1
|
Wang Z, Xiao N, Guo S, Liu X, Liu C, Ai M. Unlocking the Potential of Keratin: A Comprehensive Exploration from Extraction and Structural Properties to Cross-Disciplinary Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1014-1037. [PMID: 39681472 DOI: 10.1021/acs.jafc.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The rapid expansion of the livestock and poultry industry has led to a considerable increase in slaughter byproducts; however, exploring their potential applications still needs to be improved. These underutilized byproducts, which include nails, hides, skins, and bones, represent a significant loss of valuable biological resources. Among these materials, keratin has garnered considerable attention due to its unique properties as a natural biopolymer. Keratin exhibits outstanding mechanical properties and biocompatibility and has attracted increasing attention for its recovery and conversion into relevant application materials. However, natural keratin typically has a high sulfur content, complex 3D structure, and abundant hydrogen and disulfide bonds, which cause challenges in application. Current extraction for keratin includes physical, chemical, biological, and hybrid approaches. Combining multiple methods synergistically enhances protein extraction efficiency and purity, and facilitates the exploration of structure and functional properties. This review encompasses the structural characteristics, properties, extraction methods, and research progress related to keratin. The preparation and application of keratin composite materials in different forms, such as fibers, films, hydrogels, and scaffolds, are illustrated. Applications in several fields, including biomedicine, flexible electronic components, environmental materials and food packaging are discussed. Hopefully, this paper will provide a comprehensive understanding and guidance for further development and application of keratin materials.
Collapse
Affiliation(s)
- Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chunhong Liu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
2
|
Zubair M, Hussain S, Ur-Rehman M, Hussain A, Akram ME, Shahzad S, Rauf Z, Mujahid M, Ullah A. Trends in protein derived materials for wound care applications. Biomater Sci 2024; 13:130-160. [PMID: 39569610 DOI: 10.1039/d4bm01099j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Natural resource based polymers, especially those derived from proteins, have attracted significant attention for their potential utilization in advanced wound care applications. Protein based wound care materials provide superior biocompatibility, biodegradability, and other functionalities compared to conventional dressings. The effectiveness of various fabrication techniques, such as electrospinning, phase separation, self-assembly, and ball milling, is examined in the context of developing protein-based materials for wound healing. These methods produce a wide range of forms, including hydrogels, scaffolds, sponges, films, and bioinspired nanomaterials, each designed for specific types of wounds and different stages of healing. This review presents a comprehensive analysis of recent research that investigates the transformation of proteins into materials for wound healing applications. Our focus is on essential proteins, such as keratin, collagen, gelatin, silk, zein, and albumin, and we emphasize their distinct traits and roles in wound care management. Protein-based wound care materials show promising potential in biomedical engineering, offering improved healing capabilities and reduced risks of infection. It is crucial to explore the potential use of these materials in clinical settings while also addressing the challenges that may arise from their commercialization in the future.
Collapse
Affiliation(s)
- Muhammad Zubair
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| | - Saadat Hussain
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Mujeeb- Ur-Rehman
- LEJ Nanotechnology Center, HEJ Research Institute of Chemistry, ICCBS, University of Karachi, Karachi-75270, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Muhammad Ehtisham Akram
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Zahid Rauf
- Pakistan Forest Institute (PFI), Peshawar 25130, Khyber Pakhtunkhwa, Pakistan
| | - Maria Mujahid
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Aman Ullah
- Lipids Utilization Lab, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
3
|
Mozaffari A, Parvinzadeh Gashti M, Alimohammadi F, Pousti M. The Impact of Helium and Nitrogen Plasmas on Electrospun Gelatin Nanofiber Scaffolds for Skin Tissue Engineering Applications. J Funct Biomater 2024; 15:326. [PMID: 39590530 PMCID: PMC11595157 DOI: 10.3390/jfb15110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
This study explores the fabrication of tannic acid-crosslinked gelatin nanofibers via electrospinning, followed by helium and nitrogen plasma treatment to enhance their biofunctionality, which was assessed using fibroblast cells. The nanofibers were characterized using scanning electron microscopy, atomic force microscopy, attenuated total reflection Fourier transform infrared spectroscopy, X-ray diffraction, and water contact angle measurements before and after treatment. Helium and nitrogen gas plasma were employed to modify the nanofiber surfaces. Results indicated that helium and nitrogen plasma treatment significantly increased the hydrophilicity and biofunctionality of the nanofibers by 5.1° ± 0.6 and 15.6° ± 2.2, respectively, making them more suitable for human skin fibroblast applications. To investigate the impact of plasma treatment on gelatin, we employed a computational model using density functional theory with the B3LYP/6-31+G(d) method. This model represented gelatin as an amino acid chain composed of glycine, hydroxyproline, and proline, interacting with plasma particles. Vibrational analysis of these systems was used to interpret the vibrational spectra of untreated and plasma-treated gelatin. To further correlate with experimental findings, molecular dynamics simulations were performed on a system of three interacting gelatin chains. These simulations explored changes in amino acid bonding. The computational results align with experimental observations. Comprehensive analyses confirmed that these treatments improved hydrophilicity and biofunctionality, supporting the use of plasma-treated gelatin nanofibers in skin tissue engineering applications. Gelatin's natural biopolymer properties and the versatility of plasma surface modification techniques underscore its potential in regenerating cartilage, skin, circulatory tissues, and hamstrings.
Collapse
Affiliation(s)
- Abolfazl Mozaffari
- Department of Textile Engineering, Yazd Branch, Islamic Azad University, Yazd 14515-775, Iran
| | - Mazeyar Parvinzadeh Gashti
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Farbod Alimohammadi
- Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA;
| | - Mohammad Pousti
- Département de Chimie, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada;
| |
Collapse
|
4
|
Ndlovu SP, Motaung KSCM, Adeyemi SA, Ubanako P, Ngema L, Fonkui TY, Ndinteh DT, Kumar P, Choonara YE, Aderibigbe BA. Sodium alginate-based nanofibers loaded with Capparis Sepiaria plant extract for wound healing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2380-2401. [PMID: 39037962 DOI: 10.1080/09205063.2024.2381375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
Burn wounds are associated with infections, drug resistance, allergic reactions, odour, bleeding, excess exudates, and scars, requiring prolonged hospital stay. It is crucial to develop wound dressings that can effectively combat allergic reactions and drug resistance, inhibit infections, and absorb excess exudates to accelerate wound healing. To overcome the above-mentioned problems associated with burn wounds, SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers incorporated with Capparis sepiaria plant extract were prepared using an electrospinning technique. Fourier-transform infrared spectroscopy confirmed the successful incorporation of the extract into the nanofibers without any interaction between the extract and the polymers. The nanofibers displayed porous morphology and a rough surface suitable for cellular adhesion and proliferation. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers demonstrated significant antibacterial effects against wound infection-associated bacterial strains: Pseudomonas aeruginosa, Enterococcus faecalis, Mycobaterium smegmatis, Escherichia coli, Enterobacter cloacae, Proteus vulgaris, and Staphylococcus aureus. Cytocompatibility studies using HaCaT cells revealed the non-toxicity of the nanofibers. SA/PVA/PLGA/Capparis sepiaria and SA/PVA/Capparis sepiaria nanofibers exhibited hemostatic properties, resulting from the synergistic effect of the plant extract and polymers. The in vitro scratch wound healing assay showed that the SA/PVA/Capparis sepiaria nanofiber wound-healing capability is more than the plant extract and a commercially available wound dressing. The wound-healing potential of SA/PVA/Capparis sepiaria nanofiber is attributed to the synergistic effect of the phytochemicals present in the extract, their porosity, and the ECM-mimicking structure of the nanofibers. The findings suggest that the electrospun nanofibers loaded with Capparis sepiaria extract are promising wound dressings that should be explored for burn wounds.
Collapse
Affiliation(s)
- Sindi P Ndlovu
- Department of Chemistry, University of Fort Hare, Alice, Eastern Cape, South Africa
| | | | - Samson A Adeyemi
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Philemon Ubanako
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lindokuhle Ngema
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Thierry Y Fonkui
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Derek T Ndinteh
- Drug Discovery and Smart Molecules Research Labs, Centre for Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
5
|
An X, Ma C, Gong L, Liu C, Li N, Liu Z, Li X. Ionic-physical-chemical triple cross-linked all-biomass-based aerogel for thermal insulation applications. J Colloid Interface Sci 2024; 668:678-690. [PMID: 38710124 DOI: 10.1016/j.jcis.2024.04.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Aerogels, as a unique porous material, are expected to be used as insulation materials to solve the global environmental and energy crisis. Using chitosan, citric acid, pectin and phytic acid as raw materials, an all-biomass-based aerogel with high modulus was prepared by the triple strategy of ionic, physical and chemical cross-linking through directional freezing technique. Based on this three-dimensional network, the aerogel exhibited excellent compressive modulus (24.89 ± 1.76 MPa) over a wide temperature range and thermal insulation properties. In the presence of chitosan, citric acid and phytic acid, the aerogel obtained excellent fire safety (LOI value up to 31.2%) and antibacterial properties (antibacterial activity against Staphylococcus aureus and Escherichia coli reached 81.98% and 67.43%). In addition, the modified aerogel exhibited excellent hydrophobicity (hydrophobic angle of 146°) and oil-water separation properties. More importantly, the aerogel exhibited a biodegradation rate of up to 40.31% for 35 days due to its all-biomass nature. This work provides a green and sustainable strategy for the production of highly environmentally friendly thermal insulation materials with high strength, flame retardant, antibacterial and hydrophobic properties.
Collapse
Affiliation(s)
- Xinyu An
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chang Ma
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Ling Gong
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chang Liu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Ning Li
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Zhiming Liu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Xu Li
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
6
|
Li X, Jiang X, Gao F, Zhou L, Wang G, Li B, Gu S, Huang W, Duan H. Study and evaluation of a gelatin- silver oxide nanoparticles releasing nitric oxide production of wound healing dressing for diabetic ulcer. PLoS One 2024; 19:e0298124. [PMID: 38885218 PMCID: PMC11182517 DOI: 10.1371/journal.pone.0298124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/19/2024] [Indexed: 06/20/2024] Open
Abstract
This study aimed to develop a novel Gelatin silver oxide material for releasing nitric oxide bionanocomposite wound dressing with enhanced mechanical, chemical, and antibacterial properties for the treatment of diabetic wounds. The gelatin- silver oxide nanoparticles (Ag2O-NP) bio nanocomposite was prepared using chitosan and gelatin polymers incorporated with silver oxide nanoparticles through the freeze-drying method. The samples were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Results showed that the Ag2O-NP nanoparticles increased porosity, decreased pore size, and improved elastic modulus. The Ag2O-NP wound dressing exhibited the most effective antibacterial properties against Staphylococcus aureus and Escherichia coli. Among the samples, the wound dressing containing silver oxide nanoparticles demonstrated superior physical and mechanical properties, with 48% porosity, a tensile strength of 3.2 MPa, and an elastic modulus of 51.7 MPa. The fabricated wound dressings had a volume ratio of empty space to total volume ranging from 40% to 60%. In parallel, considering the complications of diabetes and its impact on the vascular system, another aspect of the research focused on developing a per2mediated wound dressing capable of releasing nitric oxide gas to regenerate damaged vessels and accelerate diabetic wound healing. Chitosan, a biocompatible and biodegradable polymer, was selected as the substrate for the wound dressing, and beta-glycerophosphate (GPβ), tripolyphosphate (TPP), and per2mediated alginate (AL) were used as crosslinkers. The chitosan-alginate (CS-AL) wound dressing exhibited optimal characteristics in terms of hole count and uniformity in the scanning electron microscope test. It also demonstrated superior water absorption (3854%) and minimal air permeability. Furthermore, the CS-AL sample exhibited an 80% degradation rate after 14 days, indicating its suitability as a wound dressing. The wound dressing was loaded with S-nitrosoglutathione (GSNO) powder, and the successful release of nitric oxide gas was confirmed through the grease test, showing a peak at a wavelength of 540 nm. Subsequent investigations revealed that the treatment of human umbilical vein endothelial cells (HUVECs) with high glucose led to a decrease in the expression of PER2 and SIRT1, while the expression of PER2 increased, which may subsequently enhance the expression of SIRT1 and promote cell proliferation activity. However, upon treatment of the cells with the modified materials, an increase in the expression of PER2 and SIRT1 was observed, resulting in a partial restoration of cell proliferative activity. This comprehensive study successfully developed per2-mediated bio-nanocomposite wound dressings with improved physical, mechanical, chemical, and antibacterial properties. The incorporation of silver oxide nanoparticles enhanced the antimicrobial activity, while the released nitric oxide gas from the dressing demonstrated the ability to mitigate vascular endothelial cell damage induced by high glucose levels. These advancements show promising potential for facilitating the healing process of diabetic wounds by addressing complications associated with diabetes and enhancing overall wound healing.
Collapse
Affiliation(s)
- Xian Li
- Department of Orthopedics, Dongguan Songshan Lake Tungwah Hospital, Dongguan City, Guangdong Province, China
| | - Xin Jiang
- Department of Orthopedics, Dongguan Songshan Lake Tungwah Hospital, Dongguan City, Guangdong Province, China
| | - Fei Gao
- Department of Orthopedics, Dongguan Songshan Lake Tungwah Hospital, Dongguan City, Guangdong Province, China
| | - Lifeng Zhou
- Department of Orthopedics, Dongguan Songshan Lake Tungwah Hospital, Dongguan City, Guangdong Province, China
| | - Guosheng Wang
- Department of Orthopedics, Dongguan Songshan Lake Tungwah Hospital, Dongguan City, Guangdong Province, China
| | - Bingfa Li
- Department of Orthopedics, Dongguan Songshan Lake Tungwah Hospital, Dongguan City, Guangdong Province, China
| | - Shihao Gu
- Department of Orthopedics, Dongguan Songshan Lake Tungwah Hospital, Dongguan City, Guangdong Province, China
| | - Wei Huang
- Department of Orthopedics, Dongguan Songshan Lake Tungwah Hospital, Dongguan City, Guangdong Province, China
| | - Hongkai Duan
- Department of Orthopedics, Dongguan Songshan Lake Tungwah Hospital, Dongguan City, Guangdong Province, China
| |
Collapse
|
7
|
Hu J, Xie J, Peng T, Shi Q, Pan C, Tan H, Sun J. Fabrication of a MXene-based shape-memory hydrogel and its application in the wound repair of skin. SOFT MATTER 2024; 20:4136-4142. [PMID: 38726867 DOI: 10.1039/d4sm00157e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Wound dressings can generally complete hemostasis and provide temporary protection after skin damage. Herein, a MXene-based hydrogel was prepared from MXene, gelatin, poly(ethylene glycol)diacrylate (PEGDA) and N,N'-methylenebis(acrylamide) (HEAA) to prepare wound-dressing hydrogels for skin repair. HEAA and PEGDA crosslink polymerization formed the first layer of the network. Hydrogen bonds between MXene, PHEAA, and gelatin formed the second layer of the network. To make the hydrogel more suitable for skin repair, the mechanical properties of the hybrid hydrogel were adjusted. The MXene-based hydrogel could recover its original shape in 16 s upon immersion in water or for a few minutes under light irradiation. The obtained hydrogel showed good photothermal properties upon light irradiation (808 nm, 1 W cm-2) for 20 s, and its temperature on the surface could reach 86.4 °C. Due to its good photothermal properties, this MXene-based hydrogel was suitable for skin repair.
Collapse
Affiliation(s)
- Jingchuan Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory for New Textile Materials and Applications of Hubei Province, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Jun Xie
- Department of Dermatology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Tao Peng
- High-Tech Organic Fibers Key Laboratory of Sichuan Province and China, Bluestar Chengrand Co., Ltd, China
| | - Qingwen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory for New Textile Materials and Applications of Hubei Province, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Chen Pan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory for New Textile Materials and Applications of Hubei Province, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Haiying Tan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory for New Textile Materials and Applications of Hubei Province, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory for New Textile Materials and Applications of Hubei Province, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
8
|
Eskandarinia A, Morowvat MH, Niknezhad SV, Baghbadorani MA, Michálek M, Chen S, Nemati MM, Negahdaripour M, Heidari R, Azadi A, Ghasemi Y. A photocrosslinkable and hemostatic bilayer wound dressing based on gelatin methacrylate hydrogel and polyvinyl alcohol foam for skin regeneration. Int J Biol Macromol 2024; 266:131231. [PMID: 38554918 DOI: 10.1016/j.ijbiomac.2024.131231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The enormous potential of multifunctional bilayer wound dressings in various medical interventions for wound healing has led to decades of exploration into this field of medicine. However, it is usually difficult to synthesize a single hydrogel with all the required capabilities simultaneously. This paper proposes a bilayer model with an outer layer intended for hydrogel wound treatment. By adding gelatin methacrylate (GelMA) and tannic acid (TA) to the hydrogel composition and using polyvinyl alcohol-carboxymethyl chitosan (PVA-CMCs) foam layer as supports, a photocrosslinkable hydrogel with an optimal formulation was created. The hydrogels were then examined using a range of analytical procedures, including mechanical testing, rheology, chemical characterization, and in vitro and in vivo tests. The resulting bilayer wound dressing has many desirable properties, namely uniform adhesion and quick crosslinking by UV light. When used against Gram-positive and Gram-negative bacterial strains, bilayer wound dressings demonstrated broad antibacterial efficacy. In bilayer wound dressings with GelMA and TA, better wound healing was observed. Those without these elements showed less effectiveness in healing wounds. Additionally, encouraging collagen production and reducing wound infection has a major therapeutic impact on wounds. The results of this study could have a significant impact on the development of better-performing wound dressings.
Collapse
Affiliation(s)
- Asghar Eskandarinia
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Vahid Niknezhad
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz 71987-54361, Iran
| | | | - Martin Michálek
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Si Chen
- Centre for Functional and Surface Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Mohammad Mahdi Nemati
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Hassan MM, Heins K, Zheng H. Wound Dressing Based on Silver Nanoparticle Embedded Wool Keratin Electrospun Nanofibers Deposited on Cotton Fabric: Preparation, Characterization, Antimicrobial Activity, and Cytocompatibility. ACS APPLIED BIO MATERIALS 2024; 7:2164-2174. [PMID: 38493449 DOI: 10.1021/acsabm.3c01111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Wool keratin (WK) protein is attractive for wound dressing and biomedical applications due to its excellent biodegradability, cytocompatibility, and wound-healing properties. In this work, WK-based wound dressings were prepared by depositing WK/poly(vinyl alcohol) (PVA) and silver nanoparticle (Ag NP)-embedded WK/PVA composite nanofibrous membranes on cotton fabrics by electrospinning. Ag NPs were biosynthesized by reduction and stabilization with sodium alginate. The formed Ag NPs were characterized by ultraviolet-visible and Fourier transform infrared (FTIR) spectroscopy, and their size was determined by transmission electron microscopy and image analysis. The formed Ag NPs were spherical and had an average diameter of 9.95 nm. The produced Ag NP-embedded WK/PVA composite nanofiber-deposited cotton fabric surface was characterized by FTIR and dynamic contact angle measurements, and the nanofiber morphologies were characterized by scanning electron microscopy. The average diameter of the nanofibers formed by 0.1% Ag NP-embedded WK/PVA solution was 146.7 nm. The antibacterial activity of the surface of cotton fabrics coated with electrospun composite nanofibers was evaluated against the two most common wound-causing pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The cotton fabric coated with 0.1% Ag NP-embedded WK/PVA nanofibers showed very good antibacterial activity against both pathogens, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results showed good cytocompatibility against L-929 mouse fibroblast cells. However, the increase in Ag NP content in the nanofibers to 0.2% negatively affected the cell viability due to the high release rate of Ag ions. The results achieved show that the developed wound dressing has good potential for wound healing applications.
Collapse
Affiliation(s)
- Mohammad Mahbubul Hassan
- Bioproduct and Fiber Technology Team, Lincoln Research Center, AgResearch Limited, 1365 Springs Road, 7674 Lincoln, Canterbury, New Zealand
| | - Kira Heins
- Bioproduct and Fiber Technology Team, Lincoln Research Center, AgResearch Limited, 1365 Springs Road, 7674 Lincoln, Canterbury, New Zealand
| | - Haotian Zheng
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
You T, You Q, Feng X, Li H, Yi B, Xu H. A novel approach to wound healing: Green synthetic nano-zinc oxide embedded with sodium alginate and polyvinyl alcohol hydrogels for dressings. Int J Pharm 2024; 654:123968. [PMID: 38460771 DOI: 10.1016/j.ijpharm.2024.123968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Wound healing constitutes a formidable challenge within the healthcare system, attributable to infection risks and protracted recovery periods. The pressing need for innovative wound healing methods has spurred the urgency to develop novel approaches. This study sought to advance wound healing by introducing a novel approach employing a composite sponge dressing. The composite sponge dressing, derived from LFL-ZnO (synthesized through the green methodology utilizing Lactobacillus plantarum ZDY2013 fermentation liquid), polyvinyl alcohol (PVA), and sodium alginate (SA) via a freeze-thaw cycle and freeze-drying molding process, demonstrated notable properties. The findings elucidate the commendable swelling, moisturizing, and mechanical attributes of the SA/LFL-ZnO/PVA composite sponge dressing, characterized by a porous structure. Remarkably, the dressing incorporating LFL-ZnO exhibited substantial inhibition against both methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus aureus (S. aureus). Hemolysis and cytotoxicity tests corroborated the excellent biocompatibility of the sponge dressing. In vivo evaluation of the therapeutic efficacy of the 1 mg/mL LFL-ZnO composite dressing on scald wounds and S. aureus-infected wounds revealed its capacity to accelerate wound healing and exert pronounced antibacterial effects. Consequently, the composite sponge dressings synthesized in this study hold significant potential for application in wound treatment.
Collapse
Affiliation(s)
- Tao You
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qixiu You
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoyan Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hui Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Bo Yi
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
11
|
Soleymani Eil Bakhtiari S, Karbasi S. Keratin-containing scaffolds for tissue engineering applications: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:916-965. [PMID: 38349200 DOI: 10.1080/09205063.2024.2311450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
In tissue engineering and regenerative medicine applications, the utilization of bioactive materials has become a routine tool. The goal of tissue engineering is to create new organs and tissues by combining cell biology, materials science, reactor engineering, and clinical research. As part of the growth pattern for primary cells in an organ, backing material is frequently used as a supporting material. A porous three-dimensional (3D) scaffold can provide cells with optimal conditions for proliferating, migrating, differentiating, and functioning as a framework. Optimizing the scaffolds' structure and altering their surface may improve cell adhesion and proliferation. A keratin-based biomaterials platform has been developed as a result of discoveries made over the past century in the extraction, purification, and characterization of keratin proteins from hair and wool fibers. Biocompatibility, biodegradability, intrinsic biological activity, and cellular binding motifs make keratin an attractive biomaterial for tissue engineering scaffolds. Scaffolds for tissue engineering have been developed from extracted keratin proteins because of their capacity to self-assemble and polymerize into intricate 3D structures. In this review article, applications of keratin-based scaffolds in different tissues including bone, skin, nerve, and vascular are explained based on common methods of fabrication such as electrospinning, freeze-drying process, and sponge replication method.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Kazemi N, Javad Mahalati M, Kaviani Y, Al-Musawi MH, Varshosaz J, Soleymani Eil Bakhtiari S, Tavakoli M, Alizadeh M, Sharifianjazi F, Salehi S, Najafinezhad A, Mirhaj M. Core-shell nanofibers containing L-arginine stimulates angiogenesis and full thickness dermal wound repair. Int J Pharm 2024; 653:123931. [PMID: 38387821 DOI: 10.1016/j.ijpharm.2024.123931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Despite the advances in medicine, wound healing is still challenging and piques the interest of biomedical engineers to design effective wound dressings using natural and artificial polymers. In present study, coaxial electrospinning was employed to fabricate core-shell nanofiber-based wound dressing, with core composed of polyacrylamide (PAAm) and shell comprising 0.5 % solution of L-Arginine (L-Arg) in aloe vera and keratin (AloKr). Aloe vera and keratin were added as natural polymers to promote angiogenesis, reduce inflammation, and provide antibacterial activity, whereas PAAm in core was used to improve the tensile properties of the wound dressing. Moreover, L-Arg was incorporated in shell to promote angiogenesis and collagen synthesis. The fiber diameter of PAAm/(AloKr/L-Arg) core-shell fibers was (93.33 ± 35.11 nm) with finer and straighter fibers and higher water holding capacity due to increased surface area to volume ratio. In terms of tensile properties, the PAAm/(AloKr/L-Arg) core-shell nanofibers with tensile strength and elastic modulus of 2.84 ± 0.27 MPa and 62.15 ± 5.32 MPa, respectively, showed the best mechanical performance compared to other nanofibers tested. Furthermore, PAAm/(AloKr/L-Arg) exhibited the highest L-Arg release (87.62 ± 3.02 %) and viability of L929 cells in vitro compared to other groups. In addition, the highest rate of in vivo full thickness wound healing was observed in PAAm/(AloKr/L-Arg) group compared to other groups. It significantly enhanced the angiogenesis, neovascularization, and cell proliferation. The prepared PAAm/(AloKr/L-Arg) core-shell nanofibrous dressing could be promising for full-thickness wound healing.
Collapse
Affiliation(s)
- Nafise Kazemi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Mohammad Javad Mahalati
- Organic Chemistry, Department of Chemistry, Faculty of Basic Sciences, Shahrekord University, Iran.
| | - Yeganeh Kaviani
- Department of Biomedical Engineering, University of Meybod, Yazd, Iran.
| | - Mastafa H Al-Musawi
- Department of Clinical Laboratory Science, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Centre, Department of Pharmaceutics, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Mohamadreza Tavakoli
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mansoor Alizadeh
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran.
| | - Fariborz Sharifianjazi
- Department of Natural Sciences, School of Science and Technology, University of Georgia, Tbilisi 0171, Georgia.
| | - Saeideh Salehi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Aliakbar Najafinezhad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Marjan Mirhaj
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
13
|
Wang N, Hong B, Zhao Y, Ding C, Chai G, Wang Y, Yang J, Zhang L, Yu W, Lu Y, Ma S, Zhang S, Liu X. Dopamine-grafted oxidized hyaluronic acid/gelatin/cordycepin nanofiber membranes modulate the TLR4/NF-kB signaling pathway to promote diabetic wound healing. Int J Biol Macromol 2024; 262:130079. [PMID: 38340939 DOI: 10.1016/j.ijbiomac.2024.130079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Due to impaired immune function, diabetic wounds are highly susceptible to the development of excessive inflammatory responses and prolonged recurrent bacterial infections that impede diabetic wound healing. Therefore, it is necessary to design and develop a wound dressing that controls bacterial infection and inhibits excessive inflammatory response. In this study, hyaluronic acid (HA) was modified using dopamine (DA). Subsequently, cordycepin (COR) was loaded into dopamine-modified hyaluronic acid (OHDA)/gelatin (GEL) nanofiber wound dressing by electrostatic spinning technique. The constructed COR/OHDA/GEL nanofiber membrane has good thermal stability, hydrophilicity, and air permeability. In vitro experiments showed that the obtained COR/OHDA/GEL nanofiber membranes had good antimicrobial efficacy (S. aureus: 95.60 ± 0.99 %, E. coli: 71.17 ± 6.87 %), antioxidant activity (>90 %), and biocompatibility. In vivo experiments showed that COR/OHDA/GEL nanofiber membranes could promote wound tissue remodeling, collagen deposition, and granulation tissue regeneration. Western blot experiments showed that COR/OHDA/GEL nanofibrous membranes could inhibit the excessive inflammatory response of wounds through the TLR4/NF-κB signaling pathway. Therefore, COR/OHDA/GEL nanofiber membranes could promote diabetic wound healing by modulating the inflammatory response. The results showed that the designed nanofiber wound dressing is expected to provide a new strategy for treating chronic wounds.
Collapse
Affiliation(s)
- Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Bo Hong
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Yingchun Zhao
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan 250299, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Guodong Chai
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Yue Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Jiali Yang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Lifeng Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Weimin Yu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Yang Lu
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Shuang Ma
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130118, China.
| |
Collapse
|
14
|
Feng K, Tang J, Qiu R, Wang B, Wang J, Hu W. Fabrication of a core-shell nanofibrous wound dressing with an antioxidant effect on skin injury. J Mater Chem B 2024; 12:2384-2393. [PMID: 38349135 DOI: 10.1039/d3tb02911e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Oxidative stress is one of the obstacles preventing wound regeneration, especially for chronic wounds. Herein, designing a wound dressing with an anti-oxidant function holds great appeal for enhancing wound regeneration. In this study, a biocompatible and degradable nanofiber with a core-shell structure was fabricated via coaxial electrospinning, in which polycaprolactone (PCL) was applied as the core structure, while the shell was composed of a mixture of silk fibroin (SF) and tocopherol acetate (TA). The electrospun PST nanofibers were proven to have a network structure with significantly enhanced mechanical properties. The PSTs exhibited a diameter distribution with an average of 321 ± 134 nm, and the water contact angle of their surface is 124 ± 2°. The PSTs also exhibited good tissue compatibility, which can promote the adhesion and proliferation of L929 cells. Besides, the dissolution of silk fibroin encourages the release of TA, which could play a synergistic effect and regulate the oxidative stress effect in the damaged area, for it promotes the adhesion and proliferation of skin fibroblasts (L929), reduces the cytotoxicity of hydrogen peroxide to cells, and lowers the level of reactive oxygen species. The animal experiment indicated that the PSTs would promote the reconstruction of skin. These nanofibers are expected to repair skin ulcers related to diabetes.
Collapse
Affiliation(s)
- Kexin Feng
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinlan Tang
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Ruiyang Qiu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, 518038, China.
| | - Jianglin Wang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weikang Hu
- School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
15
|
Varshney N, Singh P, Rai R, Vishwakarma NK, Mahto SK. Superporous soy protein isolate matrices as superabsorbent dressings for successful management of highly exuding wounds: In vitro and in vivo characterization. Int J Biol Macromol 2023; 253:127268. [PMID: 37813221 DOI: 10.1016/j.ijbiomac.2023.127268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Soy protein isolate (SPI) has received widespread attention of the biomedical research community primarily due to its good biocompatibility, biodegradability, high availability and low cost. Herein, glutaraldehyde cross-linked microporous sponge-like SPI scaffolds were prepared using the cryogelation technique for tissue engineering applications. The prepared SPI scaffolds possess an interconnected porous structure with approximately 90% porosity and an average pore size in the range of 45-92 μm. The morphology, porosity, swelling capacity and degradation rate of the cryogels were found to be dependent on the concentration of polymer to crosslinking agent. All cryogels were found to be elastic and able to maintain physical integrity even after being compressed to one-fifth of their original length during cyclic compression analysis. These cryogels showed excellent mechanical properties, immediate water-triggered shape restoration and absorption speed. Furthermore, cryogels outperformed cotton and gauze in terms of blood clotting and blood cell adherence. The in vitro and in vivo studies demonstrated the potency of SPI scaffolds for skin tissue engineering applications. Our findings showed that crosslinking with glutaraldehyde had no detrimental effects on cell viability. In addition, an in vivo wound healing study in rats validated them as good potential wound dressing materials.
Collapse
Affiliation(s)
- Neelima Varshney
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Priya Singh
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Rohit Rai
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Niraj K Vishwakarma
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India
| | - Sanjeev Kumar Mahto
- Tissue Engineering and Biomicrofluidics Laboratory, School of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India; Centre for Advanced Biomaterials and Tissue Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
16
|
Al-Musawi MH, Mahmoudi E, Kamil MM, Almajidi YQ, Mohammadzadeh V, Ghorbani M. The effect of κ-carrageenan and ursolic acid on the physicochemical properties of the electrospun nanofibrous mat for biomedical application. Int J Biol Macromol 2023; 253:126779. [PMID: 37683747 DOI: 10.1016/j.ijbiomac.2023.126779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Wound dressing materials such as nanofiber (NF) mats have gained a lot of attention in recent years owing to their wonderful effect on accelerating the healing process and protection of wounds. In this regard, three different types of NF mats were fabricated using pure polyvinylpyrrolidone (PVP), PVP/κ-carrageenan (KG), and ursolic acid (UA) in the optimal PVP/KG ratio by electrospinning method to apply them as wound dressings. The morphology, chemical structure, degradation, porosity, mechanical properties and antioxidant activity of the produced NFs were investigated. Moreover, cell studies (e.g., cell proliferation, adhesion, and migration) and their antibacterial properties were evaluated. Adding KG and UA reduced the mean diameter size of the PVP-based NFs to ∼98 nm in the optimal sample, with defect-free morphology. The PVP/KG/UA 0.25 % exhibited the highest porosity, hydrophilicity, and degradation rate and a wound closure rate of 60 %, 2.5 times higher than that of the control group. Furthermore, this sample's proliferation and antibacterial ability were significantly higher than the other groups. These findings confirmed that the produced UA-loaded NFs have excellent properties as wound dressing.
Collapse
Affiliation(s)
- Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Elham Mahmoudi
- Research Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 5133511996 Tabriz, Iran
| | - Marwa M Kamil
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Yasir Q Almajidi
- Baghdad College of Medical Sciences, Department of Pharmacy, Baghdad, Iraq
| | - Vahid Mohammadzadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Abdelhakeem E, Monir S, Teaima MHM, Rashwan KO, El-Nabarawi M. State-of-the-Art Review of Advanced Electrospun Nanofiber Composites for Enhanced Wound Healing. AAPS PharmSciTech 2023; 24:246. [PMID: 38030812 DOI: 10.1208/s12249-023-02702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a complex biological process with four main phases: hemostasis, inflammation, proliferation, and remodeling. Current treatments such as cotton and gauze may delay the wound healing process which gives a demand for more innovative treatments. Nanofibers are nanoparticles that resemble the extracellular matrix of the skin and have a large specific surface area, high porosity, good mechanical properties, controllable morphology, and size. Nanofibers are generated by electrospinning method that utilizes high electric force. Electrospinning device composed of high voltage power source, syringe that contains polymer solution, needle, and collector to collect nanofibers. Many polymers can be used in nanofiber that can be from natural or from synthetic origin. As such, electrospun nanofibers are potential scaffolds for wound healing applications. This review discusses the advanced electrospun nanofiber morphologies used in wound healing that is prepared by modified electrospinning techniques.
Collapse
Affiliation(s)
- Eman Abdelhakeem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt.
| | - Sawsan Monir
- Production Sector, Semisolid Department, Nile Company for Pharmaceuticals and Chemical Industries, Cairo, Egypt
| | - Mahmoud H M Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| | - Kareem Omar Rashwan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
18
|
Zhang L, Yang J, Liu W, Ding Q, Sun S, Zhang S, Wang N, Wang Y, Xi S, Liu C, Ding C, Li C. A phellinus igniarius polysaccharide/chitosan-arginine hydrogel for promoting diabetic wound healing. Int J Biol Macromol 2023; 249:126014. [PMID: 37517765 DOI: 10.1016/j.ijbiomac.2023.126014] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Inadequate angiogenesis and inflammation at the wound site have always been a major threat to skin wounds, especially for diabetic wounds that are difficult to heal. Therefore, hydrogel dressings with angiogenesis and antibacterial properties are very necessary in practical applications. This study reported a hydrogel (PCA) based on L-arginine conjugated chitosan (CA) and aldehyde functionalized polysaccharides of Phellinus igniarius (OPPI) as an antibacterial and pro-angiogenesis dressing for wound repair in diabetes for the first time. and discussed its possible mechanism for promoting wound healing. The results showed that PCA had good antioxidant, antibacterial, biological safety and other characteristics, and effectively promoted the healing course of diabetic wound model. In detail, the H&E and Masson staining results showed that PCA promoted normal epithelial formation and collagen deposition. The Western blot results confirmed that PCA decreased the inflammation by inhibiting the IKBα/NF-κB signaling pathway and enhanced angiogenesis by adjusting the level of HIF-1α. In conclusion, PCA is a promising candidate for promoting wound healing in diabetes. Graphic abstract.
Collapse
Affiliation(s)
- Lifeng Zhang
- Engineering Research Center of the Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Jiali Yang
- Engineering Research Center of the Ministry of Education, Jilin Agricultural University, Changchun 130118, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China
| | - Qiteng Ding
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yue Wang
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Siyu Xi
- College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chunyu Liu
- Engineering Research Center of the Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Changtian Li
- Engineering Research Center of the Ministry of Education, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
19
|
Ali M, Bathaei MJ, Istif E, Karimi SNH, Beker L. Biodegradable Piezoelectric Polymers: Recent Advancements in Materials and Applications. Adv Healthc Mater 2023; 12:e2300318. [PMID: 37235849 PMCID: PMC11469082 DOI: 10.1002/adhm.202300318] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/21/2023] [Indexed: 05/28/2023]
Abstract
Recent materials, microfabrication, and biotechnology improvements have introduced numerous exciting bioelectronic devices based on piezoelectric materials. There is an intriguing evolution from conventional unrecyclable materials to biodegradable, green, and biocompatible functional materials. As a fundamental electromechanical coupling material in numerous applications, novel piezoelectric materials with a feature of degradability and desired electrical and mechanical properties are being developed for future wearable and implantable bioelectronics. These bioelectronics can be easily integrated with biological systems for applications, including sensing physiological signals, diagnosing medical problems, opening the blood-brain barrier, and stimulating healing or tissue growth. Therefore, the generation of piezoelectricity from natural and synthetic bioresorbable polymers has drawn great attention in the research field. Herein, the significant and recent advancements in biodegradable piezoelectric materials, including natural and synthetic polymers, their principles, advanced applications, and challenges for medical uses, are reviewed thoroughly. The degradation methods of these piezoelectric materials through in vitro and in vivo studies are also investigated. These improvements in biodegradable piezoelectric materials and microsystems could enable new applications in the biomedical field. In the end, potential research opportunities regarding the practical applications are pointed out that might be significant for new materials research.
Collapse
Affiliation(s)
- Mohsin Ali
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Mohammad Javad Bathaei
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Emin Istif
- Department of Mechanical EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Faculty of Engineering and Natural SciencesKadir Has UniversityCibaliIstanbul34083Turkey
| | - Seyed Nasir Hosseini Karimi
- Koç University Research Center for Translational Research (KUTTAM)Rumelifeneri YoluSarıyerIstanbul34450Turkey
| | - Levent Beker
- Department of Biomedical Sciences and EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Department of Mechanical EngineeringKoç UniversityRumelifeneri YoluSarıyerIstanbul34450Turkey
- Koç University Research Center for Translational Research (KUTTAM)Rumelifeneri YoluSarıyerIstanbul34450Turkey
| |
Collapse
|
20
|
Saghafi Y, Baharifar H, Najmoddin N, Asefnejad A, Maleki H, Sajjadi-Jazi SM, Bonkdar A, Shams F, Khoshnevisan K. Bromelain- and Silver Nanoparticle-Loaded Polycaprolactone/Chitosan Nanofibrous Dressings for Skin Wound Healing. Gels 2023; 9:672. [PMID: 37623127 PMCID: PMC10454236 DOI: 10.3390/gels9080672] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
A cutaneous wound is caused by various injuries in the skin, which can be wrapped with an efficient dressing. Electrospinning is a straightforward adjustable technique that quickly and continuously generates nanofibrous wound dressings containing antibacterial and anti-inflammatory agents to promote wound healing. The present study investigated the physicochemical and biological properties of bromelain (BRO)- and silver nanoparticle (Ag NPs)-loaded gel-based electrospun polycaprolactone/chitosan (PCL/CS) nanofibrous dressings for wound-healing applications. Electron microscopy results showed that the obtained nanofibers (NFs) had a uniform and homogeneous morphology without beads with an average diameter of 176 ± 63 nm. The FTIR (Fourier transform infrared) analysis exhibited the loading of the components. Moreover, adding BRO and Ag NPs increased the tensile strength of the NFs up to 4.59 MPa. BRO and Ag NPs did not significantly affect the hydrophilicity and toxicity of the obtained wound dressing; however, the antibacterial activity against E. coli and S. aureus bacteria was significantly improved. The in vivo study showed that the wound dressing containing BRO and Ag NPs improved the wound-healing process within one week compared to other groups. Therefore, gel-based PCL/CS nanofibrous dressings containing BRO and Ag NPs could be a promising solution for healing skin wounds.
Collapse
Affiliation(s)
- Yasaman Saghafi
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
| | - Hadi Baharifar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
- Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
| | - Najmeh Najmoddin
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran; (Y.S.); (N.N.)
| | - Hassan Maleki
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran 1411713137, Iran
| | - Alireza Bonkdar
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Forough Shams
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Kamyar Khoshnevisan
- Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran 1983963113, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| |
Collapse
|
21
|
El-Seedi HR, Said NS, Yosri N, Hawash HB, El-Sherif DM, Abouzid M, Abdel-Daim MM, Yaseen M, Omar H, Shou Q, Attia NF, Zou X, Guo Z, Khalifa SA. Gelatin nanofibers: Recent insights in synthesis, bio-medical applications and limitations. Heliyon 2023; 9:e16228. [PMID: 37234631 PMCID: PMC10205520 DOI: 10.1016/j.heliyon.2023.e16228] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The use of gelatin and gelatin-blend polymers as environmentally safe polymers to synthesis electrospun nanofibers, has caused a revolution in the biomedical field. The development of efficient nanofibers has played a significant role in drug delivery, and for use in advanced scaffolds in regenerative medicine. Gelatin is an exceptional biopolymer, which is highly versatile, despite variations in the processing technology. The electrospinning process is an efficient technique for the manufacture of gelatin electrospun nanofibers (GNFs), as it is simple, efficient, and cost-effective. GNFs have higher porosity with large surface area and biocompatibility, despite that there are some drawbacks. These drawbacks include rapid degradation, poor mechanical strength, and complete dissolution, which limits the use of gelatin electrospun nanofibers in this form for biomedicine. Thus, these fibers need to be cross-linked, in order to control its solubility. This modification caused an improvement in the biological properties of GNFs, which made them suitable candidates for various biomedical applications, such as wound healing, drug delivery, bone regeneration, tubular scaffolding, skin, nerve, kidney, and cardiac tissue engineering. In this review an outline of electrospinning is shown with critical summary of literature evaluated with respect to the various applications of nanofibers-derived gelatin.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu Education Department, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Noha S. Said
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hamada B. Hawash
- Environmental Division, National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Dina M. El-Sherif
- National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Poznan, Poland
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231 Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Yaseen
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hany Omar
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Qiyang Shou
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Nour F. Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211, Egypt
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A.M. Khalifa
- Psychiatry and Psychology Department, Capio Saint Göran's Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden
| |
Collapse
|
22
|
Bayanmunkh O, Baatar B, Tserendulam N, Boldbaatar K, Radnaabazar C, Khishigjargal T, Norov E, Jambaldorj B. Fabrication of Wet-Spun Wool Keratin/Poly(vinyl alcohol) Hybrid Fibers: Effects of Keratin Concentration and Flow Rate. ACS OMEGA 2023; 8:12327-12333. [PMID: 37033852 PMCID: PMC10077447 DOI: 10.1021/acsomega.3c00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/09/2023] [Indexed: 05/19/2023]
Abstract
Sheep wool is one of the most common wastes derived from agriculture and also a great source of keratin. In this study, chemical reduction and alkali hydrolysis methods of extracting keratin from wool were studied for the purpose of reusing the waste wool, and the products were used to fabricate wet-spun hybrid fibers by mixing with PVA. The comparative yield of the two extraction methods was investigated, and the optimal precursor concentration ratio for keratin extraction was identified. The effects of keratin concentration and wet-spinning flow rate on the mechanical properties of fabricated fibers were studied. Therefore, this study encourages the further investigation of wool keratin-based hybrid biomaterials, which could provide a new way to reuse waste wool.
Collapse
Affiliation(s)
- Oyunkhorol Bayanmunkh
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Boldbaatar Baatar
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Nomin Tserendulam
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Khongorzul Boldbaatar
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
- Leather
Study Department, Research and Development Institute of Light Industry, Mongolian University of Science and Technology, Ulaanbaatar 14191, Mongolia
| | - Chinzorig Radnaabazar
- Department
of Chemical and Biological Engineering and Applied Science, National University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Tegshjargal Khishigjargal
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Erdene Norov
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| | - Boldbaatar Jambaldorj
- Center
of Nanoscience and Nanotechnology, Department of Chemical and Biological
Engineering and Applied Science, National
University of Mongolia, Ulaanbaatar 14200, Mongolia
| |
Collapse
|
23
|
Sasikanth V, Meganathan B, Rathinavel T, Seshachalam S, Nallappa H, Gopi B. General overview of biopolymers: structure and properties. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Abstract
Biopolymers are synthesized from a biological origin under natural phenomenon especially during their growth cycle, in the form of polymeric substances that portrays excellent properties such as flexibility, tensile strength, steadiness, reusability, and so on. The amalgamated form of two or more biopolymers leads to the formation of “biocomposites” with novel applications. Several mechanisms were identified for the effective production of biopolymers from diverse life forms such as microbial origin plant and animal origin. Based on their origin, biopolymer differs in their structure and functions. Biopolymers are preferred over chemically synthesized polymers due to their biodegradability and their impact on the environment. Biopolymers play a pivotal role in pharmaceutical industries. The biopolymers could be employed for, the administration of medicine as well as regenerative medicine to reach minimal immunogenicity and maximum pharmacological expressivity in a treated individual. Based on their properties biopolymers were exclusively used in medical devices, cosmaceuticals, and confectionaries, it is also used as additives in food industries, bio-sensors, textile industries, and wastewater treatment plants. Ecological support is of utmost concern nowadays due to the ever-expanding ramification over the planet by usage of plastic as packaging material, turning up scientists and researchers to focus on biodegradable biopolymer utilization. The miscibility-structural-property relation between every biopolymer must be focused on to improve the better environment. Specific biopolymers are designed for the betterment of agrarian and commoners of society. Advanced structural modifications, properties of biopolymers, and applications of biopolymers to achieve a greener environment were discussed in this chapter.
Collapse
Affiliation(s)
- Vasuki Sasikanth
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | | | | | - Sindhu Seshachalam
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | - Harini Nallappa
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| | - Brindha Gopi
- Department of Biotechnology , Sona College of Arts and Science , Salem , 636 005 , India
| |
Collapse
|
24
|
Han X, Wang L, Shang Y, Liu X, Kang IK, Shen J, Yuan J. Bilayer dressing based on aerogel/electrospun mats with self-catalytic hydrogen sulfide generation and enhanced antioxidant ability. J Mater Chem B 2023; 11:1008-1019. [PMID: 36647587 DOI: 10.1039/d2tb02090d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) releasing wound dressings have attracted much attention for their ability to promote cell proliferation, stimulate angiogenesis, and resist inflammation. Mimicking the skin structure, a bilayer wound dressing based on aerogel/mats with H2S release capability was designed and fabricated. A bio-macromolecular H2S donor based on a keratin-TA conjugate (KTC) was first synthesized through a thiol-disulfide exchange reaction. As an inner layer, KTC was then loaded into a gelatin hydrogel with large pores to absorb the wound exudates and generate H2S self-catalytically. Subsequently, polyurethane was electrospun with glutathione (GSH) to be used as an outer layer with small pores, which provided mechanical support, supplied GSH, and prevented bacterial invasion. The bilayer dressing was capable of generating H2S self-catalytically, achieving a controlled and sustained release. The dressing could also promote cell proliferation and migration. In addition, the dress possessed enhanced antioxidant ability and reactive oxygen species (ROS) scavenging capability. The bilayer dressing on promoting wound healing was investigated in a full-thickness excisional cutaneous wound model in rats. The results demonstrated that it could reduce inflammation, promote vascularization, and facilitate hair follicle regeneration, thereby accelerating wound healing. Overall, the bilayer dressing has great potential applications in the field of the wound dressing.
Collapse
Affiliation(s)
- Xiao Han
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Lijuan Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Yushuang Shang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Xu Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Inn-Kyu Kang
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| |
Collapse
|
25
|
Recent progress in polymeric biomaterials and their potential applications in skin regeneration and wound care management. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
26
|
Zhang M, Xu S, Du C, Wang R, Han C, Che Y, Feng W, Wang C, Gao S, Zhao W. Novel PLCL nanofibrous/keratin hydrogel bilayer wound dressing for skin wound repair. Colloids Surf B Biointerfaces 2023; 222:113119. [PMID: 36621177 DOI: 10.1016/j.colsurfb.2022.113119] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/13/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In this study, a novel poly(L-lactate-caprolactone) copolymer (PLCL) nanofibrous/keratin hydrogel bilayer wound dressing loaded with fibroblast growth factor (FGF-2) was prepared by the low-pressure filtration-assisted method. The ability of the keratin hydrogel in the bilayer dressing to mimic the dermis and that of the nanofibrous PLCL to mimic the epidermis were discussed. Keratin hydrogel exhibited good porosity and maximum water absorption of 874.09%. Compared with that of the dressing prepared by the coating method, the interface of the bilayer dressing manufactured by the low-pressure filtration-assisted method (filtration time: 20 min) was tightly bonded, and its bilayer dressing interface could not be easily peeled off. The elastic modulus of hydrogel was about 44 kPa, which was similar to the elastic modulus of the dermis (2-80 kPa). Additionally, PLCL nanofibers had certain toughness and flexibility suitable for simulating the epidermal structures. In vitro studies showed that the bilayer dressing was biocompatible and biodegradable. In vivo studies indicated that PLCL/keratin-FGF-2 bilayer dressing could promote re-epithelialization, collagen deposition, skin appendages (hair follicles) regeneration, microangiogenesis construction, and adipose-derived stem cells (ADSCs) recruitment. The introduction of FGF-2 resulted in a better repair effect. The bilayer dressing also solved the problems of poor interface adhesion of hydrogel/electrospinning nanofibers. This paper also explored the preliminary role and mechanism of bilayer dressing in promoting skin healing, showing that its potential applications as a biomedical wound dressing in the field of skin tissue engineering.
Collapse
Affiliation(s)
- Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shixin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chen Du
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruoying Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Cuicui Han
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongan Che
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wei Feng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shan Gao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
27
|
Zulkiflee I, Amirrah IN, Fadilah NIM, Wee MFMR, Yusop SM, Maarof M, Fauzi MB. Characterization of Dual-Layer Hybrid Biomatrix for Future Use in Cutaneous Wound Healing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031162. [PMID: 36770168 PMCID: PMC9919111 DOI: 10.3390/ma16031162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/12/2023]
Abstract
A skin wound without immediate treatment could delay wound healing and may lead to death after severe infection (sepsis). Any interruption or inappropriate normal wound healing, mainly in these wounds, commonly resulted in prolonged and excessive skin contraction. Contraction is a common mechanism in wound healing phases and contributes 40-80% of the original wound size post-healing. Even though it is essential to accelerate wound healing, it also simultaneously limits movement, mainly in the joint area. In the worst-case scenario, prolonged contraction could lead to disfigurement and loss of tissue function. This study aimed to fabricate and characterise the elastin-fortified gelatin/polyvinyl alcohol (PVA) film layered on top of a collagen sponge as a bilayer hybrid biomatrix. Briefly, the combination of halal-based gelatin (4% (w/v)) and PVA ((4% (w/v)) was used to fabricate composite film, followed by the integration of poultry elastin (0.25 mg/mL) and 0.1% (w/v) genipin crosslinking. Furthermore, further analysis was conducted on the composite bilayer biomatrix's physicochemical and mechanical strength. The bilayer biomatrix demonstrated a slow biodegradation rate (0.374967 ± 0.031 mg/h), adequate water absorption (1078.734 ± 42.33%), reasonable water vapour transmission rate (WVTR) (724.6467 ± 70.69 g/m2 h) and porous (102.5944 ± 28.21%). The bilayer biomatrix also exhibited an excellent crosslinking degree and was mechanically robust. Besides, the elastin releasing study presented an acceptable rate post-integration with hybrid biomatrix. Therefore, the ready-to-use bilayer biomatrix will benefit therapeutic effects as an alternative treatment for future diabetic skin wound management.
Collapse
Affiliation(s)
- Izzat Zulkiflee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - M. F. Mohd Razip Wee
- Institute of Microengineering and Nanoelectrics, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Salma Mohamad Yusop
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
28
|
Needleless electrospinning of poly (Ɛ-caprolactone) nanofibers deposited on gelatin film for controlled release of Ibuprofen. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Emerging Antimicrobial and Immunomodulatory Fiber-Based Scaffolding Systems for Treating Diabetic Foot Ulcers. Pharmaceutics 2023; 15:pharmaceutics15010258. [PMID: 36678887 PMCID: PMC9861857 DOI: 10.3390/pharmaceutics15010258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are one of the main complications of diabetes and are characterized by their complexity and severity, which are frequently aggravated by overexpressed inflammatory factors and polymicrobial infections. Most dressing systems offer a passive action in the treatment of DFUs, being frequently combined with antibiotic or immunomodulatory therapies. However, in many instances due to these combined therapies' inability to properly fight microbial presence, and provide a suitable, breathable and moist environment that is also capable of protecting the site from secondary microbial invasions or further harm, aggravation of the wound state is unavoidable and lower limb amputations are necessary. Considering these limitations and knowing of the urgent demand for new and more effective therapeutic systems for DFU care that will guarantee the quality of life for patients, research in this field has boomed in the last few years. In this review, the emerging innovations in DFU dressing systems via fiber-based scaffolds modified with bioactive compounds have been compiled; data focused on the innovations introduced in the last five years (2017-2022). A generalized overview of the classifications and constraints associated with DFUs healing and the bioactive agents, both antimicrobial and immunomodulatory, that can contribute actively to surpass such issues, has also been provided.
Collapse
|
30
|
Su S, Bedir T, Kalkandelen C, Sasmazel HT, Basar AO, Chen J, Ekren N, Gunduz O. A drug-eluting nanofibrous hyaluronic acid-keratin mat for diabetic wound dressing. EMERGENT MATERIALS 2022; 5:1617-1627. [DOI: 10.1007/s42247-022-00418-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2025]
|
31
|
Therapeutic Textiles Functionalized with Keratin-Based Particles Encapsulating Terbinafine for the Treatment of Onychomycosis. Int J Mol Sci 2022; 23:ijms232213999. [PMID: 36430474 PMCID: PMC9699589 DOI: 10.3390/ijms232213999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Onychomycosis is the most common nail fungal infection worldwide. There are several therapy options available for onychomycosis, such as oral antifungals, topicals, and physical treatments. Terbinafine is in the frontline for the treatment of onychomycosis; however, several adverse effects are associated to its oral administration. In this work, innovative keratin-based carriers encapsulating terbinafine were designed to overcome the drawbacks related to the use this drug. Therapeutic textiles functionalized with keratin-based particles (100% keratin; 80% keratin/20% keratin-PEG) encapsulating terbinafine were developed. The controlled release of terbinafine from the functionalized textiles was evaluated against different mimetic biologic solutions (PBS buffer-pH = 7.4, micellar solution and acidic sweat solution-pH = 4.3). The modification of keratin with polyethylene glycol (PEG) moieties favored the release of terbinafine at the end of 48 h for all the solution conditions. When the activity of functionalized textiles was tested against Trichophyton rubrum, a differentiated inhibition was observed. Textiles functionalized with 80% keratin/20% keratin-PEG encapsulating terbinafine showed a 2-fold inhibition halo compared with the textiles containing 100% keratin-encapsulating terbinafine. No activity was observed for the textiles functionalized with keratin-based particles without terbinafine. The systems herein developed revealed therapeutic potential towards nail fungal infections, taking advantage of keratin-based particles affinity to keratin structures and of the keratinase activity of T. rubrum.
Collapse
|
32
|
Shams F, Moravvej H, Hosseinzadeh S, Mostafavi E, Bayat H, Kazemi B, Bandehpour M, Rostami E, Rahimpour A, Moosavian H. Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: in vitro and in vivo studies. Sci Rep 2022; 12:18529. [PMID: 36323953 PMCID: PMC9630276 DOI: 10.1038/s41598-022-23304-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/29/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts are the main cells of connective tissue and have pivotal roles in the proliferative and maturation phases of wound healing. These cells can secrete various cytokines, growth factors, and collagen. Vascular endothelial growth factor (VEGF) is a unique factor in the migration process of fibroblast cells through induces wound healing cascade components such as angiogenesis, collagen deposition, and epithelialization. This study aimed to create VEGF165 overexpressing fibroblast cells to evaluate angiogenesis function in wound healing. In vitro, a novel recombinant expression vector, pcDNA3.1(-)-VEGF, was produced and transfected into the fibroblast cells. Following selecting fibroblast cells with hygromycin, recombinant cells were investigated in terms of VEGF expression by quantifying and qualifying methods. Mechanical, physical, and survival properties of polyurethane-cellulose acetate (PU-CA) scaffold were investigated. Finally, in vivo, the angiogenic potential was evaluated in four groups containing control, PU-CA, PU-CA with fibroblast cells, and VEGF-expressing cells on days 0, 2, 5, 12 and 15. Wound biopsies were harvested and the healing process was histopathologically evaluated on different days. qRT-PCR showed VEGF overexpression (sevenfold) in genetically-manipulated cells compared to fibroblast cells. Recombinant VEGF expression was also confirmed by western blotting. Manipulated fibroblast cells represented more angiogenesis than other groups on the second day after surgery, which was also confirmed by the antiCD31 antibody. The percentage of wound closure area on day 5 in genetically-manipulated Hu02 and Hu02 groups showed a significant reduction of wound area compared to other groups. These findings indicate that overexpression of VEGF165 in fibroblast cells results in enhanced angiogenesis and formation of granulated tissue in the early stage of the healing process, which can show its therapeutic potential in patients with impaired wound healing and also provide functional support for gene therapy.
Collapse
Affiliation(s)
- Forough Shams
- grid.411600.2Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Moravvej
- grid.411600.2Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- grid.411600.2Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- grid.168010.e0000000419368956Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA USA ,grid.168010.e0000000419368956Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
| | - Hadi Bayat
- grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Kazemi
- grid.411600.2Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- grid.411600.2Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Rostami
- grid.412502.00000 0001 0686 4748Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Azam Rahimpour
- grid.411600.2Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Moosavian
- grid.46072.370000 0004 0612 7950Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
33
|
Song Z, Wang J, Tan S, Gao J, Wang L. Conductive biomimetic bilayer fibrous scaffold for skin regeneration. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
34
|
A 3D bioprinted decellularized extracellular matrix/gelatin/quaternized chitosan scaffold assembling with poly(ionic liquid)s for skin tissue engineering. Int J Biol Macromol 2022; 220:1253-1266. [PMID: 36041579 DOI: 10.1016/j.ijbiomac.2022.08.149] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022]
Abstract
Currently, a suitable bioink for 3D bioprinting and capable of mimicking the microenvironment of native skin and preventing bacterial infection remains a major challenge in skin tissue engineering. In this study, we prepared a tissue-specific extracellular matrix-based bioink, and dECM/Gel/QCS (dGQ) 3D scaffold assembling with poly(ionic liquid)s (PILs) (dGQP) was obtained by an extrusion 3D bioprinting technology and dynamic hydrogen bonding method. The morphologies, mechanical properties, porosity, hydrophilicity, biodegradation, hemostatic effect, antibacterial ability, and biocompatibility of the hybrid scaffolds were characterized and evaluated. Results showed that the rapid release (2 h) of PILs on the dGQP scaffold can quickly kill gram-negative (E. coli) and gram-positive (S. aureus) bacteria with almost 100 % antibacterial activity and maintained a stable sterile environment for a long time (7 d), which was superior to the dGQ scaffold. The hemostasis and hemolysis test showed that the dGQP scaffold had a good hemostatic effect and excellent hemocompatibility. In vitro cytocompatibility studies showed that although the cell growth on dGQP scaffold was slow in the early stage, the cells proliferated rapidly since day 4 and had high ECM secretion at day 7. Overall, this advanced dGQP scaffold has a considerable potential to be applied in skin tissue engineering.
Collapse
|
35
|
Huang C, Xu X, Fu J, Yu DG, Liu Y. Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing. Polymers (Basel) 2022; 14:3266. [PMID: 36015523 PMCID: PMC9415690 DOI: 10.3390/polym14163266] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 02/07/2023] Open
Abstract
Bleeding control plays a very important role in worldwide healthcare, which also promotes research and development of wound dressings. The wound healing process involves four stages of hemostasis, inflammation, proliferation and remodeling, which is a complex process, and wound dressings play a huge role in it. Electrospinning technology is simple to operate. Electrospun nanofibers have a high specific surface area, high porosity, high oxygen permeability, and excellent mechanical properties, which show great utilization value in the manufacture of wound dressings. As one of the most popular reactive and functional synthetic polymers, polyacrylonitrile (PAN) is frequently explored to create nanofibers for a wide variety of applications. In recent years, researchers have invested in the application of PAN nanofibers in wound dressings. Research on spun nanofibers is reviewed, and future development directions and prospects of electrospun PAN nanofibers for wound dressings are proposed.
Collapse
Affiliation(s)
- Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xizi Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junhao Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanbo Liu
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
36
|
Carayon I, Szarlej P, Gnatowski P, Piłat E, Sienkiewicz M, Glinka M, Karczewski J, Kucińska-Lipka J. Polyurethane based hybrid ciprofloxacin-releasing wound dressings designed for skin engineering purpose. Adv Med Sci 2022; 67:269-282. [PMID: 35841880 DOI: 10.1016/j.advms.2022.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Even in the 21st century, chronic wounds still pose a major challenge due to potentially inappropriate treatment options, so the latest wound dressings are hybrid systems that enable clinical management, such as a hybrid of hydrogels, antibiotics and polymers. These wound dressings are mainly used for chronic and complex wounds, which can easily be infected by bacteria. MATERIALS AND METHODS Six Composite Porous Matrices (CPMs) based on polyurethane (PUR) in alliance with polylactide (PLAs) and poly(vinyl alcohol) (PVA) were prepared and analyzed using optical microscopy. Three different types of hydrogels and their Ciprofloxacin (Cipro) modified variants' ratios were prepared and analyzed using FTIR, SEM and EDX techniques. Six Hybrid Cipro-Releasing Hydrogel Wound Dressings (H-CRWDs) were also prepared and underwent short-term degradation, Cipro release, microbiology and cell viability measurements. RESULTS Average porosity of CPMs was in the range of 69-81%. The pore size of the obtained CPMs was optimal for skin regeneration. Short-term degradation studies revealed degradability in physiological conditions regardless of sample type. A meaningful release was also observed even in short time (21.76 ± 0.64 μg/mL after 15 min). Microbiological tests showed visible inhibition zones. Cell viability tests proved that the obtained H-CRWDs were biocompatible (over 85% of cells). CONCLUSIONS A promising hybrid wound dressing was labeled. Simple and cost-effective methods were used to obtain microbiologically active and biocompatible dressings. The results were of importance for the design and development of acceptable solutions in the management of chronic wounds of high potential for infection.
Collapse
Affiliation(s)
- Iga Carayon
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Paweł Szarlej
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Przemysław Gnatowski
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Edyta Piłat
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Maciej Sienkiewicz
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Marta Glinka
- Department of Analytical Chemistry, Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Gdansk, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymers Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
37
|
Zhang Y, Dai C, Yuan J, Wang P. A bacteriostatic and hemostatic medical dressing based on PEG modified keratin/carboxymethyl chitosan. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2099392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yuting Zhang
- Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, China
| | - Chenlu Dai
- Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, China
| | - Jiugang Yuan
- Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, China
| | - Ping Wang
- Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, China
| |
Collapse
|
38
|
Chen J, He J, Yang Y, Qiao L, Hu J, Zhang J, Guo B. Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomater 2022; 146:119-130. [PMID: 35483628 DOI: 10.1016/j.actbio.2022.04.041] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/20/2022]
Abstract
The development of compressible, stretchable and self-healing hydrogel dressings with good adhesive, antibacterial and angiogenesis properties is needed to promote the regeneration of diabetic wounds in clinical applications. In this work, a series of self-healing, adhesive and antibacterial hydrogels based on gelatin methacrylate (GelMA), adenine acrylate (AA), and CuCl2 were designed through covalent bonding, coordination complexation of Cu2+ and carboxyl groups and hydrogen bonding to promote diabetic wound healing. These hydrogels exhibit efficient self-healing properties, remarkable fatigue resistance, and good adhesive properties due to the hydrogen bond and the metal-ligand coordination provided by the Cu2+ and the carboxyl group. The GelMA/AA/Cu1.0 hydrogel (containing 1.0 mg/mL Cu2+) with well-balanced biocompatibility and antibacterial properties exhibited efficient hemostatic performance in a mouse liver trauma model and significantly promoted the healing process in a full-thickness skin diabetic wound model. The immunohistochemistry results showed that the GelMA/AA/Cu1.0 hydrogel can promote regular epithelialization and collagen deposition when compared to the TegadermTM Film, GelMA hydrogel, and GelMA/AA/Cu0 hydrogel. The immunofluorescence results confirmed that the GelMA/AA/Cu1.0 hydrogel can reduce the expression of proinflammatory factors and promote angiogenesis. In conclusion, the GelMA/AA/Cu hydrogel is an effective wound dressing to promote the healing process of diabetic skin wounds. STATEMENT OF SIGNIFICANCE: Diabetic wounds exhibit an extremely high risk of bacterial infection and poor angiogenesis in a high-sugar environment, hindering their healing process. Hydrogel wound dressings are a promising wound care material that need to have stable and long-lasting adhesive properties, avoid shedding, provide lasting protection to wounds, antibacterial properties and promote angiogenesis. In this study, a series of self-healing, adhesive, and antibacterial hydrogels based on gelatin methacrylate (GelMA), acrylated adenine (AA), and CuCl2 were designed and synthesized via free radical polymerization, hydrogen bond, and ionic bond to promote diabetic wound healing. Overall, GelMA/AA/Cu hydrogels are promising materials to promote diabetic wound healing.
Collapse
|
39
|
Ijaola AO, Akamo DO, Damiri F, Akisin CJ, Bamidele EA, Ajiboye EG, Berrada M, Onyenokwe VO, Yang SY, Asmatulu E. Polymeric biomaterials for wound healing applications: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1998-2050. [PMID: 35695023 DOI: 10.1080/09205063.2022.2088528] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic wounds have been a global health threat over the past few decades, requiring urgent medical and research attention. The factors delaying the wound-healing process include obesity, stress, microbial infection, aging, edema, inadequate nutrition, poor oxygenation, diabetes, and implant complications. Biomaterials are being developed and fabricated to accelerate the healing of chronic wounds, including hydrogels, nanofibrous, composite, foam, spongy, bilayered, and trilayered scaffolds. Some recent advances in biomaterials development for healing both chronic and acute wounds are extensively compiled here. In addition, various properties of biomaterials for wound-healing applications and how they affect their performance are reviewed. Based on the recent literature, trilayered constructs appear to be a convincing candidate for the healing of chronic wounds and complete skin regeneration because they mimic the full thickness of skin: epidermis, dermis, and the hypodermis. This type of scaffold provides a dense superficial layer, a bioactive middle layer, and a porous lower layer to aid the wound-healing process. The hydrophilicity of scaffolds aids cell attachment, cell proliferation, and protein adhesion. Other scaffold characteristics such as porosity, biodegradability, mechanical properties, and gas permeability help with cell accommodation, proliferation, migration, differentiation, and the release of bioactive factors.
Collapse
Affiliation(s)
| | - Damilola O Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, USA
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassam II of Casablanca, Casablanca, Morocco
| | | | | | | | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassam II of Casablanca, Casablanca, Morocco
| | | | - Shang-You Yang
- Department of Orthopaedic Surgery, University of Kansas School of Medicine-Wichita, Wichita, KS, USA.,Biological Sciences, Wichita State University, Wichita, KS, USA
| | - Eylem Asmatulu
- Department of Mechanical Engineering, Wichita State University, Wichita, KS, USA
| |
Collapse
|
40
|
Khaliq T, Sohail M, Shah SA, Mahmood A, Kousar M, Jabeen N. Bioactive and multifunctional keratin-pullulan based hydrogel membranes facilitate re-epithelization in diabetic model. Int J Biol Macromol 2022; 209:1826-1836. [PMID: 35483511 DOI: 10.1016/j.ijbiomac.2022.04.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/05/2022]
Abstract
Hydrogel membrane dressings with multifunctional tunable properties encompassing biocompatibility, anti-bacterial, oxygen permeability, and adequate mechanical strength are highly preferred for wound healing. The present study aimed to develop biopolymer-based hydrogel membranes for the controlled release of therapeutic agent at the wound site. Toward this end we developed Cefotaxime sodium (CTX) loaded keratin (KR)-pullulan (PL) based hydrogel membrane dressings. All membranes show optimized vapor transmission rate (≥1000 g/ m2/day), oxygen permeability >8.2 mg/mL, MTT confirmed good biocompatibility and sufficient tensile strength (17.53 ± 1.9) for being used as a wound dressing. Nonetheless, KR-PL-PVA membranes show controlled CTX release due to enriched hydrophilic moieties which protect the wound from getting infected. In vivo results depict that CTX-KR-PL-PVA membrane group shows a rapid wound closure rate (p < 0.05) with appreciable angiogenesis, accelerated re-epithelization, and excessive collagen deposition at the wound site. These results endorsed that CTX-KR-PL-PVA hydrogel membranes are potential candidates for being used as dressing material in the diabetic wound.
Collapse
Affiliation(s)
- Touba Khaliq
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Superior University, Lahore, Pakistan
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Nazish Jabeen
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| |
Collapse
|
41
|
Agarwal A, Rao GK, Majumder S, Shandilya M, Rawat V, Purwar R, Verma M, Srivastava CM. Natural protein-based electrospun nanofibers for advanced healthcare applications: progress and challenges. 3 Biotech 2022; 12:92. [PMID: 35342680 PMCID: PMC8921418 DOI: 10.1007/s13205-022-03152-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Electrospinning is an electrostatic fiber fabrication technique that operates by the application of a strong electric field on polymer solution or melts. It is used to fabricate fibers whose size lies in the range of few microns to the nanometer range. Historic development of electrospinning has evinced attention due to its outstanding attributes such as small diameter, excellent pore inter-connectivity, high porosity, and high surface-to-volume ratio. This review aims to highlight the theory behind electrospinning and the machine setup with a detailed discussion about the processing parameters. It discusses the latest innovations in natural protein-based electrospun nanofibers for health care applications. Various plant- and animal-based proteins have been discussed with detailed sample preparation and corresponding processing parameters. The usage of these electrospun nanofibers in regenerative medicine and drug delivery has also been discussed. Some technical innovations in electrospinning techniques such as emulsion electrospinning and coaxial electrospinning have been highlighted. Coaxial electrospun core-shell nanofibers have the potential to be utilized as an advanced nano-architecture for sustained release targeted delivery as well as for regenerative medicine. Healthcare applications of nanofibers formed via emulsion and coaxial electrospinning have been discussed briefly. Electrospun nanofibers have still much scope for commercialization on large scale. Some of the available wound-dressing materials have been discussed in brief.
Collapse
Affiliation(s)
- Anushka Agarwal
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Gyaneshwar K. Rao
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Sudip Majumder
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Varun Rawat
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| | - Roli Purwar
- Department of Applied Chemistry, Delhi Technological University, New Delhi, Delhi 110042 India
| | - Monu Verma
- Department of Environmental Engineering, University of Seoul, Seoul, 130743 South Korea
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
- Centre for Polymer Technology, Amity School of Applied Sciences, Amity University Haryana, Gurugram, 122413 India
| |
Collapse
|
42
|
Li T, Sun M, Wu S. State-of-the-Art Review of Electrospun Gelatin-Based Nanofiber Dressings for Wound Healing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:784. [PMID: 35269272 PMCID: PMC8911957 DOI: 10.3390/nano12050784] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023]
Abstract
Electrospun nanofiber materials have been considered as advanced dressing candidates in the perspective of wound healing and skin regeneration, originated from their high porosity and permeability to air and moisture, effective barrier performance of external pathogens, and fantastic extracellular matrix (ECM) fibril mimicking property. Gelatin is one of the most important natural biomaterials for the design and construction of electrospun nanofiber-based dressings, due to its excellent biocompatibility and biodegradability, and great exudate-absorbing capacity. Various crosslinking approaches including physical, chemical, and biological methods have been introduced to improve the mechanical stability of electrospun gelatin-based nanofiber mats. Some innovative electrospinning strategies, including blend electrospinning, emulsion electrospinning, and coaxial electrospinning, have been explored to improve the mechanical, physicochemical, and biological properties of gelatin-based nanofiber mats. Moreover, numerous bioactive components and therapeutic agents have been utilized to impart the electrospun gelatin-based nanofiber dressing materials with multiple functions, such as antimicrobial, anti-inflammation, antioxidation, hemostatic, and vascularization, as well as other healing-promoting capacities. Noticeably, electrospun gelatin-based nanofiber mats integrated with specific functions have been fabricated to treat some hard-healing wound types containing burn and diabetic wounds. This work provides a detailed review of electrospun gelatin-based nanofiber dressing materials without or with therapeutic agents for wound healing and skin regeneration applications.
Collapse
Affiliation(s)
| | | | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (T.L.); (M.S.)
| |
Collapse
|
43
|
Stie MB, Kalouta K, Vetri V, Foderà V. Protein materials as sustainable non- and minimally invasive strategies for biomedical applications. J Control Release 2022; 344:12-25. [PMID: 35182614 DOI: 10.1016/j.jconrel.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/17/2023]
Abstract
Protein-based materials have found applications in a wide range of biomedical fields because of their biocompatibility, biodegradability and great versatility. Materials of different physical forms including particles, hydrogels, films, fibers and microneedles have been fabricated e.g. as carriers for drug delivery, factors to promote wound healing and as structural support for the generation of new tissue. This review aims at providing an overview of the current scientific knowledge on protein-based materials, and selected preclinical and clinical studies will be reviewed in depth as examples of the latest progress within the field of protein-based materials, specifically focusing on non- and minimally invasive strategies mainly for topical application.
Collapse
Affiliation(s)
- Mai Bay Stie
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Kleopatra Kalouta
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Dipartimento di Fisica e Chimica, Università Degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università Degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
44
|
Chen W, Gao Z, He M, Dou Y, Yin G, Ding J. Vapor-phase glutaraldehyde crosslinked waste protein-based nanofiber nonwovens as an environmentally friendly wound dressing. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
45
|
Safdari F, Gholipour MD, Ghadami A, Saeed M, Zandi M. Multi-antibacterial agent-based electrospun polycaprolactone for active wound dressing. Prog Biomater 2022; 11:27-41. [PMID: 35094315 DOI: 10.1007/s40204-021-00176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022] Open
Abstract
Today, due to the greater knowledge of the side effects of chemical drugs and the favorable pharmacological properties of herbal compounds, the use of these compounds is increasing. Since wounds need fast and efficient healing, wound dressing fabrication methods play an important role in wound healing. In this research, electrospinning process was used to prepare samples. Natural antibacterial compounds, such as curcumin, piperine, eugenol, and rutin were loaded in electrospun nano-fibrous based on polycaprolactone. Three-component novel systems of curcumin-piperine-eugenol (PCPiEu), and curcumin-piperine-rutin (PCPiR) were designed and prepared. Their synergistic effect was investigated and also compared with one- and two-component systems. The results showed that medium diameter nanofibers of PCPiEu and PCPiR samples was 198.38 and 142.60, respectively, and they were obtained in smooth, uniform and bead free morphology using optimization of process parameters. The amount of water absorption and water vapor permeability of the three-component samples were in the appropriate range (8.33-10.42 mg cm2 h-1) for wound dressings. The mechanical properties of samples were reduced compared to the control sample, which required further investigation. Antibacterial tests showed good results for partial toxicity of PCPiEu and PCPiR samples. Antibacterial tests showed minor toxicity in PCPiR samples and good results were obtained for PCPiEu samples. In addition, the results showed that PCPiEu and PCPiR samples exhibited antibacterial activity against Gram-positive bacterium Staphylococcus aureus and Gram-negative Enterococcus faecalis bacterium, so that killing ability of 74% and 75% against Gram-positive bacterium and 99.47% and 96.88% against Gram-negative bacterium were obtained for these three systems, respectively.
Collapse
Affiliation(s)
- Fatemeh Safdari
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Darya Gholipour
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Azam Ghadami
- Department of Chemical and Polymer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mahdi Saeed
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran. .,Department of Biomedical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Mojgan Zandi
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
46
|
Li M, Aveyard J, Doherty KG, Deller RC, Williams RL, Kolegraff KN, Kaye SB, D’Sa RA. Antimicrobial Nitric Oxide-Releasing Electrospun Dressings for Wound Healing Applications. ACS MATERIALS AU 2022; 2:190-203. [PMID: 36855758 PMCID: PMC9888637 DOI: 10.1021/acsmaterialsau.1c00056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonhealing and chronic wounds represent a major problem for the quality of life of patients and have cost implications for healthcare systems. The pathophysiological mechanisms that prevent wound healing are usually multifactorial and relate to patient overall health and nutrition, vascularity of the wound bed, and coexisting infection/colonization. Bacterial infections are one of the predominant issues that can stall a wound, causing it to become chronic. Successful wound healing often depends on weeks or months of antimicrobial therapy, but this is problematic given the rise in multidrug-resistant bacteria. As such, alternatives to antibiotics are desperately needed to aid the healing of chronic, and even acutely infected wounds. Nitric oxide (NO) kills bacteria through a variety of mechanisms, and thus, bacteria have shown no tendency to develop resistance to NO as a therapeutic agent and therefore can be a good alternative to antibiotic therapy. In this paper, we report on the development of NO-releasing electrospun membranes fabricated from polycaprolactone (PCL)/gelatin blends and optimized to reduce bacterial infection. The NO payload in the membranes was directly related to the number of amines (and hence the amount of gelatin) in the blend. Higher NO payloads corresponded with a higher degree of antimicrobial efficacy. No cytotoxicity was observed for electrospun membranes, and an in vitro wound closure assay demonstrated closure within 16 h. The results presented here clearly indicate that these NO-releasing electrospun membranes hold significant promise as wound dressings due to their antimicrobial activity and biocompatibility.
Collapse
Affiliation(s)
- Man Li
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Jenny Aveyard
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Kyle G. Doherty
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Robert C. Deller
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom
| | - Rachel L. Williams
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Keli N. Kolegraff
- Department
of Plastic and Reconstructive Surgery, The
Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, Maryland 21287, United States
| | - Stephen B. Kaye
- Department
of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, United Kingdom
| | - Raechelle A. D’Sa
- School
of Engineering, University of Liverpool, Liverpool L69 3GH, United Kingdom,
| |
Collapse
|
47
|
Lee CH, Song SY, Chung YJ, Choi EK, Jang J, Lee DH, Kim HD, Kim DU, Park CB. Light-Stimulated Carbon Dot Hydrogel: Targeting and Clearing Infectious Bacteria In Vivo. ACS APPLIED BIO MATERIALS 2022; 5:761-770. [PMID: 35020368 DOI: 10.1021/acsabm.1c01157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Infectious bacteria evolve fast into resistance to conventional antimicrobial agents, whereas treatments for drug resistance bacteria progress more slowly. Here, we report a universally applicable photoactivated antimicrobial modality through light-responsive carbon dot-embedding soft hyaluronic acid hydrogel (CDgel). Because of the innate nature of the infectious bacteria that produce hyaluronidase, applied hyaluronic acid-based CDgel breaks down via bacteria and releases carbon dots (CDs) into the infectious sites. The released CDs possess photodynamic capabilities under light irradiation, inducing 1O2 generation and growth inhibition of the infectious bacteria, S. aureus and E. coli (∼99% and ∼97%, respectively), in vitro. In particular, these photodynamic effects of CDs from CDgel have been shown to accelerate the healing of infected wounds in vivo, showing a higher wound regeneration rate as compared to that of untreated wounds. Our work demonstrates that the biocompatible and shape-controllable CDgel possesses therapeutic potential as a treatment modality for the light-driven control of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Chang Heon Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seuk Young Song
- Rare Disease Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - You Jung Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Kyoung Choi
- Rare Disease Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jinhyeong Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dai Heon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hae Dong Kim
- Rare Disease Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dong-Uk Kim
- Rare Disease Research Center, Division of Biomedical Research, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
48
|
Cellulose nanofibers aerogels functionalized with AgO: Preparation, characterization and antibacterial activity. Int J Biol Macromol 2022; 194:58-65. [PMID: 34863833 DOI: 10.1016/j.ijbiomac.2021.11.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022]
Abstract
In the experiment, a chemical oxidation method was used to prepare nano-divalent silver oxide powder with a particle size of about 10 nm. Compared with silver nanoparticles and monovalent silver compounds, nano‑silver oxide has better antibacterial properties. The cellulose antibacterial aerogel was prepared by combining it with cellulose nanofibrils and using freeze-thaw cycles and freeze-drying methods. The microscopic morphology, mechanical properties, in vitro release of silver ions, antibacterial properties and biodegradability of composite aerogels were studied. The porosity of the cellulose antibacterial aerogel can reach 94%, the swelling rate was greater than 1000%, and the pore size was between 13 and 15 nm, which showed a larger storage space and attachment site for the aerogel. The diameter of the inhibition zone of the aerogel against Escherichia coli and Staphylococcus aureus was 23 mm and 20 mm respectively, and the aerogels still exhibited significant antibacterial activities with more than 99.5% reductions in Escherichia coli and Staphylococcus aureus, which shows highly effective antibacterial properties. This research proposes an economical and novel preparation method of antibacterial cellulose aerogel, making it a candidate material with high efficiency, broad-spectrum antibacterial and more suitable for life needs.
Collapse
|
49
|
Design of Asymmetric Nanofibers-Membranes Based on Polyvinyl Alcohol and Wool-Keratin for Wound Healing Applications. J Funct Biomater 2021; 12:jfb12040076. [PMID: 34940555 PMCID: PMC8706361 DOI: 10.3390/jfb12040076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023] Open
Abstract
The development of asymmetric membranes—i.e., matching two fibrous layers with selected composition and morphological properties to mimic both the epidermis and dermis—currently represents one of the most promising strategies to support skin regeneration during the wound healing process. Herein, a new asymmetric platform fabricated by a sequential electrospinning process was investigated. The top layer comprises cross-linked polyvinylalcohol (PVA) nanofibers (NFs)—from water solution—to replicate the epidermis’s chemical stability and wettability features. Otherwise, the bottom layer is fabricated by integrating PVA with wool-keratin extracted via sulfitolysis. This protein is a biocompatibility polymer with excellent properties for dermis-like structures. Morphological characterization via SEM supported by image analysis showed that the asymmetric membrane exhibited average fiber size—max frequency diameter 450 nm, range 1.40 μm—and porosity suitable for the healing process. FTIR-spectrums confirmed the presence of keratin in the bottom layer and variations of keratin-secondary structures. Compared with pure PVA-NFs, keratin/PVA-NFs showed a significant improvement in cell adhesion in in vitro tests. In perspective, these asymmetric membranes could be promisingly used to confine active species (i.e., antioxidants, antimicrobials) to the bottom layer to support specific cell activities (i.e., proliferation, differentiation) in wound healing applications.
Collapse
|
50
|
Gul A, Gallus I, Tegginamath A, Maryska J, Yalcinkaya F. Electrospun Antibacterial Nanomaterials for Wound Dressings Applications. MEMBRANES 2021; 11:908. [PMID: 34940410 PMCID: PMC8707140 DOI: 10.3390/membranes11120908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022]
Abstract
Chronic wounds are caused by bacterial infections and create major healthcare discomforts; to overcome this issue, wound dressings with antibacterial properties are to be utilized. The requirements of antibacterial wound dressings cannot be fulfilled by traditional wound dressing materials. Hence, to improve and accelerate the process of wound healing, an antibacterial wound dressing is to be designed. Electrospun nanofibers offer a promising solution to the management of wound healing, and numerous options are available to load antibacterial compounds onto the nanofiber webs. This review gives us an overview of some recent advances of electrospun antibacterial nanomaterials used in wound dressings. First, we provide a brief overview of the electrospinning process of nanofibers in wound healing and later discuss electrospun fibers that have incorporated various antimicrobial agents to be used in wound dressings. In addition, we highlight the latest research and patents related to electrospun nanofibers in wound dressing. This review also aims to concentrate on the importance of nanofibers for wound dressing applications and discuss functionalized antibacterial nanofibers in wound dressing.
Collapse
Affiliation(s)
- Aysegul Gul
- Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Izabela Gallus
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Akshat Tegginamath
- Faculty of Mechanical Engineering, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic;
| | - Jiri Maryska
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| | - Fatma Yalcinkaya
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 46117 Liberec, Czech Republic; (I.G.); (J.M.)
| |
Collapse
|