatible green filters. This review presents various biopolymeric materials generated from proteins and polysaccharides, their synthesis and fabrication methods, and notable uses in filtration applications.
Collapse
Affiliation(s)
- Christopher
R. Gough
- Department
of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
| | - Kayla Callaway
- Department
of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
| | - Everett Spencer
- Department
of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
| | - Kilian Leisy
- Department
of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
| | - Guoxiang Jiang
- Department
of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
| | - Shu Yang
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Xiao Hu
- Department
of Physics and Astronomy, Rowan University, Glassboro, New Jersey 08028, United States
- Department
of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department
of Molecular and Cellular Biosciences, Rowan
University, Glassboro, New Jersey 08028, United States
| |
Collapse
|
19
|
Lassenberger A, Martel A, Porcar L, Baccile N. Interpenetrated biosurfactant-silk fibroin networks - a SANS study. SOFT MATTER 2021; 17:2302-2314. [PMID: 33480918 DOI: 10.1039/d0sm01869d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silk fibroin (SF) based hydrogels have been exploited for years for their inherent biocompatibility and favorable mechanical properties which makes them interesting for biotechnology applications. In this study we investigate silk based composite hydrogels where pH-sensitive, anionic biosurfactant assemblies (sophorolipids SL-C18 : 1 and SL-C18 : 0), are employed to improve the present properties of SF. Results suggest that the presence of SL surfactant assemblies leads to faster gelling of SF by accelerating the refolding from random coil to β-sheet as shown by infrared and UV-visible spectroscopy. Small angle neutron scattering (SANS) including contrast matching studies show that SF and SL assemblies coexist in a fibrillary network that is, in the case of SL-C18 : 0, interpenetrating. The resulting overall network structure in composite gels is slightly more affected by SL-C18 : 1 than by SL-C18 : 0, whereas the structure of both SF and surfactant assemblies remains unchanged. No disassembly of SL surfactant structures is observed, which gives a new perspective on SF-surfactant interactions. The hydrophobic effect within SF is favored in the presence of SL, leading to faster refolding of SF into β-sheet conformation. The presented composite gels, being an interpenetrating network of which one compound (SL-C18 : 0) can be tweaked by pH, open an interesting option towards improved workability and stimuli responsive mechanical properties of SF based hydrogels with possible applications in controlled cell culture and tissue engineering or drug delivery. The presented SANS analysis approach has the potential to be expanded to other protein-surfactant systems and composite hydrogels.
Collapse
Affiliation(s)
- Andrea Lassenberger
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
| | - Anne Martel
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
| | - Lionel Porcar
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France.
| | - Niki Baccile
- Centre National de la Recherche Scientifique, Laboratoire de Chimie de la Matière Condensée de Paris, LCMCP, Sorbonne Université, Paris F-75005, France.
| |
Collapse
|
20
|
Farokhi M, Aleemardani M, Solouk A, Mirzadeh H, Teuschl AH, Redl H. Crosslinking strategies for silk fibroin hydrogels: promising biomedical materials. Biomed Mater 2021; 16:022004. [PMID: 33594992 DOI: 10.1088/1748-605x/abb615] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Due to their strong biomimetic potential, silk fibroin (SF) hydrogels are impressive candidates for tissue engineering, due to their tunable mechanical properties, biocompatibility, low immunotoxicity, controllable biodegradability, and a remarkable capacity for biomaterial modification and the realization of a specific molecular structure. The fundamental chemical and physical structure of SF allows its structure to be altered using various crosslinking strategies. The established crosslinking methods enable the formation of three-dimensional (3D) networks under physiological conditions. There are different chemical and physical crosslinking mechanisms available for the generation of SF hydrogels (SFHs). These methods, either chemical or physical, change the structure of SF and improve its mechanical stability, although each method has its advantages and disadvantages. While chemical crosslinking agents guarantee the mechanical strength of SFH through the generation of covalent bonds, they could cause some toxicity, and their usage is not compatible with a cell-friendly technology. On the other hand, physical crosslinking approaches have been implemented in the absence of chemical solvents by the induction of β-sheet conformation in the SF structure. Unfortunately, it is not easy to control the shape and properties of SFHs when using this method. The current review discusses the different crosslinking mechanisms of SFH in detail, in order to support the development of engineered SFHs for biomedical applications.
Collapse
Affiliation(s)
- Maryam Farokhi
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. Maryam Farokhi and Mina Aleemardani contributed equally
| | | | | | | | | | | |
Collapse
|
21
|
Mobika J, Rajkumar M, Linto Sibi SP, Nithya Priya V. Investigation on hydrogen bonds and conformational changes in protein/polysaccharide/ceramic based tri-component system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118836. [PMID: 32858448 DOI: 10.1016/j.saa.2020.118836] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/18/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The main attention of present work is to study the molecular level interactions in the interface of biocomposite to increase their applicability. A specific kind of molecular interaction namely, hydrogen bonds play a vital role in deciding composite property. In this study, we construct a tri-component system based on silk fibroin/sodium alginate/hydroxyapatite by varying protein and polysaccharide proportions using in-situ co-precipitation method. The Fourier Transfer Infrared (FTIR) prediction state that prepared composite exhibit inter-(OH⋯N, OH⋯O, OH⋯π) and intra-(OH⋯OH) molecular hydrogen bonds and their strength are varied in accordance with composition of composite. During composite preparation, conformational changes from the random coil to β-sheet structure through intermediate β-turns exist within the protein molecule that is confirmed by vibrational spectra. The crystallographic profile and morphology of HAP were greatly influenced by virtue of polymer matrix. Simulated body fluid (SBF) immersion study shows that biodegradation and swelling ratio are correlated with type of hydrogen bond and secondary structure of protein. Moreover, the in-vitro biomineralization, cytotoxicity and antibacterial activity of composite were analysed in detail.
Collapse
Affiliation(s)
- J Mobika
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India
| | - M Rajkumar
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India.
| | - S P Linto Sibi
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India
| | - V Nithya Priya
- Department of Physics, PSG College of Arts and Science, Coimbatore, Tamilnadu 641014, India
| |
Collapse
|
22
|
Zha X, Xiong X, Chen C, Li Y, Zhang L, Xie H, Jiang Q. Usnic-Acid-Functionalized Silk Fibroin Composite Scaffolds for Cutaneous Wounds Healing. Macromol Biosci 2020; 21:e2000361. [PMID: 33369081 DOI: 10.1002/mabi.202000361] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/01/2020] [Indexed: 12/17/2022]
Abstract
Despite the progress in chronic wound treatment, antibacterial cutaneous scaffold with high efficiency in wound healing is still the hot spot in the field. In present study, a functionalized silk fibroin (SF) cutaneous scaffold incorporated with natural medicine usnic acid (UA) is investigated, in which UA is used as an antibacterial and wound-healing reagent. Via electrospinning, UA-SF mixture is fabricated into UA-SF composite scaffold (USCS), which is composed of uniform nanofibers with average diameters of around 360 ± 10 nm. The interwoven nanofibers form mesh structure providing sufficient moisture permeability for scaffold. With methanol treatment, USCS presents improved mechanical properties and stability to protease XIV. In the presence of USCS, the growth rate of both Gram-positive and Gram-negative bacteria, including Staphylococcus aureus, Streptococci pyogenes, Escherichia coli, and Pseudomonas aeruginosa, is significantly inhibited in plate culture and suspension assays. In a cutaneous excisional mouse wound model, USCS presents a significant increase of wound closure rate, compared with pure SF scaffold and commercial dressing, Tegaderm Hydrocolloid 3M . The histological assessments further prove that USCS can enhance re-epithelialization, vascularization, and collagen deposition in wound site to promote the wound-healing process, which indicates the potential application of USCS in chronic wound treatment.
Collapse
Affiliation(s)
- Xiaoying Zha
- Medical Information College, Chongqing Medical University, Chongqing, 400016, China
| | - Xingliang Xiong
- Medical Information College, Chongqing Medical University, Chongqing, 400016, China
| | - Cheng Chen
- Medical Information College, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Li
- Department of Medical Equipment, Yubei District People's Hospital, Chongqing, 401120, China
| | - Lingqin Zhang
- Medical Information College, Chongqing Medical University, Chongqing, 400016, China
| | - Haojiang Xie
- Medical Information College, Chongqing Medical University, Chongqing, 400016, China
| | - Qifeng Jiang
- Medical Information College, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
23
|
Zheng-Yang He, -Chen Q, Wu YT, Pan ZJ. Biopolymer Composite Nanofibers Electrospun from Regenerated Silk Fibroin and PHBV: Fabrication Method, Morphology and Thermal Stability. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x2006005x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Xu X, Ren S, Li L, Zhou Y, Peng W, Xu Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J Biomater Appl 2020; 36:55-75. [PMID: 32842852 DOI: 10.1177/0885328220952250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considering the specificity of periodontium and the unique advantages of electrospinning, this technology has been used to fabricate biodegradable tissue engineering materials for functional periodontal regeneration. For better biomedical quality, a continuous technological progress of electrospinning has been performed. Based on property of materials (natural, synthetic or composites) and additive novel methods (drug loading, surface modification, structure adjustment or 3 D technique), various novel membranes and scaffolds that could not only relief inflammation but also influence the biological behaviors of cells have been fabricated to achieve more effective periodontal regeneration. This review provides an overview of the usage of electrospinning materials in treatments of periodontitis, in order to get to know the existing research situation and find treatment breakthroughs of the periodontal diseases.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| |
Collapse
|
25
|
Guo C, Li C, Mu X, Kaplan DL. Engineering Silk Materials: From Natural Spinning to Artificial Processing. APPLIED PHYSICS REVIEWS 2020; 7:011313. [PMID: 34367402 PMCID: PMC8340942 DOI: 10.1063/1.5091442] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 01/23/2020] [Indexed: 05/17/2023]
Abstract
Silks spun by the arthropods are "ancient' materials historically utilized for fabricating high-quality textiles. Silks are natural protein-based biomaterials with unique physical and biological properties, including particularly outstanding mechanical properties and biocompatibility. Current goals to produce artificially engineered silks to enable additional applications in biomedical engineering, consumer products, and device fields, have prompted considerable effort towards new silk processing methods using bio-inspired spinning and advanced biopolymer processing. These advances have redefined silk as a promising biomaterial past traditional textile applications and into tissue engineering, drug delivery, and biodegradable medical devices. In this review, we highlight recent progress in understanding natural silk spinning systems, as well as advanced technologies used for processing and engineering silk into a broad range of new functional materials.
Collapse
Affiliation(s)
- Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
26
|
Kopp A, Smeets R, Gosau M, Kröger N, Fuest S, Köpf M, Kruse M, Krieger J, Rutkowski R, Henningsen A, Burg S. Effect of process parameters on additive-free electrospinning of regenerated silk fibroin nonwovens. Bioact Mater 2020; 5:241-252. [PMID: 32123778 PMCID: PMC7036448 DOI: 10.1016/j.bioactmat.2020.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/28/2022] Open
Abstract
Silk fibroin is a biomaterial with multiple beneficial properties for use in regenerative medicine and tissue engineering. When dissolving and processing the reconstituted silk fibroin solution by electrospinning, the arrangement and size of fibers can be manifold varied and according fiber diameters reduced to the nanometer range. Such nonwovens show high porosity as well as potential biocompatibility. Usually, electrospinning of most biomaterials demands for the application of additives, which enable stable electrospinning by adjusting viscosity, and are intended to evaporate during processing or to be washed out afterwards. However, the use of such additives increases costs and has to be taken into account in terms of biological risks when used for biomedical applications. In this study, we explored the possibilities of additive-free electrospinning of pure fibroin nonwovens and tried to optimize process parameters to enable stable processing. We used natural silk derived from the mulberry silkworm Bombyx mori. After degumming, the silk fibroin was dissolved and the viscosity of the spinning solution was controlled by partial evaporation of the initial solving agent. This way, we were able to completely avoid the use of additives and manufacture nonwovens, which potentially offer higher biocompatibility and reduced immunogenicity. Temperature and relative humidity during electrospinning were systematically varied (25–35 °C, 25–30% RH). In a second step, the nonwovens optionally underwent methanol treatment to initiate beta-sheet formation in order to increase structural integrity and strength. Comprehensive surface analysis on the different nonwovens was performed using scanning electron microscopy and supplemented by additional mechanical testing. Cytotoxicity was evaluated using BrdU-assay, XTT-assay, LDH-assay and live-dead staining. Our findings were, that an increase of temperature and relative humidity led to unequal fiber diameters and defective nonwovens. Resistance to penetration decreased accordingly. The most uniform fiber diameters of 998 ± 63 nm were obtained at 30 °C and 25% relative humidity, also showing the highest value for resistance to penetration (0.20 N). The according pure fibroin nonwoven also showed no signs of cytotoxicity. However, while the biological response showed statistical evidence, the material characteristics showed no statistically significant correlation to changes of the ambient conditions within the investigated ranges. We suggest that further experiments should explore additional ranges for temperature and humidity and further focus on the repeatability of material properties in dependency of suitable process windows. Usually, electrospinning of most biomaterials demands for the application of additives. However, the use of such additives increases costs and has to be taken into account in terms of biological risks. After degumming, fibroin was dissolved and the viscosity of the spinning solution was controlled by partial evaporation of the initial solving agent. In this way, we were able to completely avoid the use of additives. Using a pure fibroin solution contributes to higher biocompatibility and reduces immunogenicity of the products. Increase of temperature and humidity led to unequal fiber diameters and defective nonwovens. The most uniform fiber diameters of 998 ± 63 nm were obtained at 30 °C and 25% RH.
Collapse
Affiliation(s)
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadja Kröger
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Cologne, Cologne, Germany
| | | | | | - Magnus Kruse
- Institut Fuer Textiltechnik of RWTH Aachen University, Aachen, Germany
| | - Judith Krieger
- Institut Fuer Textiltechnik of RWTH Aachen University, Aachen, Germany
| | - Rico Rutkowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anders Henningsen
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, German Armed Forces Hospital, Hamburg, Germany
| | - Simon Burg
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
27
|
Umuhoza D, Yang F, Long D, Hao Z, Dai J, Zhao A. Strategies for Tuning the Biodegradation of Silk Fibroin-Based Materials for Tissue Engineering Applications. ACS Biomater Sci Eng 2020; 6:1290-1310. [DOI: 10.1021/acsbiomaterials.9b01781] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Diane Umuhoza
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
- Commercial Insect Program, Sericulture, Rwanda Agricultural Board, 5016 Kigali, Rwanda
| | - Fang Yang
- Department of Biomaterials, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Dingpei Long
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Zhanzhang Hao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Jing Dai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| | - Aichun Zhao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing 400716, People’s Republic of China
| |
Collapse
|
28
|
Zou S, Wang X, Fan S, Zhang J, Shao H, Zhang Y. Fabrication and characterization of regenerated Antheraea pernyi silk fibroin scaffolds for Schwann cell culturing. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.04.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Serôdio R, Schickert SL, Costa-Pinto AR, Dias JR, Granja PL, Yang F, Oliveira AL. Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:969-981. [DOI: 10.1016/j.msec.2019.01.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/07/2018] [Accepted: 01/12/2019] [Indexed: 01/23/2023]
|
30
|
Mehrotra S, Chouhan D, Konwarh R, Kumar M, Jadi PK, Mandal BB. Comprehensive Review on Silk at Nanoscale for Regenerative Medicine and Allied Applications. ACS Biomater Sci Eng 2019; 5:2054-2078. [PMID: 33405710 DOI: 10.1021/acsbiomaterials.8b01560] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shreya Mehrotra
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Dimple Chouhan
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Rocktotpal Konwarh
- Biotechnology Department, Addis Ababa Science and Technology University, Addis Ababa−16417, Ethiopia
| | - Manishekhar Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Praveen Kumar Jadi
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| | - Biman B. Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati−781039, Assam, India
| |
Collapse
|
31
|
Teramoto H, Iga M, Tsuboi H, Nakajima K. Characterization and Scaled-Up Production of Azido-Functionalized Silk Fiber Produced by Transgenic Silkworms with an Expanded Genetic Code. Int J Mol Sci 2019; 20:E616. [PMID: 30708986 PMCID: PMC6387213 DOI: 10.3390/ijms20030616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022] Open
Abstract
The creation of functional materials from renewable resources has attracted much interest. We previously reported on the genetic code expansion of the domesticated silkworm Bombyx mori to functionalize silk fiber with synthetic amino acids such as 4-azido-L-phenylalanine (AzPhe). The azido groups act as selective handles for biorthogonal chemical reactions. Here we report the characterization and scaled-up production of azido-functionalized silk fiber for textile, healthcare, and medical applications. To increase the productivity of azido-functionalized silk fiber, the original transgenic line was hybridized with a high silk-producing strain. The F₁ hybrid produced circa 1.5 times more silk fibroin than the original transgenic line. The incorporation efficiency of AzPhe into silk fibroin was retained after hybridization. The tensile properties of the azido-functionalized silk fiber were equal to those of normal silk fiber. Scaled-up production of the azido-functionalized silk fiber was demonstrated by rearing circa 1000 transgenic silkworms. Differently-colored fluorescent silk fibers were successfully prepared by click chemistry reactions, demonstrating the utility of the azido-functionalized silk fiber for developing silk-based materials with desired functions.
Collapse
Affiliation(s)
- Hidetoshi Teramoto
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8518, Japan.
| | - Masatoshi Iga
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8518, Japan.
| | - Hiromi Tsuboi
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8518, Japan.
| | - Kenichi Nakajima
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8518, Japan.
| |
Collapse
|
32
|
Magaz A, Roberts AD, Faraji S, Nascimento TRL, Medeiros ES, Zhang W, Greenhalgh RD, Mautner A, Li X, Blaker JJ. Porous, Aligned, and Biomimetic Fibers of Regenerated Silk Fibroin Produced by Solution Blow Spinning. Biomacromolecules 2018; 19:4542-4553. [PMID: 30387602 DOI: 10.1021/acs.biomac.8b01233] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solution blow spinning (SBS) has emerged as a rapid and scalable technique for the production of polymeric and ceramic materials into micro-/nanofibers. Here, SBS was employed to produce submicrometer fibers of regenerated silk fibroin (RSF) from Bombyx mori (silkworm) cocoons based on formic acid or aqueous systems. Spinning in the presence of vapor permitted the production of fibers from aqueous solutions, and high alignment could be obtained by modifying the SBS setup to give a concentrated channeled airflow. The combination of SBS and a thermally induced phase separation technique (TIPS) resulted in the production of macro-/microporous fibers with 3D interconnected pores. Furthermore, a coaxial SBS system enabled a pH gradient and kosmotropic salts to be applied at the point of fiber formation, mimicking some of the aspects of the natural spinning process, fostering fiber formation by self-assembly of the spinning dope. This scalable and fast production of various types of silk-based fibrous scaffolds could be suitable for a myriad of biomedical applications.
Collapse
Affiliation(s)
- Adrián Magaz
- Bio-Active Materials Group, School of Materials , The University of Manchester , Manchester , United Kingdom.,Institute of Materials Research and Engineering (IMRE) , Agency for Science, Technology and Research (A*STAR) , Singapore
| | - Aled D Roberts
- Bio-Active Materials Group, School of Materials , The University of Manchester , Manchester , United Kingdom
| | - Sheida Faraji
- Bio-Active Materials Group, School of Materials , The University of Manchester , Manchester , United Kingdom
| | - Tatiana R L Nascimento
- Laboratory of Materials and Biosystems, Department of Materials Engineering , Universidade Federal da Paraíba , João Pessoa , Brazil
| | - Eliton S Medeiros
- Laboratory of Materials and Biosystems, Department of Materials Engineering , Universidade Federal da Paraíba , João Pessoa , Brazil
| | - Wenzhao Zhang
- Bio-Active Materials Group, School of Materials , The University of Manchester , Manchester , United Kingdom
| | - Ryan D Greenhalgh
- Bio-Active Materials Group, School of Materials , The University of Manchester , Manchester , United Kingdom
| | - Andreas Mautner
- Polymer and Composite Engineering Group, Institute of Materials Chemistry and Research , University of Vienna , Vienna , Austria
| | - Xu Li
- Institute of Materials Research and Engineering (IMRE) , Agency for Science, Technology and Research (A*STAR) , Singapore.,Department of Chemistry , National University of Singapore , Singapore
| | - Jonny J Blaker
- Bio-Active Materials Group, School of Materials , The University of Manchester , Manchester , United Kingdom
| |
Collapse
|
33
|
Li X, Wang C, Yang S, Liu P, Zhang B. Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. Int J Nanomedicine 2018; 13:5287-5299. [PMID: 30237715 PMCID: PMC6136417 DOI: 10.2147/ijn.s177256] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background An ideal wound dressing should exhibit good biocompatibility, minimize pain and infection, absorb excess exudates, and maintain a moist environment. However, few clinical products meet all these needs. Therefore, the aim of this study was to fabricate a multifunctional double layer nanofibrous scaffolds (DLS) as a potential material for wound dressing. Materials and methods The scaffold was formed from mupirocin and lidocaine hydrochloride homogeneously incorporated into polycaprolactone as the first layer of scaffolds and chitosan as the second layer of scaffolds nanofibers through electrospinning. The fabricated nanofibrous scaffolds were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and measurement of swelling ratio, contact angle, drug release, and mechanical properties. Furthermore, antibacterial assessment, live/dead cell assays, and MTT assays were used to investigate the antibacterial activity and cytotoxicity of the nanofibrous scaffolds. Results The morphology of the nanofibrous scaffolds was studied by scanning electron microscopy, showing successful nanofibrous scaffolds. Fourier transform infrared spectroscopy demonstrated the successful incorporation of the material used to produce the produced nanofibrous scaffolds. Thermal studies with thermogravimetric analysis and differential scanning calorimetry indicated that the DLS had high thermal stability. The DLS also showed good in vitro characteristics in terms of improved swelling ratio and contact angle. The mechanical results revealed that the DLS had an improved tensile strength of 3.88 MPa compared with the second layer of scaffold (2.81 MPa). The release of drugs from the scaffold showed different profiles for the two drugs. Lidocaine hydrochlo ride exhibited an initial burst release (66% release within an hour); however, mupirocin exhibited only a 5% release. Furthermore, the DLS nanofibers displayed highly effective antibacterial activities against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa and were nontoxic to fibroblasts. Conclusion The fabricated DLS exhibited excellent hydrophilicity, cytocompatibility, sustained drug release, and antibacterial activity, which are favorable qualities for its use as a multifunctional material for wound dressing applications.
Collapse
Affiliation(s)
- Xiaoming Li
- Department 4, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China,
| | - Chao Wang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
| | - Shuang Yang
- Key Laboratory of Biorheological Science and Technology, Research Center of Bioinspired Materials Science and Engineering, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ping Liu
- Department 4, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China,
| | - Bo Zhang
- Department 4, State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing 400042, China,
| |
Collapse
|
34
|
Pignatelli C, Perotto G, Nardini M, Cancedda R, Mastrogiacomo M, Athanassiou A. Electrospun silk fibroin fibers for storage and controlled release of human platelet lysate. Acta Biomater 2018; 73:365-376. [PMID: 29673841 DOI: 10.1016/j.actbio.2018.04.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/31/2018] [Accepted: 04/12/2018] [Indexed: 02/03/2023]
Abstract
Human platelet lysate (hPL) is a pool of growth factors and cytokines able to induce regeneration of different tissues. Despite its good potentiality as therapeutic tool for regenerative medicine applications, hPL has been only moderately exploited in this field. A more widespread adoption has been limited because of its rapid degradation at room temperature that decreases its functionality. Another limiting factor for its extensive use is the difficulty of handling the hPL gels. In this work, silk fibroin-based patches were developed to address several points: improving the handling of hPL, enabling their delivery in a controlled manner and facilitating their storage by creating a device ready to use with expanded shelf life. Patches of fibroin loaded with hPL were synthesized by electrospinning to take advantage of the fibrous morphology. The release kinetics of the material was characterized and tuned through the control of fibroin crystallinity. Cell viability assays, performed with primary human dermal fibroblasts, demonstrated that fibroin is able to preserve the hPL biological activity and prolong its shelf-life. The strategy of storing and preserving small active molecules within a naturally-derived, protein-based fibrous scaffold was successfully implemented, leading to the design of a biocompatible device, which can potentially simplify the storage and the application of the hPL on a human patient, undergoing medical procedures such as surgery and wound care. STATEMENT OF SIGNIFICANCE Human platelets lysate (hPL) is a mixture of growth factors and cytokines able to induce the regeneration of damaged tissues. This study aims at enclosing hPL in a silk fibroin electrospun matrix to expand its utilization. Silk fibroin showed the ability to preserve the hPL activity at temperature up to 60 °C and the manipulation of fibroin's crystallinity provided a tool to modulate the hPL release kinetic. This entails the possibility to fabricate the hPL silk fibroin patches in advance and store them, resulting in an easy and fast accessibility and an expanded use of hPL for wound healing.
Collapse
Affiliation(s)
- Cataldo Pignatelli
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy; DIBRIS, University of Genoa, via Opera Pia 13, 16145 Genoa, Italy.
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy.
| | - Marta Nardini
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Ranieri Cancedda
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Maddalena Mastrogiacomo
- Department of Experimental Medicine (DIMES), University of Genova, Largo Rosanna Benzi 10, 16132 Genova, Italy; IRCCS AOU San Martino-IST Istituto Nazionale per la Ricerca sul Cancro, Largo Rosanna Benzi 10, 16132 Genova, Italy
| | | |
Collapse
|
35
|
Fink TD, Zha RH. Silk and Silk-Like Supramolecular Materials. Macromol Rapid Commun 2018; 39:e1700834. [DOI: 10.1002/marc.201700834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Tanner D. Fink
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; 110 8th St. Troy NY 12180 USA
| | - R. Helen Zha
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; 110 8th St. Troy NY 12180 USA
| |
Collapse
|
36
|
Gizaw M, Thompson J, Faglie A, Lee SY, Neuenschwander P, Chou SF. Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications. Bioengineering (Basel) 2018; 5:E9. [PMID: 29382065 PMCID: PMC5874875 DOI: 10.3390/bioengineering5010009] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/16/2022] Open
Abstract
Wound healing is a complex tissue regeneration process that promotes the growth of new tissue to provide the body with the necessary barrier from the outside environment. In the class of non-healing wounds, diabetic wounds, and ulcers, dressing materials that are available clinically (e.g., gels and creams) have demonstrated only a slow improvement with current available technologies. Among all available current technologies, electrospun fibers exhibit several characteristics that may provide novel replacement dressing materials for the above-mentioned wounds. Therefore, in this review, we focus on recent achievements in electrospun drug-eluting fibers for wound healing applications. In particular, we review drug release, including small molecule drugs, proteins and peptides, and gene vectors from electrospun fibers with respect to wound healing. Furthermore, we provide an overview on multifunctional dressing materials based on electrospun fibers, including those that are capable of achieving wound debridement and wound healing simultaneously as well as multi-drugs loading/types suitable for various stages of the healing process. Our review provides important and sufficient information to inform the field in development of fiber-based dressing materials for clinical treatment of non-healing wounds.
Collapse
Affiliation(s)
- Mulugeta Gizaw
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA.
| | - Jeffrey Thompson
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA.
| | - Addison Faglie
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA.
| | - Shih-Yu Lee
- School of Nursing, College of Nursing and Health Sciences, The University of Texas at Tyler, Tyler, TX 75799, USA.
| | - Pierre Neuenschwander
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA.
| | - Shih-Feng Chou
- Department of Mechanical Engineering, College of Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA.
| |
Collapse
|
37
|
Crivelli B, Perteghella S, Bari E, Sorrenti M, Tripodo G, Chlapanidas T, Torre ML. Silk nanoparticles: from inert supports to bioactive natural carriers for drug delivery. SOFT MATTER 2018; 14:546-557. [PMID: 29327746 DOI: 10.1039/c7sm01631j] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Silk proteins have been studied and employed for the production of drug delivery (nano)systems. They show excellent biocompatibility, controllable biodegradability and non-immunogenicity and, if needed, their properties can be modulated by blending with other polymers. Silk fibroin (SF), which forms the inner core of silk, is a (bio)material officially recognized by the Food and Drug Administration for human applications. Conversely, the potential of silk sericin (SS), which forms the external shell of silk, could still be considered under evaluation. At the best of our knowledge, nanoparticles based on silk sericin "alone" cannot be produced, due to its physicochemical instability influenced by extreme pH, high water solubility and temperature; for these reasons, it almost always needs to be combined with other polymers for the development of drug delivery systems. In this review, we focused on silk proteins as bioactive natural carriers, since they show not only optimal features as inert excipients, but also remarkable intrinsic biological activities. SF has anti-inflammatory properties, while SS presents antioxidant, anti-tyrosine, anti-aging, anti-elastase and anti-bacterial features. Here, we give an overview on SF or SS silk-based nanosystems, with particular attention on the production techniques.
Collapse
Affiliation(s)
- Barbara Crivelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kishimoto Y, Kobashi T, Yamanaka S, Morikawa H, Tamada Y. Comparisons between silk fibroin nonwoven electrospun fabrics using aqueous and formic acid solutions. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2017.1342253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yuki Kishimoto
- Department of Advanced Textile and Kansei Engineering, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Takanori Kobashi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Shigeru Yamanaka
- Department of Advanced Textile and Kansei Engineering, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
| | - Hideaki Morikawa
- Department of Advanced Textile and Kansei Engineering, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
- Institute for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Japan
| | - Yasushi Tamada
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Japan
- Institute for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Ueda, Japan
| |
Collapse
|
39
|
Kwak HW, Woo H, Kim IC, Lee KH. Fish gelatin nanofibers prevent drug crystallization and enable ultrafast delivery. RSC Adv 2017. [DOI: 10.1039/c7ra06433k] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Eco-friendly and cost-effective electrospinning of aqueous fish gelatin could prevent the drug crystallization and exhibit the ultra-fast drug release behavior.
Collapse
Affiliation(s)
- Hyo Won Kwak
- Department of Materials Science and Engineering
- The University of Sheffield
- Sheffield
- UK
| | - Heechang Woo
- Department of Biosystems & Biomaterials Science and Engineering
- Seoul National University
- Seoul 151-921
- Republic of Korea
| | - In-Chul Kim
- Research Center for Biobased Chemistry
- Korea Research Institute of Chemical Technology
- Daejeon 34114
- Republic of Korea
| | - Ki Hoon Lee
- Department of Biosystems & Biomaterials Science and Engineering
- Seoul National University
- Seoul 151-921
- Republic of Korea
- Research Institute of Agriculture and Life Sciences
| |
Collapse
|