1
|
Cong H, Hu J, Wang J, Chang B, Li R, Cui X, Zhang C, Ji H, Lin C, Tang J, Liu J. Bromocriptine mesylate-loaded nanoparticles co-modified with low molecular weight protamine and lactoferrin for enhanced nose-to-brain delivery in Parkinson's disease treatment. Int J Pharm 2024; 669:125054. [PMID: 39667592 DOI: 10.1016/j.ijpharm.2024.125054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Parkinson's disease confronts challenges in drug delivery due to the blood-brain barrier. Intranasal delivery bypasses the blood-brain barrier for improved drug bioavailability, yet narrow nasal space and brief retention time hinder clinical applicability. We conducted a Bromocriptine Mesylate-loaded PLGA nanoparticles co-modified with low molecular weight protamine (LMWP) and lactoferrin (Lf) (LMWP/Lf-BCM-NPs) for nose-to-brain delivery. The resulting LMWP/Lf-BCM-NPs were uniform spheres with an average size of 248.53 ± 16.25 nm and zeta potential of -2.63 ± 0.74 mV. Fourier transform infrared spectroscopy confirmed LMWP and Lf attachment. The co-modified nanoparticles showed improving cellular transport and good viability. The LMWP/Lf-BCM-NPs showed increased brain targeting efficiency in mice. In haloperidol-induced Parkinson mouse models, the LMWP/Lf-BCM-NPs showed increased brain targeting efficiency, enhanced behavioral regulatory effects, enhanced antioxidant effects and neuroprotection effects. This study paves the way for a novel, non-invasive brain-targeted therapy, offering a promising avenue for Parkinson's disease clinical treatment.
Collapse
Affiliation(s)
- Huijing Cong
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Hu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jing Wang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Baiyu Chang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Rongtao Li
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Xinran Cui
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Chenghao Zhang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongyu Ji
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Congcong Lin
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jingling Tang
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| | - Jiaxin Liu
- Department of Pharmaceutics, School of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
2
|
Liu Y, Craig DQM, Parhizkar M. Controlled release of doxorubicin from Poly-(D,L-lactide-co-glycolide) (PLGA) nanoparticles prepared by coaxial electrospraying. Int J Pharm 2024; 666:124724. [PMID: 39312984 DOI: 10.1016/j.ijpharm.2024.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
Enhancing the efficacy and reducing the toxicity of chemotherapeutic agents like doxorubicin (DOX) is crucial in cancer treatment. Core-shell nanoparticles (NPs) fabricated by coaxial electrospraying offer controlled release of anticancer agents with the polymer shell protecting drug molecules from rapid degradation, prolonging therapeutic effect. This study developed DOX-loaded poly(lactic-co-glycolic acid) (PLGA) NPs. NPs were fabricated with matrix or core-shell structure via single needle or coaxial electrospraying, respectively. Core-shell NPs exhibited high encapsulation efficiency (>80 %) with controlled DOX distribution. Compared to matrix NPs, core-shell NPs demonstrated slower sustained release (69 % in 144 h) after reduced initial burst (22 % in 8 h). Release kinetics followed a diffusion mechanism when compared to free drug and matrix DOX-loaded NPs. In vitro assays showed core-shell NPs' enhanced cytotoxicity against breast cancer cells MCF-7, with higher uptake observed by fluorescence microscopy and flow cytometry. The IC50 for core-shell NPs displayed a significant drop (0.115 μg/mL) compared to matrix NPs (0.235 μg/mL) and free DOX (1.482 μg/mL) after 72 h. Coaxial electrospraying enables the production of therapeutically advantageous core-shell NPs, offering controlled drug release with high encapsulation efficiency, potentially improving clinical anticancer chemotherapy.
Collapse
Affiliation(s)
- Yinan Liu
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | - Maryam Parhizkar
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
3
|
Keshavarz Shahbaz S, Koushki K, Izadi O, Penson PE, Sukhorukov VN, Kesharwani P, Sahebkar A. Advancements in curcumin-loaded PLGA nanoparticle delivery systems: progressive strategies in cancer therapy. J Drug Target 2024; 32:1207-1232. [PMID: 39106154 DOI: 10.1080/1061186x.2024.2389892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024]
Abstract
Cancer is a leading cause of death worldwide, and imposes a substantial socioeconomic burden with little impact especially on aggressive types of cancer. Conventional therapies have many serious side effects including generalised systemic toxicity which limits their long-term use. Tumour resistance and recurrence is another main problem associated with conventional therapy. Purified or extracted natural products have been investigated as cost-effective cancer chemoprotective agents with the potential to reverse or delaying carcinogenesis. Curcumin (CUR) as a natural polyphenolic component, exhibits many pharmacological activities such as anti-cancer, anti-inflammatory, anti-microbial, activity against neurodegenerative diseases including Alzheimer, antidiabetic activities (type II diabetes), anticoagulant properties, wound healing effects in both preclinical and clinical studies. Despite these effective protective properties, CUR has several limitations, including poor aqueous solubility, low bioavailability, chemical instability, rapid metabolism and a short half-life time. To overcome the pharmaceutical problems associated with free CUR, novel nanomedicine strategies (including polymeric nanoparticles (NPs) such as poly (lactic-co-glycolic acid) (PLGA) NPs have been developed. These formulations have the potential to improve the therapeutic efficacy of curcuminoids. In this review, we comprehensively summarise and discuss recent in vitro and in vivo studies to explore the pharmaceutical significance and clinical benefits of PLGA-NPs delivery system to improve the efficacy of CUR in the treatment of cancer.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- USERN Office, Qazvin University of Medical Science, Qazvin, Iran
| | - Khadijeh Koushki
- Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Omid Izadi
- Department of Industrial Engineering, ACECR Institute of Higher Education Kermanshah, Kermanshah, Iran
| | - Peter E Penson
- Clinical Pharmacy and Therapeutics Research Group, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Li K, Jin J, Yang Y, Luo X, Wang Y, Xu A, Hao K, Wang Z. Application of Nanoparticles for Immunotherapy of Allergic Rhinitis. Int J Nanomedicine 2024; 19:12015-12037. [PMID: 39583318 PMCID: PMC11584337 DOI: 10.2147/ijn.s484327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Allergen Immunotherapy (AIT) is the only etiological therapeutic method available for allergic rhinitis (AR). Currently, several options for AIT in the market, such as subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT), have different routes of administration. These traditional methods have achieved encouraging outcomes in clinic. However, the side effects associated with these methods have raised the need for innovative approaches for AIT that improve safety, shorten the course of treatment and increase local drug concentration. Nanoparticles (NPs) are particles ranging in size from 1 to 100 nm, which have been hired as potential adjuvants for AIT. NPs can be employed as agents for modulating immune responses in AR or/and carriers for loading proteins, peptides or DNA molecules. This review focuses on different kinds of nanoparticle delivery systems, including chitosan nanoparticles, exosomes, metal nanoparticles, and viral nanoparticles. We summarized the advantages and limitations of NPs for the treatment of allergic rhinitis. Overall, NPs are expected to be a therapeutic option for AR, which requires more in-depth studies and long-term therapeutic validation.
Collapse
Affiliation(s)
- Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yimin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xuling Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yaling Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Aibo Xu
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Ke Hao
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| |
Collapse
|
5
|
Choudhury P, Kandula N, Kosuru R, Adena SKR. Nanomedicine: A great boon for cardiac regenerative medicine. Eur J Pharmacol 2024; 982:176969. [PMID: 39218342 DOI: 10.1016/j.ejphar.2024.176969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease (CVD) represents a significant global health challenge, remaining the leading cause of illness and mortality worldwide. The adult heart's limited regenerative capacity poses a major obstacle in repairing extensive damage caused by conditions like myocardial infarction. In response to these challenges, nanomedicine has emerged as a promising field aimed at improving treatment outcomes through innovative drug delivery strategies. Nanocarriers, such as nanoparticles (NPs), offer a revolutionary approach by facilitating targeted delivery of therapeutic agents directly to the heart. This precise delivery system holds immense potential for treating various cardiac conditions by addressing underlying mechanisms such as inflammation, oxidative stress, cell death, extracellular matrix remodeling, prosurvival signaling, and angiogenic pathways associated with ischemia-reperfusion injury. In this review, we provide a concise summary of the fundamental mechanisms involved in cardiac remodeling and regeneration. We explore how nanoparticle-based drug delivery systems can effectively target the afore-mentioned mechanisms. Furthermore, we discuss clinical trials that have utilized nanoparticle-based drug delivery systems specifically designed for cardiac applications. These trials demonstrate the potential of nanomedicine in clinical settings, paving the way for future advancements in cardiac therapeutics through precise and efficient drug delivery. Overall, nanomedicine holds promise in revolutionizing the treatment landscape of cardiovascular diseases by offering targeted and effective therapeutic strategies that address the complex pathophysiology of cardiac injuries.
Collapse
Affiliation(s)
- Priyanka Choudhury
- Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nirupama Kandula
- Department of Microbiology, GSL Medical College, Rajahmahendravaram, Andhra Pradesh, 533296, India
| | - Ramoji Kosuru
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Sandeep Kumar Reddy Adena
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
6
|
Shu H, Ren ZJ, Li H, Zhang Y, Yin C, Nie F. Ultrasound-mediated nanobubbles loaded with STAT6 siRNA inhibit TGF-β1-EMT axis in LUSC cells via overcoming the polarization of M2-TAMs. Eur J Pharm Sci 2024; 202:106894. [PMID: 39245357 DOI: 10.1016/j.ejps.2024.106894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
M2-like tumor-associated macrophages (M2-TAMs) are closely correlated with metastasis and poor clinical outcomes in lung squamous cell carcinoma (LUSC). Previous studies have demonstrated that STAT6 is an important signaling molecule involved in the polarization of M2-TAMs, EMT is the main way for TAMs to promote tumor progression. However, little attention has been paid to the effect of STAT6 inhibition on LUSC, and it is difficult to achieve an ideal gene silencing effect in immune cells using traditional gene transfection methods. Here, we investigated the optimal concentration of 12-myristic 13-acetate (PMA), lipopolysaccharide (LPS) for the induction of THP-1 into M1-TAMs and M2-TAMs. The expression of pSTAT6 and STAT6 was confirmed in three types of macrophages, and it was demonstrated that pSTAT6 can be used as a specific target of M2-TAMs derived from THP-1. Ultrasound-mediated nanobubble destruction (UMND) is a non-invasive and safe gene delivery technology. We also synthesized PLGA-PEI nanobubbles (NBs) to load and deliver STAT6 small interfering RNA (siRNA) into M2-TAMs via UMND. The results show that the NBs could effectively load with siRNA and had good biocompatibility. We found that UMND enhanced the transfection efficiency of siRNA, as well as the silencing effect of pSTAT6 and the inhibition of M2-TAMs. Simultaneously, when STAT6 siRNA entered M2-TAMs by UMND, proliferation, migration, invasion and EMT in LUSC cells could be inhibited via the transforming growth factor-β1 (TGF-β1) pathway. Therefore, our results confirm that UMND is an ideal siRNA delivery strategy, revealing its potential to inhibit M2-TAMs polarization and ultimately treat LUSC.
Collapse
Affiliation(s)
- Hong Shu
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhi-Jian Ren
- Digestive Surgery, Xi 'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Hui Li
- Department of respiratory medicine, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yao Zhang
- Emergency department, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ci Yin
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
7
|
Yu Z, Luo F. The Role of Reactive Oxygen Species in Alzheimer's Disease: From Mechanism to Biomaterials Therapy. Adv Healthc Mater 2024; 13:e2304373. [PMID: 38508583 DOI: 10.1002/adhm.202304373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Alzheimer's disease (AD) is a chronic, insidious, and progressive neurodegenerative disease that remains a clinical challenge for society. The fully approved drug lecanemab exhibits the prospect of therapy against the pathological processes, while debatable adverse events conflict with the drug concentration required for the anticipated therapeutic effects. Reactive oxygen species (ROS) are involved in the pathological progression of AD, as has been demonstrated in much research regarding oxidative stress (OS). The contradiction between anticipated dosage and adverse event may be resolved through targeted transport by biomaterials and get therapeutic effects through pathological progression via regulation of ROS. Besides, biomaterials fix delivery issues by promoting the penetration of drugs across the blood-brain barrier (BBB), protecting the drug from peripheral degradation, and elevating bioavailability. The goal is to comprehensively understand the mechanisms of ROS in the progression of AD disease and the potential of ROS-related biomaterials in the treatment of AD. This review focuses on OS and its connection with AD and novel biomaterials in recent years against AD via OS to inspire novel biomaterial development. Revisiting these biomaterials and mechanisms associated with OS in AD via thorough investigations presents a considerable potential and bright future for improving effective interventions for AD.
Collapse
Affiliation(s)
- Zhuohang Yu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
8
|
Gao Z, Liu X, Lei Y, Shao J, Zhang G, Hou Z, Zhou G, Wu J, Guo H, Chang H, Liu W. Dendritic cell-based biomimetic nanoparticles for foot-and-mouth disease induce robust cellular immunity. Antiviral Res 2024; 231:106011. [PMID: 39332536 DOI: 10.1016/j.antiviral.2024.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically devastating viral disease of ruminants and swine, badly affecting the livestock industry worldwide. In clinical practice, vaccination is a frequently employed strategy to prevent foot-and-mouth disease (FMDV). However, commercial inactivated vaccines for FMD mainly rely on humoral immunity, exhibiting poor cellular immune responses and causing adverse reactions. Here, we use the double emulsion method to prepare poly (lactic-co-glycolic acid) nanoparticles (PLGA-NP) encapsulated with IL-2 cytokines, wrap the dendritic cell (DC) membrane carrying FMDV antigen information on the surface of the nanoparticles, obtaining a biomimetic nanoparticle vaccine Biom@DC with uniform size. This vaccine can effortlessly move through lymph nodes due to its nanoscale size advantage. It also possesses DC ability to present antigens, and antigen presentation can be made more effective with high biocompatibility. The sustained release of IL-2 encapsulated in the core of PLGA-NP in vivo can effectively promote the body's cellular immune response. Immune tests on mice have shown that Biom@DC may greatly increase T cell activation and proliferation both in vivo and in vitro, while also significantly reducing the fraction of inhibitory Treg cells. Furthermore, in the micro serum neutralization assay for FMDV, it has been demonstrated that the group vaccinated with Biom@DC exhibits a clear neutralizing effect. Given its strong immunogenicity, Biom@DC has the potential to develop into a novel, potent anti-FMDV vaccination.
Collapse
Affiliation(s)
- Zhan Gao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China; School of Materials Science and Engineering, Key Laboratory for Polymer Composite and Functional Materials of Ministry of Education, GD Research Center for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqing Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yao Lei
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Junjun Shao
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| | - Guanglei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Zhuo Hou
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Guangqing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Jin'en Wu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huiyun Chang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Wei Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, OIE/China National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China.
| |
Collapse
|
9
|
Liu C, Gong Q, Liu W, Zhao Y, Yan X, Yang T. Berberine-loaded PLGA nanoparticles alleviate ulcerative colitis by targeting IL-6/IL-6R axis. J Transl Med 2024; 22:963. [PMID: 39448992 PMCID: PMC11515557 DOI: 10.1186/s12967-024-05682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024] Open
Abstract
AIMS The present study aims to develop a nano-delivery system that encapsulates berberine (BBR) into PLGA-based nanoparticles (BPL-NPs), to treat ulcerative colitis (UC). Furthermore, the therapeutic efficacy and molecular targeting mechanisms of BPL-NPs in the management of UC are thoroughly examined. METHODS Emulsion solvent-driven methods were used to self-assemble BBR and PLGA into nanoparticles, resulting in the development of the nano-delivery system (BPL-NPs). The therapeutic effectiveness of BPL-NPs was evaluated using a dextran sulfate sodium (DSS)-induced model of ulcerative colitis in mice and a lipopolysaccharide (LPS)-induced model of inflammation in THP-1 macrophages. The interaction between Mφs and NCM-460 cells was investigated using a co-culture system. The molecular targeting ability of BPL-NPs in the treatment of UC was validated through in vitro as well as in vivo experiments. RESULTS The BPL-NPs demonstrated a particle size of 184 ± 22.4 nm, enhanced dispersibility in deionized water, and a notable encapsulation efficiency of 31.1 ± 0.2%. The use of BPL-NPs clearly improved the clinical symptoms and pathological changes associated with UC in mice while also ensuring minimal toxicity. In addition, BPL-NPs improved intestinal epithelial cell apoptosis and enhanced the function of the intestinal barrier by inhibiting M1 Mφs infiltration and IL-6 signaling pathway in mice with UC. Furthermore, the BPL-NPs were found to selectively target the IL-6/IL-6R axis during the M1 Mφs-induced apoptosis of NCM460 cells. CONCLUSION The BPL-NPs were confirmed to harbor anti-inflammatory effects both in vitro and in vivo, along with enhanced water solubility and bioactivity. In addition, the precise targeting of the IL-6/IL-6R axis was confirmed as the mechanism by which the BPL-NPs exerted therapeutic effects in UC, as demonstrated in both in vitro as well as in vivo studies.
Collapse
Affiliation(s)
- Chao Liu
- Cardiovascular Medicine Department, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiming Gong
- Cardiovascular Medicine Department, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road, Guangxi, China
- Baise Key Laboratory for Metabolic Diseases, Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, 533000, China
| | - Wanning Liu
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road, Guangxi, China
- Baise Key Laboratory for Metabolic Diseases, Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, 533000, China
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yihan Zhao
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, No.18 Zhongshan Road, Guangxi, China
- Baise Key Laboratory for Metabolic Diseases, Youjiang Medical University for Nationalities), Education Department of Guangxi Zhuang Autonomous Region, Baise, 533000, China
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Xi'an, 712046, China
| | - Xinhao Yan
- Key Laboratory of Clinical Molecular Biology, Hanzhong Vocational and Technical College, No.81, West side of National Road 316, Hanzhong, 723002, China.
| | - Tao Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, No. 127, Changle West Road, Xi'an, 710032, China.
- Colorectal and Anal Surgery, the First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Baoshan North Road, Guiyang, 550001, China.
| |
Collapse
|
10
|
Naik K, du Toit LC, Ally N, Choonara YE. In vivo evaluation of a Nano-enabled therapeutic vitreous substitute for the precise delivery of triamcinolone to the posterior segment of the eye. Drug Deliv Transl Res 2024; 14:2668-2694. [PMID: 38519828 PMCID: PMC11384602 DOI: 10.1007/s13346-024-01566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
This study focused on the design of a thermoresponsive, nano-enabled vitreous substitute for the treatment of retinal diseases. Synthesis of a hydrogel composed of hyaluronic acid and a poloxamer blend was undertaken. Poly(D,L-lactide-co-glycolide) acid nanoparticles encapsulating triamcinolone acetonide (TA) were synthesised with a spherical morphology and mean diameter of ~ 153 nm. Hydrogel fabrication and nanoparticle loading within the hydrogel was confirmed via physicochemical analysis. Gelation studies indicated that hydrogels formed in nine minutes and 10 min for the unloaded and nanoparticle-loaded hydrogels, respectively. The hydrogels displayed in situ gel formation properties, and rheometric viscoelastic studies indicated the unloaded and loaded hydrogels to have modulus values similar to those of the natural vitreous at 37 °C. Administration of the hydrogels was possible via 26G needles allowing for clinical application and drug release of triamcinolone acetonide from the nanoparticle-loaded hydrogel, which provided sustained in vitro drug release over nine weeks. The hydrogels displayed minimal swelling, reaching equilibrium swelling within 12 h for the unloaded hydrogel, and eight hours for the nanoparticle-loaded hydrogel. Biodegradation in simulated vitreous humour with lysozyme showed < 20% degradation within nine weeks. Biocompatibility of both unloaded and loaded hydrogels was shown with mouse fibroblast and human retinal pigment epithelium cell lines. Lastly, a pilot in vivo study in a New Zealand White rabbit model displayed minimal toxicity with precise, localised drug release behaviour, and ocular TA levels maintained within the therapeutic window for the 28-day investigation period, which supports the potential applicability of the unloaded and nanoparticle-loaded hydrogels as vitreous substitutes that function as drug delivery systems following vitrectomy surgery.
Collapse
Affiliation(s)
- Kruti Naik
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa
| | - Lisa Claire du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa
| | - Naseer Ally
- Division of Ophthalmology, Department of Neurosciences, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa
| | - Yahya Essop Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Johannesburg, Parktown, 2193, South Africa.
| |
Collapse
|
11
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
12
|
Foster T, Lim P, Ionescu CM, Wagle SR, Kovacevic B, Mooranian A, Al-Salami H. Exploring delivery systems for targeted nanotechnology-based gene therapy in the inner ear. Ther Deliv 2024; 15:801-818. [PMID: 39324734 PMCID: PMC11457609 DOI: 10.1080/20415990.2024.2389032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/02/2024] [Indexed: 09/27/2024] Open
Abstract
Hearing loss places a significant burden on our aging population. However, there has only been limited progress in developing therapeutic techniques to effectively mediate this condition. This review will outline several of the most commonly utilized practices for the treatment of sensorineural hearing loss before exploring more novel techniques currently being investigated via both in vitro and in vivo research. This review will place particular emphasis on novel gene-delivery technologies. Primarily, it will focus on techniques used to deliver genes that have been shown to encourage the proliferation and differentiation of sensory cells within the inner ear and how these technologies may be translated into providing clinically useful results for patients.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, University of Western Australia, Perth, 6000, Western Australia, Australia
| |
Collapse
|
13
|
Liao HJ, Chen HT, Chang CH. Peptides for Targeting Chondrogenic Induction and Cartilage Regeneration in Osteoarthritis. Cartilage 2024:19476035241276406. [PMID: 39291443 PMCID: PMC11556548 DOI: 10.1177/19476035241276406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
OBJECTS Osteoarthritis (OA) is a widespread degenerative joint condition commonly occurring in older adults. Currently, no disease-modifying drugs are available, and safety concerns associated with commonly used traditional medications have been identified. In this review, a significant portion of research in this field is concentrated on cartilage, aiming to discover methods to halt cartilage breakdown or facilitate cartilage repair. METHODS Researchers have mainly investigated the cartilage, seeking methods to promote its repair. This review focuses on peptide-based molecules known for their ability to selectively bind to growth factor cytokines and components of the cartilage extracellular matrix. RESULTS Chondroinductive peptides, synthetically producible, boast superior reproducibility, stability, modifiability, and yield efficiency over natural biomaterials. This review outlines a chondroinductive peptide design, molecular mechanisms, and their application in cartilage tissue engineering and also compares their efficacy in chondrogenesis in vitro and in vivo. CONCLUSIONS In this paper, we will summarize the application of peptides engineered to regenerate cartilage by acting as scaffolds, functional molecules, or both and discuss additional possibilities for peptides. This review article provides an overview of our current understanding of chondroinductive peptides for treating OA-affected cartilage and explores the delivery systems used for regeneration. These advancements may hold promise for enhancing or even replacing current treatment methodologies.
Collapse
Affiliation(s)
- Hsiu-Jung Liao
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei
- Department of Medical Research, Far Eastern Memorial Hospital, New Taipei City
| | - Hui-Ting Chen
- Department of Pharmacy, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, Kaohsiung
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung
| | - Chih-Hung Chang
- Department of Orthopedic Surgery, Far Eastern Memorial Hospital, New Taipei City
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan
| |
Collapse
|
14
|
Yang J, Zeng H, Luo Y, Chen Y, Wang M, Wu C, Hu P. Recent Applications of PLGA in Drug Delivery Systems. Polymers (Basel) 2024; 16:2606. [PMID: 39339068 PMCID: PMC11435547 DOI: 10.3390/polym16182606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/18/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable and biocompatible copolymer in drug delivery systems (DDSs). In this article, we highlight the critical physicochemical properties of PLGA, including its molecular weight, intrinsic viscosity, monomer ratio, blockiness, and end caps, that significantly influence drug release profiles and degradation times. This review also covers the extensive literature on the application of PLGA in delivering small-molecule drugs, proteins, peptides, antibiotics, and antiviral drugs. Furthermore, we discuss the role of PLGA-based DDSs in the treating various diseases, including cancer, neurological disorders, pain, and inflammation. The incorporation of drugs into PLGA nanoparticles and microspheres has been shown to enhance their therapeutic efficacy, reduce toxicity, and improve patient compliance. Overall, PLGA-based DDSs holds great promise for the advancement of the treatment and management of multiple chronic conditions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Huiying Zeng
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Yusheng Luo
- International School, Jinan University, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510660, China
| | - Miao Wang
- Guangdong Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangzhou 510660, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Ping Hu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| |
Collapse
|
15
|
Zhang Y, Tian J. Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies. ACS OMEGA 2024; 9:37459-37504. [PMID: 39281920 PMCID: PMC11391544 DOI: 10.1021/acsomega.4c04573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/18/2024]
Abstract
Gynecologic cancers are a significant health issue for women globally. Early detection and successful treatment of these tumors are crucial for the survival of female patients. Conventional therapies are often ineffective and harsh, particularly in advanced stages, necessitating the exploration of new therapy options. Nanotechnology offers a novel approach to biomedicine. A novel biosensor utilizing bionanotechnology can be employed for early tumor identification and therapy due to the distinctive physical and chemical characteristics of nanoparticles. Nanoparticles have been rapidly applied in the field of gynecologic malignancies, leading to significant advancements in recent years. This study highlights the significance of nanoparticles in treating gynecological cancers. It focuses on using nanoparticles for precise diagnosis and continuous monitoring of the disease, innovative imaging, and analytic methods, as well as multifunctional drug delivery systems and targeted therapies. This review examines several nanocarrier systems, such as dendrimers, liposomes, nanocapsules, and nanomicelles, for gynecological malignancies. The review also examines the enhanced therapeutic potential and targeted delivery of ligand-functionalized nanoformulations for gynecological cancers compared to nonfunctionalized anoformulations. In conclusion, the text also discusses the constraints and future exploration prospects of nanoparticles in chemotherapeutics. Nanotechnology will offer precise methods for diagnosing and treating gynecological cancers.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jing Tian
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
16
|
Lu H, Cai Z, Hu P. Recent Advances in Polymeric Delivery Vehicles for Controlled and Sustained Drug Release. Pharmaceutics 2024; 16:1184. [PMID: 39339220 PMCID: PMC11435192 DOI: 10.3390/pharmaceutics16091184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
In the realm of modern therapeutics, the development of polymeric delivery vehicles has revolutionized drug administration, offering a sophisticated approach to controlled and sustained drug release [...].
Collapse
Affiliation(s)
- Hong Lu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Zheng Cai
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ping Hu
- Department of Burns & Plastic Surgery, Guangzhou Red Cross Hospital, Faculty of Medical Science, Jinan University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 510006, China
| |
Collapse
|
17
|
Li P, Yang Y, Wang Y, Zheng J, Chen F, Jiang M, Chou CK, Cong W, Li Z, Chen X. Anti-TNFR2 Antibody-Conjugated PLGA Nanoparticles for Targeted Delivery of Adriamycin in Mouse Colon Cancer. RESEARCH (WASHINGTON, D.C.) 2024; 7:0444. [PMID: 39247806 PMCID: PMC11377996 DOI: 10.34133/research.0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/14/2024] [Indexed: 09/10/2024]
Abstract
High levels of tumor necrosis factor receptor type II (TNFR2) are preferentially expressed by immunosuppressive CD4+Foxp3+ regulatory T cells (Tregs), especially those present in the tumor microenvironment, as initially reported by us. There is compelling evidence that targeting TNFR2 markedly enhances antitumor immune responses. Furthermore, a broad spectrum of human cancers also expresses TNFR2, while its expression by normal tissue is very limited. We thus hypothesized that TNFR2 may be harnessed for tumor-targeted delivery of chemotherapeutic agents. In this study, we performed a proof-of-concept study by constructing a TNFR2-targeted PEGylated poly(dl-lactic-co-glycolic acid) (PLGA-PEG) nanodrug delivery system [designated as TNFR2-PLGA-ADR (Adriamycin)]. The results of in vitro study showed that this TNFR2-targeted delivery system had the properties in cellular binding and cytotoxicity toward mouse colon cancer cells. Further, upon intravenous injection, TNFR2-PLGA-ADR could efficiently accumulate in MC38 and CT26 mouse colon tumor tissues and preferentially bind with tumor-infiltrating Tregs. Compared with ADR and ISO-PLGA-ADR, the in vivo antitumor effect of TNFR2-PLGA-ADR was markedly enhanced, which was associated with a decrease of TNFR2+ Tregs and an increase of IFNγ+CD8+ cytotoxic T lymphocytes in the tumor tissue. Therefore, our results clearly show that targeting TNFR2 is a promising strategy for designing tumor-specific chemoimmunotherapeutic agent delivery system.
Collapse
Affiliation(s)
- Ping Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Yang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Yifei Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Jingbin Zheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Fengyang Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Mengmeng Jiang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Chon-Kit Chou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Zongjin Li
- Faculty of Innovation Engineering, Macau University of Science and Technology, Macau, China
| | - Xin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macau, China
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| |
Collapse
|
18
|
Kim SI, Yang J, Shin J, Shin N, Shin HJ, Lee J, Noh C, Kim DW, Lee SY. Amitriptyline nanoparticle repositioning prolongs the anti-allodynic effect of enhanced microglia targeting. Nanomedicine (Lond) 2024; 19:2099-2112. [PMID: 39229790 PMCID: PMC11485917 DOI: 10.1080/17435889.2024.2390349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Aim: Amitriptyline (AMI) has been used to treat neuropathic pain. However, the clinical outcomes remain unsatisfactory, presumably due to a limited understanding of the underlying molecular mechanisms. Here, we investigated a drug repositioning strategy using a low-dose of AMI encapsulated in poly (D, L lactic-co-glycolic acid) (PLGA) nanoparticles (AMI NPs) for neuropathic pain, since PLGA nanoparticles are known to enhance delivery to microglia.Methods: We evaluated the anti-allodynic effects of AMI and AMI NPs on neuropathic pain by assessing behaviors and inflammatory responses in a rat model of spinal nerve ligation (SNL). While the anti-allodynic effect of AMI (30 μg) drug injection on SNL-induced neuropathic pain persisted for 12 h, AMI NPs significantly alleviated mechanical allodynia for 3 days.Results: Histological and cytokine analyses showed AMI NPs facilitated the reduction of microglial activation and pro-inflammatory mediators in the spinal dorsal horn. This study suggests that AMI NPs can provide a sustained anti-allodynic effect by enhancing the targeting of microglia and regulating the release of pro-inflammatory cytokines from activated microglia.Conclusion: Our findings suggest that the use of microglial-targeted NPs continuously releasing AMI (2 μg) as a drug repositioning strategy offers long-term anti-allodynic effects.
Collapse
Affiliation(s)
- Song I Kim
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy & Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jiah Yang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX77054, USA
| | - Juhee Shin
- Center for Cognition & Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Nara Shin
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy & Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Hyo Jung Shin
- Department of Anatomy & Cell Biology, Brain Research Institute, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Jiyong Lee
- Department of Anesthesia & Pain Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Chan Noh
- Department of Anesthesia & Pain Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Dong Woon Kim
- Department of Oral Anatomy & Developmental Biology, College of Dentistry Kyung Hee University 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Sun Yeul Lee
- Department of Anesthesia & Pain Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
19
|
Slomkowski S, Basinska T, Gadzinowski M, Mickiewicz D. Polyesters and Polyester Nano- and Microcarriers for Drug Delivery. Polymers (Basel) 2024; 16:2503. [PMID: 39274136 PMCID: PMC11397835 DOI: 10.3390/polym16172503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Many therapies require the transport of therapeutic compounds or substances encapsulated in carriers that reduce or, if possible, eliminate their direct contact with healthy tissue and components of the immune system, which may react to them as something foreign and dangerous to the patient's body. To date, inorganic nanoparticles, solid lipids, micelles and micellar aggregates, liposomes, polymeric micelles, and other polymer assemblies were tested as drug carriers. Specifically, using polymers creates a variety of options to prepare nanocarriers tailored to the chosen needs. Among polymers, aliphatic polyesters are a particularly important group. The review discusses controlled synthesis of poly(β-butyrolactone)s, polylactides, polyglycolide, poly(ε-caprolactone), and copolymers containing polymacrolactone units with double bonds suitable for preparation of functionalized nanoparticles. Discussed are syntheses of aliphatic polymers with controlled molar masses ranging from a few thousand to 106 and, in the case of polyesters with chiral centers in the chains, with controlled microstructure. The review presents also a collection of methods useful for the preparation of the drug-loaded nanocarriers: classical, developed and mastered more recently (e.g., nanoprecipitation), and forgotten but still with great potential (by the direct synthesis of the drug-loaded nanoparticles in the process comprising monomer and drug). The article describes also in-vitro and model in-vivo studies for the brain-targeted drugs based on polyester-containing nanocarriers and presents a brief update on the clinical studies and the polyester nanocarrier formulation approved for application in the clinics in South Korea for the treatment of breast, lung, and ovarian cancers.
Collapse
Affiliation(s)
- Stanislaw Slomkowski
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Teresa Basinska
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Mariusz Gadzinowski
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| | - Damian Mickiewicz
- Division of Functional Polymers and Polymer Materials, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, H. Sienkiewicza 112, 90-363 Lodz, Poland
| |
Collapse
|
20
|
Wang C, Li Q, Song K, Wang W, Zhang N, Dai L, Di W. Nanoparticle co-delivery of carboplatin and PF543 restores platinum sensitivity in ovarian cancer models through inhibiting platinum-induced pro-survival pathway activation. NANOSCALE ADVANCES 2024; 6:4082-4093. [PMID: 39114142 PMCID: PMC11302180 DOI: 10.1039/d4na00227j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
Resistance to platinum-based chemotherapy is the major cause of poor prognosis and cancer-associated mortality in ovarian cancer patients, so novel therapeutic strategies to restore platinum sensitivity are needed to improve patient outcomes. Sphingosine Kinase (SphK) 1 is involved in regulating multiple pro-survival pathways, key mediators in the sensitivity of tumor cells toward platinum. By encapsulating CBP and the SphK1 inhibitor PF543 in PLGA (poly lactic-co-glycolic acid) nanoparticles, a dual-drug delivery system (C/PNPs) was formed to simultaneously deliver CBP and PF543. The physicochemical characteristics, cell uptake rate and biodistribution behavior of C/PNPs were evaluated. Then the anti-tumor ability of C/PNPs in vitro and in vivo was further investigated. The C/PNPs could deliver CBP and PF543 simultaneously to a platinum-insensitive cell line (SKOV3) both in vitro and in vivo. Furthermore, benefiting from the enhanced permeability and retention (EPR) effect of PLGA NPs, C/PNPs exhibited an improved tumor region accumulation. As a result, a synergistic anti-tumor effect was found in the SKOV3 tumor-bearing mice, with tumor volume inhibiting rates of 84.64% and no side effects in major organs. The mechanistic studies confirmed that the inhibition of SphK1 by PF543 sensitized SKOV3 cells to CBP chemotherapy, partly by inhibiting the CBP-induced activation of pro-survival pathways, including ERK, AKT and STAT3 signaling. Our study reveals that C/PNPs can serve as an efficient dual-drug delivery system to restore platinum sensitivity in ovarian cancer models partly through inhibiting platinum-induced pro-survival pathway activation.
Collapse
Affiliation(s)
- Chen Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Qing Li
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Keqi Song
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Ning Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Lan Dai
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
21
|
Iureva AM, Nikitin PI, Tereshina ED, Nikitin MP, Shipunova VO. The influence of various polymer coatings on the in vitro and in vivo properties of PLGA nanoparticles: Comprehensive study. Eur J Pharm Biopharm 2024; 201:114366. [PMID: 38876361 DOI: 10.1016/j.ejpb.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) with various surface chemistry are widely used in biomedicine for theranostic applications. The nature of the external coating of nanoparticles has a significant influence on their efficiency as drug carriers or visualization agents. However, information about the mechanisms of nanoparticle accumulation in tumors and the influence of their surface properties on biodistribution is scarce due to the lack of systematic evaluation. Here we investigate the effect of different polymer coatings of the surface on in vitro and in vivo properties of PLGA nanoparticles. Namely, cell binding efficiency, cytotoxicity, efficiency of fluorescent bioimaging, and tumor accumulation were tested. The highest binding efficiency in vitro and cytotoxicity were observed for positively charged polymers. Interestingly, in vivo fluorescent visualization of tumor-bearing mice and quantitative measurements of biodistribution of magnetite-loaded nanoparticles indicated different dependences of accumulation in tumors on the coating of PLGA nanoparticles. This means that nanoparticle surface properties can simultaneously enhance imaging efficiency and decrease quantitative accumulation in tumors. The obtained data demonstrate the complexity of the dependence of nanoparticles' effectiveness for theranostic applications on surface features. We believe that this study will contribute to the rational design of nanoparticles for effective cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Anna M Iureva
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Petr I Nikitin
- Prokhorov General Physics Institute, Russian Academy of Sciences, 38 Vavilov Street, 119991 Moscow, Russia
| | - Ekaterina D Tereshina
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia
| | - Maxim P Nikitin
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia
| | - Victoria O Shipunova
- Moscow Institute of Physics and Technology, 9 Institutskiy Per., 141701 Dolgoprudny, Russia; Nanobiomedicine Division, Sirius University of Science and Technology, 1 Olympic Ave., 354340 Sochi, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia.
| |
Collapse
|
22
|
Andreana I, Chiapasco M, Bincoletto V, Digiovanni S, Manzoli M, Ricci C, Del Favero E, Riganti C, Arpicco S, Stella B. Targeting pentamidine towards CD44-overexpressing cells using hyaluronated lipid-polymer hybrid nanoparticles. Drug Deliv Transl Res 2024; 14:2100-2111. [PMID: 38709442 DOI: 10.1007/s13346-024-01617-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Biodegradable nanocarriers possess enormous potential for use as drug delivery systems that can accomplish controlled and targeted drug release, and a wide range of nanosystems have been reported for the treatment and/or diagnosis of various diseases and disorders. Of the various nanocarriers currently available, liposomes and polymer nanoparticles have been extensively studied and some formulations have already reached the market. However, a combination of properties to create a single hybrid system can give these carriers significant advantages, such as improvement in encapsulation efficacy, higher stability, and active targeting towards specific cells or tissues, over lipid or polymer-based platforms. To this aim, this work presents the formulation of poly(lactic-co-glycolic) acid (PLGA) nanoparticles in the presence of a hyaluronic acid (HA)-phospholipid conjugate (HA-DPPE), which was used to anchor HA onto the nanoparticle surface and therefore create an actively targeted hybrid nanosystem. Furthermore, ionic interactions have been proposed for drug encapsulation, leading us to select the free base form of pentamidine (PTM-B) as the model drug. We herein report the preparation of hybrid nanocarriers that were loaded via ion-pairing between the negatively charged PLGA and HA and the positively charged PTM-B, demonstrating an improved loading capacity compared to PLGA-based nanoparticles. The nanocarriers displayed a size of below 150 nm, a negative zeta potential of -35 mV, a core-shell internal arrangement and high encapsulation efficiency (90%). Finally, the ability to be taken up and exert preferential and receptor-mediated cytotoxicity on cancer cells that overexpress the HA specific receptor (CD44) has been evaluated. Competition assays supported the hypothesis that PLGA/HA-DPPE nanoparticles deliver their cargo within cells in a CD44-dependent manner.
Collapse
Affiliation(s)
- Ilaria Andreana
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Marta Chiapasco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Valeria Bincoletto
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | | | - Maela Manzoli
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Caterina Ricci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milano, Italy
| | - Elena Del Favero
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università di Milano, Milano, Italy
| | - Chiara Riganti
- Dipartimento di Oncologia, Università di Torino, Torino, Italy
| | - Silvia Arpicco
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy
| | - Barbara Stella
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Torino, Italy.
| |
Collapse
|
23
|
Voci S, Gagliardi A, Ambrosio N, Zannetti A, Cosco D. Lipid- and polymer-based formulations containing TNF-α inhibitors for the treatment of inflammatory bowel diseases. Drug Discov Today 2024; 29:104090. [PMID: 38977124 DOI: 10.1016/j.drudis.2024.104090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Monoclonal antibodies inhibiting tumor necrosis factor-alpha (iTNF-α) have revolutionized the therapeutic regimen of inflammatory bowel disease, but their main drawback is the parenteral route of administration they require. An alternative approach lies in the delivery of these molecules to the area involved in the inflammatory process by means of innovative formulations able to promote their localization in affected tissues while also decreasing the number of administrations required. This review describes the advantages deriving from the use of lipid- and polymer-based systems containing iTNF-α, focusing on their physicochemical and technological properties and discussing the preclinical results obtained in vivo using rodent models of colitis.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University of Catanzaro 'Magna Græcia', 88100 Catanzaro, Italy
| | - Agnese Gagliardi
- Department of Health Sciences, University of Catanzaro 'Magna Græcia', 88100 Catanzaro, Italy
| | - Nicola Ambrosio
- Department of Health Sciences, University of Catanzaro 'Magna Græcia', 88100 Catanzaro, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging, National Research Council (IBB-CNR), Naples 80145, Italy
| | - Donato Cosco
- Department of Health Sciences, University of Catanzaro 'Magna Græcia', 88100 Catanzaro, Italy.
| |
Collapse
|
24
|
Huang Y, Zhang J, Wang X, Jing H, Li H. Aerosol Inhalation of Gene Delivery Therapy for Pulmonary Diseases. Biomolecules 2024; 14:904. [PMID: 39199292 PMCID: PMC11352762 DOI: 10.3390/biom14080904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/27/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
Gene delivery therapy has emerged as a popular approach for the treatment of various diseases. However, it still poses the challenges of accumulation in target sites and reducing off-target effects. Aerosol gene delivery for the treatment of pulmonary diseases has the advantages of high lung accumulation, specific targeting and fewer systemic side effects. However, the key challenge is selecting the appropriate formulation for aerosol gene delivery that can overcome physiological barriers. There are numerous existing gene carriers under study, including viral vectors and non-viral vectors. With the development of biomaterials, more biocompatible substances have applied gene delivery via inhalation. Furthermore, many types of genes can be delivered through aerosol inhalation, such as DNA, mRNA, siRNA and CRISPR/Cas9. Aerosol delivery of different types of genes has proven to be efficient in the treatment of many diseases such as SARS-CoV-2, cystic fibrosis and lung cancer. In this paper, we provide a comprehensive review of the ongoing research on aerosol gene delivery therapy, including the basic respiratory system, different types of gene carriers, different types of carried genes and clinical applications.
Collapse
Affiliation(s)
| | | | | | - Hui Jing
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.H.); (J.Z.); (X.W.)
| |
Collapse
|
25
|
Zhang Y, Watson S, Ramaswamy Y, Singh G. Intravitreal therapeutic nanoparticles for age-related macular degeneration: Design principles, progress and opportunities. Adv Colloid Interface Sci 2024; 329:103200. [PMID: 38788306 DOI: 10.1016/j.cis.2024.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/11/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of vision loss in the elderly. The current standard treatment for AMD involves frequent intravitreal administrations of therapeutic agents. While effective, this approach presents challenges, including patient discomfort, inconvenience, and the risk of adverse complications. Nanoparticle-based intravitreal drug delivery platforms offer a promising solution to overcome these limitations. These platforms are engineered to target the retina specifically and control drug release, which enhances drug retention, improves drug concentration and bioavailability at the retinal site, and reduces the frequency of injections. This review aims to uncover the design principles guiding the development of highly effective nanoparticle-based intravitreal drug delivery platforms for AMD treatment. By gaining a deeper understanding of the physiology of ocular barriers and the physicochemical properties of nanoparticles, we establish a basis for designing intravitreal nanoparticles to optimize drug delivery and drug retention in the retina. Furthermore, we review recent nanoparticle-based intravitreal therapeutic strategies to highlight their potential in improving AMD treatment efficiency. Lastly, we address the challenges and opportunities in this field, providing insights into the future of nanoparticle-based drug delivery to improve therapeutic outcomes for AMD patients.
Collapse
Affiliation(s)
- Yuhang Zhang
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Stephanie Watson
- Faculty of Medicine and Health, Clinical Ophthalmology and Eye Health, Save Sight Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Yogambha Ramaswamy
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia
| | - Gurvinder Singh
- The School of Biomedical Engineering, Faculty of IT and Engineering, Sydney Nano Institute, The University of Sydney, Camperdown, NSW 2008, Australia.
| |
Collapse
|
26
|
Cocoș DI, Dumitriu Buzia O, Tatu AL, Dinu M, Nwabudike LC, Stefan CS, Earar K, Galea C. Challenges in Optimizing Nanoplatforms Used for Local and Systemic Delivery in the Oral Cavity. Pharmaceutics 2024; 16:626. [PMID: 38794288 PMCID: PMC11124955 DOI: 10.3390/pharmaceutics16050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, we focused on innovative approaches to improve drug administration in oral pathology, especially by transmucosal and transdermal pathways. These improvements refer to the type of microneedles used (proposing needles in the saw), to the use of certain enhancers such as essential oils (which, besides the amplifier action, also have intrinsic actions on oral health), to associations of active substances with synergistic action, as well as the use of copolymeric membranes, cemented directly on the tooth. We also propose a review of the principles of release at the level of the oral mucosa and of the main release systems used in oral pathology. Controlled failure systems applicable in oral pathology include the following: fast dissolving films, mucoadhesive tablets, hydrogels, intraoral mucoadhesive films, composite wafers, and smart drugs. The novelty elements brought by this paper refer to the possibilities of optimizing the localized drug delivery system in osteoarthritis of the temporomandibular joint, neuropathic pain, oral cancer, periodontitis, and pericoronitis, as well as in maintaining oral health. We would like to mention the possibility of incorporating natural products into the controlled failure systems used in oral pathology, paying special attention to essential oils.
Collapse
Affiliation(s)
- Dorin Ioan Cocoș
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” the University of Galati, 800008 Galati, Romania; (D.I.C.); (C.S.S.); (K.E.)
| | - Olimpia Dumitriu Buzia
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” the University of Galati, 800008 Galati, Romania; (D.I.C.); (C.S.S.); (K.E.)
| | - Alin Laurențiu Tatu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, 800008 Galati, Romania;
- Dermatology Department, “Sf. Cuvioasa Parascheva” Clinical Hospital of Infectious Diseases, 800179 Galati, Romania
- Multidisciplinary Integrative Center for Dermatologic Interface Research MIC-DIR, 800010 Galati, Romania
| | - Monica Dinu
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” the University of Galati, 800008 Galati, Romania; (D.I.C.); (C.S.S.); (K.E.)
| | | | - Claudia Simona Stefan
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” the University of Galati, 800008 Galati, Romania; (D.I.C.); (C.S.S.); (K.E.)
| | - Kamel Earar
- Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunarea de Jos” the University of Galati, 800008 Galati, Romania; (D.I.C.); (C.S.S.); (K.E.)
| | - Carmen Galea
- Department of Medical Disciplines, Faculty of Dental Medicine, University of Targu Mures, 540099 Targu Mures, Romania;
| |
Collapse
|
27
|
Todaro B, Pesce L, Cardarelli F, Luin S. Pioglitazone Phases and Metabolic Effects in Nanoparticle-Treated Cells Analyzed via Rapid Visualization of FLIM Images. Molecules 2024; 29:2137. [PMID: 38731628 PMCID: PMC11085555 DOI: 10.3390/molecules29092137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) has proven to be a useful method for analyzing various aspects of material science and biology, like the supramolecular organization of (slightly) fluorescent compounds or the metabolic activity in non-labeled cells; in particular, FLIM phasor analysis (phasor-FLIM) has the potential for an intuitive representation of complex fluorescence decays and therefore of the analyzed properties. Here we present and make available tools to fully exploit this potential, in particular by coding via hue, saturation, and intensity the phasor positions and their weights both in the phasor plot and in the microscope image. We apply these tools to analyze FLIM data acquired via two-photon microscopy to visualize: (i) different phases of the drug pioglitazone (PGZ) in solutions and/or crystals, (ii) the position in the phasor plot of non-labelled poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), and (iii) the effect of PGZ or PGZ-containing NPs on the metabolism of insulinoma (INS-1 E) model cells. PGZ is recognized for its efficacy in addressing insulin resistance and hyperglycemia in type 2 diabetes mellitus, and polymeric nanoparticles offer versatile platforms for drug delivery due to their biocompatibility and controlled release kinetics. This study lays the foundation for a better understanding via phasor-FLIM of the organization and effects of drugs, in particular, PGZ, within NPs, aiming at better control of encapsulation and pharmacokinetics, and potentially at novel anti-diabetics theragnostic nanotools.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (L.P.); (F.C.)
| | - Luca Pesce
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (L.P.); (F.C.)
| | - Francesco Cardarelli
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (L.P.); (F.C.)
| | - Stefano Luin
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (L.P.); (F.C.)
- NEST Laboratory, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
28
|
Xu Y, Lv L, Wang Q, Yao Q, Kou L, Zhang H. Emerging application of nanomedicine-based therapy in acute respiratory distress syndrome. Colloids Surf B Biointerfaces 2024; 237:113869. [PMID: 38522285 DOI: 10.1016/j.colsurfb.2024.113869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are serious lung injuries caused by various factors, leading to increased permeability of the alveolar-capillary barrier, reduced stability of the alveoli, inflammatory response, and hypoxemia. Despite several decades of research since ARDS was first formally described in 1967, reliable clinical treatment options are still lacking. Currently, supportive therapy and mechanical ventilation are prioritized, and there is no medication that can be completely effective in clinical treatment. In recent years, nanomedicine has developed rapidly and has exciting preclinical treatment capabilities. Using a drug delivery system based on nanobiotechnology, local drugs can be continuously released in lung tissue at therapeutic levels, reducing the frequency of administration and improving patient compliance. Furthermore, this novel drug delivery system can target specific sites and reduce systemic side effects. Currently, many nanomedicine treatment options for ARDS have demonstrated efficacy. This review briefly introduces the pathophysiology of ARDS, discusses various research progress on using nanomedicine to treat ARDS, and anticipates future developments in related fields.
Collapse
Affiliation(s)
- Yitianhe Xu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Leyao Lv
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qian Wang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Department of Children's Respiration Disease, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
29
|
Sun G, Huang S, Wang S, Li Y. Nanomaterial-based drug-delivery system as an aid to antimicrobial photodynamic therapy in treating oral biofilm. Future Microbiol 2024; 19:741-759. [PMID: 38683167 PMCID: PMC11259068 DOI: 10.2217/fmb-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 05/01/2024] Open
Abstract
Diverse microorganisms live as biofilm in the mouth accounts for oral diseases and treatment failure. For decades, the prevention and treatment of oral biofilm is a global challenge. Antimicrobial photodynamic therapy (aPDT) holds promise for oral biofilm elimination due to its several traits, including broad-spectrum antimicrobial capacity, lower possibility of resistance and low cytotoxicity. However, the physicochemical properties of photosensitizers and the biological barrier of oral biofilm have limited the efficiency of aPDT. Nanomaterials has been used to fabricate nanocarriers to improve photosensitizer properties and thus enhance antimicrobial effect. In this review, we have discussed the challenges of aPDT used in dentistry, categorized the nanomaterial-delivery system and listed the possible mechanisms involved in nanomaterials when enhancing aPDT effect.
Collapse
Affiliation(s)
- Guanwen Sun
- Department of stomatology, Fujian Medical University Xiamen Humanity Hospital, Xiamen, China
| | - Shan Huang
- Department of stomatology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Shaofeng Wang
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Yijun Li
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
- Xiamen Key Laboratory of Stomatological Disease Diagnosis & Treatment, Xiamen, China
| |
Collapse
|
30
|
Du L, Lu H, Xiao Y, Guo Z, Li Y. Protective effect and pharmacokinetics of dihydromyricetin nanoparticles on oxidative damage of myocardium. PLoS One 2024; 19:e0301036. [PMID: 38625956 PMCID: PMC11020404 DOI: 10.1371/journal.pone.0301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/10/2024] [Indexed: 04/18/2024] Open
Abstract
PURPOSE This study aims to investigate the protective mechanism of dihydromyricetin PLGA nanoparticles (DMY-PLGA NPs) against myocardial ischemia-reperfusion injury (MIRI) in vitro and the improvement of oral bioavailability in vivo. METHODS DMY-PLGA NPs was prepared and characterized by emulsifying solvent volatilization, and the oxidative stress model of rat H9c2 cardiomyocyte induced by H2O2 was established. After administration, cell survival rate, lactate dehydrogenase (LDH), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected, and the expressions of PGC1α and PPARα were detected by western blot (WB). At the same time, the pharmacokinetics in rats were studied to explore the improvement of bioavailability. RESULTS DMY-PLGA NPs can significantly increase cell survival rate, decrease LDH and MDA content, increase SOD content and PGC1α、PPARα protein expression. Compared with DMY, the peak time of DMY-PLGA NPs was extended (P<0.1), and the bioavailability was increased by 2.04 times. CONCLUSION DMY-PLGA NPs has a significant protective effect on H9c2 cardiomyocytes, which promotes the absorption of DMY and effectively improves bioavailability.
Collapse
Affiliation(s)
- Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Huiling Lu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yifei Xiao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
31
|
Malacarne C, Giagnorio E, Chirizzi C, Cattaneo M, Saraceno F, Cavalcante P, Bonanno S, Mantegazza R, Moreno-Manzano V, Lauria G, Metrangolo P, Bombelli FB, Marcuzzo S. FM19G11-loaded nanoparticles modulate energetic status and production of reactive oxygen species in myoblasts from ALS mice. Biomed Pharmacother 2024; 173:116380. [PMID: 38447450 DOI: 10.1016/j.biopha.2024.116380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. Considerable evidence indicates that early skeletal muscle atrophy plays a crucial role in the disease pathogenesis, leading to an altered muscle-motor neuron crosstalk that, in turn, may contribute to motor neuron degeneration. Currently, there is no effective treatment for ALS, highlighting the need to dig deeper into the pathological mechanisms for developing innovative therapeutic strategies. FM19G11 is a novel drug able to modulate the global cellular metabolism, but its effects on ALS skeletal muscle atrophy and mitochondrial metabolism have never been evaluated, yet. This study investigated whether FM19G11-loaded nanoparticles (NPs) may affect the bioenergetic status in myoblasts isolated from G93A-SOD1 mice at different disease stages. We found that FM19G1-loaded NP treatment was able to increase transcriptional levels of Akt1, Akt3, Mef2a, Mef2c and Ucp2, which are key genes associated with cell proliferation (Akt1, Akt3), muscle differentiation (Mef2c), and mitochondrial activity (Ucp2), in G93A-SOD1 myoblasts. These cells also showed a significant reduction of mitochondrial area and networks, in addition to decreased ROS production after treatment with FM19G11-loaded NPs, suggesting a ROS clearance upon the amelioration of mitochondrial dynamics. Our overall findings demonstrate a significant impact of FM19G11-loaded NPs on muscle cell function and bioenergetic status in G93A-SOD1 myoblasts, thus promising to open new avenues towards possible adoption of FM19G11-based nanotherapies to slow muscle degeneration in the frame of ALS and muscle disorders.
Collapse
Affiliation(s)
- Claudia Malacarne
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Eleonora Giagnorio
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy.
| | - Cristina Chirizzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy; Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Milan 20131, Italy
| | - Marco Cattaneo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy; PhD Program in Pharmacological Biomolecular Sciences, Experimental and Clinical, University of Milano, Via G.Balzaretti 9, Milan 20133, Italy
| | - Fulvia Saraceno
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, Parma 43124, Italy
| | - Paola Cavalcante
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Silvia Bonanno
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Center, Carrer d´Eduardo Primo Yúfera 3, Valencia 46012, Spain
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan 20133, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Milan 20131, Italy; Brains Lab, Joint Research Platform, Fondazione IRCCS Istituto Neurologico Carlo Besta-Politecnico di Milano, Via Celoria 11, 20133 Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNano Lab), Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta", Politecnico di Milano, Milan 20131, Italy
| | - Stefania Marcuzzo
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan 20133, Italy; Brains Lab, Joint Research Platform, Fondazione IRCCS Istituto Neurologico Carlo Besta-Politecnico di Milano, Via Celoria 11, 20133 Milan, Italy.
| |
Collapse
|
32
|
Jiang H, Zhou Y, Zheng D, Cheng Y, Xiang D, Jiang L, Du J. Using anti-PD-L1 antibody conjugated gold nanoshelled poly (Lactic-co-glycolic acid) nanocapsules loaded with doxorubicin: A theranostic agent for ultrasound imaging and photothermal/chemo combination therapy of triple negative breast cancer. J Biomed Mater Res A 2024; 112:402-420. [PMID: 37941485 DOI: 10.1002/jbm.a.37638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 09/01/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Triple negative breast cancer (TNBC) has the worst prognosis of all breast cancers, and it is difficult to progress through traditional chemotherapy. Therefore, the treatment of TNBC urgently requires agents with effective diagnostic and therapeutic capabilities. In this study, we obtained programmed death-ligand 1 (PD-L1) antibody conjugated gold nanoshelled poly(lactic-co-glycolic acid) (PLGA) nanocapsules (NCs) encapsulating doxorubicin (DOX) (DOX@PLGA@Au-PD-L1 NCs). PLGA NCs encapsulating DOX were prepared by a modified single-emulsion oil-in-water (O/W) solvent evaporation method, and gold nanoshells were formed on the surface by gold seed growth method, which were coupled with PD-L1 antibodies by carbodiimide method. The fabricated DOX@PLGA@Au-PD-L1 NCs exhibited promising contrast enhancement in vitro ultrasound imaging. Furthermore, DOX encapsulated in NCs displayed good pH-responsive and photo-triggered drug release properties. After irradiating 200 μg/mL NCs solution with a laser for 10 min, the solution temperature increased by nearly 23°C, indicating that the NCs had good photothermal conversion ability. The targeting experiments confirmed that the NCs had specific target binding ability to TNBC cells overexpressing PD-L1 molecules. Cell experiments exhibited that the agent significantly reduced the survival rate of TNBC cells through photochemotherapy combination therapy. As a multifunctional diagnostic agent, DOX@PLGA@Au-PD-L1 NCs could be used for ultrasound targeted contrast imaging and photochemotherapy combination therapy of TNBC cells, providing a promising idea for early diagnosis and treatment of TNBC.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yingying Zhou
- Department of Ultrasound, Zhabei Central Hospital, Shanghai, P. R. China
| | - Dongdong Zheng
- Department of Ultrasound, Fudan University Shanghai Cancer Center, Shanghai, P. R. China
| | - Yexiazi Cheng
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Dacheng Xiang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, P. R. China
| | - Lixin Jiang
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Jing Du
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
33
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
34
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2024:1-40. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
35
|
Deng B, Liu S, Wang Y, Ali B, Kong N, Xie T, Koo S, Ouyang J, Tao W. Oral Nanomedicine: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306081. [PMID: 37724825 DOI: 10.1002/adma.202306081] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/03/2023] [Indexed: 09/21/2023]
Abstract
Compared to injection administration, oral administration is free of discomfort, wound infection, and complications and has a higher compliance rate for patients with diverse diseases. However, oral administration reduces the bioavailability of medicines, especially biologics (e.g., peptides, proteins, and antibodies), due to harsh gastrointestinal biological barriers. In this context, the development and prosperity of nanotechnology have helped improve the bioactivity and oral availability of oral medicines. On this basis, first, the biological barriers to oral administration are discussed, and then oral nanomedicine based on organic and inorganic nanomaterials and their biomedical applications in diverse diseases are reviewed. Finally, the challenges and potential opportunities in the future development of oral nanomedicine, which may provide a vital reference for the eventual clinical transformation and standardized production of oral nanomedicine, are put forward.
Collapse
Affiliation(s)
- Bo Deng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Shaomin Liu
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Ying Wang
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Barkat Ali
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Department of Oncology of the First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
36
|
Wei L, Pan Q, Teng J, Zhang H, Qin N. Intra-articular administration of PLGA resveratrol sustained-release nanoparticles attenuates the development of rat osteoarthritis. Mater Today Bio 2024; 24:100884. [PMID: 38173866 PMCID: PMC10761803 DOI: 10.1016/j.mtbio.2023.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/05/2024] Open
Abstract
Our previous studies have confirmed that resveratrol (RSV) can prevent the development of osteoarthritis through a variety of mechanisms, such as apoptosis inhibition, autophagy induction and SIRT 1 activation. However, the pharmaceutical application of RSV is mainly limited by its low bioavailability. Here, we designed and synthesized RSV-loaded poly (D, l-lactide-coglycolide acid) (PLGA)-nanoparticles (NPs). The average particle size, polydispersity index and positive charge of RSV-loaded PLGA NPs were 50.40 nm, 0.217 and 12.57 mV, respectively. These nanoparticles had marked encapsulation efficiency (92.35 %) and drug loading (15.1 %) for RSV. It was found that RSV-loaded PLGA NPs not only inhibited the apoptosis of chondrocytes induced by IL-1, but also rescued GAG loss in vitro. Pharmacokinetic data showed that RSV-loaded PLGA NPs demonstrated a significantly profound and prolonged concentration profile in joint tissues, with quantifiable RSV concentrations over 35 days. The therapeutic effects of RSV-loaded PLGA NPs were then examined in rat osteoarthritis models. In vitro magnetic resonance imaging results showed that RSV-loaded PLGA NPs treatment dramatically reduced both T1ρ and T2 relaxation times at 4, 8, 12 weeks during administration, implying that cartilage destruction was alleviated. Histological assessments showed that RSV-loaded PLGA NPs significantly improved osteoarthritis symptoms. Gene expression analysis revealed that osteoarthritis mediator genes were downregulated in rats treated with RSV-PLGA NPs. Mechanistic studies indicated that RSV-loaded PLGA NPs inhibit apoptosis and promote autophagy. Collectively, this study demonstrates that intra-articular delivery of RSV via PLGA NPs might be an effective therapeutic approach for osteoarthritis.
Collapse
Affiliation(s)
- Liwei Wei
- Department of Sports Medicine, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), Luoyang, Henan, China
| | - Qingqing Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Junyan Teng
- Bone Pharmacology Laboratory, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), Luoyang, Henan, China
| | - Hong Zhang
- Bone Pharmacology Laboratory, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), Luoyang, Henan, China
| | - Na Qin
- Bone Pharmacology Laboratory, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), Luoyang, Henan, China
| |
Collapse
|
37
|
Luo Y, Chen H, Chen H, Xiu P, Zeng J, Song Y, Li T. Recent Advances in Nanotechnology-Based Strategies for Bone Tuberculosis Management. Pharmaceuticals (Basel) 2024; 17:170. [PMID: 38399384 PMCID: PMC10893314 DOI: 10.3390/ph17020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Bone tuberculosis, an extrapulmonary manifestation of tuberculosis, presents unique treatment challenges, including its insidious onset and complex pathology. While advancements in anti-tubercular therapy have been made, the efficacy is often limited by difficulties in achieving targeted drug concentrations and avoiding systemic toxicity. The intricate bone structure and presence of granulomas further impede effective drug delivery. Nano-drug delivery systems have emerged as a promising alternative, offering the enhanced targeting of anti-tubercular drugs. These systems, characterized by their minute size and adaptable surface properties, can be tailored to improve drug solubility, stability, and bioavailability, while also responding to specific stimuli within the bone TB microenvironment for controlled drug release. Nano-drug delivery systems can encapsulate drugs for precise delivery to the infection site. A significant innovation is their integration with prosthetics or biomaterials, which aids in both drug delivery and bone reconstruction, addressing the infection and its osteological consequences. This review provides a comprehensive overview of the pathophysiology of bone tuberculosis and its current treatments, emphasizing their limitations. It then delves into the advancements in nano-drug delivery systems, discussing their design, functionality, and role in bone TB therapy. The review assesses their potential in preclinical research, particularly in targeted drug delivery, treatment efficacy, and a reduction of side effects. Finally, it highlights the transformative promise of nanotechnology in bone TB treatments and suggests future research directions in this evolving field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China; (Y.L.); (H.C.); (H.C.); (P.X.); (J.Z.); (Y.S.)
| |
Collapse
|
38
|
Dong L, Li Y, Cong H, Yu B, Shen Y. A review of chitosan in gene therapy: Developments and challenges. Carbohydr Polym 2024; 324:121562. [PMID: 37985064 DOI: 10.1016/j.carbpol.2023.121562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
Gene therapy, as a revolutionary treatment, has been gaining more and more attention. The key to gene therapy is the selection of suitable vectors for protection of exogenous nucleic acid molecules and enabling their specific release in target cells. While viral vectors have been widely used in researches, non-viral vectors are receiving more attention due to its advantages. Chitosan (CS) has been widely used as non-viral organic gene carrier because of its good biocompatibility and its ability to load large amounts of nucleic acids. This paper summarizes and evaluates the potential of chitosan and its derivatives as gene delivery vector materials, along with factors influencing transfection efficiency, performance evaluation, ways to optimize infectious efficiency, and the current main research development directions. Additionally, it provides an outlook on its future prospects.
Collapse
Affiliation(s)
- Liang Dong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Shu H, Lv W, Ren ZJ, Li H, Dong T, Zhang Y, Nie F. Ultrasound-mediated PLGA-PEI Nanobubbles Carrying STAT6 SiRNA Enhances NSCLC Treatment via Repolarizing Tumor-associated Macrophages from M2 to M1 Phenotypes. Curr Drug Deliv 2024; 21:1114-1127. [PMID: 37491853 DOI: 10.2174/1567201820666230724151545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are crucial for non-small cell lung cancer (NSCLC) development. OBJECTIVE In this study, polylactic acid-co-glycolic acid (PLGA)-polyethylenimine (PEI) nanobubbles (NBs) carrying STAT6 siRNA were prepared and combined with ultrasound-mediated nanobubbles destruction (UMND) to silence the STAT6 gene, ultimately repolarizing TAMs from the M2 to the M1 phenotype, treating NSCLC in vitro. METHODS PLGA-PEI NBs-siRNA were prepared and characterised, and their respective ultrasound imaging, biological stabilities and cytotoxicities were detected. Transfection efficiency was evaluated by fluorescence microscopy and flow cytometry. Repolarization of THP-1-derived M2-like macrophages was determined by qPCR and flow cytometry. NSCLC cells (A549) were co-cultured with transfected M2-like macrophages or their associated conditioned medium (CM). Western blotting was used to detect STAT6 gene silencing in M2-like macrophages and markers of epithelial and mesenchymal in A549 cells. The proliferation of A549 cells was detected using CCK-8 and cell colony formation assays. Transwell assays were used to detect the migration and invasion of A549 cells. RESULTS PLGA-PEI NBs-siRNA had an average size of 223.13 ± 0.92 nm and a zeta potential of about -5.59 ± 0.97 mV. PLGA-PEI NBs showed excellent ultrasonic imaging capability in addition to biological stability to protect siRNA from degradation. UMND enhanced PLGA-PEI NBs-STAT6 siRNA transfection in M2-like macrophages, which made M2-like macrophages repolarize to M1-like macrophages and prevented proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in A549 cells. CONCLUSION UMND enhanced PLGA-PEI NBs-STAT6 siRNA to repolarize TAMs from the M2 to the M1 phenotype, thus treating NSCLC. These findings provide a promising therapeutic approach for enhancing NSCLC immunotherapy.
Collapse
Affiliation(s)
- Hong Shu
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
- Department of Nephrology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wenhao Lv
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhi-Jian Ren
- Digestive Surgery, Xi 'an International Medical Center Hospital, Xi'an, Shaanxi, China
| | - Hui Li
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Tiantian Dong
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yao Zhang
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Fang Nie
- Ultrasound Medical Center, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
40
|
Sun H, Luo W, Huang X. Recent Advances in the Preparation of Protein/peptide Microspheres by Solvent Evaporation Method. Curr Pharm Biotechnol 2024; 25:1807-1817. [PMID: 38178679 DOI: 10.2174/0113892010261032231214115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 01/06/2024]
Abstract
Protein/peptide drugs are extensively used to treat various chronic and serious diseases. The short half-life in vivo of protein and peptide as therapeutics drug limit the realization of complete effects. Encapsulating drugs in microspheres can slow the speed of drug release and prolong the efficacy of drugs. The solvent evaporation method is widely used to prepare protein/ peptide microspheres because of its facile operation and minimal equipment requirements. This method has several challenges in the lower encapsulation efficiency, fluctuant release profiles and the stabilization of protein/peptides, which researchers believe may be solved by adjusting the preparation parameter or formulation of microspheres. The article discusses the formulation parameters that govern the preparation of protein/peptide-loaded microspheres by the solvent evaporation method, which provides an overview of the current promising strategies for solvent evaporation for protein/peptide microspheres. The article takes parameter evaluation as the framework, facilitating subsequent researchers to quickly find possible solutions when encountering problems.
Collapse
Affiliation(s)
- Huayan Sun
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| | - Weiwei Luo
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| | - Xiaowu Huang
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
41
|
A R, Han Z, Wang T, Zhu M, Zhou M, Sun X. Pulmonary delivery of nano-particles for lung cancer diagnosis and therapy: Recent advances and future prospects. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1933. [PMID: 37857568 DOI: 10.1002/wnan.1933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023]
Abstract
Although our understanding of lung cancer has significantly improved in the past decade, it is still a disease with a high incidence and mortality rate. The key reason is that the efficacy of the therapeutic drugs is limited, mainly due to insufficient doses of drugs delivered to the lungs. To achieve precise lung cancer diagnosis and treatment, nano-particles (NPs) pulmonary delivery techniques have attracted much attention and facilitate the exploration of the potential of those in inhalable NPs targeting tumor lesions. Since the therapeutic research focusing on pulmonary delivery NPs has rapidly developed and evolved substantially, this review will mainly discuss the current developments of pulmonary delivery NPs for precision lung cancer diagnosis and therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Rong A
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Tianyi Wang
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Mengyuan Zhu
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Meifang Zhou
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| | - Xilin Sun
- Department of Nuclear Medicine, The Fourth Hospital of Harbin Medical University, Harbin, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, China
| |
Collapse
|
42
|
Xu Q, Fa H, Yang P, Wang Q, Xing Q. Progress of biodegradable polymer application in cardiac occluders. J Biomed Mater Res B Appl Biomater 2024; 112:e35351. [PMID: 37974558 DOI: 10.1002/jbm.b.35351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Cardiac septal defect is the most prevalent congenital heart disease and is typically treated with open-heart surgery under cardiopulmonary bypass. Since the 1990s, with the advancement of interventional techniques and minimally invasive transthoracic closure techniques, cardiac occluder implantation represented by the Amplazter products has been the preferred treatment option. Currently, most occlusion devices used in clinical settings are primarily composed of Nitinol as the skeleton. Nevertheless, long-term follow-up studies have revealed various complications related to metal skeletons, including hemolysis, thrombus, metal allergy, cardiac erosion, and even severe atrioventricular block. Thus, occlusion devices made of biodegradable materials have become the focus of research. Over the past two decades, several bioabsorbable cardiac occluders for ventricular septal defect and atrial septal defect have been designed and trialed on animals or humans. This review summarizes the research progress of bioabsorbable cardiac occluders, the advantages and disadvantages of different biodegradable polymers used to fabricate occluders, and discusses future research directions concerning the structures and materials of bioabsorbable cardiac occluders.
Collapse
Affiliation(s)
- Qiteng Xu
- Medical College, Qingdao University, Qingdao, China
| | - Hongge Fa
- Qingdao Women and Children's Hospital, QingdaoUniversity, Qingdao, China
| | - Ping Yang
- Medical College, Qingdao University, Qingdao, China
| | | | - Quansheng Xing
- Qingdao Women and Children's Hospital, QingdaoUniversity, Qingdao, China
| |
Collapse
|
43
|
Zhang Y, Li C, Wei Q, Yuan Q, He W, Zhang N, Dong Y, Jing Z, Zhang L, Wang H, Cao X. MiRNA320a Inhibitor-Loaded PLGA-PLL-PEG Nanoparticles Contribute to Bone Regeneration in Trauma-Induced Osteonecrosis Model of the Femoral Head. Tissue Eng Regen Med 2024; 21:185-197. [PMID: 37828392 PMCID: PMC10764684 DOI: 10.1007/s13770-023-00580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND This study aimed to explore the effect of a nanomaterial-based miR-320a inhibitor sustained release system in trauma-induced osteonecrosis of the femoral head (TIONFH). METHODS The miR-320a inhibitor-loaded polyethylene glycol (PEG)- Poly(lactic-co-glycolic acid) (PLGA)- Poly-L-lysine (PLL) nanoparticles were constructed using the double emulsion method. The TIONFH rabbit model was established to observe the effects of miR-320a inhibitor nanoparticles in vivo. Hematoxylin-eosin staining and microcomputed tomography scanning were used for bone morphology analysis. Bone marrow mesenchymal stem cells (BMSCs), derived from TIONFH rabbits, were used for in vitro experiments. Cell viability was determined using the MTT assay. RESULTS High expression of miR-320a inhibited the osteogenic differentiation capacity of BMSCs in vitro by inhibiting the expression of the osteoblastic differentiation markers ALP and RUNX2. MiR-320a inhibitor-loaded PEG-PLGA-PLL nanoparticles were constructed with a mean loading efficiency of 1.414 ± 0.160%, and a mean encapsulation efficiency of 93.45 ± 1.24%, which released 50% of the loaded miR-320a inhibitor at day 12 and 80% on day 18. Then, inhibitor release entered the plateau. After treatment with the miR-320a inhibitor nanoparticle, the empty lacunae were decreased in the femoral head tissue of TIONFH rabbits, and the osteoblast surface/bone surface (Ob.S/BS), osteoblast number/bone perimeter (Ob.N/B.Pm), bone volume fraction, and bone mineral density increased. Additionally, the expression of osteogenic markers RUNX2 and ALP was significantly elevated in the TIONFH rabbit model. CONCLUSION The miR-320a inhibitor-loaded PEG-PLGA-PLL nanoparticle sustained drug release system significantly contributed to bone regeneration in the TIONFH rabbit model, which might be a promising strategy for the treatment of TIONFH.
Collapse
Affiliation(s)
- Ying Zhang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), No. 82 Qiming South Road, Luoyang, 471002, Henan, China.
| | - Chuan Li
- Department of Orthopedics, 920Th Hospital of Joint Logistic Support Force, Kunming, 650032, Yunnan, China
| | - Qiushi Wei
- Institute of Orthopaedics of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, 510240, China
- The Third Affiliated Hospital of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, 510240, China
| | - Qiang Yuan
- Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Wei He
- Institute of Orthopaedics of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, 510240, China
- The Third Affiliated Hospital of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, 510240, China
| | - Ning Zhang
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan, China
| | - Yiping Dong
- Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Zhenhao Jing
- Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, Henan, China
| | - Leilei Zhang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), No. 82 Qiming South Road, Luoyang, 471002, Henan, China
| | - Haibin Wang
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Xiangyang Cao
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), No. 82 Qiming South Road, Luoyang, 471002, Henan, China.
| |
Collapse
|
44
|
Huang M, Liu J, Fan Y, Sun J, Cheng JX, Zhang XF, Zhai BT, Guo DY. Development of curcumin-loaded galactosylated chitosan-coated nanoparticles for targeted delivery of hepatocellular carcinoma. Int J Biol Macromol 2023; 253:127219. [PMID: 37802456 DOI: 10.1016/j.ijbiomac.2023.127219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/19/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Curcumin (CUR) has good antitumor effects, but its poor aqueous solubility severely limits its clinical application and the systemic nonspecific distribution of the free drug in tumor patients is a key therapeutic challenge. In order to overcome the limitations of free drugs and improve the therapeutic efficacy, we developed novel galactosylated chitosan (GC)-modified nanoparticles (GC@NPs) based on poly (ethylene glycol) methyl ether-block-poly (lactide-co-glycolide) (PEG-PLGA), which can target asialoglycoprotein receptor (ASGPR) expressed on hepatocellular carcinoma cells and have excellent biocompatibility. The results showed that the drug loading (DL) of CUR was approximately 4.56 %. A favorable biosafety profile was maintained up to concentrations of 500 μg/mL. Furthermore, in vitro cellular assays showed that GC@NPs could be efficiently internalized by HepG2 cells via ASGPR-mediated endocytosis and successfully released CUR for chemotherapy. More importantly, in vivo anti-tumor experiments revealed that GC@NPs were able to accumulate effectively within tumor sites through EPR effect and ASGPR-mediated endocytosis, leading to superior inhibition of tumor growth compared to free CUR. Overall, GC@NPs are a promising CUR nanocarrier for enhanced tumor therapy with a good biosafety profile.
Collapse
Affiliation(s)
- Mian Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Ji Liu
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Fan
- School of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jing Sun
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Jiang-Xue Cheng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Xiao-Fei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Bing-Tao Zhai
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| | - Dong-Yan Guo
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, China; Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi'an 712046, China.
| |
Collapse
|
45
|
Yingjun M, Shuo T, Liuyun J, Yan Z, Shengpei S. Study on a co-hybrid nano-hydroxyapatite with lignin derivatives and alendronate and the reinforce effect for poly(lactide-co-glycolide). Int J Biol Macromol 2023; 253:126785. [PMID: 37696379 DOI: 10.1016/j.ijbiomac.2023.126785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023]
Abstract
A novel co-hybrid nano-apatite (n-HA) by introducing lignin derivatives (LDs) and alendronate (ALE) was designed to reinforce poly(lactide-co-glycolide) (PLGA). The effect of different addition methods and contents of LDs, lignin derivatives sorts of lignosulfonate (LS), alkali lignin (AL) and carboxymethyl lignin (CML), and the addition order of ALE on the dispersion of hybrid n-HA, and reinforce effective for PLGA were investigated by FTIR, XRD, TEM, TGA, XPS, N2 adsorption/desorption, zeta potential, dispersion experiments, universal testing machine, SEM, DSC and POM. The results showed that the addition order could regulate the growth of n-HA crystal planes by binding with Ca2+, and co-hybrid HA by LDs and ALE possessed better dispersion owing to the synergistic effect. Moreover, 10 wt% LS-ALE-n-HA displayed the best reinforce effect, and the tensile strength of composite was 24.43 % higher than that of PLGA, even 15 wt% LS-ALE-n-HA was added, it still exhibited reinforce effect for PLGA. In vitro soaking in simulated body fluid (SBF) results indicated that LS-ALE-n-HA delayed tensile strength reduce of PLGA and promoted bone-like apatite deposition. The cell proliferation results demonstrated that the hybrid n-HA by the introduction of ALE endowed PLGA with better cell adhesion and proliferation.
Collapse
Affiliation(s)
- Ma Yingjun
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, Hunan 410081, China
| | - Tang Shuo
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jiang Liuyun
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, Hunan 410081, China.
| | - Zhang Yan
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, Hunan 410081, China
| | - Su Shengpei
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China; Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
46
|
Dinakar YH, Rajana N, Kumari NU, Jain V, Mehra NK. Recent Advances of Multifunctional PLGA Nanocarriers in the Management of Triple-Negative Breast Cancer. AAPS PharmSciTech 2023; 24:258. [PMID: 38097825 DOI: 10.1208/s12249-023-02712-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Even though chemotherapy stands as a standard option in the therapy of TNBC, problems associated with it such as anemia, bone marrow suppression, immune suppression, toxic effects on healthy cells, and multi-drug resistance (MDR) can compromise their effects. Nanoparticles gained paramount importance in overcoming the limitations of conventional chemotherapy. Among the various options, nanotechnology has appeared as a promising path in preclinical and clinical studies for early diagnosis of primary tumors and metastases and destroying tumor cells. PLGA has been extensively studied amongst various materials used for the preparation of nanocarriers for anticancer drug delivery and adjuvant therapy because of their capability of higher encapsulation, easy surface functionalization, increased stability, protection of drugs from degradation versatility, biocompatibility, and biodegradability. Furthermore, this review also provides an overview of PLGA-based nanoparticles including hybrid nanoparticles such as the inorganic PLGA nanoparticles, lipid-coated PLGA nanoparticles, cell membrane-coated PLGA nanoparticles, hydrogels, exosomes, and nanofibers. The effects of all these systems in various in vitro and in vivo models of TNBC were explained thus pointing PLGA-based NPs as a strategy for the management of TNBC.
Collapse
Affiliation(s)
- Yirivinti Hayagreeva Dinakar
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Naveen Rajana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Nalla Usha Kumari
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, 570015, India
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500 037, India.
| |
Collapse
|
47
|
Li J, Wang F, Liu X, Yang Z, Hua X, Zhu H, Valdivia CR, Xiao L, Gao S, Valdivia HH, Xiao L, Wang J. OpiCa1-PEG-PLGA nanomicelles antagonize acute heart failure induced by the cocktail of epinephrine and caffeine. Mater Today Bio 2023; 23:100859. [PMID: 38033368 PMCID: PMC10682124 DOI: 10.1016/j.mtbio.2023.100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
Background Reducing Ca2+ content in the sarcoplasmic reticulum (SR) through ryanodine receptors (RyRs) by calcin is a potential intervention strategy for the SR Ca2+ overload triggered by β-adrenergic stress in acute heart diseases. Methods OpiCal-PEG-PLGA nanomicelles were prepared by thin film dispersion, of which the antagonistic effects were observed using an acute heart failure model induced by epinephrine and caffeine in mice. In addition, cardiac targeting, self-stability as well as biotoxicity were determined. Results The synthesized OpiCa1-PEG-PLGA nanomicelles were elliptical with a particle size of 72.26 nm, a PDI value of 0.3, and a molecular weight of 10.39 kDa. The nanomicelles showed a significant antagonistic effect with 100 % survival rate to the death induced by epinephrine and caffeine, which was supported by echocardiography with significantly recovered heart rate, ejection fraction and left ventricular fractional shortening rate. The FITC labeled nanomicelles had a strong membrance penetrating capacity within 2 h and cardiac targeting within 12 h that was further confirmed by immunohistochemistry with a self-prepared OpiCa1 polyclonal antibody. Meanwhile, the nanomicelles can keep better stability and dispersibility in vitro at 4 °C rather than 20 °C or 37 °C, while maintain a low but stable plasma OpiCa1 concentration in vivo within 72 h. Finally, no obvious biotoxicities were observed by CCK-8, flow cytometry, H&E staining and blood biochemical examinations. Conclusion Our study also provide a novel nanodelivery pathway for targeting RyRs and antagonizing the SR Ca2+ disordered heart diseases by actively releasing SR Ca2+ through RyRs with calcin.
Collapse
Affiliation(s)
- Jun Li
- College of Veterinary Medicine, Shanxi Agricultural University, ShanXi, TaiGu, 030801, China
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Fei Wang
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Xinyan Liu
- Department of Traditional Chinese Medicine Surgery, The First Affiliated Hospital of the Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Zhixiao Yang
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
- Teaching and Research Department of Chinese Pharmacy, Yunnan Traditional Chinese Medicine, YunNan, KunMing, 650500, China
| | - Xiaoyu Hua
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Hongqiao Zhu
- Department of Traditional Chinese Medicine Surgery, The First Affiliated Hospital of the Navy Medical University (Changhai Hospital), Shanghai, 200433, China
| | - Carmen R. Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Li Xiao
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
- Department of Forensic Toxicological Analysis, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610065, China
| | - Songyu Gao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Héctor H. Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Liang Xiao
- Department of Occupational and Environmental Health, Faculty of Naval Medicine, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, ShanXi, TaiGu, 030801, China
| |
Collapse
|
48
|
Lamela-Gómez I, Gonçalves LM, Almeida AJ, Luzardo-Álvarez A. Infliximab microencapsulation: an innovative approach for intra-articular administration of biologics in the management of rheumatoid arthritis-in vitro evaluation. Drug Deliv Transl Res 2023; 13:3030-3058. [PMID: 37294425 PMCID: PMC10624745 DOI: 10.1007/s13346-023-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2023] [Indexed: 06/10/2023]
Abstract
Microencapsulation of the therapeutical monoclonal antibody infliximab (INF) was investigated as an innovative approach to improve its stability and to achieve formulations with convenient features for intra-articular administration. Ultrasonic atomization (UA), a novel alternative to microencapsulate labile drugs, was compared with the conventional emulsion/evaporation method (Em/Ev) using biodegradable polymers, specifically Polyactive® 1000PEOT70PBT30 [poly(ethylene-oxide-terephthalate)/poly(butylene-terephthalate); PEOT-PBT] and its polymeric blends with poly-(D, L-lactide-co-glycolide) (PLGA) RG502 and RG503 (PEOT-PBT:PLGA; 65:35). Six different formulations of spherical core-shell microcapsules were successfully developed and characterized. The UA method achieved a significantly higher encapsulation efficiency (69.7-80.25%) than Em/Ev (17.3-23.0%). Mean particle size, strongly determined by the microencapsulation method and to a lesser extent by polymeric composition, ranged from 26.6 to 49.9 µm for UA and 1.5-2.1 µm for Em/Ev. All formulations demonstrated sustained INF release in vitro for up to 24 days, with release rates modulated by polymeric composition and microencapsulation technique. Both methods preserved INF biological activity, with microencapsulated INF showing higher efficacy than commercial formulations at comparable doses regarding bioactive tumor necrosis factor-alpha (TNF-α) neutralization according to WEHI-13VAR bioassay. Microparticles' biocompatibility and extensive internalization by THP-1-derived macrophages was demonstrated. Furthermore, high in vitro anti-inflammatory activity was achieved after treatment of THP-1 cells with INF-loaded microcapsules, significatively reducing in vitro production of TNF-α and interleucine-6 (Il-6).
Collapse
Affiliation(s)
- Iván Lamela-Gómez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Sciences, Universidade de Santiago de Compostela, Campus Terra, 27002, Lugo, Spain
- Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Lídia M Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - António J Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003, Lisbon, Portugal
| | - Asteria Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Sciences, Universidade de Santiago de Compostela, Campus Terra, 27002, Lugo, Spain.
- Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
49
|
Cao X, Li Q, Li X, Liu Q, Liu K, Deng T, Weng X, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Enhancing Anticancer Efficacy of Formononetin Microspheres via Microfluidic Fabrication. AAPS PharmSciTech 2023; 24:241. [PMID: 38017231 DOI: 10.1208/s12249-023-02691-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Formononetin is a flavonoid compound with anti-tumor and anti-inflammatory properties. However, its low solubility limits its clinical use. We employed microfluidic technology to prepare formononetin-loaded PLGA-PEGDA microspheres (Degradable polymer PLGA, Crosslinking agent PEGDA), which can encapsulate and release drugs in a controlled manner. We optimized and characterized the microspheres, and evaluated their antitumor effects. The microspheres had uniform size, high drug loading efficiency, high encapsulation efficiency, and stable release for 35 days. They also inhibited the proliferation, migration, and apoptosis. The antitumor mechanism involved the induction of reactive oxygen species and modulation of Bcl-2 family proteins. These findings suggested that formononetin-loaded PLGA-PEGDA microspheres, created using microfluidic technology, could be a novel drug delivery system that can overcome the limitations of formononetin and enhance its antitumor activity.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qingwen Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Xiaoli Li
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qintong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350108, Fujian, People's Republic of China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China.
- Medicinal function development of new food resources, Jiangsu Provincial Research Center, Jiangsu, People's Republic of China.
| |
Collapse
|
50
|
Yang B, Mao Y, Zhang Y, Hao Y, Guo M, Li B, Peng H. HA-Coated PLGA Nanoparticles Loaded with Apigenin for Colon Cancer with High Expression of CD44. Molecules 2023; 28:7565. [PMID: 38005286 PMCID: PMC10673172 DOI: 10.3390/molecules28227565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Apigenin (API) possesses excellent antitumor properties but its limited water solubility and low bioavailability restrict its therapeutic impact. Thus, a suitable delivery system is needed to overcome these limitations and improve the therapeutic efficiency. Poly (lactic-co-glycolic acid) (PLGA) is a copolymer extensively utilized in drug delivery. Hyaluronic acid (HA) is a major extracellular matrix component and can specifically bind to CD44 on colon cancer cells. Herein, we aimed to prepare receptor-selective HA-coated PLGA nanoparticles (HA-PLGA-API-NPs) for colon cancers with high expression of CD44; chitosan (CS) was introduced into the system as an intermediate, simultaneously binding HA and PLGA through electrostatic interaction to facilitate a tighter connection between them. API was encapsulated in PLGA to obtain PLGA-API-NPs, which were then sequentially coated with CS and HA to form HA-PLGA-API-NPs. HA-PLGA-API-NPs had a stronger sustained-release capability. The cellular uptake of HA-PLGA-API-NPs was enhanced in HT-29 cells with high expression of CD44. In vivo, HA-PLGA-API-NPs showed enhanced targeting specificity towards the HT-29 ectopic tumor model in nude mice in comparison with PLGA-API-NPs. Overall, HA-PLGA-API-NPs were an effective drug delivery platform for API in the treatment of colon cancers with high expression of CD44.
Collapse
Affiliation(s)
- Bo Yang
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yongqing Mao
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing 312000, China
| | - Yanjun Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Yue Hao
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing 312000, China
- Heilongjiang Provincial Key Laboratory of Neurobiology, Department of Neurobiology, Harbin Medical University, Harbin 150086, China
| | - Meitong Guo
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing 312000, China
| | - Bian Li
- School of Pharmacy, Harbin University of Commerce, Harbin 150076, China
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing 312000, China
| | - Haisheng Peng
- Department of Pharmacology, Medical College, University of Shaoxing, Shaoxing 312000, China
| |
Collapse
|