1
|
Kato EE, Pimenta LA, de Almeida MES, Zambelli VO, Dos Santos MF, Sampaio SC. Crotoxin Inhibits Endothelial Cell Functions in Two- and Three-dimensional Tumor Microenvironment. Front Pharmacol 2021; 12:713332. [PMID: 34421610 PMCID: PMC8371242 DOI: 10.3389/fphar.2021.713332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/22/2021] [Indexed: 01/13/2023] Open
Abstract
Antitumor property of Crotoxin (CTX), the major toxin from Crotalus durissus terrificus snake venom, has been demonstrated in experimental animal models and clinical trials. However, the direct action of this toxin on the significant events involved in neovascularization, which are essential for tumor growth and survival, has not been confirmed. This study investigated the effects of CTX on the key parameters of neovascularization in two- and three-dimensional culture models. Murine endothelial cell lines derived from thymus hemangioma (t.End.1) were treated at different concentrations of CTX (6.25–200 nM). Endothelial cell proliferation, cell adhesion, and actin cytoskeletal dynamics on laminin (10 µg/ml), type I collagen (10 µg/ml), and fibronectin (3 µg/ml) were evaluated along with the endothelial cell migration and formation of capillary-like tubes in 3D Matrigel. CTX concentration of 50 nM inhibited tube formation on 3D Matrigel and impaired cell adhesion, proliferation, and migration under both culture medium and tumor-conditioned medium. These actions were not accountable for the loss of cell viability. Inhibition of cell adhesion to different extracellular matrix components was related to the reduction of αv and α2 integrin distribution and cytoskeletal actin polymerization (F-actin), accompanied by inhibition of focal adhesion kinase (FAK), Rac1 (GTPase) signaling proteins, and actin-related protein 2/3 (Arp 2/3) complex. This study proved that CTX inhibits the major events involved in angiogenesis, particularly against tumor stimuli, highlighting the importance of the anti-angiogenic action of CTX in inhibition of tumor progression.
Collapse
Affiliation(s)
- Ellen Emi Kato
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, Brazil
| | | | | | | | - Marinilce Fagundes Dos Santos
- Institute of Biomedical Sciences, Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Sandra Coccuzzo Sampaio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, Brazil.,Institute of Biomedical Sciences, Department of Pharmacology, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Bae HW, Choi W, Hwang AR, Lee SY, Seong GJ, Kim CY. Effects of Hypoxic Preconditioning and Vascular Endothelial Growth Factor on the Survival of Isolated Primary Retinal Ganglion Cells. Biomolecules 2021; 11:biom11030391. [PMID: 33800918 PMCID: PMC8002095 DOI: 10.3390/biom11030391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the effect of hypoxic preconditioning (HPC) on primary retinal ganglion cell (RGC) survival and the associated mechanism, including the role of vascular endothelial growth factor (VEGF). Retinas were separated from the enucleated eyeballs of Sprague-Dawley rats on postnatal days 1-4. RGCs were harvested using an immunopanning-magnetic separation system and maintained for 24 h in a defined medium. Hypoxic damage (0.3% O2) was inflicted on the cells using a CO₂ chamber. Anti-VEGF antibody (bevacizumab) was administered to RGCs exposed to hypoxic conditions, and RGC survival rate was compared to that of non-anti-VEGF antibody-treated RGCs. HPC lasting 4 h significantly increased RGC survival rate. In the RGCs exposed to hypoxic conditions for 4 h, VEGF mRNA and protein levels were significantly increased. Treatment with high dose bevacizumab (>1 mg/mL) countered HPC-mediated RGC survival. Protein kinase B and focal adhesion kinase levels were significantly increased in 4-h hypoxia-treated RGCs. HPC showed beneficial effects on primary RGC survival. However, only specifically controlled exposure to hypoxic conditions rendered neuroprotective effects. Strong inhibition of VEGF inhibited HPC-mediated RGC survival. These results indicate that VEGF may play an essential role in promoting cell survival under hypoxic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Chan Yun Kim
- Correspondence: ; Tel.: +82-2-2228-3570; Fax: +82-2-312-0541
| |
Collapse
|
3
|
Chen L, Bai J, Li Y. miR‑29 mediates exercise‑induced skeletal muscle angiogenesis by targeting VEGFA, COL4A1 and COL4A2 via the PI3K/Akt signaling pathway. Mol Med Rep 2020; 22:661-670. [PMID: 32467996 PMCID: PMC7339600 DOI: 10.3892/mmr.2020.11164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
The present study investigated the molecular changes and related regulatory mechanisms in the response of skeletal muscle to exercise. The microarray dataset ‘GSE109657’ of the skeletal muscle response to high-intensity intermittent exercise training (HIIT) was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened and analyzed using weighted gene co-expression network analysis (WGCNA) to identify the significant functional co-expressed gene modules. Moreover, functional enrichment analysis was performed for the DEGs in the significant modules. In addition, protein-protein interaction (PPI) network and microRNA (miR)-transcription factor (TF)-target regulatory network were constructed. A total of 530 DEGs in the skeletal muscle were screened after HIIT, suggesting an effect of HIIT on the skeletal muscle. Moreover, three significant modules (brown, blue and red modules) were identified after WGCNA, and the genes Collagen Type IV α1 Chain (COL4A1) and COL4A2 in the brown module showed the strongest correlation with HIIT. The DEGs in the three modules were significantly enriched in focal adhesion, extracellular matrix organization and the PI3K/Akt signaling pathway. Furthermore, the PPI network contained 104 nodes and 211 interactions. Vascular endothelial growth factor A (VEGFA), COL4A1 and COL4A2 were the hub genes in the PPI network, and were all regulated by miR-29a/b/c. In addition, VEGFA, COL4A1 and COL4A2 were significantly upregulated in the skeletal muscle response to HIIT. Therefore, the present results suggested that the growth and migration of vascular endothelial cells, and skeletal muscle angiogenesis may be regulated by miR-29a/b/c targeting VEGFA, COL4A1 and COL4A2 via the PI3K/Akt signaling pathway. The present results may provide a theoretical basis to investigate the effect of exercise on skeletal muscle.
Collapse
Affiliation(s)
- Lei Chen
- Department of Physical Education, Shanghai Jiaotong University, Shanghai 200240, P.R. China
| | - Jun Bai
- Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yanfei Li
- Office of Academic Research, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, P.R. China
| |
Collapse
|
4
|
Lin W, Tu H, Zhu Y, Guan Y, Liu H, Ling W, Yan P, Dong J. Curcumolide, a unique sesquiterpenoid from Curcuma wenyujin displays anti-angiogenic activity and attenuates ischemia-induced retinal neovascularization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:152923. [PMID: 31450226 DOI: 10.1016/j.phymed.2019.152923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Targeting vascular endothelial growth factor is a common treatment strategy for neovascular eye disease, a leading cause of visual impairment and blindness. However, these approaches are limited or carry various complications. Therefore, there is an urgent need for the development of unique therapeutic approaches. PURPOSE To investigate the anti-angiogenic effects of curcumolide and its mechanism of action. METHODS /STUDY DESIGNS In this study, we examine the effects of curcumolide on the process of vasculature formation, including cell proliferation, migration, tube formation and apoptosis in vitro using human umbilical vascular endothelial cells (HUVECs). We also assess the anti-angiogenic effects of curcumolide in vivo using a mouse model of oxygen induced retinopathy (OIR). The mechanism of anti-angiogenic effects was investigated by measuring the expression level of various signaling proteins and the molecular docking simulations. RESULTS Intravitreal injection of curcumolide reduced the formation of retinal neovascular tufts and VEGFR2 phosphorylation in the murine OIR model at concentrations administered without definite cellular and retinal toxicities. Curcumolide suppressed VEGF-induced HRMECs proliferation, migration and tube formation in a dose-dependent manner. Meanwhile, it promoted caspase-dependent apoptosis. Curcumolide also inhibited VEGF-induced phosphorylation of VEGFR-2 tyrosine kinase, and suppressed downstream protein kinases of VEGFR2, including Src, FAK, ERK, AKT, and mTOR in HRMECs. In silico study revealed that curcumolide bound with ATP-binding sites of the VEGFR2 kinase unit by the formation of a hydrogen bond and hydrophobic interactions. CONCLUSION Curcumolide has anti-angiogenic activity in HUVECs and in a murine OIR model of ischemia-induced retinal neovascularization, and it might be a potential drug candidate for the treatment of proliferative diabetic retinopathy.
Collapse
Affiliation(s)
- Weiwei Lin
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Hongfeng Tu
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Yao Zhu
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Yijian Guan
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Hui Liu
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Wei Ling
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Pengcheng Yan
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China
| | - Jianyong Dong
- Pharmacy School, Wenzhou Medical University, A509, Pharmacy School Building, Wenzhou, Zhejiang Province 325035, PR China.
| |
Collapse
|
5
|
Graae AS, Grarup N, Ribel-Madsen R, Lystbæk SH, Boesgaard T, Staiger H, Fritsche A, Wellner N, Sulek K, Kjolby M, Backe MB, Chubanava S, Prats C, Serup AK, Birk JB, Dubail J, Gillberg L, Vienberg SG, Nykjær A, Kiens B, Wojtaszewski JFP, Larsen S, Apte SS, Häring HU, Vaag A, Zethelius B, Pedersen O, Treebak JT, Hansen T, Holst B. ADAMTS9 Regulates Skeletal Muscle Insulin Sensitivity Through Extracellular Matrix Alterations. Diabetes 2019; 68:502-514. [PMID: 30626608 PMCID: PMC6385758 DOI: 10.2337/db18-0418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022]
Abstract
The ADAMTS9 rs4607103 C allele is one of the few gene variants proposed to increase the risk of type 2 diabetes through an impairment of insulin sensitivity. We show that the variant is associated with increased expression of the secreted ADAMTS9 and decreased insulin sensitivity and signaling in human skeletal muscle. In line with this, mice lacking Adamts9 selectively in skeletal muscle have improved insulin sensitivity. The molecular link between ADAMTS9 and insulin signaling was characterized further in a model where ADAMTS9 was overexpressed in skeletal muscle. This selective overexpression resulted in decreased insulin signaling presumably mediated through alterations of the integrin β1 signaling pathway and disruption of the intracellular cytoskeletal organization. Furthermore, this led to impaired mitochondrial function in mouse muscle-an observation found to be of translational character because humans carrying the ADAMTS9 risk allele have decreased expression of mitochondrial markers. Finally, we found that the link between ADAMTS9 overexpression and impaired insulin signaling could be due to accumulation of harmful lipid intermediates. Our findings contribute to the understanding of the molecular mechanisms underlying insulin resistance and type 2 diabetes and point to inhibition of ADAMTS9 as a potential novel mode of treating insulin resistance.
Collapse
Affiliation(s)
- Anne-Sofie Graae
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Ribel-Madsen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- Steno Diabetes Center, Gentofte, Denmark
| | - Sara H Lystbæk
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Boesgaard
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Niels Wellner
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Karolina Sulek
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Kjolby
- Danish Diabetes Academy, Novo Nordisk Foundation, Odense, Denmark
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marie Balslev Backe
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sabina Chubanava
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clara Prats
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annette K Serup
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Birk
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Dubail
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | | | - Sara G Vienberg
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Nykjær
- The Lundbeck Foundation Research Center MIND, Danish Research Institute of Translational Neuroscience, Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research, Tübingen, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Allan Vaag
- Cardiovascular and Metabolic Disease Translational Medicine Unit, Early Clinical Development, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Björn Zethelius
- Geriatrics, Department of Public Health and Caring Services, Uppsala University, Uppsala, Sweden
| | - Oluf Pedersen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Section for Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Torben Hansen
- Section for Metabolic Genetics, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Toutounchian JJ, Pagadala J, Miller DD, Baudry J, Park F, Chaum E, Morales-Tirado V, Yates CR. Novel Small Molecule JP-153 Targets the Src-FAK-Paxillin Signaling Complex to Inhibit VEGF-Induced Retinal Angiogenesis. Mol Pharmacol 2016; 91:1-13. [PMID: 27913654 DOI: 10.1124/mol.116.105031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/28/2016] [Indexed: 11/22/2022] Open
Abstract
Targeting vascular endothelial growth factor (VEGF) is a common treatment strategy for neovascular eye disease, a major cause of vision loss in diabetic retinopathy and age-related macular degeneration. However, the decline in clinical efficacy over time in many patients suggests that monotherapy of anti-VEGF protein therapeutics may benefit from adjunctive treatments. Our previous work has shown that through decreased activation of the cytoskeletal protein paxillin, growth factor-induced ischemic retinopathy in the murine oxygen-induced retinopathy model could be inhibited. In this study, we demonstrated that VEGF-dependent activation of the Src/FAK/paxillin signalsome is required for human retinal endothelial cell migration and proliferation. Specifically, the disruption of focal adhesion kinase (FAK) and paxillin interactions using the small molecule JP-153 inhibited Src-dependent phosphorylation of paxillin (Y118) and downstream activation of Akt (S473), resulting in reduced migration and proliferation of retinal endothelial cells stimulated with VEGF. However, this effect did not prevent the initial activation of either Src or FAK. Furthermore, topical application of a JP-153-loaded microemulsion affected the hallmark features of pathologic retinal angiogenesis, reducing neovascular tuft formation and increased avascular area, in a dose-dependent manner. In conclusion, our results suggest that using small molecules to modulate the focal adhesion protein paxillin is an effective strategy for treating pathologic retinal neovascularization. To our knowledge, this is the first paradigm validating modulation of paxillin to inhibit angiogenesis. As such, we have identified and developed a novel class of small molecules aimed at targeting focal adhesion protein interactions that are essential for pathologic neovascularization in the eye.
Collapse
Affiliation(s)
- Jordan J Toutounchian
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | - Jayaprakash Pagadala
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | - Duane D Miller
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | - Jerome Baudry
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | - Frank Park
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | - Edward Chaum
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| | | | - Charles R Yates
- Department of Pharmaceutical Sciences (J.J.T., J.P., D.D.M., F.P., C.R.Y.) and Department of Ophthalmology (E.C., C.R.Y.), University of Tennessee Health Science Center, Memphis, Tennessee; Department of Biochemistry and Cellular and Molecular Biology at The University of Tennessee, Knoxville, Tennessee; and UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee (J.B.)
| |
Collapse
|
7
|
Wang Y, Yan F, Ye Q, Wu X, Jiang F. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway. Sci Rep 2016; 6:24111. [PMID: 27052191 PMCID: PMC4823726 DOI: 10.1038/srep24111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Cardiovascular Remodelling and Function Research (Chinese Ministry of Education and Chinese Ministry of Health) and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Feng Yan
- Key Laboratory of Cardiovascular Remodelling and Function Research (Chinese Ministry of Education and Chinese Ministry of Health) and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Qing Ye
- Key Laboratory of Cardiovascular Remodelling and Function Research (Chinese Ministry of Education and Chinese Ministry of Health) and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xiao Wu
- Key Laboratory of Cardiovascular Remodelling and Function Research (Chinese Ministry of Education and Chinese Ministry of Health) and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Key Laboratory of Cardiovascular Remodelling and Function Research (Chinese Ministry of Education and Chinese Ministry of Health) and The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
8
|
Xu K, Shuai Q, Li X, Zhang Y, Gao C, Cao L, Hu F, Akaike T, Wang JX, Gu Z, Yang J. Human VE-Cadherin Fusion Protein as an Artificial Extracellular Matrix Enhancing the Proliferation and Differentiation Functions of Endothelial Cell. Biomacromolecules 2016; 17:756-66. [DOI: 10.1021/acs.biomac.5b01467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ke Xu
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Qizhi Shuai
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xiaoning Li
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Yan Zhang
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Chao Gao
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Lei Cao
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Feifei Hu
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Toshihiro Akaike
- Biomaterials
Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Tsukuba, Japan
| | - Jian-xi Wang
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Zhongwei Gu
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials,
Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| |
Collapse
|
9
|
Farhan MA, Carmine-Simmen K, Lewis JD, Moore RB, Murray AG. Endothelial Cell mTOR Complex-2 Regulates Sprouting Angiogenesis. PLoS One 2015; 10:e0135245. [PMID: 26295809 PMCID: PMC4546419 DOI: 10.1371/journal.pone.0135245] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/20/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor neovascularization is targeted by inhibition of vascular endothelial growth factor (VEGF) or the receptor to prevent tumor growth, but drug resistance to angiogenesis inhibition limits clinical efficacy. Inhibition of the phosphoinositide 3 kinase pathway intermediate, mammalian target of rapamycin (mTOR), also inhibits tumor growth and may prevent escape from VEGF receptor inhibitors. mTOR is assembled into two separate multi-molecular complexes, mTORC1 and mTORC2. The direct effect of mTORC2 inhibition on the endothelium and tumor angiogenesis is poorly defined. We used pharmacological inhibitors and RNA interference to determine the function of mTORC2 versus Akt1 and mTORC1 in human endothelial cells (EC). Angiogenic sprouting, EC migration, cytoskeleton re-organization, and signaling events regulating matrix adhesion were studied. Sustained inactivation of mTORC1 activity up-regulated mTORC2-dependent Akt1 activation. In turn, ECs exposed to mTORC1-inhibition were resistant to apoptosis and hyper-responsive to renal cell carcinoma (RCC)-stimulated angiogenesis after relief of the inhibition. Conversely, mTORC1/2 dual inhibition or selective mTORC2 inactivation inhibited angiogenesis in response to RCC cells and VEGF. mTORC2-inactivation decreased EC migration more than Akt1- or mTORC1-inactivation. Mechanistically, mTORC2 inactivation robustly suppressed VEGF-stimulated EC actin polymerization, and inhibited focal adhesion formation and activation of focal adhesion kinase, independent of Akt1. Endothelial mTORC2 regulates angiogenesis, in part by regulation of EC focal adhesion kinase activity, matrix adhesion, and cytoskeletal remodeling, independent of Akt/mTORC1.
Collapse
Affiliation(s)
| | | | - John D. Lewis
- Department of Oncology, University of Alberta, Edmonton, Canada
| | - Ronald B. Moore
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Allan G. Murray
- Department of Medicine, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
10
|
Kurenova E, Ucar D, Liao J, Yemma M, Gogate P, Bshara W, Sunar U, Seshadri M, Hochwald SN, Cance WG. A FAK scaffold inhibitor disrupts FAK and VEGFR-3 signaling and blocks melanoma growth by targeting both tumor and endothelial cells. Cell Cycle 2015; 13:2542-53. [PMID: 25486195 DOI: 10.4161/15384101.2015.941760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Melanoma has the highest mortality rate of all skin cancers and a major cause of treatment failure is drug resistance. Tumors heterogeneity requires novel therapeutic strategies and new drugs targeting multiple pathways. One of the new approaches is targeting the scaffolding function of tumor related proteins such as focal adhesion kinase (FAK). FAK is overexpressed in most solid tumors and is involved in multiple protein-protein interactions critical for tumor cell survival, tumor neovascularization, progression and metastasis. In this study, we investigated the anticancer activity of the FAK scaffold inhibitor C4, targeted to the FAK-VEGFR-3 complex, against melanomas. We compared C4 inhibitory effects in BRAF mutant vs BRAF wild type melanomas. C4 effectively caused melanoma tumor regression in vivo, when administered alone and sensitized tumors to chemotherapy. The most dramatic effect of C4 was related to reduction of vasculature of both BRAF wild type and V600E mutant xenograft tumors. The in vivo effects of C4 were assessed in xenograft models using non-invasive multimodality imaging in conjunction with histologic and molecular biology methods. C4 inhibited cell viability, adhesion and motility of melanoma and endothelial cells, specifically blocked phosphorylation of VEGFR-3 and FAK and disrupted their complexes. Specificity of in vivo effects for C4 were confirmed by a decrease in tumor FAK and VEGFR-3 phosphorylation, reduction of vasculogenesis and reduced blood flow. Our collective observations provide evidence that a small molecule inhibitor targeted to the FAK protein-protein interaction site successfully inhibits melanoma growth through dual targeting of tumor and endothelial cells and is effective against both BRAF wild type and mutant melanomas.
Collapse
Affiliation(s)
- Elena Kurenova
- a Department of Surgical Oncology ; Roswell Park Cancer Institute ; Buffalo , NY USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang WJ, Yang YN, Cao J, Man ZH, Li Y, Xing YQ. Paxillin regulates vascular endothelial growth factor A-induced in vitro angiogenesis of human umbilical vein endothelial cells. Mol Med Rep 2014; 11:1784-92. [PMID: 25405379 PMCID: PMC4270338 DOI: 10.3892/mmr.2014.2961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 10/31/2014] [Indexed: 12/16/2022] Open
Abstract
The purpose of the present study was to investigate the role of paxillin in the vascular endothelial growth factor A (VEGF-A)-induced adhesion, proliferation, migration and capillary formation of endothelial cells (ECs) in vitro. Human umbilical vein ECs (HUVECs) were used to evaluate these four processes in vitro. The HUVECs were either mock-transfected (control), transfected with scramble small interference RNA (siRNA) or transfected with siRNA specifically targeting paxillin. VEGF-A (20 ng/ml) was used to stimulate angiogenesis. The VEGF-A treatment significantly increased the adhesion, proliferation, migration and tube formation of the HUVECs in the control and scramble siRNA groups, whereas the siRNA-mediated knockdown of paxillin inhibited these VEGF-A-induced effects. Paxillin is essential for VEGF-A-mediated angiogenesis in ECs and its inhibition may be a potential target for antiangiogenic therapies.
Collapse
Affiliation(s)
- Wan-Ju Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Ning Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin Cao
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zi-Hui Man
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ying Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
Whitson RJ, Lucia MS, Lambert JR. Growth differentiation factor-15 (GDF-15) suppresses in vitro angiogenesis through a novel interaction with connective tissue growth factor (CCN2). J Cell Biochem 2014; 114:1424-33. [PMID: 23280549 DOI: 10.1002/jcb.24484] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/11/2012] [Indexed: 12/15/2022]
Abstract
Growth differentiation factor-15 (GDF-15) and the CCN family member, connective tissue growth factor (CCN2), are associated with cardiac disease, inflammation, and cancer. The precise role and signaling mechanism for these factors in normal and diseased tissues remains elusive. Here we demonstrate an interaction between GDF-15 and CCN2 using yeast two-hybrid assays and have mapped the domain of interaction to the von Willebrand factor type C domain of CCN2. Biochemical pull down assays using secreted GDF-15 and His-tagged CCN2 produced in PC-3 prostate cancer cells confirmed a direct interaction between these proteins. To investigate the functional consequences of this interaction, in vitro angiogenesis assays were performed. We demonstrate that GDF-15 blocks CCN2-mediated tube formation in human umbilical vein endothelial (HUVEC) cells. To examine the molecular mechanism whereby GDF-15 inhibits CCN2-mediated angiogenesis, activation of αV β3 integrins and focal adhesion kinase (FAK) was examined. CCN2-mediated FAK activation was inhibited by GDF-15 and was accompanied by a decrease in αV β3 integrin clustering in HUVEC cells. These results demonstrate, for the first time, a novel signaling pathway for GDF-15 through interaction with the matricellular signaling molecule CCN2. Furthermore, antagonism of CCN2 mediated angiogenesis by GDF-15 may provide insight into the functional role of GDF-15 in disease states.
Collapse
Affiliation(s)
- Ramon J Whitson
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
13
|
Gupta A, Mohanty P, Bhatnagar S. Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk. J Recept Signal Transduct Res 2014; 35:149-64. [PMID: 25055025 DOI: 10.3109/10799893.2014.942462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a life-threatening disease and a major cause of mortalities worldwide. While many of the atherosclerotic sequelae are reflected as microvascular effects in the eye, the molecular mechanisms of their development is not yet known. In this study, we employed a systems biology approach to unveil the most significant events and key molecular mediators of ophthalmic sequelae caused by atherosclerosis. Literature mining was used to identify the proteins involved in both atherosclerosis and ophthalmic diseases. A protein-protein interaction (PPI) network was prepared using the literature-mined seed nodes. Network topological analysis was carried out using Cytoscape, while network nodes were annotated using database for annotation, visualization and integrated discovery in order to identify the most enriched pathways and processes. Network analysis revealed that mitogen-activated protein kinase 1 (MAPK1) and protein kinase C occur with highest betweenness centrality, degree and closeness centrality, thus reflecting their functional importance to the network. Our analysis shows that atherosclerosis-associated ophthalmic complications are caused by the convergence of neurotrophin signaling pathways, multiple immune response pathways and focal adhesion pathway on the MAPK signaling pathway. The PPI network shares features with vasoregression, a process underlying multiple vascular eye diseases. Our study presents a first clear and composite picture of the components and crosstalk of the main pathways of atherosclerosis-induced ocular diseases. The hub bottleneck nodes highlight the presence of molecules important for mediating the ophthalmic complications of atherosclerosis and contain five established drug targets for future therapeutic modulation efforts.
Collapse
Affiliation(s)
- Akanksha Gupta
- Division of Biotechnology, Netaji Subhas Institute of Technology , New Delhi , India
| | | | | |
Collapse
|
14
|
Winograd-Katz SE, Fässler R, Geiger B, Legate KR. The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 2014; 15:273-88. [PMID: 24651544 DOI: 10.1038/nrm3769] [Citation(s) in RCA: 445] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adhesive interactions of cells with their environment through the integrin family of transmembrane receptors have key roles in regulating multiple aspects of cellular physiology, including cell proliferation, viability, differentiation and migration. Consequently, failure to establish functional cell adhesions, and thus the assembly of associated cytoplasmic scaffolding and signalling networks, can have severe pathological effects. The roles of specific constituents of integrin-mediated adhesions, which are collectively known as the 'integrin adhesome', in diverse pathological states are becoming clear. Indeed, the prominence of mutations in specific adhesome molecules in various human diseases is now appreciated, and experimental as well as in silico approaches provide insights into the molecular mechanisms underlying these pathological conditions.
Collapse
Affiliation(s)
- Sabina E Winograd-Katz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kyle R Legate
- 1] Department of Molecular Medicine, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. [2] Center for Nanosciences, Department of Applied Physics, Ludwig-Maximilians University, 80799 Munich, Germany
| |
Collapse
|
15
|
Du P, Subbiah R, Park JH, Park K. Vascular morphogenesis of human umbilical vein endothelial cells on cell-derived macromolecular matrix microenvironment. Tissue Eng Part A 2014; 20:2365-77. [PMID: 24517112 DOI: 10.1089/ten.tea.2013.0693] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Extracellular matrix (ECM) is a highly organized network of proteins and other macromolecules that plays a critical role in cell adhesion, migration, and differentiation. In this study, we hypothesize that ECM derived from in-vitro-cultured cells possesses unique surface texture, topography, and mechanical property, and consequently carries some distinct cues for vascular morphogenesis of human umbilical vein endothelial cells (ECs). Cell-derived matrix (CDM) was obtained by culturing fibroblasts, preosteoblasts, and chondrocytes, respectively, on coverslips and then by decellularizing them using detergents and enzymes. These matrices were named fibroblast-derived matrix (FDM), preosteoblast-derived matrix (PDM), and chondrocyte-derived matrix (CHDM). Immunofluorescence of each CDM shows that some of the matrix components are fibronectin (FN), type I collagen, and laminin. Atomic force microscopy analysis presented that average fiber diameter ranged from 2 to 7 μm and FDM holds much larger fibers. The matrix elasticity measurements revealed that average Young's modulus of CHDM (17.7 ± 4.2 kPa) was much greater than that of PDM (10.5 ± 1.1 kPa) or FDM (5.7 ± 0.5 kPa). During 5-day culture, EC morphologies were dramatically changed on PDM and FDM, but those on CHDM and gelatin were rather stable, regardless of time lapse. Cell migration assay discovered quicker repopulation of the scratched areas on PDM and FDM than on gelatin and CHDM. A capillary-like structure (CLS) assembly was also notable only in the PDM and FDM, as compared with CHDM, gelatin, or FN that were very poor in CLS formation. Quantitative analysis of mean CLS branch points and branch lengths demonstrated much better angiogenic activity of ECs on PDM and FDM. Interestingly, CLS formation was closely associated with matrix remodeling by ECs and the matrix clearance on PDM with time was sharply contrasted with that on CHDM that majority of the matrix FN was reserved. It was notable that membrane type 1-matrix metalloprotease was deeply involved in the process of matrix remodeling. This study indicates that specific matrix microenvironments are very critical for vascular morphogenesis of ECs, and thus, provide a nice platform for angiogenesis study as well as vascular tissue engineering.
Collapse
Affiliation(s)
- Ping Du
- 1 Center for Biomaterials, Korea Institute of Science and Technology , Seoul, Republic of Korea
| | | | | | | |
Collapse
|
16
|
Horikiri Y, Shimo T, Kurio N, Okui T, Matsumoto K, Iwamoto M, Sasaki A. Sonic hedgehog regulates osteoblast function by focal adhesion kinase signaling in the process of fracture healing. PLoS One 2013; 8:e76785. [PMID: 24124594 PMCID: PMC3790742 DOI: 10.1371/journal.pone.0076785] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 09/03/2013] [Indexed: 02/01/2023] Open
Abstract
Several biological studies have indicated that hedgehog signaling plays an important role in osteoblast proliferation and differentiation, and sonic hedgehog (SHH) expression is positively correlated with phosphorylated focal adhesion kinase (FAK) Tyr(397). However, the relationship between them and their role in the process of normal fracture repair has not been clarified yet. Immunohistochemical analysis revealed that SHH and pFAK Tyr(397) were expressed in bone marrow cells and that pFAK Tyr(397) was also detected in ALP-positive osteoblasts near the TRAP-positive osteoclasts in the fracture site in the ribs of mice on day 5 after fracture. SHH and pFAK Tyr(397) were detectable in osteoblasts near the hypertrophic chondrocytes on day 14. In vitro analysis showed that SHH up-regulated the expression of FAK mRNA and pFAK Tyr(397) time dependently in osteoblastic MC3T3-E1 cells. Functional analysis revealed that 5 lentivirus encoding short hairpin FAK RNAs (shFAK)-infected MC3T3-E1 cell groups displayed a round morphology and decreased proliferation, adhesion, migration, and differentiation. SHH stimulated the proliferation and differentiation of MC3T3-E1 cells, but had no effect on the shFAK-infected cells. SHH also stimulated osteoclast formation in a co-culture system containing MC3T3-E1 and murine CD11b(+) bone marrow cells, but did not affect the shFAK-infected MC3T3-E1 co-culture group. These data suggest that SHH signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture and regulated their proliferation and differentiation, as well as osteoclast formation, via FAK signaling.
Collapse
Affiliation(s)
- Yuu Horikiri
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tsuyoshi Shimo
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Naito Kurio
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kenichi Matsumoto
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Iwamoto
- Division of Orthopedic Surgery, the Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
17
|
Lu Y, Zhou Y, Tian W. Combining Hi-C data with phylogenetic correlation to predict the target genes of distal regulatory elements in human genome. Nucleic Acids Res 2013; 41:10391-402. [PMID: 24003029 PMCID: PMC3905853 DOI: 10.1093/nar/gkt785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Defining the target genes of distal regulatory elements (DREs), such as enhancer, repressors and insulators, is a challenging task. The recently developed Hi-C technology is designed to capture chromosome conformation structure by high-throughput sequencing, and can be potentially used to determine the target genes of DREs. However, Hi-C data are noisy, making it difficult to directly use Hi-C data to identify DRE-target gene relationships. In this study, we show that DREs-gene pairs that are confirmed by Hi-C data are strongly phylogenetic correlated, and have thus developed a method that combines Hi-C read counts with phylogenetic correlation to predict long-range DRE-target gene relationships. Analysis of predicted DRE-target gene pairs shows that genes regulated by large number of DREs tend to have essential functions, and genes regulated by the same DREs tend to be functionally related and co-expressed. In addition, we show with a couple of examples that the predicted target genes of DREs can help explain the causal roles of disease-associated single-nucleotide polymorphisms located in the DREs. As such, these predictions will be of importance not only for our understanding of the function of DREs but also for elucidating the causal roles of disease-associated noncoding single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Yulan Lu
- State Key Laboratory of Genetic Engineering, Department of Biostatistics and Computational Biology, School of Life Science, Fudan University, Shanghai 200433, China
| | | | | |
Collapse
|
18
|
Tuo Y, Guo X, Zhang X, Wang Z, Zhou J, Xia L, Zhang Y, Wen J, Jin D. The biological effects and mechanisms of calcitonin gene-related peptide on human endothelial cell. J Recept Signal Transduct Res 2013; 33:114-23. [PMID: 23461295 DOI: 10.3109/10799893.2013.770528] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a neuropeptide distributed in bone tissue involved in bone remodeling. Previously we demonstrated that CGRP can promote proliferation and migration of endothelial cells, relating to the expression of vascular endothelial growth factor (VEGF) and focal adhesion kinase (FAK). METHODS CGRP1 receptor expression in human umbilical vein endothelial cells (HUVECs) was examined by immunofluorescence microscopy and real-time PCR. Tube formation was measured by a Matrigel tube formation assay. VEGF protein and mRNA levels were quantified by ELISA and real-time PCR, respectively. The expression of VEGF receptor 1 (FLT1) and VEGF receptor 2 (KDR) were measured by real-time PCR and immunoblotting assays. RESULTS CGRP significantly induced vascular tube formation of outgrowth HUVECs in a Matrigel. The expression of FLT and KDR were significantly increased by CGRP, and CGRP enhanced the expression of CGRP1 receptors. Compared to the known angiogenesis regulator VEGF(165), CGRP had an equal or stronger effect on migration and tube formation, but not on proliferation of endothelial cells. The upregulation of calcitonin receptor-like receptor (CRLR), FAK, VEGF and its two main receptors (FLT1, KDR) by CGRP was also more pronounced than that obtained by VEGF(165). CONCLUSION It is concluded that CGRP is a strong proangiogenic growth factor, thereby contributing to bone development and remodeling by promoting angiogenesis.
Collapse
Affiliation(s)
- Yonghua Tuo
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Veith C, Schmitt S, Veit F, Dahal BK, Wilhelm J, Klepetko W, Marta G, Seeger W, Schermuly RT, Grimminger F, Ghofrani HA, Fink L, Weissmann N, Kwapiszewska G. Cofilin, a hypoxia-regulated protein in murine lungs identified by 2DE: Role of the cytoskeletal protein cofilin in pulmonary hypertension. Proteomics 2013; 13:75-88. [DOI: 10.1002/pmic.201200206] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Revised: 10/08/2012] [Accepted: 10/29/2012] [Indexed: 01/18/2023]
Affiliation(s)
- Christine Veith
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Sigrid Schmitt
- Department of Biochemistry; University of Giessen; Giessen Germany
| | - Florian Veit
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Bhola Kumar Dahal
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Jochen Wilhelm
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Walter Klepetko
- Department of Cardiac Surgery; University of Vienna; Vienna Austria
| | - Gabriel Marta
- Department of Cardiac Surgery; University of Vienna; Vienna Austria
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | | | | | | | - Ludger Fink
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
| | - Grazyna Kwapiszewska
- Universities of Giessen and Marburg Lung Center (UGMLC); Giessen Germany
- Ludwig Boltzmann Institute for Lung Vascular Research; Graz Austria
| |
Collapse
|
20
|
Ribeiro LCA, Massimino LC, Durante AC, Tansini A, Urbaczek AC, Selistre-de-Araújo HS, Carlos IZ. Recombinant disintegrin targets α(v) β(3) integrin and leads to mediator production. Cell Adh Migr 2013; 8:60-5. [PMID: 24589623 DOI: 10.4161/cam.27698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrin αvβ3 is most likely the foremost modulator of angiogenesis among all known integrins. Recombinant disintegrin DisBa-01, originally obtained from snake venom glands, binds to αvβ3, thereby significantly inhibiting adhesion and generating in vivo anti-metastatic ability. However, its function in mediator production is not clear. Here, we observed that the mediators VEGF-A, IL-8, and TGF-β are not produced by human umbilical vein endothelial cells (HUVEC cell line) or monocyte/macrophage cells (SC cell line) when cells adhered to vitronectin. However, when exposed to DisBa-01, HUVECs produced higher levels of TGF-β, and SC cells produced higher levels of VEGF-A. Nonetheless, HUVECs also showed an enhancement of apoptosis after losing adherence when exposed to disintegrin, which is a characteristic of anoikis. We propose that disintegrin DisBa-01 could be used to modulate integrin αvβ3 functions.
Collapse
Affiliation(s)
- Lívia C A Ribeiro
- Laboratory of Clinical Immunology; Department of Clinical Analysis; College of Pharmaceutical Sciences; São Paulo State University; Araraquara, São Paulo, Brazil
| | - Lívia C Massimino
- Laboratory of Clinical Immunology; Department of Clinical Analysis; College of Pharmaceutical Sciences; São Paulo State University; Araraquara, São Paulo, Brazil
| | - Araceli C Durante
- Department of Physiological Sciences São Carlos Federal University São Carlos, São Paulo, Brazil
| | - Aline Tansini
- Laboratory of Clinical Immunology; Department of Clinical Analysis; College of Pharmaceutical Sciences; São Paulo State University; Araraquara, São Paulo, Brazil
| | - Ana C Urbaczek
- Laboratory of Clinical Immunology; Department of Clinical Analysis; College of Pharmaceutical Sciences; São Paulo State University; Araraquara, São Paulo, Brazil
| | | | - Iracilda Z Carlos
- Laboratory of Clinical Immunology; Department of Clinical Analysis; College of Pharmaceutical Sciences; São Paulo State University; Araraquara, São Paulo, Brazil
| |
Collapse
|
21
|
Veith C, Marsh LM, Wygrecka M, Rutschmann K, Seeger W, Weissmann N, Kwapiszewska G. Paxillin Regulates Pulmonary Arterial Smooth Muscle Cell Function in Pulmonary Hypertension. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1621-33. [DOI: 10.1016/j.ajpath.2012.07.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/17/2012] [Accepted: 07/24/2012] [Indexed: 01/04/2023]
|
22
|
de Jesus Perez VA, Yuan K, Orcholski ME, Sawada H, Zhao M, Li CG, Tojais NF, Nickel N, Rajagopalan V, Spiekerkoetter E, Wang L, Dutta R, Bernstein D, Rabinovitch M. Loss of adenomatous poliposis coli-α3 integrin interaction promotes endothelial apoptosis in mice and humans. Circ Res 2012; 111:1551-64. [PMID: 23011394 DOI: 10.1161/circresaha.112.267849] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RATIONALE Pulmonary hypertension (PH) is characterized by progressive elevation in pulmonary pressure and loss of small pulmonary arteries. As bone morphogenetic proteins promote pulmonary angiogenesis by recruiting the Wnt/β-catenin pathway, we proposed that β-catenin activation could reduce loss and induce regeneration of small pulmonary arteries (PAs) and attenuate PH. OBJECTIVE This study aims to establish the role of β-catenin in protecting the pulmonary endothelium and stimulating compensatory angiogenesis after injury. METHODS AND RESULTS To assess the impact of β-catenin activation on chronic hypoxia-induced PH, we used the adenomatous polyposis coli (Apc(Min/+)) mouse, where reduced APC causes constitutive β-catenin elevation. Surprisingly, hypoxic Apc(Min/+) mice displayed greater PH and small PA loss compared with control C57Bl6J littermates. PA endothelial cells isolated from Apc(Min/+) demonstrated reduced survival and angiogenic responses along with a profound reduction in adhesion to laminin. The mechanism involved failure of APC to interact with the cytoplasmic domain of the α3 integrin, to stabilize focal adhesions and activate integrin-linked kinase-1 and phospho Akt. We found that PA endothelial cells from lungs of patients with idiopathic PH have reduced APC expression, decreased adhesion to laminin, and impaired vascular tube formation. These defects were corrected in the cultured cells by transfection of APC. CONCLUSIONS We show that APC is integral to PA endothelial cells adhesion and survival and is reduced in PA endothelial cells from PH patient lungs. The data suggest that decreased APC may be a cause of increased risk or severity of PH in genetically susceptible individuals.
Collapse
|