1
|
Deshmukh S, Chand A, Ghorpade R. Bio-mechanical analysis of porous Ti-6Al-4V scaffold: a comprehensive review on unit cell structures in orthopaedic application. Biomed Phys Eng Express 2024; 10:062003. [PMID: 39353464 DOI: 10.1088/2057-1976/ad8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
A scaffold is a three-dimensional porous structure that is used as a template to provide structural support for cell adhesion and the formation of new cells. Metallic cellular scaffolds are a good choice as a replacement for human bones in orthopaedic implants, which enhances the quality and longevity of human life. In contrast to conventional methods that produce irregular pore distributions, 3D printing, or additive manufacturing, is characterized by high precision and controlled manufacturing processes. AM processes can precisely control the scaffold's porosity, which makes it possible to produce patient specific implants and achieve regular pore distribution. This review paper explores the potential of Ti-6Al-4V scaffolds produced via the SLM method as a bone substitute. A state-of-the-art review on the effect of design parameters, material, and surface modification on biological and mechanical properties is presented. The desired features of the human tibia and femur bones are compared to bulk and porous Ti6Al4V scaffold. Furthermore, the properties of various porous scaffolds with varying unit cell structures and design parameters are compared to find out the designs that can mimic human bone properties. Porosity up to 65% and pore size of 600 μm was found to give optimum trade-off between mechanical and biological properties. Current manufacturing constraints, biocompatibility of Ti-6Al-4V material, influence of various factors on bio-mechanical properties, and complex interrelation between design parameters are discussed herein. Finally, the most appropriate combination of design parameters that offers a good trade-off between mechanical strength and cell ingrowth are summarized.
Collapse
Affiliation(s)
- Sachin Deshmukh
- Department of Mechanical Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, India
| | - Aditya Chand
- Department of Mechanical Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, India
| | - Ratnakar Ghorpade
- Department of Mechanical Engineering, Dr Vishwanath Karad MIT World Peace University, Pune, India
| |
Collapse
|
2
|
Jaffur BN, Kumar G, Khadoo P. Production and functionalization strategies for superior polyhydroxybutyrate blend performance. Int J Biol Macromol 2024; 278:134907. [PMID: 39173809 DOI: 10.1016/j.ijbiomac.2024.134907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
This study investigates the effects of blending poly(3-hydroxybutyrate) (PHB) with microcrystalline cellulose (MCC), polylactic acid (PLA), lignin, and polyethylene glycol (PEG) on the properties of the resulting composite materials. Using a melt blending method, the composites were characterized by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The results reveal that blending PHB with MCC, PLA, lignin, and PEG significantly enhances the thermal stability, mechanical strength, and biodegradability of the composites compared to pure PHB. Specifically, the tensile strength of PHB-PLA blends increased by up to 47.77 MPa, compared to 27.16 MPa for pure PHB. The blend with 50 % cellulose content showed the highest tensile strength of 54.91 MPa. TGA results show that the PHB-MCC and PHB-lignin blends exhibit improved thermal stability, with onset degradation temperatures rising to 294.8 °C, compared to 275 °C for pure PHB. Moreover, the PHB-lignin blend demonstrated a gradual weight loss starting at 200 °C and continuing until about 350 °C. SEM images of the blends indicate a uniform microstructure, contributing to the improved mechanical properties. The PHB-PEG blend demonstrated an elongation at break of 4.34 %, significantly higher than the 2.15 % for pure PHB, highlighting its suitability for applications requiring pliable materials. The biodegradability tests showed that PHB-PLA blends maintained consistent degradation rates, making them advantageous for applications needing controlled biodegradability. These findings suggest that blending PHB with MCC, PLA, lignin, and PEG can produce materials with enhanced properties suitable for applications in packaging, biomedical devices, and other areas where both performance and sustainability are essential.
Collapse
Affiliation(s)
- Bibi Nausheen Jaffur
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius.
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea
| | - Pratima Khadoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit 80837, Mauritius
| |
Collapse
|
3
|
Waidi YO, Debnath S, Datta S, Chatterjee K. 3D-Printed Silk Proteins for Bone Tissue Regeneration and Associated Immunomodulation. Biomacromolecules 2024; 25:5512-5540. [PMID: 39133748 DOI: 10.1021/acs.biomac.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Current bone repair methods have limitations, prompting the exploration of innovative approaches. Tissue engineering emerges as a promising solution, leveraging biomaterials to craft scaffolds replicating the natural bone environment, facilitating cell growth and differentiation. Among fabrication techniques, three-dimensional (3D) printing stands out for its ability to tailor intricate scaffolds. Silk proteins (SPs), known for their mechanical strength and biocompatibility, are an excellent choice for engineering 3D-printed bone tissue engineering (BTE) scaffolds. This article comprehensively reviews bone biology, 3D printing, and the unique attributes of SPs, specifically detailing criteria for scaffold fabrication such as composition, structure, mechanics, and cellular responses. It examines the structural, mechanical, and biological attributes of SPs, emphasizing their suitability for BTE. Recent studies on diverse 3D printing approaches using SPs-based for BTE are highlighted, alongside advancements in their 3D and four-dimensional (4D) printing and their role in osteo-immunomodulation. Future directions in the use of SPs for 3D printing in BTE are outlined.
Collapse
Affiliation(s)
- Yusuf Olatunji Waidi
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Souvik Debnath
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Sudipto Datta
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| | - Kaushik Chatterjee
- Department of Bioengineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
- Department of Materials Engineering, Indian Institute of Science, C. V. Raman Avenue, Bangalore 560012, India
| |
Collapse
|
4
|
Marcello E, Nigmatullin R, Basnett P, Maqbool M, Prieto MA, Knowles JC, Boccaccini AR, Roy I. 3D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regeneration. ACS Biomater Sci Eng 2024; 10:5136-5153. [PMID: 39058405 PMCID: PMC11322914 DOI: 10.1021/acsbiomaterials.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
In this work, we investigated, for the first time, the possibility of developing scaffolds for bone tissue engineering through three-dimensional (3D) melt-extrusion printing of medium chain length polyhydroxyalkanoate (mcl-PHA) (i.e., poly(3-hydroxyoctanoate-co-hydroxydecanoate-co-hydroxydodecanoate), P(3HO-co-3HD-co-3HDD)). The process parameters were successfully optimized to produce well-defined and reproducible 3D P(3HO-co-3HD-co-3HDD) scaffolds, showing high cell viability (100%) toward both undifferentiated and differentiated MC3T3-E1 cells. To introduce antibacterial features in the developed scaffolds, two strategies were investigated. For the first strategy, P(3HO-co-3HD-co-3HDD) was combined with PHAs containing thioester groups in their side chains (i.e., PHACOS), inherently antibacterial PHAs. The 3D blend scaffolds were able to induce a 70% reduction of Staphylococcus aureus 6538P cells by direct contact testing, confirming their antibacterial properties. Additionally, the scaffolds were able to support the growth of MC3T3-E1 cells, showing the potential for bone regeneration. For the second strategy, composite materials were produced by the combination of P(3HO-co-3HD-co-HDD) with a novel antibacterial hydroxyapatite doped with selenium and strontium ions (Se-Sr-HA). The composite material with 10 wt % Se-Sr-HA as a filler showed high antibacterial activity against both Gram-positive (S. aureus 6538P) and Gram-negative bacteria (Escherichia coli 8739), through a dual mechanism: by direct contact (inducing 80% reduction of both bacterial strains) and through the release of active ions (leading to a 54% bacterial cell count reduction for S. aureus 6538P and 30% for E. coli 8739 after 24 h). Moreover, the composite scaffolds showed high viability of MC3T3-E1 cells through both indirect and direct testing, showing promising results for their application in bone tissue engineering.
Collapse
Affiliation(s)
- Elena Marcello
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Rinat Nigmatullin
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Pooja Basnett
- Faculty
of Science and Technology, College of Liberal Arts, University of Westminster, London W1W 6UW, U.K.
| | - Muhammad Maqbool
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
- Lucideon
Ltd., Stoke-on-Trent ST4 7LQ, Staffordshire U.K.
- CAM
Bioceramics B.V., Zernikedreef
6, 2333 CL Leiden, The Netherlands
| | - M. Auxiliadora Prieto
- Polymer
Biotechnology Lab, Centro de Investigaciones Biológicas-Margarita
Salas, Spanish National Research Council
(CIB-CSIC), Madrid 28040, Spain
| | - Jonathan C. Knowles
- Division
of Biomaterials and Tissue Engineering, University College London Eastman Dental Institute, London NW3 2PF, U.K.
- Department
of Nanobiomedical Science and BK21 Plus NBM, Global Research Center
for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ipsita Roy
- Department
of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S3 7HQ, U.K.
- Insigneo
Institute for In Silico Medicine, University
of Sheffield, Sheffield S3 7HQ, U.K.
| |
Collapse
|
5
|
Park H, Park JJ, Bui PD, Yoon H, Grigoropoulos CP, Lee D, Ko SH. Laser-Based Selective Material Processing for Next-Generation Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307586. [PMID: 37740699 DOI: 10.1002/adma.202307586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
The connection between laser-based material processing and additive manufacturing is quite deeply rooted. In fact, the spark that started the field of additive manufacturing is the idea that two intersecting laser beams can selectively solidify a vat of resin. Ever since, laser has been accompanying the field of additive manufacturing, with its repertoire expanded from processing only photopolymer resin to virtually any material, allowing liberating customizability. As a result, additive manufacturing is expected to take an even more prominent role in the global supply chain in years to come. Herein, an overview of laser-based selective material processing is presented from various aspects: the physics of laser-material interactions, the materials currently used in additive manufacturing processes, the system configurations that enable laser-based additive manufacturing, and various functional applications of next-generation additive manufacturing. Additionally, current challenges and prospects of laser-based additive manufacturing are discussed.
Collapse
Affiliation(s)
- Huijae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phuong-Danh Bui
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Hyeokjun Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Costas P Grigoropoulos
- Laser Thermal Lab, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Daeho Lee
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
6
|
Tyubaeva PM, Varyan IA, Gasparyan KG, Romanov RR, Yurina LV, Vasilyeva AD, Popov AA, Arzhakova OV. Life Cycle of Functional All-Green Biocompatible Fibrous Materials Based on Biodegradable Polyhydroxybutyrate and Hemin: Synthesis, Service Life, and the End-of-Life via Biodegradation. ACS APPLIED BIO MATERIALS 2024; 7:2325-2337. [PMID: 38483087 DOI: 10.1021/acsabm.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
This article addresses the entire life cycle of the all-green fibrous materials based on poly(3-hydroxybutyrate) (PHB) containing a natural biocompatible additive Hemin (Hmi): from preparation, service life, and the end of life upon in-soil biodegradation. Fibrous PHB/Hmi materials with a highly developed surface and interconnected porosity were prepared by electrospinning (ES) from Hmi-containing feed solutions. Structural organization of the PHB/Hmi materials (porosity, uniform structure, diameter of fibers, surface area, distribution of Hmi within the PHB matrix, phase composition, etc.) is shown to be governed by the ES conditions: the presence of even minor amounts of Hmi in the PHB/Hmi (below 5 wt %) serves as a powerful tool for the control over their structure, performance, and biodegradation. Service characteristics of the PHB/Hmi materials (wettability, prolonged release of Hmi, antibacterial activity, breathability, and mechanical properties) were studied by different physicochemical methods (scanning electron microscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, differential scanning calorimetry, contact angle measurements, antibacterial tests, etc.). The effect of the structural organization of the PHB/Hmi materials on their in-soil biodegradation at the end of life was analyzed, and key factors providing efficient biodegradation of the PHB/Hmi materials at all stages (from adaptation to mineralization) are highlighted (high surface area and porosity, thin fibers, release of Hmi, etc.). The proposed approach allows for target-oriented preparation and structural design of the functional PHB/Hmi nonwovens when their structural supramolecular organization with a highly developed surface area controls both their service properties as efficient antibacterial materials and in-soil biodegradation upon the end of life.
Collapse
Affiliation(s)
- Polina M Tyubaeva
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997 Russia
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Ivetta A Varyan
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997 Russia
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Kristina G Gasparyan
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Roman R Romanov
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997 Russia
| | - Lyubov V Yurina
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Alexandra D Vasilyeva
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Anatoly A Popov
- Academic Department of Technology and Chemistry of Innovative Materials, Plekhanov University of Economics, Stremyanny per. 36, Moscow 117997 Russia
- Department of Biological and Chemical Physics of Polymers, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina ul. 4, Moscow 119334, Russia
| | - Olga V Arzhakova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
7
|
Diniz MSDF, Mourão MM, Xavier LP, Santos AV. Recent Biotechnological Applications of Polyhydroxyalkanoates (PHA) in the Biomedical Sector-A Review. Polymers (Basel) 2023; 15:4405. [PMID: 38006129 PMCID: PMC10675258 DOI: 10.3390/polym15224405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 11/26/2023] Open
Abstract
Petroleum-derived plastics are materials of great importance for the contemporary lifestyle, and are widely used commercially because they are low cost, resistant, malleable, and weightless, in addition to their hydrophobic character. However, some factors that confer the qualities of these materials also cause problems, mainly environmental, associated with their use. The COVID-19 pandemic aggravated these impacts due to the high demand for personal protective equipment and the packaging sector. In this scenario, bioplastics are environmentally positive alternatives to these plastics due to their applicability in several areas ranging from packaging, to biomedicine, to agriculture. Polyhydroxyalkanoates (PHAs) are biodegradable biopolymers usually produced by microorganisms as an energy reserve. Their structural variability provides a wide range of applications, making them a viable option to replace polluting materials. PHAs can be applied in various biotechnology sectors, such as producing drug carriers and scaffolds for tissue engineering. This review aimed to survey works published in the last five years on the study and biotechnological application of PHAs in the biomedical sector, exploring the versatility and advantages of their use and helping to understand how to enhance their application.
Collapse
Affiliation(s)
- Matheus Silva da Fonseca Diniz
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.M.M.); (L.P.X.)
| | | | | | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil; (M.M.M.); (L.P.X.)
| |
Collapse
|
8
|
Shishatskaya EI, Demidenko AV, Sukovatyi AG, Dudaev AE, Mylnikov AV, Kisterskij KA, Volova TG. Three-Dimensional Printing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] Biodegradable Scaffolds: Properties, In Vitro and In Vivo Evaluation. Int J Mol Sci 2023; 24:12969. [PMID: 37629152 PMCID: PMC10455171 DOI: 10.3390/ijms241612969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
The results of constructing 3D scaffolds from degradable poly(3-hydrosbutyrpate-co-3-hydroxyvalerate) using FDM technology and studying the structure, mechanical properties, biocompatibility in vitro, and osteoplastic properties in vivo are presented. In the process of obtaining granules, filaments, and scaffolds from the initial polymer material, a slight change in the crystallization and glass transition temperature and a noticeable decrease in molecular weight (by 40%) were registered. During the compression test, depending on the direction of load application (parallel or perpendicular to the layers of the scaffold), the 3D scaffolds had a Young's modulus of 207.52 ± 19.12 and 241.34 ± 7.62 MPa and compressive stress tensile strength of 19.45 ± 2.10 and 22.43 ± 1.89 MPa, respectively. SEM, fluorescent staining with DAPI, and calorimetric MTT tests showed the high biological compatibility of scaffolds and active colonization by NIH 3T3 fibroblasts, which retained their metabolic activity for a long time (up to 10 days). The osteoplastic properties of the 3D scaffolds were studied in the segmental osteotomy test on a model defect in the diaphyseal zone of the femur in domestic Landrace pigs. X-ray and histological analysis confirmed the formation of fully mature bone tissue and complete restoration of the defect in 150 days of observation. The results allow us to conclude that the constructed resorbable 3D scaffolds are promising for bone grafting.
Collapse
Affiliation(s)
- Ekaterina I. Shishatskaya
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey V. Demidenko
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey G. Sukovatyi
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
| | - Alexey E. Dudaev
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Aleksey V. Mylnikov
- Clinical Hospital “RZD-Medicine”, Lomonosov Street, 47, 660058 Krasnoyarsk, Russia
| | - Konstantin A. Kisterskij
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia; (E.I.S.); (A.V.D.); (A.G.S.); (A.E.D.)
- School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia;
| |
Collapse
|
9
|
Balasankar A, Anbazhakan K, Arul V, Mutharaian VN, Sriram G, Aruchamy K, Oh TH, Ramasundaram S. Recent Advances in the Production of Pharmaceuticals Using Selective Laser Sintering. Biomimetics (Basel) 2023; 8:330. [PMID: 37622935 PMCID: PMC10452903 DOI: 10.3390/biomimetics8040330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Selective laser sintering (SLS) is an additive manufacturing process that has shown promise in the production of medical devices, including hip cups, knee trays, dental crowns, and hearing aids. SLS-based 3D-printed dosage forms have the potential to revolutionise the production of personalised drugs. The ability to manipulate the porosity of printed materials is a particularly exciting aspect of SLS. Porous tablet formulations produced by SLS can disintegrate orally within seconds, which is challenging to achieve with traditional methods. SLS also enables the creation of amorphous solid dispersions in a single step, rather than the multi-step process required with conventional methods. This review provides an overview of 3D printing, describes the operating mechanism and necessary materials for SLS, and highlights recent advances in SLS for biomedical and pharmaceutical applications. Furthermore, an in-depth comparison and contrast of various 3D printing technologies for their effectiveness in tissue engineering applications is also presented in this review.
Collapse
Affiliation(s)
- Athinarayanan Balasankar
- Department of Physics, Gobi Arts & Science College, Erode, Gobichettipalayam 638453, India; (A.B.); (K.A.)
| | - Kandasamy Anbazhakan
- Department of Physics, Gobi Arts & Science College, Erode, Gobichettipalayam 638453, India; (A.B.); (K.A.)
| | - Velusamy Arul
- Department of Chemistry, Sri Eshwar College of Engineering (Autonomous), Coimbatore 641202, India;
| | | | - Ganesan Sriram
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Kanakaraj Aruchamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | | |
Collapse
|
10
|
Zhao Z, Wu Z, Yao D, Wei Y, Li J. Mechanical properties and failure mechanisms of polyamide 12 gradient scaffolds developed with selective laser sintering. J Mech Behav Biomed Mater 2023; 143:105915. [PMID: 37257310 DOI: 10.1016/j.jmbbm.2023.105915] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 06/02/2023]
Abstract
Developing a functional gradient scaffold compatible with the fantastic biological and mechanical properties of natural bone tissue is imperative in bone tissue engineering. In this work, the stretch-dominated (cubical and circular) and bending-dominant (diamond and gyroid) pore styles were employed to design custom-graded scaffolds based on the curve interference method and then were fabricated by selective laser sintering (SLS) using polyamide 12 (PA12) powder. Subsequently, the mechanical behavior, failure mechanism, and energy absorption performance of porous structures were investigated via compression experiments and finite element (FE) simulation. The results indicated that the stretch-dominated radial gradient structures entire exhibited transverse shear failure and the bending-dominant radial gradient structures whole exhibited progressive destruction, while all of the axial gradient scaffolds suffered a predictable layer-by-layer fracture. Among them, the bending-dominated radial gradient structure of gyroid had been proven to sustain stronger deformability and energy absorption capacity. Meanwhile, the FE method powerfully predicted the mechanical behavior of the scaffold, and this research thereby possessed significant implications for the development of bone tissue engineering.
Collapse
Affiliation(s)
- Ze Zhao
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhige Wu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Dingrou Yao
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Yuan Wei
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Junchao Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
11
|
Zharkova II, Volkov AV, Muraev AA, Makhina TK, Voinova VV, Ryabova VM, Gazhva YV, Kashirina AS, Kashina AV, Bonartseva GA, Zhuikov VA, Shaitan KV, Kirpichnikov MP, Ivanov SY, Bonartsev AP. Poly(3-hydroxybutyrate) 3D-Scaffold-Conduit for Guided Tissue Sprouting. Int J Mol Sci 2023; 24:ijms24086965. [PMID: 37108133 PMCID: PMC10138660 DOI: 10.3390/ijms24086965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Scaffold biocompatibility remains an urgent problem in tissue engineering. An especially interesting problem is guided cell intergrowth and tissue sprouting using a porous scaffold with a special design. Two types of structures were obtained from poly(3-hydroxybutyrate) (PHB) using a salt leaching technique. In flat scaffolds (scaffold-1), one side was more porous (pore size 100-300 μm), while the other side was smoother (pore size 10-50 μm). Such scaffolds are suitable for the in vitro cultivation of rat mesenchymal stem cells and 3T3 fibroblasts, and, upon subcutaneous implantation to older rats, they cause moderate inflammation and the formation of a fibrous capsule. Scaffold-2s are homogeneous volumetric hard sponges (pore size 30-300 μm) with more structured pores. They were suitable for the in vitro culturing of 3T3 fibroblasts. Scaffold-2s were used to manufacture a conduit from the PHB/PHBV tube with scaffold-2 as a filler. The subcutaneous implantation of such conduits to older rats resulted in gradual soft connective tissue sprouting through the filler material of the scaffold-2 without any visible inflammatory processes. Thus, scaffold-2 can be used as a guide for connective tissue sprouting. The obtained data are advanced studies for reconstructive surgery and tissue engineering application for the elderly patients.
Collapse
Affiliation(s)
- Irina I Zharkova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119234, Russia
| | - Aleksey V Volkov
- Federal State Budgetary Institution "N.N. Priorov National Medical Research Center of Traumatology and Orthopedics", Ministry of Health of the Russian Federation, Priorova Str. 10, Moscow 127299, Russia
- Department of Oral and Maxillofacial Surgery and Surgical Dentistry, Medical Institute, RUDN Universiry, Miklukho-Maklaya Str., Moscow 6117198, Russia
| | - Aleksandr A Muraev
- Department of Oral and Maxillofacial Surgery and Surgical Dentistry, Medical Institute, RUDN Universiry, Miklukho-Maklaya Str., Moscow 6117198, Russia
| | - Tatiana K Makhina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow 119071, Russia
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119234, Russia
| | - Valentina M Ryabova
- Department of Oral and Maxillofacial Surgery and Surgical Dentistry, Medical Institute, RUDN Universiry, Miklukho-Maklaya Str., Moscow 6117198, Russia
- Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University", Ministry of Health of the Russian Federation, Minin and Pozharsky pl., 10/1, Nizhny Novgorod 603005, Russia
| | - Yulia V Gazhva
- Department of Oral and Maxillofacial Surgery and Surgical Dentistry, Medical Institute, RUDN Universiry, Miklukho-Maklaya Str., Moscow 6117198, Russia
- Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University", Ministry of Health of the Russian Federation, Minin and Pozharsky pl., 10/1, Nizhny Novgorod 603005, Russia
| | - Alena S Kashirina
- Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University", Ministry of Health of the Russian Federation, Minin and Pozharsky pl., 10/1, Nizhny Novgorod 603005, Russia
| | - Aleksandra V Kashina
- Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University", Ministry of Health of the Russian Federation, Minin and Pozharsky pl., 10/1, Nizhny Novgorod 603005, Russia
| | - Garina A Bonartseva
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow 119071, Russia
| | - Vsevolod A Zhuikov
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, Bld. 2, Moscow 119071, Russia
| | - Konstantin V Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119234, Russia
| | - Mikhail P Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119234, Russia
| | - Sergey Yu Ivanov
- Department of Oral and Maxillofacial Surgery and Surgical Dentistry, Medical Institute, RUDN Universiry, Miklukho-Maklaya Str., Moscow 6117198, Russia
- Department of Oral and Maxillofacial Surgery, Sechenov University, Trubetskaya Str., 8-2, Moscow 119991, Russia
| | - Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1-12, Moscow 119234, Russia
| |
Collapse
|
12
|
Abdal Dayem A, Lee SB, Lim KM, Kim A, Shin HJ, Vellingiri B, Kim YB, Cho SG. Bioactive peptides for boosting stem cell culture platform: Methods and applications. Biomed Pharmacother 2023; 160:114376. [PMID: 36764131 DOI: 10.1016/j.biopha.2023.114376] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Peptides, short protein fragments, can emulate the functions of their full-length native counterparts. Peptides are considered potent recombinant protein alternatives due to their specificity, high stability, low production cost, and ability to be easily tailored and immobilized. Stem cell proliferation and differentiation processes are orchestrated by an intricate interaction between numerous growth factors and proteins and their target receptors and ligands. Various growth factors, functional proteins, and cellular matrix-derived peptides efficiently enhance stem cell adhesion, proliferation, and directed differentiation. For that, peptides can be immobilized on a culture plate or conjugated to scaffolds, such as hydrogels or synthetic matrices. In this review, we assess the applications of a variety of peptides in stem cell adhesion, culture, organoid assembly, proliferation, and differentiation, describing the shortcomings of recombinant proteins and their full-length counterparts. Furthermore, we discuss the challenges of peptide applications in stem cell culture and materials design, as well as provide a brief outlook on future directions to advance peptide applications in boosting stem cell quality and scalability for clinical applications in tissue regeneration.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo Bin Lee
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung Min Lim
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyun Jin Shin
- Department of Ophthalmology, Research Institute of Medical Science, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Young Bong Kim
- Department of Biomedical Science & Engineering, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, StemExOne co., ltd. 303, Life Science Bldg, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| |
Collapse
|
13
|
Ferri M, Chiromito EMS, de Carvalho AJF, Morselli D, Degli Esposti M, Fabbri P. Fine Tuning of the Mechanical Properties of Bio-Based PHB/Nanofibrillated Cellulose Biocomposites to Prevent Implant Failure Due to the Bone/Implant Stress Shielding Effect. Polymers (Basel) 2023; 15:polym15061438. [PMID: 36987218 PMCID: PMC10051535 DOI: 10.3390/polym15061438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
A significant mechanical properties mismatch between natural bone and the material forming the orthopedic implant device can lead to its failure due to the inhomogeneous loads distribution, resulting in less dense and more fragile bone tissue (known as the stress shielding effect). The addition of nanofibrillated cellulose (NFC) to biocompatible and bioresorbable poly(3-hydroxybutyrate) (PHB) is proposed in order to tailor the PHB mechanical properties to different bone types. Specifically, the proposed approach offers an effective strategy to develop a supporting material, suitable for bone tissue regeneration, where stiffness, mechanical strength, hardness, and impact resistance can be tuned. The desired homogeneous blend formation and fine-tuning of PHB mechanical properties have been achieved thanks to the specific design and synthesis of a PHB/PEG diblock copolymer that is able to compatibilize the two compounds. Moreover, the typical high hydrophobicity of PHB is significantly reduced when NFC is added in presence of the developed diblock copolymer, thus creating a potential cue for supporting bone tissue growth. Hence, the presented outcomes contribute to the medical community development by translating the research results into clinical practice for designing bio-based materials for prosthetic devices.
Collapse
Affiliation(s)
- Martina Ferri
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Emanoele Maria Santos Chiromito
- Department of Materials Engineering, Engineering School of São Carlos, University of São Paulo, Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil
| | - Antonio Jose Felix de Carvalho
- Department of Materials Engineering, Engineering School of São Carlos, University of São Paulo, Av. João Dagnone, 1100, São Carlos 13563-120, SP, Brazil
| | - Davide Morselli
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
- Correspondence: (M.D.E.); (P.F.); Tel.: +39-051-2090363 (M.D.E.); +39-051-2090364 (P.F.)
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering, Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giusti 9, 50121 Firenze, Italy
- Correspondence: (M.D.E.); (P.F.); Tel.: +39-051-2090363 (M.D.E.); +39-051-2090364 (P.F.)
| |
Collapse
|
14
|
Review on Bioinspired Design of ECM-Mimicking Scaffolds by Computer-Aided Assembly of Cell-Free and Cell Laden Micro-Modules. J Funct Biomater 2023; 14:jfb14020101. [PMID: 36826900 PMCID: PMC9964438 DOI: 10.3390/jfb14020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Tissue engineering needs bioactive drug delivery scaffolds capable of guiding cell biosynthesis and tissue morphogenesis in three dimensions. Several strategies have been developed to design and fabricate ECM-mimicking scaffolds suitable for directing in vitro cell/scaffold interaction, and controlling tissue morphogenesis in vivo. Among these strategies, emerging computer aided design and manufacturing processes, such as modular tissue unit patterning, promise to provide unprecedented control over the generation of biologically and biomechanically competent tissue analogues. This review discusses recent studies and highlights the role of scaffold microstructural properties and their drug release capability in cell fate control and tissue morphogenesis. Furthermore, the work highlights recent advances in the bottom-up fabrication of porous scaffolds and hybrid constructs through the computer-aided assembly of cell-free and/or cell-laden micro-modules. The advantages, current limitations, and future challenges of these strategies are described and discussed.
Collapse
|
15
|
Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: A review. Acta Biomater 2023; 156:110-124. [PMID: 35429670 DOI: 10.1016/j.actbio.2022.04.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/18/2023]
Abstract
3D printed bone scaffolds have the potential to replace autografts and allografts because of advantages such as unlimited supply and the ability to tailor the scaffolds' biochemical, biological and biophysical properties. Significant progress has been made over the past decade in additive manufacturing techniques to 3D print bone grafts, but challenges remain in the lack of manufacturing techniques that can recapitulate both mechanical and biological functions of native bones. The purpose of this review is to outline the recent progress and challenges of engineering an ideal synthetic bone scaffold and to provide suggestions for overcoming these challenges through bioinspiration, high-resolution 3D printing, and advanced modeling techniques. The article provides a short overview of the progress in developing the 3D printed scaffolds for the repair and regeneration of critical size bone defects. STATEMENT OF SIGNIFICANCE: Treatment of critical size bone defects is still a tremendous clinical challenge. To address this challenge, diverse sets of advanced manufacturing approaches and materials have been developed for bone tissue scaffolds. 3D printing has sparked much interest because it provides a close control over the scaffold's internal architecture and in turn its mechanical and biological properties. This article provides a critical overview of the relationships between material compositions, printing techniques, and properties of the scaffolds and discusses the current technical challenges facing their successful translation to the clinic. Bioinspiration, high-resolution printing, and advanced modeling techniques are discussed as future directions to address the current challenges.
Collapse
Affiliation(s)
- Mohammad Mirkhalaf
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia; School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 2 George St., Brisbane, QLD 4000 Australia.
| | - Yinghui Men
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Rui Wang
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia
| | - Young No
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia
| | - Hala Zreiqat
- Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, The University of Sydney, NSW 2006, Australia; Australian Research Council Training Centre for Innovative Bioengineering, Sydney, NSW 2006, Australia.
| |
Collapse
|
16
|
Evaluation of the Properties of PHB Composite Filled with Kaolin Particles for 3D Printing Applications Using the Design of Experiment. Int J Mol Sci 2022; 23:ijms232214409. [PMID: 36430886 PMCID: PMC9698972 DOI: 10.3390/ijms232214409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In the presented work, poly(3-hydroxybutyrate)-PHB-based composites for 3D printing as bio-sourced and biodegradable alternatives to synthetic plastics are characterized. The PHB matrix was modified by polylactide (PLA) and plasticized by tributyl citrate. Kaolin particles were used as a filler. The mathematical method "Design of Experiment" (DoE) was used to create a matrix of samples for further evaluation. Firstly, the optimal printing temperature of the first and upper layers was determined. Secondly, the 3D printed samples were tested with regards to the warping during the 3D printing. Testing specimens were prepared using the determined optimal printing conditions to measure the tensile properties, impact strength, and heat deflection temperature (HDT) of the samples. The results describe the effect of adding individual components (PHB, PLA, plasticizer, and filler) in the prepared composite sample on the resulting material properties. Two composite samples were prepared based on the theoretical results of DoE (one with the maximum printability and one with the maximum HDT) to compare them with the real data measured. The tests of these two composite samples showed 25% lower warping and 8.9% higher HDT than was expected by the theory.
Collapse
|
17
|
Song X, Li X, Wang F, Wang L, Lv L, Xie Q, Zhang X, Shao X. Bioinspired Protein/Peptide Loaded 3D Printed PLGA Scaffold Promotes Bone Regeneration. Front Bioeng Biotechnol 2022; 10:832727. [PMID: 35875498 PMCID: PMC9300829 DOI: 10.3389/fbioe.2022.832727] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background: This study was aimed to investigate the effect of three dimensional (3D)printed poly lactide-co-glycolide (PLGA) scaffolds combined with Gly-Phe-Hyp-Gly-Arg (GFOGER) and bone morphogenetic protein 9 (BMP-9) on the repair of large bone defects. Methods: 3D printing method was used to produce PLGA scaffolds, and the sample was viewed by both optical microscopy and SEM, XRD analysis, water absorption and compressive strength analysis, etc. The rabbits were divided into six groups randomly and bone defect models were constructed (6 mm in diameter and 9 mm in depth): control group (n = 2), sham group (n = 4), model group (n = 4) and model + scaffold group (n = 4 rabbits for each group, 0%,2% and 4%). The rabbits were sacrificed at the 4th and 12th weeks after surgery, and the samples were collected for quantitative analysis of new bone mineral density by micro-CT, histopathological observation, immunohistochemistry and Western blot to detect the protein expression of osteoblast-related genes. Results: This scaffold presented acceptable mechanical properties and slower degradation rates. After surface modification with GFOGER peptide and BMP-9, the scaffold demonstrated enhanced new bone mineral deposition and density over the course of a 12 week in vivo study. Histological analysis and WB confirmed that this scaffold up-regulated the expression of Runx7, OCN, COL-1 and SP7, contributing to the noted uniform trabeculae formation and new bone regeneration. Conclusions: The application of this strategy in the manufacture of composite scaffolds provided extensive guidance for the application of bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoliang Song
- Department of Hand Surgery, Hebei Medical University, Shijiazhuang, China
| | - Xianxian Li
- Department of Hematological Oncology, Heji Hospital affiliated to Changzhi Medical College, Changzhi, China
| | - Fengyu Wang
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Wang
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Lv
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qing Xie
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xu Zhang
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinzhong Shao
- Department of Hand Surgery, The third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Xinzhong Shao,
| |
Collapse
|
18
|
Zhao L, Chen S, Xie C, Liang Q, Xu D, Chen W, Xiao X. The fabrication of multifunctional sodium alginate scaffold incorporating ibuprofen-loaded modified PLLA microspheres based on cryogenic 3D printing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1269-1288. [PMID: 35235492 DOI: 10.1080/09205063.2022.2049059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
A strategy to develop a multifunctional sodium alginate personalized scaffold with enhanced mechanical stability, osteogenesis activity and excellent anti-inflammatory activity by cryogenic 3 D printing combined with subsequent crosslinking with Sr2+ is proposed in this study. The ink for 3 D printing was prepared by dispersing modified PLLA droplets containing ibuprofen into sodium alginate aqueous solution using lecithin as stabilizer. The results showed that the drug-loaded microspheres formed from the low-temperature solidifying of the modified PLLA droplets were homogeneously dispersed in sodium alginate substrate, and the scaffold displayed a sustained drug release performance toward ibuprofen which endowed the scaffold with persistent anti-inflammatory effects. In vitro cell culture indicated that the lecithin not only acted as the stabilizer, but also stimulated the proliferation and mineralization of osteoblastic cells on the scaffold. Sr2+-crosslinking improved the mechanical properties and osteogenic activity of the scaffold.
Collapse
Affiliation(s)
- Lihua Zhao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shunyu Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Chunling Xie
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Qingshuang Liang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Dian Xu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Weixin Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
19
|
Additive Manufacturing of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate)/Poly(D,L-lactide- co-glycolide) Biphasic Scaffolds for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23073895. [PMID: 35409254 PMCID: PMC8999344 DOI: 10.3390/ijms23073895] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Polyhydroxyalkanoates are biopolyesters whose biocompatibility, biodegradability, environmental sustainability, processing versatility, and mechanical properties make them unique scaffolding polymer candidates for tissue engineering. The development of innovative biomaterials suitable for advanced Additive Manufacturing (AM) offers new opportunities for the fabrication of customizable tissue engineering scaffolds. In particular, the blending of polymers represents a useful strategy to develop AM scaffolding materials tailored to bone tissue engineering. In this study, scaffolds from polymeric blends consisting of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(D,L-lactide-co-glycolide) (PLGA) were fabricated employing a solution-extrusion AM technique, referred to as Computer-Aided Wet-Spinning (CAWS). The scaffold fibers were constituted by a biphasic system composed of a continuous PHBV matrix and a dispersed PLGA phase which established a microfibrillar morphology. The influence of the blend composition on the scaffold morphological, physicochemical, and biological properties was demonstrated by means of different characterization techniques. In particular, increasing the content of PLGA in the starting solution resulted in an increase in the pore size, the wettability, and the thermal stability of the scaffolds. Overall, in vitro biological experiments indicated the suitability of the scaffolds to support murine preosteoblast cell colonization and differentiation towards an osteoblastic phenotype, highlighting higher proliferation for scaffolds richer in PLGA.
Collapse
|
20
|
Özcan M, Magini EB, Volpato GM, Cruz A, Volpato CAM. Additive Manufacturing Technologies for Fabrication of Biomaterials for Surgical Procedures in Dentistry: A Narrative Review. J Prosthodont 2022; 31:105-135. [PMID: 35313027 DOI: 10.1111/jopr.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To screen and critically appraise available literature regarding additive manufacturing technologies for bone graft material fabrication in dentistry. MATERIAL AND METHODS PubMed and Scopus were searched up to May 2021. Studies reporting the additive manufacturing techniques to manufacture scaffolds for intraoral bone defect reconstruction were considered eligible. A narrative review was synthesized to discuss the techniques for bone graft material fabrication in dentistry and the biomaterials used. RESULTS The databases search resulted in 933 articles. After removing duplicate articles (128 articles), the titles and abstracts of the remaining articles (805 articles) were evaluated. A total of 89 articles were included in this review. Reading these articles, 5 categories of additive manufacturing techniques were identified: material jetting, powder bed fusion, vat photopolymerization, binder jetting, and material extrusion. CONCLUSIONS Additive manufacturing technologies for bone graft material fabrication in dentistry, especially 3D bioprinting approaches, have been successfully used to fabricate bone graft material with distinct compositions.
Collapse
Affiliation(s)
- Mutlu Özcan
- Division of Dental Biomaterials, Center of Dental Medicine, Clinic for Reconstructive Dentistry, University of Zürich, Zürich, Switzerland
| | - Eduarda Blasi Magini
- Department of Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Ariadne Cruz
- Department of Dentistry, Federal University of Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
21
|
Dhania S, Bernela M, Rani R, Parsad M, Grewal S, Kumari S, Thakur R. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int J Biol Macromol 2022; 208:243-259. [PMID: 35278518 DOI: 10.1016/j.ijbiomac.2022.03.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Our body is built to heal from inside out naturally but wide-ranging medical conditions necessitate the need for artificial assistance, and therefore, something that can assist the body to heal wounds and damaged tissues quickly and efficiently is of utmost importance. Tissue engineering technology helps to regenerate new tissue to replace the diseased or injured one. The technology uses biodegradable porous three-dimensional scaffolds for mimicking the structure and functions of the natural extracellular matrix. The material and design of scaffolds are critical areas of biomaterial research. Biomaterial-based three-dimensional structures have been the most promising material to serve as scaffolds for seeding cells, both in vivo and in vitro. One such material is polyhydroxyalkanoates (PHAs) which are thermoplastic biopolyesters that are highly suitable for this purpose due to their enhanced biocompatibility, biodegradability, thermo-processability, diverse mechanical properties, non-toxicity and natural origin. Moreover, they have tremendous possibilities of customization through biological physical and chemical modification as well as blending with other materials. They are being used for several tissue engineering applications such as bone graft substitute, cardiovascular patches, stents, for nerve repair and in implantology as valves and sutures. The present review overviews usage of a multitude of PHA-based biomaterials for a wide range of tissue engineering applications, based on their properties suitable for the specific applications.
Collapse
Affiliation(s)
- Sunena Dhania
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Manju Bernela
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ruma Rani
- ICAR-National Research Centre on Equines, Hisar 125001, Haryana, India
| | - Minakshi Parsad
- Department of Animal Biotechnology, LUVAS, Hisar 125001, Haryana, India
| | - Sapna Grewal
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Santosh Kumari
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Rajesh Thakur
- Department of Bio & Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| |
Collapse
|
22
|
Anandhapadman A, Venkateswaran A, Jayaraman H, Ghone NV. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects. Biotechnol Prog 2022; 38:e3234. [PMID: 35037419 DOI: 10.1002/btpr.3234] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/11/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The conventional methods of using autografts and allografts for repairing defects in bone, the osteochondral bone and the cartilage tissue have many disadvantages, like donor site morbidity and shortage of donors. Moreover, only 30% of the implanted grafts are shown to be successful in treating the defects. Hence, exploring alternative techniques such as tissue engineering to treat bone tissue associated defects is promising as it eliminates the above-mentioned limitations. To enhance the mechanical and biological properties of the tissue engineered product, it is essential to fabricate the scaffold used in tissue engineering by the combination of various biomaterials. Three-dimensional (3D) printing, with its ability to print composite materials and with complex geometry seems to have a huge potential in scaffold fabrication technique for engineering bone associated tissues.This review summarizes the recent applications and future perspectives of 3D printing technologies in the fabrication of composite scaffolds used in bone, osteochondral and cartilage tissue engineering. Key developments in the field of 3D printing technologies involves the incorporation of various biomaterials and cells in printing composite scaffolds mimicking physiologically relevant complex geometry & gradient porosity. Much recently, the emerging trend of printing smart scaffolds which can respond to external stimulus such as temperature, pH and magnetic field, known as 4D printing is gaining immense popularity and can be considered as the future of 3D printing applications in the field of tissue engineering. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ashwin Anandhapadman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Ajay Venkateswaran
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Hariharan Jayaraman
- Department of Biotechnology, Sri Venkateswara College of Engineering, Post Bag No.1, Pennalur - 602117, Sriperumbudur, Kancheepuram, Tamil Nadu, India
| | - Nalinkanth Veerabadran Ghone
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Rajiv Gandhi Salai (OMR), Kalavakkam, Tamil Nadu, India
| |
Collapse
|
23
|
Zhao Z, Li J, Wei Y, Yu T. Design and properties of graded polyamide12/hydroxyapatite scaffolds based on primitive lattices using selective laser sintering. J Mech Behav Biomed Mater 2021; 126:105052. [PMID: 34933156 DOI: 10.1016/j.jmbbm.2021.105052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
Scaffolds with favorable biological characteristics and controlled functional gradient architectures are preferable for the repair of damaged tissues in bone tissue engineering. In this study, the triply periodic minimal surfaces (TPMS) were introduced to design functional gradient porous scaffolds based on Primitive lattices which were then manufactured by selective laser sintering (SLS) using pure polyamide12 (PA12) material and PA12/hydroxyapatite (HA) composite material. The mechanical properties and permeability of the scaffolds were then evaluated by mechanical compression experiments and computational fluid dynamics (CFD) analysis. The radial-graded scaffold was found to have superior good mechanical properties and permeability and be favorable for the subsequent growth of bone tissue. Further, the optimal PA12/HA composition was determined by analyzing the effect of the addition of HA particles on the hydrophilicity and mechanical properties of the composite scaffold. Additionally, the cytotoxicity tests were performed to evaluate the effects of PA12/HA gradient scaffold on cell growth. The obtained results demonstrate that the radial gradient scaffold with 15% HA addition exhibits a feasible combination of comprehensive performance and biological activity, indicating a great application potential in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Ze Zhao
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Junchao Li
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Yuan Wei
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| | - Tianlin Yu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
24
|
王 聪, 桑 伟, 陈 燕, 宋 滇. [Electrospun PLGA scaffold loaded with osteogenic growth peptide accelerates cranial bone repair in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1183-1190. [PMID: 34549709 PMCID: PMC8527238 DOI: 10.12122/j.issn.1673-4254.2021.08.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the feasibility of electrospun poly(D, L-lactide-co-glycolide) (PLGA) scaffold loaded with osteogenic growth peptide (OGP) for bone tissue engineering. METHODS PLGA scaffolds were prepared by electrospinning PLGA solution without OGP(control group)or with 0.1%, 0.2%and 0.4%OGP(0.1%OGP@PLGA, 0.2%OGP@PLGA, and 0.4%OGP@PLGA scaffolds, respectively).The microstructure of the scaffolds was observed by scanning electron microscopy(SEM).The scaffolds were soaked in PBS to confirm the release pattern of OGP.The biocompatibility of the scaffolds was evaluated using CCK-8 assay and live/dead staining after a 7-day coculture with rat bone marrow-derived mesenchymal stem cells(BMSCs).ALP assay and ARS staining were used to evaluate osteoinduction capacity of the scaffolds co-cultured with rat BMSCs for 14 days.In a male SD rat model of skull defect(5 mm in diameter), bone defect repair was evaluated 8 weeks after implantation of the scaffolds using Micro-CT, HE and Masson staining. RESULTS The electrospun scaffolds had a fibrous structure similar to extracellular matrix(ECM)and were capable of sustained release of OGP for at least one month.Co-culture with 0.2%OGP@PLGA and 0.4%OGP@PLGA scaffolds, as compared with pure PLGA scaffold, significantly promoted the growth of rat BMSCs ((P < 0.01).The cells co-cultured with 0.4%OGP@PLGA scaffold showed the highest ALP activity and the greatest number of calcium nodules, indicating its strong osteoinduction ability (P < 0.01).Micro-CT and HE and Masson staining results showed that 0.4%OGP@PLGA scaffold had significantly better ability for promoting bone repair than the other two OGP-loaded scaffolds(P < 0.01). CONCLUSION The electrospun PLGA scaffold loaded with OGP effectively mimics the structure of ECM and has a good biocompatibility and osteoinduction ability, suggesting its potential as a new bone tissue engineering scaffold for bone defect repair.
Collapse
Affiliation(s)
- 聪 王
- 南京医科大学附属上海一院临床医学院骨科, 上海 201620Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - 伟林 桑
- 南京医科大学附属上海一院临床医学院骨科, 上海 201620Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - 燕敏 陈
- 上海市第一人民医院教育处, 上海 201620Department of Education, Shanghai First People′s Hospital, Shanghai 201620, China
| | - 滇文 宋
- 南京医科大学附属上海一院临床医学院骨科, 上海 201620Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| |
Collapse
|
25
|
Salerno A, Netti PA. Review on Computer-Aided Design and Manufacturing of Drug Delivery Scaffolds for Cell Guidance and Tissue Regeneration. Front Bioeng Biotechnol 2021; 9:682133. [PMID: 34249885 PMCID: PMC8264554 DOI: 10.3389/fbioe.2021.682133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
In the last decade, additive manufacturing (AM) processes have updated the fields of biomaterials science and drug delivery as they promise to realize bioengineered multifunctional devices and implantable tissue engineering (TE) scaffolds virtually designed by using computer-aided design (CAD) models. However, the current technological gap between virtual scaffold design and practical AM processes makes it still challenging to realize scaffolds capable of encoding all structural and cell regulatory functions of the native extracellular matrix (ECM) of health and diseased tissues. Indeed, engineering porous scaffolds capable of sequestering and presenting even a complex array of biochemical and biophysical signals in a time- and space-regulated manner, require advanced automated platforms suitable of processing simultaneously biomaterials, cells, and biomolecules at nanometric-size scale. The aim of this work was to review the recent scientific literature about AM fabrication of drug delivery scaffolds for TE. This review focused on bioactive molecule loading into three-dimensional (3D) porous scaffolds, and their release effects on cell fate and tissue growth. We reviewed CAD-based strategies, such as bioprinting, to achieve passive and stimuli-responsive drug delivery scaffolds for TE and cancer precision medicine. Finally, we describe the authors' perspective regarding the next generation of CAD techniques and the advantages of AM, microfluidic, and soft lithography integration for enhancing 3D porous scaffold bioactivation toward functional bioengineered tissues and organs.
Collapse
Affiliation(s)
| | - Paolo A. Netti
- Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Interdisciplinary Research Center on Biomaterials, University of Naples Federico II, Naples, Italy
| |
Collapse
|
26
|
Raturi G, Shree S, Sharma A, Panesar PS, Goswami S. Recent approaches for enhanced production of microbial polyhydroxybutyrate: Preparation of biocomposites and applications. Int J Biol Macromol 2021; 182:1650-1669. [PMID: 33992649 DOI: 10.1016/j.ijbiomac.2021.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022]
Abstract
In modern decades, an increase in environmental awareness has attracted the keen interest of researchers to investigate eco-sustainable, recyclable materials to minimize reliance on petroleum-based polymeric compounds. Poly (3-hydroxybutyrate) is amorphous, linear, and biodegradable bacterial polyesters that belong to the polyhydroxyalkanoates family with enormous applications in many fields. The present review provides comprehensive information on polyhydroxybutyrate production from different biomass feedstock. Various studies on PHB production by genetically engineered bacterial cells and optimization of parameters have been discussed. Recent technological innovation in processing polyhydroxybutyrate-based biocomposite through the different process has also been examined. Besides this, the potential applications of the derived competent biocomposites in the other fields have been depicted.
Collapse
Affiliation(s)
- Gaurav Raturi
- Department of Agri-Biotechnology, National Agri-food Biotechnology Institute, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Shweta Shree
- Department of Biotechnology, Texas A&M University, USA
| | - Amita Sharma
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India
| | - Parmjit S Panesar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal 148106, Punjab, India
| | - Saswata Goswami
- Department of Chemical Engineering, Centre of Innovative and Applied Bioprocessing, Knowledge City, Sector-81, Mohali, Punjab 140306, India.
| |
Collapse
|
27
|
Guo JL, Diaz-Gomez L, Xie VY, Bittner SM, Jiang EY, Wang B, Mikos AG. Three-Dimensional Printing of Click Functionalized, Peptide Patterned Scaffolds for Osteochondral Tissue Engineering. ACTA ACUST UNITED AC 2021; 22. [PMID: 33997430 DOI: 10.1016/j.bprint.2021.e00136] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteochondral repair remains a significant clinical challenge due to the multiple tissue phenotypes and complex biochemical milieu in the osteochondral unit. To repair osteochondral defects, it is necessary to mimic the gradation between bone and cartilage, which requires spatial patterning of multiple tissue-specific cues. To address this need, we have developed a facile system for the conjugation and patterning of tissue-specific peptides by melt extrusion of peptide-functionalized poly(ε-caprolactone) (PCL). In this study, alkyne-terminated PCL was conjugated to tissue-specific peptides via a mild, aqueous, and Ru(II)-catalyzed click reaction. The PCL-peptide composites were then 3D printed by multimaterial segmented printing to generate user-defined patterning of tissue-specific peptides. To confirm the bioactivity of 3D printed PCL-peptide composites, bone- and cartilage-specific scaffolds were seeded with mesenchymal stem cells and assessed for deposition of tissue-specific extracellular matrix in vitro. PCL-peptide scaffolds successfully promoted osteogenic and chondrogenic matrix deposition, with effects dependent on the identity of conjugated peptide.
Collapse
Affiliation(s)
- Jason L Guo
- Department of Bioengineering, Rice University, Houston, TX
| | | | - Virginia Y Xie
- Department of Bioengineering, Rice University, Houston, TX
| | - Sean M Bittner
- Department of Bioengineering, Rice University, Houston, TX
| | - Emily Y Jiang
- Department of Bioengineering, Rice University, Houston, TX
| | - Bonnie Wang
- Department of Bioengineering, Rice University, Houston, TX
| | | |
Collapse
|
28
|
de Carvalho JG, Zanini NC, Claro AM, do Amaral NC, Barud HS, Mulinari DR. Composite filaments OF PHBV reinforced with ZrO2·nH2O particles for 3D printing. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03610-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
29
|
Goswami M, Rekhi P, Debnath M, Ramakrishna S. Microbial Polyhydroxyalkanoates Granules: An Approach Targeting Biopolymer for Medical Applications and Developing Bone Scaffolds. Molecules 2021; 26:860. [PMID: 33562111 PMCID: PMC7915662 DOI: 10.3390/molecules26040860] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Microbial polyhydroxyalkanoates (PHA) are proteinaceous storage granules ranging from 100 nm to 500 nm. Bacillus sp. serve as unique bioplastic sources of short-chain length and medium-chain length PHA showcasing properties such as biodegradability, thermostability, and appreciable mechanical strength. The PHA can be enhanced by adding functional groups to make it a more industrially useful biomaterial. PHA blends with hydroxyapatite to form nanocomposites with desirable features of compressibility. The reinforced matrices result in nanocomposites that possess significantly improved mechanical and thermal properties both in solid and melt states along with enhanced gas barrier properties compared to conventional filler composites. These superior qualities extend the polymeric composites' applications to aggressive environments where the neat polymers are likely to fail. This nanocomposite can be used in different industries as nanofillers, drug carriers for packaging essential hormones and microcapsules, etc. For fabricating a bone scaffold, electrospun nanofibrils made from biocomposite of hydroxyapatite and polyhydroxy butyrate, a form of PHA, can be incorporated with the targeted tissue. The other methods for making a polymer scaffold, includes gas foaming, lyophilization, sol-gel, and solvent casting method. In this review, PHA as a sustainable eco-friendly NextGen biomaterial from bacterial sources especially Bacillus cereus, and its application for fabricating bone scaffold using different strategies for bone regeneration have been discussed.
Collapse
Affiliation(s)
- Moushmi Goswami
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Pavni Rekhi
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Mousumi Debnath
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India; (M.G.); (P.R.)
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore 119260, Singapore;
| |
Collapse
|
30
|
|
31
|
Abstract
Abstract
In the 21st century, additive manufacturing technologies have gained in popularity mainly due to benefits such as rapid prototyping, faster small production runs, flexibility and space for innovations, non-complexity of the process and broad affordability. In order to meet diverse requirements that 3D models have to meet, it is necessary to develop new 3D printing technologies as well as processed materials. This review is focused on 3D printing technologies applicable for polyhydroxyalkanoates (PHAs). PHAs are thermoplastics regarded as a green alternative to petrochemical polymers. The 3D printing technologies presented as available for PHAs are selective laser sintering and fused deposition modeling. Stereolithography can also be applied provided that the molecular weight and functional end groups of the PHA are adjusted for photopolymerization. The chemical and physical properties primarily influence the processing of PHAs by 3D printing technologies. The intensive research for the fabrication of 3D objects based on PHA has been applied to fulfil criteria of rapid and customized prototyping mainly in the medical area.
Collapse
|
32
|
Yang Y, Xu Y, Wei S, Shan W. Oral preparations with tunable dissolution behavior based on selective laser sintering technique. Int J Pharm 2021; 593:120127. [DOI: 10.1016/j.ijpharm.2020.120127] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023]
|
33
|
Melčová V, Svoradová K, Menčík P, Kontárová S, Rampichová M, Hedvičáková V, Sovková V, Přikryl R, Vojtová L. FDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blends. Polymers (Basel) 2020; 12:E2806. [PMID: 33260879 PMCID: PMC7761374 DOI: 10.3390/polym12122806] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Tissue engineering is a current trend in the regenerative medicine putting pressure on scientists to develop highly functional materials and methods for scaffolds' preparation. In this paper, the calibrated filaments for Fused Deposition Modeling (FDM) based on plasticized poly(3-hydroxybutyrate)/poly(d,l-lactide) 70/30 blend modified with tricalcium phosphate bioceramics were prepared. Two different plasticizers, Citroflex (n-Butyryl tri-n-hexyl citrate) and Syncroflex (oligomeric adipate ester), both used in the amount of 12 wt%, were compared. The printing parameters for these materials were optimized and the printability was evaluated by recently published warping test. The samples were studied with respect to their thermal and mechanical properties, followed by biological in vitro tests including proliferation, viability, and osteogenic differentiation of human mesenchymal stem cells. According to the results from differential scanning calorimetry and tensile measurements, the Citroflex-based plasticizer showed very good softening effect at the expense of worse printability and unsatisfactory performance during biological testing. On the other hand, the samples with Syncroflex demonstrated lower warping tendency compared to commercial polylactide filament with the warping coefficient one third lower. Moreover, the Syncroflex-based samples exhibited the non-cytotoxicity and promising biocompatibility.
Collapse
Affiliation(s)
- Veronika Melčová
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (K.S.); (P.M.); (S.K.); (R.P.)
| | - Kateřina Svoradová
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (K.S.); (P.M.); (S.K.); (R.P.)
| | - Přemysl Menčík
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (K.S.); (P.M.); (S.K.); (R.P.)
| | - Soňa Kontárová
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (K.S.); (P.M.); (S.K.); (R.P.)
| | - Michala Rampichová
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.R.); (V.H.); (V.S.)
| | - Věra Hedvičáková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.R.); (V.H.); (V.S.)
| | - Věra Sovková
- Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; (M.R.); (V.H.); (V.S.)
| | - Radek Přikryl
- Institute of Material Chemistry, Faculty of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic; (K.S.); (P.M.); (S.K.); (R.P.)
| | - Lucy Vojtová
- CEITEC—Central European Institute of Technology, Brno University of Technology, Advanced Biomaterials, Purkyňova 656/123, 612 00 Brno, Czech Republic
| |
Collapse
|
34
|
Limongi T, Susa F, Allione M, di Fabrizio E. Drug Delivery Applications of Three-Dimensional Printed (3DP) Mesoporous Scaffolds. Pharmaceutics 2020; 12:E851. [PMID: 32911620 PMCID: PMC7558976 DOI: 10.3390/pharmaceutics12090851] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 12/21/2022] Open
Abstract
Mesoporous materials are structures characterized by a well-ordered large pore system with uniform porous dimensions ranging between 2 and 50 nm. Typical samples are zeolite, carbon molecular sieves, porous metal oxides, organic and inorganic porous hybrid and pillared materials, silica clathrate and clathrate hydrates compounds. Improvement in biochemistry and materials science led to the design and implementation of different types of porous materials ranging from rigid to soft two-dimensional (2D) and three-dimensional (3D) skeletons. The present review focuses on the use of three-dimensional printed (3DP) mesoporous scaffolds suitable for a wide range of drug delivery applications, due to their intrinsic high surface area and high pore volume. In the first part, the importance of the porosity of materials employed for drug delivery application was discussed focusing on mesoporous materials. At the end of the introduction, hard and soft templating synthesis for the realization of ordered 2D/3D mesostructured porous materials were described. In the second part, 3DP fabrication techniques, including fused deposition modelling, material jetting as inkjet printing, electron beam melting, selective laser sintering, stereolithography and digital light processing, electrospinning, and two-photon polymerization were described. In the last section, through recent bibliographic research, a wide number of 3D printed mesoporous materials, for in vitro and in vivo drug delivery applications, most of which relate to bone cells and tissues, were presented and summarized in a table in which all the technical and bibliographical details were reported. This review highlights, to a very cross-sectional audience, how the interdisciplinarity of certain branches of knowledge, as those of materials science and nano-microfabrication are, represent a growing valuable aid in the advanced forum for the science and technology of pharmaceutics and biopharmaceutics.
Collapse
Affiliation(s)
- Tania Limongi
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy; (F.S.); (E.d.F.)
| | - Francesca Susa
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy; (F.S.); (E.d.F.)
| | - Marco Allione
- SMILEs Lab, PSE Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Enzo di Fabrizio
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy; (F.S.); (E.d.F.)
| |
Collapse
|
35
|
Zhang F, King MW. Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Adv Healthc Mater 2020; 9:e1901358. [PMID: 32424996 DOI: 10.1002/adhm.201901358] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/03/2020] [Indexed: 01/15/2023]
Abstract
Biodegradable polymers play a pivotal role in in situ tissue engineering. Utilizing various technologies, researchers have been able to fabricate 3D tissue engineering scaffolds using biodegradable polymers. They serve as temporary templates, providing physical and biochemical signals to the cells and determining the successful outcome of tissue remodeling. Furthermore, a biodegradable scaffold also presents the fourth dimension for tissue engineering, namely time. The properties of the biodegradable polymer change over time, presenting continuously changing features during the degradation process. These changes become more complicated when different materials are combined together to fabricate a composite or heterogeneous scaffold. This review undertakes a systematic analysis of the basic characteristics of biodegradable polymers and describe recent advances in making composite biodegradable scaffolds for in situ tissue engineering and regenerative medicine. The interaction between implanted biodegradable biomaterials and the in vivo environment are also discussed, including the properties and functional changes of the degradable scaffold, the local effect of degradation on the contiguous tissue and their evaluation using both in vitro and in vivo models.
Collapse
Affiliation(s)
- Fan Zhang
- Wilson College of TextilesNorth Carolina State University Raleigh NC 27606 USA
| | - Martin W. King
- Wilson College of TextilesNorth Carolina State University Raleigh NC 27606 USA
- College of TextilesDonghua University Songjiang District Shanghai 201620 China
| |
Collapse
|
36
|
Kovalcik A, Sangroniz L, Kalina M, Skopalova K, Humpolíček P, Omastova M, Mundigler N, Müller AJ. Properties of scaffolds prepared by fused deposition modeling of poly(hydroxyalkanoates). Int J Biol Macromol 2020; 161:364-376. [PMID: 32522546 DOI: 10.1016/j.ijbiomac.2020.06.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022]
Abstract
Poly(hydroxyalkanoates) are biodegradable and biocompatible polymers suitable for tissue engineering. Fused deposition modeling (FDM) belongs to modern rapid prototyping techniques for the fabrication of scaffolds. In this work, poly(3-hydroxybutyrate (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) were tested for FDM. Thermal and rheological properties of industrial PHAs were compared with poly(lactic acid) (PLA), which is a biodegradable polymer commonly used for FDM. The massive decrease in viscosity and loss of molecular weight of PHB and PHBV precluded their use for FDM. On the other hand, the thermal stability of PHBH was comparable to that of PLA. PHBH scaffolds prepared by FDM exhibited excellent mechanical properties, no cytotoxicity and large proliferation of mouse embryonic fibroblast cells within 96 h. The hydrolytic degradation of PHBH and PLA scaffolds tested in synthetic gastric juice for 52 days confirmed a faster degradation of PHBH than PLA. The decrease in molecular weight confirmed the first-order kinetics with a slightly higher (0.0169 day-1) degradation rate constant for PHBH as compared to the value (0.0107 day-1) obtained for PLA. These results indicate that PHBH could be used to produce scaffolds by FDM with application in tissue engineering.
Collapse
Affiliation(s)
- Adriana Kovalcik
- Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic.
| | - Leire Sangroniz
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018 Donostia, San Sebastian, Spain
| | - Michal Kalina
- Department of Physical and Applied Chemistry, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - Katerina Skopalova
- Centre of Polymer Systems, Faculty of Technology, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic
| | - Petr Humpolíček
- Centre of Polymer Systems, Faculty of Technology, Tomas Bata University in Zlin, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic
| | - Maria Omastova
- Polymer Institute, Slovak Academy of Sciences, Dubravska Cesta 9, 845 41 Bratislava 45, Slovak Republic
| | - Norbert Mundigler
- Department of Agrobiotechnology, IFA Tulln, Institute of Natural Materials Technology, University for Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 20, 3430 Tulln an der Donau, Austria
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizabal 3, 20018 Donostia, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
37
|
|
38
|
Microbiologically extracted poly(hydroxyalkanoates) and its amalgams as therapeutic nano-carriers in anti-tumor therapies. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110799. [DOI: 10.1016/j.msec.2020.110799] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/09/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
|
39
|
Foli G, Degli Esposti M, Morselli D, Fabbri P. Two-Step Solvent-Free Synthesis of Poly(hydroxybutyrate)-Based Photocurable Resin with Potential Application in Stereolithography. Macromol Rapid Commun 2020; 41:e1900660. [PMID: 32363755 DOI: 10.1002/marc.201900660] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/21/2023]
Abstract
A bio-based polymeric ink for stereolithography developed through a two-step solvent-free process is herein proposed. Specifically, low-molecular-weight poly(hydroxybutyrate) (PHB)-diol oligomers are prepared via molten transesterification of bacterial PHB with 1,4-butanediol. Transesterification conditions such as diol concentration, catalyst amount, and reaction time are studied for optimizing the final oligomers' molecular weight and structural features. In the second step, the oligomeric hydroxyl terminals are converted into methacrylate moieties through a solvent-free end-capping reaction and diluted in propylene carbonate in order to obtain a photo-polymerizable ink with suitable viscosity. The ink is UV-cured, and the obtained material properties are investigated by FT-IR and differential scanning calorimetry measurements. The proposed method provides a valuable and environmentally friendly alternative to currently available synthetic routes, overcoming their typical disadvantages related to the used solvents and harsh conditions. Moreover, it opens up a sustainable route for converting polyesters into functionalized oligomeric derivatives, which can potentially find application in 3D printing of customized biomedical devices.
Collapse
Affiliation(s)
- Giacomo Foli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Università di Bologna, Via Terracini 28, Bologna, 40131, Italy
| | - Micaela Degli Esposti
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Università di Bologna, Via Terracini 28, Bologna, 40131, Italy.,Italian Consortium for Science and Technology of Materials (INSTM), Via Giusti 9, Firenze, 50121, Italy
| | - Davide Morselli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Università di Bologna, Via Terracini 28, Bologna, 40131, Italy.,Italian Consortium for Science and Technology of Materials (INSTM), Via Giusti 9, Firenze, 50121, Italy
| | - Paola Fabbri
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Università di Bologna, Via Terracini 28, Bologna, 40131, Italy.,Italian Consortium for Science and Technology of Materials (INSTM), Via Giusti 9, Firenze, 50121, Italy
| |
Collapse
|
40
|
Zeng H, Pathak JL, Shi Y, Ran J, Liang L, Yan Q, Wu T, Fan Q, Li M, Bai Y. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling. Biofabrication 2020; 12:025032. [PMID: 32084655 DOI: 10.1088/1758-5090/ab78ed] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fabrication technique determines the physicochemical and biological properties of scaffolds, including the porosity, mechanical strength, osteoconductivity, and bone regenerative potential. Biphasic calcium phosphate (BCP)-based scaffolds are superior in bone tissue engineering due to their suitable physicochemical and biological properties. We developed an indirect selective laser sintering (SLS) printing strategy to fabricate 3D microporous BCP scaffolds for bone tissue engineering purposes. The green part of the BCP scaffold was fabricated by SLS at a relevant low temperature in the presence of epoxy resin (EP), and the remaining EP was decomposed and eliminated by a subsequent sintering process to obtain the microporous BCP scaffolds. Physicochemical properties, cell adhesion, biocompatibility, in vitro osteogenic potential, and rabbit critical-size cranial bone defect healing potential of the scaffolds were extensively evaluated. This indirect SLS printing eliminated the drawbacks of conventional direct SLS printing at high working temperatures, i.e. wavy deformation of the scaffold, hydroxyapatite decomposition, and conversion of β-tricalcium phosphate (TCP) to α-TCP. Among the scaffolds printed with various binder ratios (by weight) of BCP and EP, the scaffold with 50/50 binder ratio (S4) showed the highest mechanical strength and porosity with the smallest pore size. Scaffold S4 showed the highest effect on osteogenic differentiation of precursor cells in vitro, and this effect was ERK1/2 signaling-dependent. Scaffold S4 robustly promoted precursor cell homing, endogenous bone regeneration, and vascularization in rabbit critical-size cranial defects. In conclusion, BCP scaffolds fabricated by indirect SLS printing maintain the physicochemical properties of BCP and possess the capacity to recruit host precursor cells to the defect site and promote endogenous bone regeneration possibly via the activation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pecci R, Baiguera S, Ioppolo P, Bedini R, Del Gaudio C. 3D printed scaffolds with random microarchitecture for bone tissue engineering applications: Manufacturing and characterization. J Mech Behav Biomed Mater 2020; 103:103583. [DOI: 10.1016/j.jmbbm.2019.103583] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 12/23/2022]
|
42
|
Wang C, Huang W, Zhou Y, He L, He Z, Chen Z, He X, Tian S, Liao J, Lu B, Wei Y, Wang M. 3D printing of bone tissue engineering scaffolds. Bioact Mater 2020; 5:82-91. [PMID: 31956737 PMCID: PMC6962643 DOI: 10.1016/j.bioactmat.2020.01.004] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 12/15/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022] Open
Abstract
Tissue engineering is promising in realizing successful treatments of human body tissue loss that current methods cannot treat well or achieve satisfactory clinical outcomes. In scaffold-based bone tissue engineering, a high performance scaffold underpins the success of a bone tissue engineering strategy and a major direction in the field is to produce bone tissue engineering scaffolds with desirable shape, structural, physical, chemical and biological features for enhanced biological performance and for regenerating complex bone tissues. Three-dimensional (3D) printing can produce customized scaffolds that are highly desirable for bone tissue engineering. The enormous interest in 3D printing and 3D printed objects by the science, engineering and medical communities has led to various developments of the 3D printing technology and wide investigations of 3D printed products in many industries, including biomedical engineering, over the past decade. It is now possible to create novel bone tissue engineering scaffolds with customized shape, architecture, favorable macro-micro structure, wettability, mechanical strength and cellular responses. This article provides a concise review of recent advances in the R & D of 3D printing of bone tissue engineering scaffolds. It also presents our philosophy and research in the designing and fabrication of bone tissue engineering scaffolds through 3D printing.
Collapse
Affiliation(s)
- Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, PR China
| | - Wei Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Zhou
- Institute of Biomedical and health engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, PR China
| | - Libing He
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, PR China
| | - Zhi He
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, PR China
| | - Ziling Chen
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, PR China
| | - Xiao He
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, PR China
| | - Shuo Tian
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jiaming Liao
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, PR China
| | - Bingheng Lu
- School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake, Dongguan, Guangdong, PR China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing, PR China
| | - Min Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
43
|
Weems AC, Pérez-Madrigal MM, Arno MC, Dove AP. 3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules 2020; 21:1037-1059. [PMID: 32058702 DOI: 10.1021/acs.biomac.9b01539] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The advent of additive manufacturing offered the potential to revolutionize clinical medicine, particularly with patient-specific implants across a range of tissue types. However, to date, there are very few examples of polymers being used for additive processes in clinical settings. The state of the art with regards to 3D printable polymeric materials being exploited to produce novel clinically relevant implants is discussed here. We focus on the recent advances in the development of implantable, polymeric medical devices and tissue scaffolds without diverging extensively into bioprinting. By introducing the major 3D printing techniques along with current advancements in biomaterials, we hope to provide insight into how these fields may continue to advance while simultaneously reviewing the ongoing work in the field.
Collapse
Affiliation(s)
- Andrew C Weems
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Maria C Arno
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
44
|
Design of Additively Manufactured Lattice Structures for Biomedical Applications. JOURNAL OF HEALTHCARE ENGINEERING 2020; 2020:2707560. [PMID: 32148742 PMCID: PMC7042515 DOI: 10.1155/2020/2707560] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
|
45
|
Puppi D, Braccini S, Ranaudo A, Chiellini F. Poly(3-hydroxybutyrate-co-3-hydroxyexanoate) scaffolds with tunable macro- and microstructural features by additive manufacturing. J Biotechnol 2020; 308:96-107. [DOI: 10.1016/j.jbiotec.2019.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/06/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
|
46
|
Wan M, Jiang X, Nie J, Cao Q, Zheng W, Dong X, Fan ZH, Zhou W. Phosphor powders‐incorporated polylactic acid polymeric composite used as 3D printing filaments with green luminescence properties. J Appl Polym Sci 2019. [DOI: 10.1002/app.48644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Meiling Wan
- Research Center of Biomass 3D Printing Materials, College of Materials and EnergySouth China Agricultural University Guangzhou 510642 China
| | - Xiao Jiang
- Research Center of Biomass 3D Printing Materials, College of Materials and EnergySouth China Agricultural University Guangzhou 510642 China
| | - Jianliang Nie
- Research Center of Biomass 3D Printing Materials, College of Materials and EnergySouth China Agricultural University Guangzhou 510642 China
| | - Qingyun Cao
- Research Center of Biomass 3D Printing Materials, College of Materials and EnergySouth China Agricultural University Guangzhou 510642 China
| | - Wenxu Zheng
- Research Center of Biomass 3D Printing Materials, College of Materials and EnergySouth China Agricultural University Guangzhou 510642 China
| | - Xianming Dong
- Research Center of Biomass 3D Printing Materials, College of Materials and EnergySouth China Agricultural University Guangzhou 510642 China
| | - Z. Hugh Fan
- Department of Biomedical EngineeringUniversity of Florida Gainesville Florida 32611
- Department of Mechanical and Aerospace EngineeringUniversity of Florida Gainesville Florida 32611
| | - Wuyi Zhou
- Research Center of Biomass 3D Printing Materials, College of Materials and EnergySouth China Agricultural University Guangzhou 510642 China
| |
Collapse
|
47
|
Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109778. [DOI: 10.1016/j.msec.2019.109778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/14/2018] [Accepted: 05/19/2019] [Indexed: 01/05/2023]
|
48
|
Lu Z, Zhou Y, Liu B. Preparation of chitosan microcarriers by high voltage electrostatic field and freeze drying. J Biosci Bioeng 2019; 128:504-509. [DOI: 10.1016/j.jbiosc.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
|
49
|
Dave K, Gomes VG. Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110078. [PMID: 31546353 DOI: 10.1016/j.msec.2019.110078] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
Effective regenerative medicine relies on understanding the interplay between biomaterial implants and the adjoining cells. Scaffolds contribute by presenting sites for cellular adhesion, growth, proliferation, migration, and differentiation which lead to regeneration of tissues over desired periods of time. The fabrication and recruitment of scaffolds often fail to consider the interactions that occur at the interfaces, thereby risking rejection. This lack of knowledge on interfacial microenvironments and related exchanges often causes reduced cellular interactions, poor cell survival and intervention failure. Successful regenerative therapy requires scaffolds with bespoke biocompatibility, optimum pore structure, and cues for cell attachments. These factors determine the development of cellular affinity in scaffolds. For biomedical applications, a detailed understanding of scaffolds and their interfaces is required for better tuning of biomaterials to suit the microenvironments. In this review, we discuss the role of biointerfaces with a focus on surface chemistry, pore structure, scaffold hydro-affinity and their biointeractions. An understanding of the effect of scaffold interfacial properties is crucial for enhancing the progress of tissue engineering towards clinical applications.
Collapse
Affiliation(s)
- Khyati Dave
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia
| | - Vincent G Gomes
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia.
| |
Collapse
|
50
|
Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110054. [PMID: 31546401 DOI: 10.1016/j.msec.2019.110054] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/25/2019] [Accepted: 08/03/2019] [Indexed: 12/30/2022]
Abstract
The construction of ceramic components with UV curing is a developing trend by an additive manufacturing (AM) technology, due to the excellent advantages of high precision selective fixation and rapid prototyping, the application of this technology to bone defect repair had become one of the hotspots of research. Hydroxyapatite (HAP) is one of the most popular calcium phosphate biomaterials, which is very close to the main ingredient of human bones. Thus, hydroxyapatite biomaterials are popular as bone graft materials. In summary, the preparation of HAP bioceramics by a 3D printing of digital light processing (DLP) is a promising work. However, the preparation of HAP hybrid suspensions with high solid loading and good fluidity that can be printed by DLP encountered some challenges. Therefore, the purpose of this work is to improve and develop a novel UV-curing suspension with a high solids loading, which the suspension with the hydrodynamic properties and stability are suitable for DLP printer, in order to compensate for the brittleness of HAP ceramics itself to a certain extent, a low amount of zirconia was added in the suspension as an additive to fabricate a zirconia toughened HAP bioceramic composite by a DLP of 3D printing. In this work, the HAP powder was pre-modified by two organic modifiers to improve the compatibility in the acrylic resin system, and the addition of the castor oil phosphate further reduced the shear stress of the suspension to ensure strong liquidity. The UV suspension with 60 wt% powder particle loading had a minimum viscosity of 7495 mPa·s at 30 rpm, which was vacuum sintered at 1100 °C, 1200 °C, and 1250 °C, respectively. The composite ceramics (with 6 wt% ZrO2) at 1200 °C had a relative density of 90.7%, while the sintered samples at 1250 °C had stronger tensile strength and bending strength. The toughening effect of zirconia incorporation on HAP ceramics was also confirmed by the change of tensile modulus and bending modulus, whereas the corresponding mechanical properties were also significantly enhanced.
Collapse
|