1
|
Fallah A, Ghiassi Tarzi B, Asadi G, Farhoodi M. Fabrication of reusable 3D hierarchically porous air filtration based on multifunctional nanoclay-embedded cellulose electrospun nanofiber. Int J Biol Macromol 2024; 279:135391. [PMID: 39245111 DOI: 10.1016/j.ijbiomac.2024.135391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
A special nano-filter made of cellulose acetate (CA) was developed, including a 3D hierarchically porous structure. The nano-filter utilized nano-clay (hydrophilic bentonite (NCB)), comprising 0.5-1.5 % of its weight. The objective of this study was to evaluate the adsorption properties of four carcinogenic polyaromatic hydrocarbons (benz[α] anthracene (BαA), chrysene (CHR), benzo[β]fluoranthene (BβF), and benzo[α] pyrene (BαP)) during the rice smoking process. The evaluation of the nano-filter encompassed an analysis of its mechanical attributes, surface qualities, morphology, and adsorption efficacy. The experimental results demonstrated that adding NCB to the nano-filter composition of CA led to substantial improvements in tensile strength, elongation at break, and maximum load stress values compared to the control group. The nano-filter displayed a uniform and homogeneously distributed arrangement of nanoparticles. The GC-MS analysis demonstrated that the enhanced nano-filter, comprising nano-clay particles, successfully absorbed the polycyclic aromatic hydrocarbons (PAHs) over a 21-day rice smoking period. The performance, removal efficiency and porosity during repetitive filtering and cleaning cycles in the rice samples at different smoking times were approved reusability of CA-NCB filter. It is recommended to explore the application of hybrid CA nano-filter s, namely those containing NCB, as a cutting-edge filtration technique for smoked food products.
Collapse
Affiliation(s)
- Amir Fallah
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Babak Ghiassi Tarzi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Gholamhassan Asadi
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Farhoodi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences, Food Science and Technology, Shahid Beheshti University of Medical Sciences, Iran
| |
Collapse
|
2
|
Hu C, Chen J, Chen W, Tang W, Wang G, Pan F, Yin Z. Multiobjective Optimization Strategy for Enhancing the Efficiency and Quality of Organic Thin-Film Manufacturing with Electrohydrodynamic Atomization Coating. ACS OMEGA 2024; 9:38970-38988. [PMID: 39310156 PMCID: PMC11411545 DOI: 10.1021/acsomega.4c05402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Electrohydrodynamic atomization coating technology is well-suited for micro-/nanoscale thin-film additive manufacturing. However, there are still some challenges in quality control and parameter adjustment during the coating process. Especially when coating on nonconductive and nonhydrophilic substrates, film quality and thickness uniformity are difficult to control. This paper proposes an optimization strategy for enhancing the efficiency and quality of thin-film manufacturing on nonconductive, nonhydrophilic glass substrates. In this paper, a visual inspection system was developed for in situ inspection and identification of droplet deposition states in the substrate surface. Then, the statistical relationship between the operating parameters and the quality of the deposition state was analyzed by response surface methodology. On this basis, machine learning models and intelligent recommendation frameworks for small data sets were developed to rapidly optimize operating parameters and improve the quality of thin-film coating. Optimization strategy developed by applying the principles of statistical modeling, analysis of variance, and global optimization are more efficient and less costly than traditional parameter screening methods. The experimental results show that optimum deposition quality can be obtained with the recommended operating parameters. And, validation results show a 12.8% improvement in film thickness uniformity. At the same time, no mura defects appeared on the thin-film surface. The proposed optimization strategy can improve the efficiency and quality of additive manufacturing of micro and nano thin films and is beneficial for advancing industrial applications of the electrohydrodynamic atomization coating.
Collapse
Affiliation(s)
- Chao Hu
- State
Key Laboratory of Intelligent Manufacturing Equipment and Technology,
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiankui Chen
- State
Key Laboratory of Intelligent Manufacturing Equipment and Technology,
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wei Chen
- State
Key Laboratory of Intelligent Manufacturing Equipment and Technology,
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wei Tang
- Wuhan
National Innovation Technology Optoelectronics Equipment Co., Ltd, Wuhan 430074, PR China
| | - Guozhen Wang
- State
Key Laboratory of Intelligent Manufacturing Equipment and Technology,
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Fei Pan
- State
Key Laboratory of Intelligent Manufacturing Equipment and Technology,
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhouping Yin
- State
Key Laboratory of Intelligent Manufacturing Equipment and Technology,
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| |
Collapse
|
3
|
Bergamasco S, Fiaschini N, Hein LA, Brecciaroli M, Vitali R, Romagnoli M, Rinaldi A. Electrospun PCL Filtration Membranes Enhanced with an Electrosprayed Lignin Coating to Control Wettability and Anti-Bacterial Properties. Polymers (Basel) 2024; 16:674. [PMID: 38475357 DOI: 10.3390/polym16050674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
This study reports on the two-step manufacturing process of a filtration media obtained by first electrospinning a layer of polycaprolactone (PCL) non-woven fibers onto a paper filter backing and subsequently coating it by electrospraying with a second layer made of pure acidolysis lignin. The manufacturing of pure lignin coatings by solution electrospraying represents a novel development that requires fine control of the underlying electrodynamic processing. The effect of increasing deposition time on the lignin coating was investigated for electrospray time from 2.5 min to 120 min. Microstructural and physical characterization included SEM, surface roughness analysis, porosity tests, permeability tests by a Gurley densometer, ATR-FTIR analysis, and contact angle measurements vs. both water and oil. The results indicate that, from a functional viewpoint, such a natural coating endowed the membrane with an amphiphilic behavior that enabled modulating the nature of the bare PCL non-woven substrate. Accordingly, the intrinsic hydrophobic behavior of bare PCL electrospun fibers could be reduced, with a marked decrease already for a thin coating of less than 50 nm. Instead, the wettability of PCL vs. apolar liquids was altered in a less predictable manner, i.e., producing an initial increase of the oil contact angles (OCA) for thin lignin coating, followed by a steady decrease in OCA for higher densities of deposited lignin. To highlight the effect of the lignin type on the results, two grades of oak (AL-OA) of the Quercus cerris L. species and eucalyptus (AL-EU) of the Eucalyptus camaldulensis Dehnh species were compared throughout the investigation. All grades of lignin yielded coatings with measurable antibacterial properties, which were investigated against Staphylococcus aureus and Escherichia coli, yielding superior results for AL-EU. Remarkably, the lignin coatings did not change overall porosity but smoothed the surface roughness and allowed modulating air permeability, which is relevant for filtration applications. The findings are relevant for applications of this abundant biopolymer not only for filtration but also in biotechnology, health, packaging, and circular economy applications in general, where the reuse of such natural byproducts also brings a fundamental demanufacturing advantage.
Collapse
Affiliation(s)
- Sara Bergamasco
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | | | | | | | - Roberta Vitali
- SSPT-TECS-TEB Laboratory, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| | - Manuela Romagnoli
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Antonio Rinaldi
- SSPT-PROMAS-MATPRO Laboratory, ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
4
|
Rahbari S, Tavakolipour H, Kalbasi-Ashtari A. Application of electro-spraying technique and mathematical modelling for nanoencapsulation of curcumin. Heliyon 2024; 10:e25680. [PMID: 38390193 PMCID: PMC10881552 DOI: 10.1016/j.heliyon.2024.e25680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Electro-spraying Process (ESP) was used to coat extracted curcumin (CUR) with milk protein isolate (MPI) at equal concentration. The variables were applied voltage (AV), pumps flow rate ratio (PFRR) for coating (CUR with MPI), travelling distance (TD for coating and dehydration), ESE and MPI concentrations. They changed respectively from 7.5 to 27.5 kV, 2-10 times, and 5-25 cm, and 1.5-3.5% (w/w). When the MPI concentration, TD, PFRR, and AV of ESE reached respectively to 2.56 %, 16.64 cm, 6.77 times, and 19.06 kV; the resulting nanoparticle diameter and encapsulation efficiency of CUR coated (with MPI) became 232 nm (minimum) and 80.7% (maximum) values. The scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed that the produced nanoparticles were bead-free, homogeneous, smooth surfaces, and >50% uniformity. While the nanoparticles of CUR had >70% heat resistance (up to 10 min at 120 °C against degradation), it had more than 100% antioxidant capacity in aqueous solution than its free form (because of its appropriate and intact coating). In-vitro studies showed that the nano encapsulated particles released >80% of CUR into the intestinal tract without significant release in simulated gastric fluid.
Collapse
Affiliation(s)
- Siamak Rahbari
- Islamic Azad University (Tehran Campus), City of Tehran, Iran
| | | | | |
Collapse
|
5
|
Dang Z, Ma X, Yang Z, Wen X, Zhao P. Electrospun Nanofiber Scaffolds Loaded with Metal-Based Nanoparticles for Wound Healing. Polymers (Basel) 2023; 16:24. [PMID: 38201687 PMCID: PMC10780332 DOI: 10.3390/polym16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Failures of wound healing have been a focus of research worldwide. With the continuous development of materials science, electrospun nanofiber scaffolds loaded with metal-based nanoparticles provide new ideas and methods for research into new tissue engineering materials due to their excellent antibacterial, anti-inflammatory, and wound healing abilities. In this review, the stages of extracellular matrix and wound healing, electrospun nanofiber scaffolds, metal-based nanoparticles, and metal-based nanoparticles supported by electrospun nanofiber scaffolds are reviewed, and their characteristics and applications are introduced. We discuss in detail the current research on wound healing of metal-based nanoparticles and electrospun nanofiber scaffolds loaded with metal-based nanoparticles, and we highlight the potential mechanisms and promising applications of these scaffolds for promoting wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (Z.D.); (X.M.); (Z.Y.); (X.W.)
| |
Collapse
|
6
|
Mamun A, Kiari M, Sabantina L. A Recent Review of Electrospun Porous Carbon Nanofiber Mats for Energy Storage and Generation Applications. MEMBRANES 2023; 13:830. [PMID: 37888002 PMCID: PMC10608773 DOI: 10.3390/membranes13100830] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Electrospun porous carbon nanofiber mats have excellent properties, such as a large surface area, tunable porosity, and excellent electrical conductivity, and have attracted great attention in energy storage and power generation applications. Moreover, due to their exceptional properties, they can be used in dye-sensitized solar cells (DSSCs), membrane electrodes for fuel cells, catalytic applications such as oxygen reduction reactions (ORRs), hydrogen evolution reactions (HERs), and oxygen evolution reactions (OERs), and sensing applications such as biosensors, electrochemical sensors, and chemical sensors, providing a comprehensive insight into energy storage development and applications. This study focuses on the role of electrospun porous carbon nanofiber mats in improving energy storage and generation and contributes to a better understanding of the fabrication process of electrospun porous carbon nanofiber mats. In addition, a comprehensive review of various alternative preparation methods covering a wide range from natural polymers to synthetic carbon-rich materials is provided, along with insights into the current literature.
Collapse
Affiliation(s)
- Al Mamun
- Junior Research Group “Nanomaterials”, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences and Arts, 33619 Bielefeld, Germany
| | - Mohamed Kiari
- Department of Physical Chemistry, Institute of Materials, University of Alicante, 03080 Alicante, Spain
| | - Lilia Sabantina
- Faculty of Apparel Engineering and Textile Processing, Berlin University of Applied Sciences—HTW Berlin, Hochschule für Technik und Wirtschaft Berlin, 12459 Berlin, Germany
| |
Collapse
|
7
|
Razzaq MY, Balk M, Mazurek-Budzyńska M, Schadewald A. From Nature to Technology: Exploring Bioinspired Polymer Actuators via Electrospinning. Polymers (Basel) 2023; 15:4029. [PMID: 37836078 PMCID: PMC10574948 DOI: 10.3390/polym15194029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Nature has always been a source of inspiration for the development of novel materials and devices. In particular, polymer actuators that mimic the movements and functions of natural organisms have been of great interest due to their potential applications in various fields, such as biomedical engineering, soft robotics, and energy harvesting. During recent years, the development and actuation performance of electrospun fibrous meshes with the advantages of high permeability, surface area, and easy functional modification, has received extensive attention from researchers. This review covers the recent progress in the state-of-the-art electrospun actuators based on commonly used polymers such as stimuli-sensitive hydrogels, shape-memory polymers (SMPs), and electroactive polymers. The design strategies inspired by nature such as hierarchical systems, layered structures, and responsive interfaces to enhance the performance and functionality of these actuators, including the role of biomimicry to create devices that mimic the behavior of natural organisms, are discussed. Finally, the challenges and future directions in the field, with a focus on the development of more efficient and versatile electrospun polymer actuators which can be used in a wide range of applications, are addressed. The insights gained from this review can contribute to the development of advanced and multifunctional actuators with improved performance and expanded application possibilities.
Collapse
Affiliation(s)
- Muhammad Yasar Razzaq
- Institut für Kunststofftechnologie und Recycling e. V., Gewerbepark 3, D-6369 Südliches Anhalt, Germany
| | - Maria Balk
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, Kantstraße 55, D-14513 Teltow, Germany
| | | | - Anke Schadewald
- Institut für Kunststofftechnologie und Recycling e. V., Gewerbepark 3, D-6369 Südliches Anhalt, Germany
| |
Collapse
|
8
|
Li Y, Jin D, Fan Y, Zhang K, Yang T, Zou C, Yin A. Preparation and performance of random- and oriented-fiber membranes with core-shell structures via coaxial electrospinning. Front Bioeng Biotechnol 2023; 10:1114034. [PMID: 36698642 PMCID: PMC9868300 DOI: 10.3389/fbioe.2022.1114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
The cells and tissue in the human body are orderly and directionally arranged, and constructing an ideal biomimetic extracellular matrix is still a major problem to be solved in tissue engineering. In the field of the bioresorbable vascular grafts, the long-term functional prognosis requires that cells first migrate and grow along the physiological arrangement direction of the vessel itself. Moreover, the graft is required to promote the formation of neointima and the development of the vessel walls while ensuring that the whole repair process does not form a thrombus. In this study, poly (l-lactide-co-ε-caprolactone) (PLCL) shell layers and polyethylene oxide (PEO) core layers with different microstructures and loaded with sodium tanshinone IIA sulfonate (STS) were prepared by coaxial electrospinning. The mechanical properties proved that the fiber membranes had good mechanical support, higher than that of the human aorta, as well as great suture retention strengths. The hydrophilicity of the oriented-fiber membranes was greatly improved compared with that of the random-fiber membranes. Furthermore, we investigated the biocompatibility and hemocompatibility of different functional fiber membranes, and the results showed that the oriented-fiber membranes containing sodium tanshinone IIA sulfonate had an excellent antiplatelet adhesion effect compared to other fiber membranes. Cytological analysis confirmed that the functional fiber membranes were non-cytotoxic and had significant cell proliferation capacities. The oriented-fiber membranes induced cell growth along the orientation direction. Degradation tests showed that the pH variation range had little change, the material mass was gradually reduced, and the fiber morphology was slowly destroyed. Thus, results indicated the degradation rate of the oriented-fiber graft likely is suitable for the process of new tissue regeneration, while the random-fiber graft with a low degradation rate may cause the material to reside in the tissue for too long, which would impede new tissue reconstitution. In summary, the oriented-functional-fiber membranes possessing core-shell structures with sodium tanshinone IIA sulfonate/polyethylene oxide loading could be used as tissue engineering materials for applications such as vascular grafts with good prospects, and their clinical application potential will be further explored in future research.
Collapse
Affiliation(s)
- Yunhuan Li
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China,Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Dalai Jin
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yongyong Fan
- Department of Materials Engineering, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China,Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Kuihua Zhang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Tao Yang
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Chengyu Zou
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Anlin Yin
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology, College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China,*Correspondence: Anlin Yin,
| |
Collapse
|
9
|
Cao DQ, Liu XD, Han JL, Zhang WY, Hao XD, Iritani E, Katagiri N. Recovery of Extracellular Polymeric Substances from Excess Sludge Using High-Flux Electrospun Nanofiber Membranes. MEMBRANES 2023; 13:74. [PMID: 36676881 PMCID: PMC9862183 DOI: 10.3390/membranes13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The recycling of extracellular polymeric substances (EPSs) from excess sludge in wastewater treatment plants has received increasing attention in recent years. Although membrane separation has great potential for use in EPS concentration and recovery, conventional membranes tend to exhibit low water flux and high energy consumption. Herein, electrospun nanofiber membranes (ENMs) were fabricated using polyvinylidene fluoride (PVDF) and used for the recovery of EPSs extracted from the excess sludge using the cation exchange resin (CER) method. The fabricated ENM containing 14 wt.% PVDF showed excellent properties, with a high average water flux (376.8 L/(m2·h)) and an excellent EPS recovery rate (94.1%) in the dead-end filtration of a 1.0 g/L EPS solution at 20 kPa. The ENMs displayed excellent mechanical strength, antifouling properties, and high reusability after five recycles. The filtration pressure had a negligible effect on the average EPS recovery rate and water flux. The novel dead-end filtration with an EPS filter cake on the ENM surface was effective in removing heavy-metal ions, with the removal rates of Pb2+, Cu2+, and Cr6+ being 89.5%, 73.5%, and 74.6%, respectively. These results indicate the potential of nanofiber membranes for use in effective concentration and recycling of EPSs via membrane separation.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Xiao-Dan Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Jia-Lin Han
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Wen-Yu Zhang
- Institute of Soil Environment and Pollution Remediation, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Eiji Iritani
- Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Nobuyuki Katagiri
- Department of Environmental Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| |
Collapse
|
10
|
Zhang Y, Wang L, Zhao B. Preparation of drug-loaded microspheres with a core-shell structure using silk fibroin and poly lactic-co-glycolic acid and their application. Biomed Mater Eng 2023; 34:503-523. [PMID: 37424458 DOI: 10.3233/bme-230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Advances in bone tissue engineering offer novel options for the regeneration of bone tissue. In the current clinical treatment, the method of accelerating bone tissue regeneration rate by promoting early angiogenesis has been widely accepted. OBJECTIVE This study aimed to develop a long-acting slow-release system using the pro-angiogenic drug tetramethylpyrazine (TMPZ) and pro-osteogenic drug icariin (ICA), which can be administered locally to achieve the sequential release of TMPZ and ICA for better clinically efficiency in the treatment of bone defects. METHODS This study aimed to prepare microspheres with a core-shell structure using two polymers, poly lactic-co-glycolic acid and silk fibroin, by coaxial electrostatic spraying. Based on the therapeutic model for bone defects, the pro-angiogenic drug TMPZ and pro-osteogenic drug ICA were encapsulated in the shell and core layers of the microspheres, respectively. Subsequently, TMPZ and ICA were released sequentially to promote early angiogenesis and late osteogenesis, respectively, at the site of the bone defect. The optimal preparation parameters for preparing the drug-loaded microspheres were identified using the univariate controlled variable method. Additionally, microsphere morphology and core-shell structure, such as physical properties, drug-loading properties, in vitro degradation and drug release patterns, were characterised using scanning electron microscope and laser scanning confocal microscopy. RESULTS The microspheres prepared in this study were well-defined and had a core-shell structure. The hydrophilicity of the drug-loaded microspheres changed compared to the no-load microspheres. Furthermore, in vitro results indicated that the drug-loaded microspheres with high encapsulation and loading efficiencies exhibited good biodegradability and cytocompatibility, slowly releasing the drug for up to three months. CONCLUSION The development of the drug delivery system with a dual-step release mechanism has potential clinical applications and implications in the treatment of bone defects.
Collapse
Affiliation(s)
- Yi Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| | - Bin Zhao
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
11
|
Polyvinylidene fluoride/ginger oil nanofiber scaffold for anticancer treatment: preparation, characterization, and biological evaluation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04338-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Tahami SR, Nemati NH, Keshvari H, Khorasani MT. In vitro and in vivo evaluation of nanofibre mats containing Calendula officinalis extract as a wound dressing. J Wound Care 2022; 31:598-611. [PMID: 35797256 DOI: 10.12968/jowc.2022.31.7.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The present study aims to create Calendula officinalis-loaded nanofibre-based wound dressing materials to enhance the wound healing process. Calendula officinalis is an annual herb native to the Mediterranean region. It is antipyretic, antifungal, antioedema, antidiabetic, anti-inflammatory (wound, oral and pharyngeal mucosa), antispasmodic, treats chronic ocular surface diseases, acts as a stimulant and a diaphoretic. It is also used in the prevention of acute dermatitis, and in the treatment of gastrointestinal ulcers, wounds and burns. METHOD Electrospinning is an effective method for creating nano- and microfibres for biomedical applications. Calendula officinalis (CA) of various concentrations 5%, 10% and 15%)-loaded polyvinyl alcohol (PVA)/sodium alginate (SAlg) nanofibre mats were successfully produced via blend electrospinning. Nanofibre mats were evaluated using: scanning electron microscopy (SEM); Fourier transform infrared spectroscopy (FTIR) analysis; gel content; water vapour transmission rate (WVTR); swelling ratio; in vitro drug release studies; viability evaluation (cell culture and MTT assay); and an in vivo study using male Wistar rats. Rats were divided into three groups (n=3). In each group, rats were inflicted with five full-thickness wounds on the back and were treated with sterile gauze (control), PVA/SAlg nanofibre dressing (CA-free control), PVA/SAlg/CA5%, PVA/SAlg/CA10%, and PVA/SAlg/CA15% nanofibre dressing. RESULTS Results showed that the obtained fibres were smooth with no surface aggregates, indicating complete incorporation of Calendula officinalis. The release of Calendula officinalis from loaded PVA/SAlg fibre mats in the first four hours was burst released and then was constant. PVA/SAlg and PVA/SAlg/CA nanofibres were not toxic to L929 mouse fibroblasts and supported cell attachment and proliferation. The results of the in vivo study showed that the PVA/SAlg/CA10% nanofibre dressing had a higher full-thickness wound healing closure rate compared with the control group on days seven, 14 and 21 after treatment. CONCLUSION The results of this evaluation showed that PVA/SAlg/CA nanofibrous mats could be a candidate as an effective wound dressing; however, the percentage of CA in this compound needs further investigation.
Collapse
Affiliation(s)
- Seyed Rasoul Tahami
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nahid Hassanzadeh Nemati
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Keshvari
- Department of Biomedical Engineering Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Taghi Khorasani
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Department of Biomaterial, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
13
|
Amini A, Karimi M, Rabbani M, Safarifard V. Cobalt-doped g-C3N4/MOF heterojunction composite with tunable band structures for photocatalysis aerobic oxidation of benzyl alcohol. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Cruz-Salas CN, Prieto C, Calderón-Santoyo M, Lagarón JM, Ramos-Hernández JA, Ragazzo-Sánchez JA. Antimutagenic and Antiproliferative Activity of the Coccoloba uvifera L. Extract Loaded in Nanofibers of Gelatin/Agave Fructans Elaborated by Electrospinning. Anticancer Agents Med Chem 2022; 22:2788-2798. [PMID: 35297353 DOI: 10.2174/1871520622666220316161957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Coccoloba uvifera L. species is currently considered an important source of compounds of high biological value such as lupeol, this is related to different biological activities of importance to human health. OBJECTIVE The objective of this study was to encapsulate the C. uvifera extract in nanofibers made with the biopolymers gelatin (G)/high-grade polymerization agave fructans (HDPAF) in the proportions 1:0, 1:1, 1:2, 1:3 and 0:1, through the electrospinning process, in addition to evaluating the antimutagenic and antiproliferative properties of the encapsulated extract. METHOD The physicochemical characteristics of the nanofibers were evaluated, as well as the antiproliferative and antimutagenic activities of the encapsulated and unencapsulated extract. SEM evaluation shows nanofibers of smooth, continuous morphology and nanometric size (50-250 nm). The TGA, FTIR-ATR, HPLC-MS analyzes reveal the presence of the extract in the nanofibers. RESULTS The extract did not show a mutagenic effect during the development of the Ames test, on the other hand, the MTT test showed the antiproliferative effect at the concentrations of 50 and 100 µg/mL of extract. CONCLUSION the extract of C. uvifera loaded in nanofibers elaborated by electrospinning with the G/HDPAF biopolymers, conserves its antimutagenic and antiproliferative properties.
Collapse
Affiliation(s)
- Carla N Cruz-Salas
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| | - José M Lagarón
- Novel Materials and Nanotechnology Group, IATA-CSIC, Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Jorge Alberto Ramos-Hernández
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Av. Tecnológico 2595, Tepic C.P. 63175, Nayarit, Mexico
| |
Collapse
|
15
|
Lou CW, Lin MC, Huang CH, Lai MF, Shiu BC, Lin JH. Preparation of Needleless Electrospinning Polyvinyl Alcohol/Water-Soluble Chitosan Nanofibrous Membranes: Antibacterial Property and Filter Efficiency. Polymers (Basel) 2022; 14:polym14051054. [PMID: 35267878 PMCID: PMC8915060 DOI: 10.3390/polym14051054] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
Electrospinning is an efficient method of producing nanofibers out of polymers that shows a great potential for the filtration territory. Featuring water-soluble chitosan (WS-CS), a low-pollution process and a self-made needleless machine, PVA/WS-CS nanofibrous membranes were prepared and evaluated for nanofiber diameter, bacteriostatic property, filtration efficiency, pressure drop, and quality factor. Test results indicate that the minimal fiber diameter was 216.58 ± 58.15 nm. Regardless of the WS-CS concentration, all of the PVA/WS-CS nanofibrous membranes attained a high porosity and a high water vapor transmission rate (WVTR), with a pore size of 12.06–22.48 nm. Moreover, the membranes also exhibit bacteriostatic efficacy against Staphylococcus aureus, an optimal quality factor of 0.0825 Pa−1, and a filtration efficiency as high as 97.0%, that is 72.5% higher than that of common masks.
Collapse
Affiliation(s)
- Ching-Wen Lou
- Fujian Key Laboratory of Novel Functional Fibers and Materials, Minjiang University, Fuzhou 350108, China;
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Meng-Chen Lin
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| | - Chen-Hung Huang
- Department of Aerospace and Systems Engineering, Feng Chia University, Taichung City 407102, Taiwan
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| | - Mei-Feng Lai
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China;
| | - Jia-Horng Lin
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Laboratory of Fiber Application and Manufacturing, Department of Fiber and Composite Materials, Feng Chia University, Taichung 407102, Taiwan;
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China;
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan
- Correspondence: (M.-C.L.); (C.-H.H.); (J.-H.L.)
| |
Collapse
|
16
|
A comprehensive review of electrospray technique for membrane development: Current status, challenges, and opportunities. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Covaliu-Mierlă CI, Matei E, Stoian O, Covaliu L, Constandache AC, Iovu H, Paraschiv G. TiO2–Based Nanofibrous Membranes for Environmental Protection. MEMBRANES 2022; 12:membranes12020236. [PMID: 35207157 PMCID: PMC8875440 DOI: 10.3390/membranes12020236] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Electrospinning is a unique technique that can be used to synthesize polymer and metal oxide nanofibers. In materials science, a very active field is represented by research on electrospun nanofibers. Fibrous membranes present fascinating features, such as a large surface area to volume ratio, excellent mechanical behavior, and a large surface area, which have many applications. Numerous techniques are available for the nanofiber’s synthesis, but electrospinning is presented as a simple process that allows one to obtain porous membranes containing smooth non-woven nanofibers. Titanium dioxide (TiO2) is the most widely used catalyst in photocatalytic degradation processes, it has advantages such as good photocatalytic activity, excellent chemical stability, low cost and non-toxicity. Thus, titanium dioxide (TiO2) is used in the synthesis of nanofibrous membranes that benefit experimental research by easy recyclability, excellent photocatalytic activity, high specific surface areas, and exhibiting stable hierarchical nanostructures. This article presents the synthesis of fiber membranes through the processes of electrospinning, coaxial electrospinning, electrospinning and electrospraying or electrospinning and precipitation. In addition to the synthesis of membranes, the recent progress of researchers emphasizing the efficiency of nanofiber photocatalytic membranes in removing pollutants from wastewater is also presented.
Collapse
Affiliation(s)
- Cristina Ileana Covaliu-Mierlă
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (C.I.C.-M.); (O.S.); (L.C.); (A.-C.C.); (G.P.)
| | - Ecaterina Matei
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (C.I.C.-M.); (O.S.); (L.C.); (A.-C.C.); (G.P.)
- Correspondence: ; Tel.: +40-72-454-3926
| | - Oana Stoian
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (C.I.C.-M.); (O.S.); (L.C.); (A.-C.C.); (G.P.)
| | - Leon Covaliu
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (C.I.C.-M.); (O.S.); (L.C.); (A.-C.C.); (G.P.)
| | - Alexandra-Corina Constandache
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (C.I.C.-M.); (O.S.); (L.C.); (A.-C.C.); (G.P.)
| | - Horia Iovu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 132 Calea Grivitei, 010737 Bucharest, Romania;
| | - Gigel Paraschiv
- Department of Biotechnical Systems, Faculty of Biotechnical Systems Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (C.I.C.-M.); (O.S.); (L.C.); (A.-C.C.); (G.P.)
| |
Collapse
|
18
|
Dai T, Ma J, Ni S, Liu C, Wang Y, Wu S, Liu J, Weng Y, Zhou D, Jimenez-Franco A, Zhao H, Zhao X. Attapulgite-doped electrospun PCL scaffolds for enhanced bone regeneration in rat cranium defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112656. [PMID: 35034813 DOI: 10.1016/j.msec.2022.112656] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Electrospun PCL scaffolds have been widely used for tissue engineering as they have shown great potential to mimic the structure of the natural extracellular matrix (ECM). However, the small pore size and low bioactivity of the scaffolds limit cell migration and tissue formation. In this study, PCL (polycaprolactone), PCL/PEG (polyethylene glycol), and PCL/PEG/ATP (nano-attapulgite) scaffolds were fabricated via electrospinning. To increase the porosity of the scaffolds, they were washed to remove water-soluble PEG fibers. Then the porous structure was measured using scanning electron microscopy (SEM) and atomic force microscopy (AFM), which showed an increased porosity when PEG fibers were removed in PCL/PEG and PCL/PEG/ATP scaffolds. Moreover, the mechanical properties were also analyzed in dry and wet conditions. In vitro mouse multipotent mesenchymal precursor cells were used to assess the biocompatibility of the scaffolds, and osteogenesis was analyzed using CCK-8 and real-time PCR (RT-PCR) methods. Moreover, in vivo μCT, histological and immunohistochemical analyses were conducted to evaluate new bone formation in rat cranium defect models. Washed PCL/PEG/ATP scaffolds were implanted into the cranium defects in rats for 4 or 8 weeks, better cell infiltration was observed in these scaffolds than in unwashed ones. The result demonstrated that washed PCL/PEG/ATP scaffold facilitated the differentiation of MSCs into osteoblasts compared with PCL scaffold, as proved by the increased expression of osteogenic key genes as well as Smad1, Smad4, and Smad5. Furthermore, in vivo studies demonstrated that using the ATP-doped electrospun PCL scaffold can improve the bone regeneration of rat cranium defects. Particularly, the PCL/ATP-30% scaffold has the best effect compared to the other scaffolds. The enhanced osteogenesis and bone repair were related to the PCL/ATP activated BMP/Smad signaling pathway.
Collapse
Affiliation(s)
- Ting Dai
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Jiayi Ma
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Su Ni
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Chun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Yan Wang
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Siyu Wu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Jun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Yiping Weng
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Dong Zhou
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China
| | - Ana Jimenez-Franco
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Hongbin Zhao
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, China.
| | - Xiubo Zhao
- School of Pharmacy, Changzhou University, Changzhou 213164, China; Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK.
| |
Collapse
|
19
|
Vicente A, Rivero PJ, García P, Mora J, Carreño F, Palacio JF, Rodríguez R. Icephobic and Anticorrosion Coatings Deposited by Electrospinning on Aluminum Alloys for Aerospace Applications. Polymers (Basel) 2021; 13:polym13234164. [PMID: 34883667 PMCID: PMC8659825 DOI: 10.3390/polym13234164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/25/2023] Open
Abstract
Anti-icing or passive strategies have undergone a remarkable growth in importance as a complement for the de-icing approaches or active methods. As a result, many efforts for developing icephobic surfaces have been mostly dedicated to apply superhydrophobic coatings. Recently, a different type of ice-repellent structure based on slippery liquid-infused porous surfaces (SLIPS) has attracted increasing attention for being a simple and effective passive ice protection in a wide range of application areas, especially for the prevention of ice formation on aircrafts. In this work, the electrospinning technique has been used for the deposition of PVDF-HFP coatings on samples of the aeronautical alloy AA7075 by using a thickness control system based on the identification of the proper combination of process parameters such as the flow rate and applied voltage. In addition, the influence of the experimental conditions on the nanofiber properties is evaluated in terms of surface morphology, wettability, corrosion resistance, and optical transmittance. The experimental results showed an improvement in the micro/nanoscale structure, which optimizes the superhydrophobic and anticorrosive behavior due to the air trapped inside the nanotextured surface. In addition, once the best coating was selected, centrifugal ice adhesion tests (CAT) were carried out for two types of icing conditions (glaze and rime) simulated in an ice wind tunnel (IWT) on both as-deposited and liquid-infused coatings (SLIPs). The liquid-infused coatings showed a low water adhesion (low contact angle hysteresis) and low ice adhesion strength, reducing the ice adhesion four times with respect to PTFE (a well-known low-ice-adhesion material used as a reference).
Collapse
Affiliation(s)
- Adrián Vicente
- Engineering Department, Campus de Arrosadía S/N, Public University of Navarre, 31006 Pamplona, Spain; (P.J.R.); (R.R.)
- Institute for Advanced Materials and Mathematics (INAMAT), Campus de Arrosadía S/N, Public University of Navarre, 31006 Pamplona, Spain
- Correspondence: (A.V.)
| | - Pedro J. Rivero
- Engineering Department, Campus de Arrosadía S/N, Public University of Navarre, 31006 Pamplona, Spain; (P.J.R.); (R.R.)
- Institute for Advanced Materials and Mathematics (INAMAT), Campus de Arrosadía S/N, Public University of Navarre, 31006 Pamplona, Spain
| | - Paloma García
- INTA-Instituto Nacional de Técnica Aeroespacial, Área de Materiales Metálicos, Ctra. Ajalvir Km 4, 28850 Torrejón de Ardoz, Spain; (P.G.); (J.M.); (F.C.)
| | - Julio Mora
- INTA-Instituto Nacional de Técnica Aeroespacial, Área de Materiales Metálicos, Ctra. Ajalvir Km 4, 28850 Torrejón de Ardoz, Spain; (P.G.); (J.M.); (F.C.)
| | - Francisco Carreño
- INTA-Instituto Nacional de Técnica Aeroespacial, Área de Materiales Metálicos, Ctra. Ajalvir Km 4, 28850 Torrejón de Ardoz, Spain; (P.G.); (J.M.); (F.C.)
| | - José F. Palacio
- Centre of Advanced Surface Engineering, AIN, 31191 Cordovilla, Spain;
| | - Rafael Rodríguez
- Engineering Department, Campus de Arrosadía S/N, Public University of Navarre, 31006 Pamplona, Spain; (P.J.R.); (R.R.)
- Institute for Advanced Materials and Mathematics (INAMAT), Campus de Arrosadía S/N, Public University of Navarre, 31006 Pamplona, Spain
| |
Collapse
|
20
|
Jain H, Garg MC. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2021; 23:101561. [DOI: 10.1016/j.eti.2021.101561] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
21
|
Catalytic and Photocatalytic Electrospun Nanofibers for Hydrogen Generation from Ammonia Borane Complex: A Review. Polymers (Basel) 2021; 13:polym13142290. [PMID: 34301047 PMCID: PMC8309258 DOI: 10.3390/polym13142290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022] Open
Abstract
Hydrogen (H2) is a promising renewable energy source that can replace fossil fuels since it can solve several environmental and economic issues. However, the widespread usage of H2 is constrained by its storage and safety issues. Many researchers consider solid materials with an excellent capacity for H2 storage and generation as the solution for most H2-related issues. Among solid materials, ammonia borane (abbreviated hereafter as AB) is considered one of the best hydrogen storage materials due to its extraordinary H2 content and small density. However, the process must be conducted in the presence of efficient catalysts to obtain a reasonable amount of generated H2. Electrospun nanofibrous catalysts are a new class of efficient catalysts that involves the usage of polymers. Here, a comprehensive review of the ceramic-supported electrospun NF catalysts for AB hydrolysis is presented, with a special focus on catalytic and photolytic performance and preparation steps. Photocatalytic AB hydrolysis was discussed in detail due to its importance and promising results. AB photocatalytic hydrolysis mechanisms under light were also explained. Electrospun catalysts show excellent activity for AB hydrolysis with good recyclability. Kinetics studies show that the AB hydrolysis reaction is independent of AB concentration and the first-order reaction of NF catalysts.
Collapse
|
22
|
Wu Z, Jin K, Wang L, Fan Y. A Review: Optimization for Poly(glycerol sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromol Biosci 2021; 21:e2100022. [PMID: 34117837 DOI: 10.1002/mabi.202100022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Poly(glycerol sebacate) (PGS), an emerging promising thermosetting polymer synthesized from sebacic acid and glycerol, has attracted considerable attention due to its elasticity, biocompatibility, and tunable biodegradation properties. But it also has some drawbacks such as harsh synthesis conditions, rapid degradation rates, and low stiffness. To overcome these challenges and optimize PGS performance, various modification methods and fabrication techniques for PGS-based scaffolds have been developed in recent years. Outlining the current modification approaches of PGS and summarizing the fabrication techniques for PGS-based scaffolds are of great importance to accelerate the development of new materials and enable them to be appropriately used in potential applications. Thus, this review comprehensively overviews PGS derivatives, PGS composites, PGS blends, processing for PGS-based scaffolds, and their related applications. It is envisioned that this review could instruct and inspire the design of the PGS-based materials and facilitate tissue engineering advances into clinical practice.
Collapse
Affiliation(s)
- Zebin Wu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Kaixiang Jin
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.,School of Medical Science and Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
23
|
Electrospinning of small diameter vascular grafts with preferential fiber directions and comparison of their mechanical behavior with native rat aortas. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112085. [PMID: 33947575 DOI: 10.1016/j.msec.2021.112085] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022]
Abstract
Conventional electrospun small diameter vascular grafts have a random fiber orientation. In order to achieve mechanical characteristics similar to a native blood vessel, a controllable fiber orientation is of interest. In this study the electrospinning jet was directly controlled by means of an auxiliary, changeable electrostatic field, so that the fibers could be deposited in adjustable orientations. Prostheses with circumferentially, axially, fenestrated and randomly aligned fibers were electrospun on Ø2mm mandrels out of a thermoplastic polyurethane (PUR) and a polylactid acid (PLLA). The impact of the materials and the various preferential fiber orientations on the resulting biomechanics was investigated and compared with that of the native rat aorta in quasistatic and dynamic hoop tensile tests. The test protocol included 3000 dynamic loading cycles in the physiological blood pressure range and ended with a quasistatic tensile test. Any orientation of the fibers in a particular direction resulted in a significant reduction in scaffold porosity for both materials. The standard randomly oriented PUR grafts showed the highest compliance of 29.7 ± 5.5 [%/100 mmHg] and were thus closest to the compliance of the rat aortas, which was 37.2 ± 6.5 [%/100 mmHg]. The maximum tensile force was increased at least 6 times compared to randomly spun grafts by orienting the fibers in the circumferential direction. During the 3000 loading cycles, creeping of the native rat aorta was below 1% whereas the electrospun grafts showed creeping up to 2.4 ± 1.2%. Although the preferred fiber orientations were only partially visible in the scanning electron micrographs, the mechanical effects were evident. The investigations suggest a multi-layer wall structure of the vascular prosthesis, since none of the preferred fiber directions and the materials used could imitate the typical j-shaped mechanical characteristics of the rat aorta.
Collapse
|
24
|
Zhao T, Qian R, Zhou G, Wang Y, Lee WI, Pan JH. Mesoporous WO 3/TiO 2 spheres with tailored surface properties for concurrent solar photocatalysis and membrane filtration. CHEMOSPHERE 2021; 263:128344. [PMID: 33297269 DOI: 10.1016/j.chemosphere.2020.128344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 05/08/2023]
Abstract
The strategical integration of membrane water filtration with semiconductor photocatalysis presents a frontier in deep purification with a self-cleaning capability. However, the membrane fouling caused by the cake layer of the reclaimed TiO2 nanoparticles is a key obstacle. Herein, mesoporous WO3/TiO2 spheres (∼450 nm in diameter) consisting of numerous self-assembled WO3-decoated anatase TiO2 nanocrystallites are successfully prepared via a facile wet-chemistry route. The decoration of monolayered WO3 significantly affects the surface, photocatalytic, and optical properties of original mesoporous TiO2 spheres. XRD and Raman analyses show the presence of monolayered WO3 suppresses the crystal growth of TiO2 during the calcination process, significantly improves the surface acidity, and causes an obvious red shift in absorption edge. These favorable textural properties, coupling the enhanced interfacial charge carrier separation, render mesoporous WO3/TiO2 spheres with a superior photocatalytic activity in degradation of methylene blue under UV, visible, and solar light irradiations. The optimal molar ratio of W/Ti is examined to 6%. The synthesized mesoporous WO3/TiO2 spheres also show much higher flux during membrane filtration in both dead-end and cross-flow modes, suggesting a promising photocatalyst for concurrent membrane filtration and solar photocatalysis.
Collapse
Affiliation(s)
- Ting Zhao
- MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Ruifeng Qian
- MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Guanda Zhou
- MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yu Wang
- MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China
| | - Wan In Lee
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, North Korea.
| | - Jia Hong Pan
- MOE Key Laboratory of Regional Energy and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; Beijing Key Laboratory of Novel Thin Film Solar Cells, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
25
|
Akhmetova A, Heinz A. Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges. Pharmaceutics 2020; 13:E4. [PMID: 33374930 PMCID: PMC7821923 DOI: 10.3390/pharmaceutics13010004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023] Open
Abstract
With the growth of the aging population worldwide, chronic wounds represent an increasing burden to healthcare systems. Wound healing is complex and not only affected by the patient's physiological conditions, but also by bacterial infections and inflammation, which delay wound closure and re-epithelialization. In recent years, there has been a growing interest for electrospun polymeric wound dressings with fiber diameters in the nano- and micrometer range. Such wound dressings display a number of properties, which support and accelerate wound healing. For instance, they provide physical and mechanical protection, exhibit a high surface area, allow gas exchange, are cytocompatible and biodegradable, resemble the structure of the native extracellular matrix, and deliver antibacterial agents locally into the wound. This review paper gives an overview on cytocompatible and biodegradable fibrous wound dressings obtained by electrospinning proteins and peptides of animal and plant origin in recent years. Focus is placed on the requirements for the fabrication of such drug delivery systems by electrospinning as well as their wound healing properties and therapeutic potential. Moreover, the incorporation of antimicrobial agents into the fibers or their attachment onto the fiber surface as well as their antimicrobial activity are discussed.
Collapse
Affiliation(s)
| | - Andrea Heinz
- LEO Foundation Center for Cutaneous Drug Delivery, Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| |
Collapse
|
26
|
Augustine R, Ur Rehman SR, K S J, Hasan A. Stromal cell-derived factor loaded co-electrospun hydrophilic/hydrophobic bicomponent membranes for wound protection and healing. RSC Adv 2020; 11:572-583. [PMID: 35423060 PMCID: PMC8691117 DOI: 10.1039/d0ra04997b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic wounds are one of the key concerns for people with diabetes, frequently leading to infections and non-healing ulcers, and finally resulting in the amputation of limbs/organs. Stromal cell-derived factor 1 (SDF1) is a major chemokine that plays a significant role in tissue repair, vascularization, and wound healing. However, the long-term sustained delivery of SDF1 in a chronic wound environment is a great challenge. In order to facilitate the sustained release of SDF1 in diabetic wounds, it could be incorporated into wound-healing patches. Herein, we report the fabrication of a hydrophilic/hydrophobic bicomponent fiber-based membrane, where SDF1 was encapsulated inside hydrophilic fibers, and its applicability in wound healing. A co-electrospinning technique was employed for the fabrication of polymeric membranes where PVA and PCL form the hydrophilic and hydrophobic components, respectively. Morphological analysis of the developed membranes was conducted via scanning electron microscopy (SEM). The mechanical strength of the membranes was investigated via uniaxial tensile testing. The water uptake capacity of the membranes was also determined to understand the hydrophilicity and exudate uptake capacity of the membranes. To understand the proliferation, viability, and migration of skin-specific cells in the presence of SDF1-loaded membranes, in vitro cell culture experiments were carried out using fibroblasts, keratinocytes, and endothelial cells. The results showed the excellent porous morphology of the developed membranes with distinguishable differences in fiber diameters for the PVA and PCL fibers. The developed membranes possessed enough mechanical strength for use as wound-healing membranes. The co-electrospun membranes showed good exudate uptake capacity. The controlled and extended delivery of SDF1 from the developed membranes was observed over a prolonged period. The SDF1-loaded membranes showed enhanced cell proliferation, cell viability, and cell migration. These biocompatible and biodegradable SDF1-loaded bicomponent membranes with excellent exudate uptake capacity, and cell proliferation and cell migration properties can be exploited as a novel wound-dressing membrane aimed at chronic diabetic wounds.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University - 2713 Doha Qatar
- Biomedical Research Center, Qatar University - 2713 Doha Qatar
| | - Syed Raza Ur Rehman
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University - 2713 Doha Qatar
- Biomedical Research Center, Qatar University - 2713 Doha Qatar
| | - Joshy K S
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University - 2713 Doha Qatar
- Biomedical Research Center, Qatar University - 2713 Doha Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University - 2713 Doha Qatar
- Biomedical Research Center, Qatar University - 2713 Doha Qatar
| |
Collapse
|
27
|
He T, Jokerst JV. Structured micro/nano materials synthesized via electrospray: a review. Biomater Sci 2020; 8:5555-5573. [PMID: 32985632 DOI: 10.1039/d0bm01313g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of synthetic methods for micro/nano materials with precisely controlled structures, morphologies, and local compositions is of great importance for the advancement of modern nanotechnology. The electrospray method is a "platform" approach for the preparation of a broad range of micro-/nanostructures; electrospray is simple and scalable. This review summarizes recent research on the micro-/nanostructures prepared via the electrospray route. These include spherical structures (e.g. simple, porous, Janus, and core-shell particles), non-spherical structures (e.g. red blood cell-like and spindle-like particles, multi-compartment microrods, 2D holey nanosheets, and nanopyramids), and assembled structures. The experimental details, underlying physical/chemical principles, and key benefits of these structures are comprehensively discussed. The effects and importance of nozzle design, properties of feeding solutions (e.g. concentration of solute, polymer additives, solvent/nonsolvent combinations), working environment (e.g. temperature and humidity), and types of collection media are highlighted.
Collapse
Affiliation(s)
- Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
28
|
Yousefzade O, Katsarava R, Puiggalí J. Biomimetic Hybrid Systems for Tissue Engineering. Biomimetics (Basel) 2020; 5:biomimetics5040049. [PMID: 33050136 PMCID: PMC7709492 DOI: 10.3390/biomimetics5040049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/17/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering approaches appear nowadays highly promising for the regeneration of injured/diseased tissues. Biomimetic scaffolds are continuously been developed to act as structural support for cell growth and proliferation as well as for the delivery of cells able to be differentiated, and also of bioactive molecules like growth factors and even signaling cues. The current research concerns materials employed to develop biological scaffolds with improved features as well as complex preparation techniques. In this work, hybrid systems based on natural polymers are discussed and the efforts focused to provide new polymers able to mimic proteins and DNA are extensively explained. Progress on the scaffold fabrication technique is mentioned, those processes based on solution and melt electrospinning or even on their combination being mainly discussed. Selection of the appropriate hybrid technology becomes vital to get optimal architecture to reasonably accomplish the final applications. Representative examples of the recent possibilities on tissue regeneration are finally given.
Collapse
Affiliation(s)
- Omid Yousefzade
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
| | - Ramaz Katsarava
- Institute of Chemistry and Molecular Engineering, Agricultural University of Georgia, Kakha Bedukidze Univesity Campus, Tbilisi 0131, Georgia;
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain;
- Correspondence: ; Tel.: +34-93-401-5649
| |
Collapse
|
29
|
Ning Y, Shen W, Ao F. Application of blocking and immobilization of electrospun fiber in the biomedical field. RSC Adv 2020; 10:37246-37265. [PMID: 35521229 PMCID: PMC9057162 DOI: 10.1039/d0ra06865a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The fiber obtained by electrospinning technology is a kind of biomaterial with excellent properties, which not only has a unique micro-nanostructure that gives it a large specific surface area and porosity, but also has satisfactory biocompatibility and degradability (if the spinning material used is a degradable polymer). These biomaterials provide a suitable place for cell attachment and proliferation, and can also achieve immobilization. On the other hand, its large porosity and three-dimensional spatial structure show unique blocking properties in drug delivery applications in order to achieve the purpose of slow release or even controlled release. The immobilization effect or blocking effect of these materials is mainly reflected in the hollow or core-shell structure. The purpose of this paper is to understand the application of the electrospun fiber based on biodegradable polymers (aliphatic polyesters) in the biomedical field, especially the immobilization or blocking effect of the electrospun fiber membrane on cells, drugs or enzymes. This paper focuses on the performance of these materials in tissue engineering, wound dressing, drug delivery system, and enzyme immobilization technology. Finally, based on the existing research basis of the electrospun fiber in the biomedical field, a potential research direction in the future is put forward, and few suggestions are also given for the technical problems that urgently need to be solved.
Collapse
Affiliation(s)
- Yuanlan Ning
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| | - Wen Shen
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| | - Fen Ao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| |
Collapse
|
30
|
Molecular Interaction, Chain Conformation, and Rheological Modification during Electrospinning of Hyaluronic Acid Aqueous Solution. MEMBRANES 2020; 10:membranes10090217. [PMID: 32878153 PMCID: PMC7560086 DOI: 10.3390/membranes10090217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/28/2023]
Abstract
Most of natural water-soluble polymers are difficult to electrospin due to their specific chain conformation in aqueous solution, which limits their applications. This study investigated the effects of polyethylene oxide (PEO) on the electrospinning of hyaluronic acid (HA) in HA/PEO aqueous solutions. The rheological properties of HA/PEO aqueous solutions showed polymer chain entanglement in HA was the essential factor affecting its electrospinnability. Wide-angle X-ray scattering and differential scanning calorimetry analyses of a PEO crystal showed different crystallization behavior of the PEO chain with different molecular weight, which indicates different interaction with HA. A schematic molecular model has been proposed to explain the effect of PEO on the chain conformation of HA along with the relationship between electrospinnability and chain entanglement. PEO with a relatively high molecular weight with limited crystal formation formed extensive chain entanglements with HA, while PEO with relatively low molecular weight weakened the interactions among HA chains. The findings of this study provide a wide perspective to better understand the electrospinning mechanisms of natural polyelectrolytes and usage in tissue engineering.
Collapse
|
31
|
Cavo M, Serio F, Kale NR, D'Amone E, Gigli G, Del Mercato LL. Electrospun nanofibers in cancer research: from engineering of in vitro 3D cancer models to therapy. Biomater Sci 2020; 8:4887-4905. [PMID: 32830832 DOI: 10.1039/d0bm00390e] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Electrospinning is historically related to tissue engineering due to its ability to produce nano-/microscale fibrous materials with mechanical and functional properties that are extremely similar to those of the extracellular matrix of living tissues. The general interest in electrospun fibrous matrices has recently expanded to cancer research both as scaffolds for in vitro cancer modelling and as patches for in vivo therapeutic delivery. In this review, we examine electrospinning by providing a brief description of the process and overview of most materials used in this process, discussing the effect of changing the process parameters on fiber conformations and assemblies. Then, we describe two different applications of electrospinning in service of cancer research: firstly, as three-dimensional (3D) fibrous materials for generating in vitro pre-clinical cancer models; and secondly, as patches encapsulating anticancer agents for in vivo delivery.
Collapse
Affiliation(s)
- Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
State of the Art on Biomaterials for Soft Tissue Augmentation in the Oral Cavity. Part II: Synthetic Polymers-Based Biomaterials. Polymers (Basel) 2020; 12:polym12081845. [PMID: 32824577 PMCID: PMC7465038 DOI: 10.3390/polym12081845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the polymers used as biomaterials for scaffolds are naturally occurring, synthetic biodegradable, and synthetic non-biodegradable polymers. Since synthetic polymers can be adapted for obtaining singular desired characteristics by applying various fabrication techniques, their use has increased in the biomedical field, in dentistry in particular. The manufacturing methods of these new structures include many processes, such as electrospinning, 3D printing, or the use of computer-aided design/computer-aided manufacturing (CAD/CAM). Synthetic polymers show several drawbacks that can limit their use in clinical applications, such as the lack of cellular recognition, biodegradability, and biocompatibility. Moreover, concerning biodegradable polymers, the time for matrix resorption is not predictable, and non-resorbable matrices are preferred for soft tissue augmentation in the oral cavity. This review aimed to determine a new biomaterial to offset the present shortcomings in the oral environment. Researchers have recently proposed a novel non-resorbable composite membrane manufactured via electrospinning that has allowed obtaining remarkable in vivo outcomes concerning angiogenesis and immunomodulation throughout the polarization of macrophages. A prototype of the protocol for in vitro and in vivo experimentation with hydrogels is explained in order to encourage innovation into the development of promising biomaterials for soft tissue augmentation in the near future.
Collapse
|
33
|
Tang J, Wu C, Chen S, Qiao Z, Borovskikh P, Shchegolkov A, Chen L, Wei D, Sun J, Fan H. Combining Electrospinning and Electrospraying to Prepare a Biomimetic Neural Scaffold with Synergistic Cues of Topography and Electrotransduction. ACS APPLIED BIO MATERIALS 2020; 3:5148-5159. [PMID: 35021691 DOI: 10.1021/acsabm.0c00595] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The nerve tissue consists of aligned fibrous nerve bundles, in which neurons communicate and transmit information through electrical signals. Hence, biocompatibility, oriented fibrous structure, and electrical conductivity are key factors for the biomimetic design of nerve scaffolds. Herein, we built a technical platform to combine electrospinning and electrospraying for preparing a biomimetic scaffold with conductivity and aligned fibrous structure. The highly aligned polycaprolactone (PCL) microfibrous scaffolds with co-sprayed collagen and conductive polypyrrole nanoparticles (PPy NPs) showed good bioactivity, supplying a platform for exploring the effects of topographical guidance, fiber conductivity, and its mediated external electrical signals on neurogenesis. The results revealed that collagen-coated highly aligned PCL microfibrous scaffold induced PC12 cells oriented and elongated along the direction of fibers. In addition, the improved conductivity of PPy-coated aligned fibers and its mediated external electrical stimulation collectively contributed to the functional expression, including elongation, gene expression, and protein expression, of PC12 cells. We further demonstrated the potential mechanism where the fiber conductivity and its mediated external electrical signals resulted in the upregulation of voltage-gated calcium channel, leading to the influx of Ca2+, thereby activating intracellular signaling cascades, ultimately enhancing neurogenesis. This approach provides a strategy to design aligned fibrillary scaffolds with bioactive adhesion domains and electroconductivity for neural regeneration.
Collapse
Affiliation(s)
- Jiajia Tang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Chengheng Wu
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Suping Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Zi Qiao
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Pavel Borovskikh
- School of Business, Economics and Law, Martin-Luther-University Halle-Wittenberg, Universitätsplatz 10, 06108 Halle (Saale), Germany
| | - Alexandr Shchegolkov
- Institute of Technology,Tambov State Technical University, 106 Sovetskaya Street, Tambov 392000, Russia Federation
| | - Lu Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Dan Wei
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Jing Sun
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| | - Hongsong Fan
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China
| |
Collapse
|
34
|
Stankevich KS, Kudryavtseva VL, Bolbasov EN, Shesterikov EV, Larionova IV, Shapovalova YG, Domracheva LV, Volokhova AA, Kurzina IA, Zhukov YM, Malashicheva AB, Kzhyshkowska JG, Tverdokhlebov SI. Modification of PCL Scaffolds by Reactive Magnetron Sputtering: A Possibility for Modulating Macrophage Responses. ACS Biomater Sci Eng 2020; 6:3967-3974. [PMID: 33463309 DOI: 10.1021/acsbiomaterials.0c00440] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Direct current (DC) reactive magnetron sputtering is as an efficient method for enhancing the biocompatibility of poly(ε-caprolactone) (PCL) scaffolds. However, the PCL chemical bonding state, the composition of the deposited coating, and their interaction with immune cells remain unknown. Herein, we demonstrated that the DC reactive magnetron sputtering of the titanium target in a nitrogen atmosphere leads to the formation of nitrogen-containing moieties and the titanium dioxide coating on the scaffold surface. We have provided the possible mechanism of PCL fragmentation and coating formation supported by XPS results and DFT calculations. Our preliminary biological studies suggest that DC reactive magnetron sputtering of the titanium target could be an effective tool to control macrophage functional responses toward PCL scaffolds as it allows to inhibit respiratory burst while retaining cell viability and scavenging activity.
Collapse
Affiliation(s)
- Ksenia S Stankevich
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation.,Montana State University, Culbertson Hall 100, Bozeman, Montana 59717, United States
| | - Valeriya L Kudryavtseva
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation.,Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS U.K
| | - Evgeny N Bolbasov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation.,V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev square, Tomsk 634055, Russian Federation
| | - Evgeny V Shesterikov
- V.E. Zuev Institute of Atmospheric Optics SB RAS, 1 Academician Zuev square, Tomsk 634055, Russian Federation.,Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Avenue, Tomsk, 634050, Russian Federation
| | - Irina V Larionova
- Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russian Federation.,Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 9 Kooperativnii pereulok, Tomsk 634050, Russian Federation
| | | | | | - Apollinariya A Volokhova
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation.,Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Irina A Kurzina
- Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russian Federation
| | - Yuri M Zhukov
- Saint-Petersburg State University, 11/2 Lieutenant Schmidt emb., St. Petersburg 199034 Russian Federation
| | - Anna B Malashicheva
- ITMO University, Institute of translational Medicine, 49 Kronverksky prospekt, Saint Petersburg 197101, Russian Federation.,Federal Almazov Medical Research Centre, 2 Akkuratova street, St. Petersburg 19734, Russian Federation
| | - Julia G Kzhyshkowska
- Tomsk State University, 36 Lenin Avenue, Tomsk 634050, Russian Federation.,Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, 13-17 Ludolf-Krehl-Straße, 68167 Mannheim, Germany
| | - Sergei I Tverdokhlebov
- National Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation
| |
Collapse
|
35
|
Ghaeini-Hesaroeiye S, Razmi Bagtash H, Boddohi S, Vasheghani-Farahani E, Jabbari E. Thermoresponsive Nanogels Based on Different Polymeric Moieties for Biomedical Applications. Gels 2020; 6:E20. [PMID: 32635573 PMCID: PMC7559285 DOI: 10.3390/gels6030020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nanogels, or nanostructured hydrogels, are one of the most interesting materials in biomedical engineering. Nanogels are widely used in medical applications, such as in cancer therapy, targeted delivery of proteins, genes and DNAs, and scaffolds in tissue regeneration. One salient feature of nanogels is their tunable responsiveness to external stimuli. In this review, thermosensitive nanogels are discussed, with a focus on moieties in their chemical structure which are responsible for thermosensitivity. These thermosensitive moieties can be classified into four groups, namely, polymers bearing amide groups, ether groups, vinyl ether groups and hydrophilic polymers bearing hydrophobic groups. These novel thermoresponsive nanogels provide effective drug delivery systems and tissue regeneration constructs for treating patients in many clinical applications, such as targeted, sustained and controlled release.
Collapse
Affiliation(s)
- Sobhan Ghaeini-Hesaroeiye
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Hossein Razmi Bagtash
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Soheil Boddohi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Ebrahim Vasheghani-Farahani
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115, Iran; (S.G.-H.); (H.R.B.)
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208, USA;
| |
Collapse
|
36
|
Wang L, Li Y, Zhang M, Huang K, Peng S, Xiao J. Application of Nanomaterials in Regulating the Fate of Adipose-derived Stem Cells. Curr Stem Cell Res Ther 2020; 16:3-13. [PMID: 32357820 DOI: 10.2174/1574888x15666200502000343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 01/22/2023]
Abstract
Adipose-derived stem cells are adult stem cells which are easy to obtain and multi-potent. Stem-cell therapy has become a promising new treatment for many diseases, and plays an increasingly important role in the field of tissue repair, regeneration and reconstruction. The physicochemical properties of the extracellular microenvironment contribute to the regulation of the fate of stem cells. Nanomaterials have stable particle size, large specific surface area and good biocompatibility, which has led them being recognized as having broad application prospects in the field of biomedicine. In this paper, we review recent developments of nanomaterials in adipose-derived stem cell research. Taken together, the current literature indicates that nanomaterials can regulate the proliferation and differentiation of adipose-derived stem cells. However, the properties and regulatory effects of nanomaterials can vary widely depending on their composition. This review aims to provide a comprehensive guide for future stem-cell research on the use of nanomaterials.
Collapse
Affiliation(s)
- Lang Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yong Li
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Maorui Zhang
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Kui Huang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuanglin Peng
- Department of Oral Implantology, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
37
|
Wang J, Xu H, Huo Y, Wang Y, Dong M. Progress of electrospray and electrospinning in energy applications. NANOTECHNOLOGY 2020; 31:132001. [PMID: 31665706 DOI: 10.1088/1361-6528/ab52bb] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the promotion of energy strategies to address the global energy crisis, nanotechnology has been successfully used to generate novel energy materials with excellent characteristics, such as high specific surface area, good flexibility and large porosity. Among the various methods for fabricating nanoscale materials, electrospray and electrospinning technologies have unlocked low-cost, facile and industrial routes to nanotechnology over the past ten years. This review highlights research into the key parts and primary theory of these techniques and their application in preparing energy-related materials and devices: especially fuel cells, solar cells, lithium ion batteries, supercapacitors as well as hydrogen storage systems. The challenges and future prospects of the manufacturing technologies are also covered in this paper.
Collapse
Affiliation(s)
- Junfeng Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Koe WS, Lee JW, Chong WC, Pang YL, Sim LC. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2522-2565. [PMID: 31865580 DOI: 10.1007/s11356-019-07193-5] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/27/2019] [Indexed: 05/12/2023]
Abstract
Photocatalysis is an ecofriendly technique that emerged as a promising alternative for the degradation of many organic pollutants. The weaknesses of the present photocatalytic system which limit their industrial applications include low-usage of visible light, fast charge recombination, and low migration ability of the photo-generated electrons and holes. Therefore, various elements such as noble metals and transition metals as well as non-metals and metalloids (i.e., graphene, carbon nanotube, and carbon quantum dots) are doped into the photocatalyst as co-catalysts to enhance the photodegradation performance. The incorporation of the co-catalyst which alters the photocatalytic mechanism was discussed in detail. The application of photocatalysts in treating persistent organic pollutants such as pesticide, pharmaceutical compounds, oil and grease and textile in real wastewater was also discussed. Besides, a few photocatalytic reactors in pilot scale had been designed for the effort of commercializing the system. In addition, hybrid photocatalytic system integrating with membrane filtration together with their membrane fabrication methods had also been reviewed. This review outlined various types of heterogeneous photocatalysts, mechanism, synthesis methods of biomass supported photocatalyst, photocatalytic degradation of organic substances in real wastewater, and photocatalytic reactor designs and their operating parameters as well as the latest development of photocatalyst incorporated membrane.
Collapse
Affiliation(s)
- Weng Shin Koe
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Jing Wen Lee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia.
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Lan Ching Sim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
40
|
Zha F, Chen W, Zhang L, Yu D. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 31:519-548. [DOI: 10.1080/09205063.2019.1697170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fangwen Zha
- Department of Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Science, State Key Laboratory of Electrical Insulation and Power Equipments, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, PR China
| | - Lifeng Zhang
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, NC A&T State University, Greensboro, NC, USA
| | - Demei Yu
- Department of Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Science, State Key Laboratory of Electrical Insulation and Power Equipments, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| |
Collapse
|
41
|
Influence of PLLA/PCL/HA Scaffold Fiber Orientation on Mechanical Properties and Osteoblast Behavior. MATERIALS 2019; 12:ma12233879. [PMID: 31771297 PMCID: PMC6926818 DOI: 10.3390/ma12233879] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 01/25/2023]
Abstract
Scaffolds based on aligned and non-aligned poly (L-lactic acid) (PLLA)/polycaprolactone (PCL) fibers obtained by electrospinning, associated to electrosprayed hydroxyapatite (HA) for tissue engineering applications were developed and their performance was compared in terms of their morphology and biological and mechanical behaviors. The morphological results assessed by scanning electron microscopy showed a mesh of PLLA/PCL fibers (random and perfectly aligned) associated with aggregates of nanophased HA. Fourier transform infrared spectrometry confirmed the homogeneity in the blends and the presence of nanoHA in the scaffold. As a result of fiber alignment a 15-fold increase in Young's Modulus and an 8-fold increase in tensile strength were observed when compared to non-aligned fibers. In PLLA/PCL/HA scaffolds, the introduction of nanoHA caused a remarkable improvement of the mechanical strength of this material acting as a reinforcement, enhancing the response of these constructs to tensile stress. In vitro testing was evaluated using osteoblast (MC3T3-E1) cells. The results showed that both fibrous scaffolds were able to support osteoblast cell adhesion and proliferation and that fiber alignment induced increased cellular metabolic activity. In addition, the adhesion and proliferation of Staphylococcus aureus were evaluated and a lower number of colony forming units (CFUs) was obtained in the scaffolds with aligned fibers.
Collapse
|
42
|
Physico-mechanical and in vitro characterization of electrically conductive electrospun nanofibers of poly urethane/single walled carbon nano tube by great endothelial cells adhesion for vascular tissue engineering. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1916-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Zong H, Zhao T, Zhou G, Qian R, Feng T, Pan JH. Revisiting structural and photocatalytic properties of g-C3N4/TiO2: Is surface modification of TiO2 by calcination with urea an effective route to “solar” photocatalyst? Catal Today 2019. [DOI: 10.1016/j.cattod.2018.12.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Electrospray for generation of drug delivery and vaccine particles applied in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110070. [PMID: 31546372 PMCID: PMC10366704 DOI: 10.1016/j.msec.2019.110070] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 12/16/2022]
Abstract
Also known as electrospray, electrohydrodynamic atomization has been used extensively in the last 15 years to develop polymer-based particles for drug delivery in cell and animal models. More recently, novel core-shell, multi-axial, and other electrospray particles have been developed from an array of polymers for a variety of biomedical applications. This review focuses on electrospray as a novel method of particle fabrication for drug delivery, specifically highlighting the applications of these particle systems in cell culture and animal models while also discussing polymers used for particle fabrication. Applications of electrospray particles to treat glioma, ovarian cancer, and breast cancer are reviewed. Additionally, delivery of antibiotics, gene therapy, and bacterial cells formulated in electrospray particles is discussed. Finally, vaccines as well as drug eluting particles for differentiation of stem cells and tissue engineering are highlighted. The article concludes with a discussion of where the future of electrospray technology can go to strengthen its foothold in the biomedical field.
Collapse
|
45
|
pH-Sensitive Black Phosphorous–Incorporated Hydrogel as Novel Implant for Cancer Treatment. J Pharm Sci 2019; 108:2542-2551. [DOI: 10.1016/j.xphs.2019.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 01/05/2023]
|
46
|
Azarniya A, Tamjid E, Eslahi N, Simchi A. Modification of bacterial cellulose/keratin nanofibrous mats by a tragacanth gum-conjugated hydrogel for wound healing. Int J Biol Macromol 2019; 134:280-289. [DOI: 10.1016/j.ijbiomac.2019.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/21/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022]
|
47
|
Aligned electrospun cellulose scaffolds coated with rhBMP-2 for both in vitro and in vivo bone tissue engineering. Carbohydr Polym 2019; 213:27-38. [DOI: 10.1016/j.carbpol.2019.02.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/13/2022]
|
48
|
Taghavi MA, Rabiee SM, Jahanshahi M, Nasiri F. Electrospun Poly-ε-Caprolactone (PCL)/Dicalcium Phosphate Dihydrate (DCPD) Composite Scaffold for Tissue Engineering Application. Mol Biotechnol 2019; 61:345-354. [PMID: 30887276 DOI: 10.1007/s12033-019-00168-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recently electrospun scaffolds show excellent response in cell adhesion, growth, and tissue healing in comparison with other techniques. So in this study, PCL and PCL/DCPD scaffolds were designed and prepared with electrospinning. The electrospun scaffolds were characterized by scanning electron microscope with X-ray elemental analysis, atomic force microcopy, differential scanning calorimetry, and contact angle analysis for optimizing the effective parameters. Fiber formation with uniform diameter and bead-free structure was obtained. Scaffold surface roughness increased from 100 nm for PCL to 440 nm for PCL/DCPD. DSC analysis showed the effects of DCPD on thermal stability of composite scaffold and the results of contact angle evaluation indicate improved hydrophilicity and ability of water absorption of PCL/DCPD composite fibers as compared to PCL fibers. MTT assay indicated lack of toxicity for human gingival fibroblast (HGF) cells after cell seeding on scaffold. Also, the composite scaffold can improve cell viability by helping their growth on its surface. So it can be concluded that by engineering the electrospinning parameters we can fabricate a PCL/DCPD composite scaffold for tissue engineering applications.
Collapse
Affiliation(s)
- Milad Angooraj Taghavi
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran.,Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran
| | - Sayed Mahmood Rabiee
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran. .,Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Babol Noshirvani University of Technology, Babol, Iran.,Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Fatemeh Nasiri
- Department of Textile Engineering, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
49
|
Alehosseini A, Gómez-Mascaraque LG, Martínez-Sanz M, López-Rubio A. Electrospun curcumin-loaded protein nanofiber mats as active/bioactive coatings for food packaging applications. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.056] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Korolj A, Laschinger C, James C, Hu E, Velikonja C, Smith N, Gu I, Ahadian S, Willette R, Radisic M, Zhang B. Curvature facilitates podocyte culture in a biomimetic platform. LAB ON A CHIP 2018; 18:3112-3128. [PMID: 30264844 DOI: 10.1039/c8lc00495a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Most kidney diseases begin with abnormalities in glomerular podocytes, motivating the need for podocyte models to study pathophysiological mechanisms and new treatment options. However, podocytes cultured in vitro face a limited ability to maintain appreciable extents of differentiation hallmarks, raising concerns over the relevance of study results. Many key properties such as nephrin expression and morphology reach plateaus that are far from the in vivo levels. Here, we demonstrate that a biomimetic topography, consisting of microhemispheres arrayed over the cell culture substrate, promotes podocyte differentiation in vitro. We define new methods for fabricating microscale curvature on various substrates, including a thin porous membrane. By growing podocytes on our topographic substrates, we found that these biophysical cues augmented nephrin gene expression, supported full-size nephrin protein expression, encouraged structural arrangement of F-actin and nephrin within the cell, and promoted process formation and even interdigitation compared to the flat substrates. Furthermore, the topography facilitated nephrin localization on curved structures while nuclei lay in the valleys between them. The improved differentiation was also evidenced by tracking barrier function to albumin over time using our custom topomembranes. Overall, our work presents accessible methods for incorporating microcurvature on various common substrates, and demonstrates the importance of biophysical stimulation in supporting higher-fidelity podocyte cultivation in vitro.
Collapse
Affiliation(s)
- Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|