1
|
Liang R, Shaker ER, Zhao M, King G, Moalli PA. Dysregulated inflammatory response to urogynecologic meshes in women with diabetes and its implications. Am J Obstet Gynecol 2024; 231:115.e1-115.e11. [PMID: 38408622 PMCID: PMC11194151 DOI: 10.1016/j.ajog.2024.02.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Diabetes is an independent risk factor for mesh complications in women undergoing mesh-augmented surgical repairs of stress urinary incontinence and/or pelvic organ prolapse. The underlying mechanism remains unclear. OBJECTIVE This study aimed to define the diabetes-associated alterations in the host inflammatory response to mesh and correlate them with perioperative glucose management. STUDY DESIGN Deidentified demographics and medical records of patients who underwent mesh removal and participated in a mesh biorepository study were reviewed (n=200). In patients with diagnosed diabetes (n=25), blood glucose management before initial mesh implantation and before and after mesh removal was assessed by blood glucose and hemoglobin A1c levels. Age- and body mass index-matched tissue samples excised from patients with and without diabetes were examined. Transcriptomic profiles of immune cell markers, immune mediators, key inflammatory regulators, cell senescence, and epigenetic enzymes were determined by multiplex transcriptomic assays (NanoString). Ratios of apoptotic cells to CD68+ macrophages were examined with immunofluorescence. Protein profiles of 12 molecules involved in apoptotic cell clearance were examined with a multiplex protein assay (Luminex). RESULTS Demographic and clinical characteristics, including duration between mesh implantation and removal, reason for removal, and type of mesh, etc., were comparable between patients with and without diabetes, except for 11.6% higher body mass index in the former (P=.005). In patients with diabetes, suboptimal management of blood glucose following mesh implantation was observed, with 59% of the patients having loosely or poorly controlled glucose before and after the mesh removal. Ongoing chronic inflammatory response was observed in the excised mesh-tissue complexes in both groups, whereas markers for M2 macrophages (Mrc1 [mannose receptor C-type 1]) and helper T cells (Cd4 [CD4 molecule]) were increasingly expressed in the diabetic vs nondiabetic group (P=.023 and .047, respectively). Furthermore, the gene expressions of proinflammatory Ccl24 (C-C motif chemokine ligand 24) and Ccl13 (C-C motif chemokine ligand 13) were upregulated by 1.5- and 1.8-fold (P=.035 and .027, respectively), whereas that of Il1a (interleukin 1 alpha) was paradoxically downregulated by 2.2-fold (P=.037) in the diabetic vs nondiabetic group. Interestingly, strong positive correlations were found between the expression of Ccl13, Setdb2 (SET domain bifurcated histone lysine methyltransferase 2), and M2 macrophage markers, and between the expression of Il1a, Fosl1 (activator protein-1 transcription factor subunit), and dendritic cell markers, suggesting the involvement of macrophages and dendritic cells in the diabetes-dysregulated proinflammatory response. Supportively, apoptotic cell clearance, which is an important function of macrophages, appeared to be impaired in the diabetic group, with a significantly increased protein level of CALR (calreticulin), an "eat-me" signal on the surface of apoptotic cells (P=.031), along with an increase of AXL (AXL receptor tyrosine kinase) (P=.030), which mediates apoptotic cell clearance. CONCLUSION Diabetes was associated with altered long-term inflammatory response in complicated mesh implantation, particularly involving innate immune cell dysfunction. Suboptimal blood glycemic control following mesh implantation may contribute to this immune dysregulation, necessitating further mechanistic studies.
Collapse
Affiliation(s)
- Rui Liang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA; Magee-Womens Research Institute, Pittsburgh, PA.
| | - Eric R Shaker
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Muyun Zhao
- Magee-Womens Research Institute, Pittsburgh, PA
| | | | - Pamela A Moalli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of Pittsburgh, Pittsburgh, PA; Magee-Womens Research Institute, Pittsburgh, PA
| |
Collapse
|
2
|
Hamjane N, Mechita MB, Nourouti NG, Barakat A. Gut microbiota dysbiosis -associated obesity and its involvement in cardiovascular diseases and type 2 diabetes. A systematic review. Microvasc Res 2024; 151:104601. [PMID: 37690507 DOI: 10.1016/j.mvr.2023.104601] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Obesity is a complex, multifactorial disease caused by various factors. Recently, the role of the gut microbiota in the development of obesity and its complications has attracted increasing interest. PURPOSE This article focuses on the mechanisms by which gut microbiota dysbiosis induces insulin resistance, type 2 diabetes, and cardiovascular diseases linked to obesity, highlighting the mechanisms explaining the role of gut microbiota dysbiosis-associated inflammation in the onset of these pathologies. METHODS A systematic study was carried out to understand and summarize the published results on this topic. More than 150 articles were included in this search, including different types of studies, consulted by an online search in English using various electronic search databases and predefined keywords related to the objectives of our study. RESULTS We have summarized the data from the articles consulted in this search, and we have found a major gut microbiota alteration in obesity, characterized by a specific decrease in butyrate-producing bacteria and the production of metabolites and components that lead to metabolic impairments and affect the progression of various diseases associated with obesity through distinct signaling pathways, including insulin resistance, type 2 diabetes, and cardiovascular diseases (CVD). We have also focused on the major role of inflammation as a link between gut microbiota dysbiosis and obesity-associated metabolic complications by explaining the mechanisms involved. CONCLUSION Gut microbiota dysbiosis plays a crucial role in the development of various obesity-related metabolic abnormalities, among them type 2 diabetes and CVD, and represents a major challenge for chronic disease prevention and health. Indeed, the intestinal microbiota appears to be a promising target for the nutritional or therapeutic management of these diseases.
Collapse
Affiliation(s)
- Nadia Hamjane
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco.
| | - Mohcine Bennani Mechita
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Naima Ghailani Nourouti
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| | - Amina Barakat
- Research Team in Biomedical Genomics and Oncogenetics, Faculty of Sciences and Technology of Tangier, Abdelmalek Essaadi University, Morocco
| |
Collapse
|
3
|
Almogy M, Moses O, Schiffmann N, Weinberg E, Nemcovsky CE, Weinreb M. Addition of Resolvins D1 or E1 to Collagen Membranes Mitigates Their Resorption in Diabetic Rats. J Funct Biomater 2023; 14:jfb14050283. [PMID: 37233393 DOI: 10.3390/jfb14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Uncontrolled diabetes is characterized by aberrant inflammatory reactions and increased collagenolysis. We have reported that it accelerates the degradation of implanted collagen membranes (CM), thus compromising their function in regenerative procedures. In recent years, a group of physiological anti-inflammatory agents called specialized pro-resolving lipid mediators (SPMs) have been tested as a treatment for various inflammatory conditions, either systemically or locally, via medical devices. Yet, no study has tested their effect on the fate of the biodegradable material itself. Here, we measured the in vitro release over time of 100 or 800 ng resolvin D1 (RvD1) incorporated into CM discs. In vivo, diabetes was induced in rats with streptozotocin, while buffer-injected (normoglycemic) rats served as controls. Resolvins (100 or 800 ng of RvD1 or RvE1) were added to biotin-labeled CM discs, which were implanted sub-periosteally over the calvaria of rats. Membrane thickness, density, and uniformity were determined by quantitative histology after 3 weeks. In vitro, significant amounts of RvD1 were released over 1-8 days, depending on the amount loaded. In vivo, CMs from diabetic animals were thinner, more porous, and more variable in thickness and density. The addition of RvD1 or RvE1 improved their regularity, increased their density, and reduced their invasion by the host tissue significantly. We conclude that addition of resolvins to biodegradable medical devices can protect them from excessive degradation in systemic conditions characterized by high degree of collagenolysis.
Collapse
Affiliation(s)
- Michal Almogy
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ofer Moses
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Nathan Schiffmann
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
4
|
Eliezer M, Sculean A, Miron RJ, Nemcovsky C, Bosshardt DD, Fujioka-Kobayashi M, Weinreb M, Moses O. Cross-linked hyaluronic acid slows down collagen membrane resorption in diabetic rats through reducing the number of macrophages. Clin Oral Investig 2021; 26:2401-2411. [PMID: 34608575 DOI: 10.1007/s00784-021-04206-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES We previously showed that accelerated degradation of collagen membranes (CMs) in diabetic rats is associated with increased infiltration of macrophages and blood vessels. Since pre-implantation immersion of CMs in cross-linked high molecular weight hyaluronic acid (CLHA) delays membrane degradation, we evaluated here its effect on the number of macrophages and endothelial cells (ECs) within the CM as a possible mechanism for inhibition of CM resorption. MATERIALS AND METHODS Diabetes was induced with streptozotocin in 16 rats, while 16 healthy rats served as control. CM discs were labeled with biotin, soaked in CLHA or PBS, and implanted under the scalp. Fourteen days later, CMs were embedded in paraffin and the number of macrophages and ECs within the CMs was determined using antibodies against CD68 and transglutaminase II, respectively. RESULTS Diabetes increased the number of macrophages and ECs within the CMs (∼2.5-fold and fourfold, respectively). Immersion of CMs in CLHA statistically significantly reduced the number of macrophages (p < 0.0001) in diabetic rats, but not that of ECs. In the healthy group, CLHA had no significant effect on the number of either cells. Higher residual collagen area and membrane thickness in CLHA-treated CMs in diabetic animals were significantly correlated with reduced number of macrophages but not ECs. CONCLUSIONS Immersion of CM in CLHA inhibits macrophage infiltration and reduces CM degradation in diabetic animals. CLINICAL RELEVANCE The combination of CLHA and CM may represent a valuable approach when guided tissue regeneration or guided bone regeneration procedures are performed in diabetic patients.
Collapse
Affiliation(s)
- Meizi Eliezer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Carlos Nemcovsky
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Moses
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Beatty R, Lu CE, Marzi J, Levey RE, Carvajal Berrio D, Lattanzi G, Wylie R, O'Connor R, Wallace E, Ghersi G, Salamone M, Dolan EB, Layland SL, Schenke-Layland K, Duffy GP. The Foreign Body Response to an Implantable Therapeutic Reservoir in a Diabetic Rodent Model. Tissue Eng Part C Methods 2021; 27:515-528. [PMID: 34541880 DOI: 10.1089/ten.tec.2021.0163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Advancements in type 1 diabetes mellitus treatments have vastly improved in recent years. The move toward a bioartificial pancreas and other fully implantable systems could help restore patient's glycemic control. However, the long-term success of implantable medical devices is often hindered by the foreign body response. Fibrous encapsulation "walls off" the implant to the surrounding tissue, impairing its functionality. In this study we aim to examine how streptozotocin-induced diabetes affects fibrous capsule formation and composition surrounding implantable drug delivery devices following subcutaneous implantation in a rodent model. After 2 weeks of implantation, the fibrous capsule surrounding the devices were examined by means of Raman spectroscopy, micro-computed tomography (μCT), and histological analysis. Results revealed no change in mean fibrotic capsule thickness between diabetic and healthy animals as measured by μCT. Macrophage numbers (CCR7 and CD163 positive) remained similar across all groups. True component analysis also showed no quantitative difference in the alpha-smooth muscle actin and extracellular matrix proteins. Although principal component analysis revealed significant secondary structural difference in collagen I in the diabetic group, no evidence indicates an influence on fibrous capsule composition surrounding the device. This study confirms that diabetes did not have an effect on the fibrous capsule thickness or composition surrounding our implantable drug delivery device. Impact Statement Understanding the impact diabetes has on the foreign body response (FBR) to our implanted material is essential for developing an effective drug delivery device. We used several approaches (Raman spectroscopy and micro-computed tomography imaging) to demonstrate a well-rounded understanding of the diabetic impact on the FBR to our devices, which is imperative for its clinical translation.
Collapse
Affiliation(s)
- Rachel Beatty
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,SFI Research Centre for Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland
| | - Chuan-En Lu
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Julia Marzi
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ruth E Levey
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Daniel Carvajal Berrio
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, Tübingen, Germany
| | - Giulia Lattanzi
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Raymond O'Connor
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Eimear Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Giulio Ghersi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,ABIEL srl, c/o ARCA Incubatore di Imprese, Palermo, Italia
| | - Monica Salamone
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,ABIEL srl, c/o ARCA Incubatore di Imprese, Palermo, Italia
| | - Eimear B Dolan
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,Department of Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - Shannon L Layland
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany
| | - Katja Schenke-Layland
- Department of Biomedical Engineering, Eberhard Karls University, Tübingen, Germany.,Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University, Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," Eberhard Karls University, Tübingen, Germany.,NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Garry P Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI), School of Medicine, National University of Ireland Galway, Galway, Ireland.,SFI Research Centre for Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin, Ireland.,SFI Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
6
|
Kinasz LRS, DE-Sousa HEV, Cavalcanti MAR, Polanski JF. PREVALENCE OF HEARING SYMPTOMS RELATED TO PATULOUS EUSTACHIAN TUBE AFTER BARIATRIC SURGERY. ACTA ACUST UNITED AC 2020; 33:e1520. [PMID: 33237164 PMCID: PMC7682150 DOI: 10.1590/0102-672020200002e1520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
Background:
Rapid and severe weight loss can result in the reduction of the ear tube
lining fat tissue and it becomes patent, leading to symptoms such as
autophony, aural fullness and tinnitus. Patients after bariatric surgery
have, in theory, a predisposition to the development of such alteration.
Aim:
To evaluate the presence of patent tuba-related complaints in patients
undergoing bariatric surgery, correlating with weight and body mass index
(BMI) values, as well as demographic data.
Methods:
Cross-sectional study composed of the evaluation of patients undergoing
bariatric surgery through a standardized questionnaire about the presence of
symptoms compatible with ear tube patency.
Results:
Eighty patients were evaluated, 77 female and three males. The main
comorbidity was systemic arterial hypertension (37.5%). Fifteen (18.75%)
presented symptoms compatible with patent auditory/Eustachian tube - aural
fullness and autophony - postoperatively. In symptomatic individuals the
initial weight was 112 kg on average and the preoperative BMI was 45 kg/m²,
while in asymptomatic individuals the weight was 117 kg and BMI 47 kg/m².
There was statistical significance in the comparison between individuals
with and without symptoms in the variables of initial weight (p=0.00000),
current weight (p=0.00029), preoperative BMI (p=0.00219) and postoperative
BMI (p=0.00148).
Conclusion:
The presence of symptoms compatible with patent auditory/Eustachian tube was
18.75% of the patients submitted to bariatric surgery in the evaluated
sample. Both preoperative weight and BMI were lower in symptomatic patients
when compared with the asymptomatic group.
Collapse
|
7
|
Hachim D, LoPresti ST, Rege RD, Umeda Y, Iftikhar A, Nolfi AL, Skillen CD, Brown BN. Distinct macrophage populations and phenotypes associated with IL-4 mediated immunomodulation at the host implant interface. Biomater Sci 2020; 8:5751-5762. [PMID: 32945303 PMCID: PMC7641101 DOI: 10.1039/d0bm00568a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The host macrophage response to implants has shown to be affected by tissue location and physio-pathological conditions of the patient. Success in immunomodulatory strategies is thus predicated on the proper understanding of the macrophage populations participating on each one of these contexts. The present study uses an in vivo implantation model to analyze how immunomodulation via an IL-4 eluting implant affects distinct macrophage populations at the tissue-implant interface and how this may affect downstream regenerative processes. Populations identified as F4/80+, CD68+ and CD11b+ macrophages at the peri-implant space showed distinct susceptibility to polarize towards an M2-like phenotype under the effects of delivered IL-4. Also, the presence of the coating resulted in a significant reduction in F4/80+ macrophages, while other populations remained unchanged. These results suggests that the F4/80+ macrophage population may be predominant in the early stages of the host response at the surface of these implants, in contrast to CD11b+ macrophage populations which were either fewer in number or located more distant from the implant surface. Gene expression assays showed increased proteolytic activity and diminished matrix deposition as possible mechanisms explaining the decreased fibrotic capsule deposition and improved peri-implant tissue quality shown in previous studies using IL-4 eluting coatings. The pattern of M2-like gene expression promoted by IL-4 was correlated with glycosaminoglycan production within the site of implantation at early stages of the host response, suggesting a significant role in this response. These findings demonstrate that immunomodulatory strategies can be utilized to design and implement targeted delivery for improving biomaterial performance.
Collapse
Affiliation(s)
- Daniel Hachim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Campos LF, Tagliari E, Casagrande TAC, Noronha LD, Campos ACL, Matias JEF. EFFECTS OF PROBIOTICS SUPPLEMENTATION ON SKIN WOUND HEALING IN DIABETIC RATS. ACTA ACUST UNITED AC 2020; 33:e1498. [PMID: 32667528 PMCID: PMC7357555 DOI: 10.1590/0102-672020190001e1498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/03/2019] [Indexed: 12/26/2022]
Abstract
Background:
Chronic wounds in patients with Diabetes Mellitus often become incurable due
to prolonged and excessive production of inflammatory cytokines. The use of
probiotics modifies the intestinal microbiota and modulates inflammatory
reactions.
Aim:
To evaluate the influence of perioperative supplementation with probiotics
in the cutaneous healing process in diabetic rats.
Methods:
Forty-six rats were divided into four groups (C3, P3, C10, P10) according to
the treatment (P=probiotic or C=control, both orally administered) and day
of euthanasia, 3rd or 10th postoperative days. All
rats were induced to Diabetes Mellitus 72 h before starting the experiment
with alloxan. Supplementation was initiated five days before the incision
and maintained until euthanasia. Scalpel incision was guided by a 2x2 cm
mold and the wounds were left to heal per second-intention. The wounds were
digitally measured. Collagen densitometry was done with Picrosirius Red
staining. Histological parameters were analyzed by staining by H&E.
Results:
The contraction of the wound was faster in the P10 group which resulted in a
smaller scar area (p=0.011). There was an increase in type I collagen
deposition from the 3rd to the 10th postoperative day
in the probiotic groups (p=0.016), which did not occur in the control group
(p=0.487). The histological analysis showed a better degree of healing in
the P10 group (p=0.005), with fewer polymorphonuclear (p<0.001) and more
neovessels (p=0.001).
Conclusions:
Perioperative supplementation of probiotics stimulates skin wound healing in
diabetic rats, possibly due to attenuation of the inflammatory response and
increased neovascularization and type I collagen deposition.
Collapse
Affiliation(s)
- Letícia Fuganti Campos
- Postgraduate Program in Surgical Clinic, Federal University of Paraná, Curitiba PR, Brazil
| | - Eliane Tagliari
- Postgraduate Program in Surgical Clinic, Federal University of Paraná, Curitiba PR, Brazil
| | | | - Lúcia de Noronha
- Laboratory of Experimental Pathology, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | | | - Jorge Eduardo F Matias
- Postgraduate Program in Surgical Clinic, Federal University of Paraná, Curitiba PR, Brazil
| |
Collapse
|
9
|
Zoabi H, Nemcovsky CE, Bender O, Moses O, Weinreb M. Accelerated degradation of collagen membranes in type 1 diabetic rats is associated with increased expression and production of several inflammatory molecules. J Periodontol 2020; 91:1348-1356. [PMID: 32056217 DOI: 10.1002/jper.19-0503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/19/2019] [Accepted: 01/19/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Membrane durability is critical for regenerative procedures. We reported previously that type 1-like diabetes in rats accelerates the degradation of collagen membranes and we tested here whether this is associated with increased local production of inflammatory molecules as part of a diabetes-induced chronic inflammation around and within the membranes. METHODS Collagen membrane discs were implanted under the scalp in diabetic (streptozotocin-induced) and control rats, which were sacrificed after 2 or 3 weeks. Total RNA and proteins were isolated from the membrane and its surrounding tissues and the expression and production of six inflammatory molecules (interleukin-6 [IL-6], tumor necrosis factor alpha [TNFα], matrix metalloproteinase [MMP]-9, macrophage migration inhibitory factor [MIF], MIP-1α, and MIP-2α) was measured using real-time PCR and western blotting, respectively. Minimal histological analysis of the membranes was conducted to conform to previous studies. RESULTS Hyperglycemia resulted in reduced membrane thickness (by 10% to 25%) and increased mononuclear infiltrate inside the membrane. mRNA and protein levels of IL-6, TNFα, and MMP-9 were elevated in diabetic rats both 2 and 3 weeks post-surgery. The levels (both mRNA and protein) of MIF were increased at 2 weeks post-surgery and those of MIP-1α and MIP-2α at 3 weeks. There was a very good match in the temporal changes of all examined genes between the mRNA and protein levels. CONCLUSIONS Elevated local production of inflammatory cytokines and MMPs, together with apparent mononuclear infiltrate and increased collagenolysis confirm that hyperglycemia leads to a chronic inflammation in and around the implanted collagen membranes, which reduces membrane longevity.
Collapse
Affiliation(s)
- Hasan Zoabi
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Omer Bender
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ofer Moses
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
10
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
11
|
McLaren RA, Ndubizu C, Atallah F, Minkoff H. Association of uterine rupture with pregestational diabetes in women undergoing trial of labor after cesarean delivery. J Matern Fetal Neonatal Med 2019; 33:2697-2703. [PMID: 30522369 DOI: 10.1080/14767058.2018.1557143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Objective: To evaluate the association of pregestational diabetes with uterine rupture during a trial of labor with one prior cesarean delivery.Study design: A retrospective study of women undergoing a trial of labor after cesarean. The study group consisted of women with pregestational diabetes and the control group was women without pregestational diabetes. Primary outcome was a uterine rupture. Data were extracted from the USA. Natality Database from 2012 to 2016. Maternal and neonatal outcomes were analyzed. Multivariable logistic regression analysis was used to estimate risks of uterine rupture and maternal and neonatal outcomes.Results: There were 359,504 women undergoing labor after cesarean, with 3508 women with pregestational diabetes and 355,996 without. The prevalence of uterine rupture among women with pregestational diabetes undergoing labor after cesarean was 0.5%, while among women without pregestational diabetes, it was 0.2% (adjusted odds ratio [OR] 2.03 [95% CI 1.18-3.51]; p = .01). There was an increased risk of unplanned hysterectomy among pregnancies complicated by pregestational diabetes (adjusted OR 3.06 [95% CI 1.41-6.66]).Conclusion: Women undergoing a trial of labor, who have pregestational diabetes had a higher rate of uterine rupture than women without a history of pregestational diabetes.
Collapse
Affiliation(s)
- Rodney A McLaren
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY, USA
| | - Chima Ndubizu
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY, USA
| | - Fouad Atallah
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY, USA
| | - Howard Minkoff
- Department of Obstetrics and Gynecology, Maimonides Medical Center, Brooklyn, NY, USA
| |
Collapse
|
12
|
Stolf AM, Campos Cardoso C, Morais HD, Alves de Souza CE, Lomba LA, Brandt AP, Agnes JP, Collere FC, Galindo CM, Corso CR, Spercoski KM, Locatelli Dittrich R, Zampronio AR, Cadena SMSC, Acco A. Effects of silymarin on angiogenesis and oxidative stress in streptozotocin-induced diabetes in mice. Biomed Pharmacother 2018; 108:232-243. [DOI: 10.1016/j.biopha.2018.09.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/04/2018] [Accepted: 09/08/2018] [Indexed: 12/11/2022] Open
|
13
|
Abstract
The host response observed after the application of an appropriate stimulus, such as mechanical injury or injection of neoplastic or normal tissue implants, has allowed the cataloging of a number of molecules and cells involved in the vascularization of normal repair or neoplastic tissue. Implantation of sponge matrices has been adopted as a model for the accurate quantification of angiogenic and fibrogenic responses, as they may occur during wound healing, in vivo. Such implants are particularly useful because they offer scope for modulating the environment within which angiogenesis occurs. Sponge implantation model has been optimized and adapted to characterize essential components and their roles in blood vessels formation in a variety of physiological and pathological conditions. As a direct consequence of advances in genetic manipulation, mouse models (i.e., knockouts, SCID, nude) have provided resources to delineate the mechanisms regulating the healing associated with implants. Here we outline the usefulness of the sponge implant model of angiogenesis and detailed description of the methodology.
Collapse
Affiliation(s)
- Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Cx. Post. 486, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Mônica Alves Neves Diniz Ferreira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627, Campus Pampulha, Cx. Post. 486, CEP 31270-901, Belo Horizonte, MG, Brazil
| |
Collapse
|
14
|
Brown BN, Haschak MJ, Lopresti ST, Stahl EC. Effects of age-related shifts in cellular function and local microenvironment upon the innate immune response to implants. Semin Immunol 2017; 29:24-32. [PMID: 28539184 DOI: 10.1016/j.smim.2017.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/18/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
The host macrophage response is now well recognized as a predictor of the success or failure of biomaterial implants following placement. More specifically, shifts from an "M1" pro-inflammatory towards a more "M2-like" anti-inflammatory macrophage polarization profile have been shown to result in enhanced material integration and/or tissue regeneration downstream. As a result, a number of biomaterials-based approaches to controlling macrophage polarization have been developed. However, the ability to promote such activity is predicated upon an in-depth, context-dependent understanding of the host response to biomaterials. Recent work has shown the impacts of both tissue location and tissue status (i.e. underlying pathology) upon the host innate immune response to implants, representing a departure from a focus upon implant material composition and form. Thus, the ideas of "biocompatibility," the host macrophage reaction, and ideal material requirements and modification strategies may need to be revisited on a patient, tissue, and disease basis. Immunosenescence, dysregulation of macrophage function, and delayed resolution of immune responses in aged individuals have all been demonstrated, suggesting that the host response to biomaterials in aged individuals should differ from that in younger individuals. However, despite the increasing usage of implantable medical devices in aged patients, few studies examining the effects of aging upon the host response to biomaterials and the implications of this response for long-term integration and function have been performed. The objective of the present manuscript is to review the putative effects of aging upon the host response to implanted materials and to advance the hypothesis that age-related changes in the local microenvrionement, with emphasis on the extracellular matrix, play a previously unrecognized role in determining the host response to implants.
Collapse
Affiliation(s)
- Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, United States; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, PA 15213, United States.
| | - Martin J Haschak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, United States
| | - Samuel T Lopresti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, United States
| | - Elizabeth C Stahl
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, United States; Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, 200 Lothrop St., Pittsburgh, PA 15261, United States
| |
Collapse
|
15
|
Shi J, Yu M, Sheng M. Angiogenesis and Inflammation in Peritoneal Dialysis: The Role of Adipocytes. Kidney Blood Press Res 2017; 42:209-219. [PMID: 28478435 DOI: 10.1159/000476017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/07/2017] [Indexed: 11/19/2022] Open
Abstract
Chronic inflammation and angiogenesis are the most common complications in patients undergoing maintenance peritoneal dialysis (PD), resulting in progressive peritoneum remolding and, eventually, utrafiltration failure. Contributing to the deeper tissue under the peritoneal membrane, adipocytes play a neglected role in this process. Some adipokines act as inflammatory and angiogenic promoters, while others have the opposite effects. Adipokines, together with inflammatory factors and other cytokines, modulate inflammation and neovascularization in a coordinated fashion. This review will also emphasize cellular regulators and their crosstalk in long-term PD. Understanding the molecular mechanism, targeting changes in adipocytes and regulating adipokine secretion will help extend therapeutic methods for preventing inflammation and angiogenesis in PD.
Collapse
|
16
|
Pereira LX, Viana CTR, Orellano LAA, Almeida SA, Vasconcelos AC, Goes ADM, Birbrair A, Andrade SP, Campos PP. Synthetic matrix of polyether-polyurethane as a biological platform for pancreatic regeneration. Life Sci 2017; 176:67-74. [PMID: 28336399 DOI: 10.1016/j.lfs.2017.03.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 02/07/2023]
Abstract
AIMS Several alternative cellular approaches using biomaterials to host insulin-producing cells derived from stem cells have been developed to overcome the limitations of type 1 diabetes treatment (exogenous insulin injection). However, none seem to fulfill all requirements needed to induce pancreatic cells successful colonization of the scaffolds. Here, we report a polymeric platform adherent to the native mice pancreas filled with human adipose stem cells (hASCs) that was able to induce growth of pancreatic parenchyma. MAIN METHODS Synthetic polyether-polyurethane discs were placed adjacent to pancreas of normoglycemic and streptozotocin-induced diabetic mice. At day 4 post implantation, 1×106 hASCs were injected intra-implant in groups of normoglycemic and diabetic mice. Immunohistochemistry analysis of the implants was performed to identify insulin positive cells in the newly formed tissue. In addition, metabolic, inflammatory and angiogenic parameters were carried out in those mice. KEY FINDINGS This study provides evidence of the ability of a biohybrid device to induce the growth of differentiated pancreas parenchyma in both normoglycemic and streptozotocin-induced diabetic mice as detected by histological analysis. Glucose metabolism and body weight of hyperglycemic mice bearing hASCs implants improved. SIGNIFICANCE The synthetic porous scaffold bearing hASC cells placed adjacent to the native animal pancreas exhibits the potential to be exploited in future cell-based type 1 diabetes therapies.
Collapse
Affiliation(s)
- Luciana Xavier Pereira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Aparecida Almeida
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anilton Cesar Vasconcelos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Alexander Birbrair
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Shan HT, Zhang HB, Chen WT, Chen FZ, Wang T, Luo JT, Yue M, Lin JH, Wei AY. Combination of low-energy shock-wave therapy and bone marrow mesenchymal stem cell transplantation to improve the erectile function of diabetic rats. Asian J Androl 2017; 19:26-33. [PMID: 27427555 PMCID: PMC5227668 DOI: 10.4103/1008-682x.184271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Stem cell transplantation and low-energy shock-wave therapy (LESWT) have emerged as potential and effective treatment protocols for diabetic erectile dysfunction. During the tracking of transplanted stem cells in diabetic erectile dysfunction models, the number of visible stem cells was rather low and decreased quickly. LESWT could recruit endogenous stem cells to the cavernous body and improve the microenvironment in diabetic cavernous tissue. Thus, we deduced that LESWT might benefit transplanted stem cell survival and improve the effects of stem cell transplantation. In this research, 42 streptozotocin-induced diabetic rats were randomized into four groups: the diabetic group (n = 6), the LESWT group (n = 6), the bone marrow-derived mesenchymal stem cell (BMSC) transplantation group (n = 15), and the combination of LESWT and BMSC transplantation group (n = 15). One and three days after BMSC transplantation, three rats were randomly chosen to observe the survival numbers of BMSCs in the cavernous body. Four weeks after BMSC transplantation, the following parameters were assessed: the surviving number of transplanted BMSCs in the cavernous tissue, erectile function, real-time polymerase chain reaction, and penile immunohistochemical assessment. Our research found that LESWT favored the survival of transplanted BMSCs in the cavernous body, which might be related to increased stromal cell-derived factor-1 expression and the enhancement of angiogenesis in the diabetic cavernous tissue. The combination of LESWT and BMSC transplantation could improve the erectile function of diabetic erectile function rats more effectively than LESWT or BMSC transplantation performed alone.
Collapse
Affiliation(s)
- Hai-Tao Shan
- Department of Urology, Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Shawan People's Hospital, Panyu District, Guangzhou, China
| | - Hai-Bo Zhang
- Department of Urology, Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-Tao Chen
- Shenzhen Hyde Medical Equipment Co., Ltd., Shenzhen, China
| | - Feng-Zhi Chen
- Department of Urology, Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Wang
- Department of Urology, Longjiang Hospital, Shunde District, Foshan, China
| | - Jin-Tai Luo
- Department of Urology, Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Yue
- Laboratory Animals Center, Southern Medical University, Guangzhou, China
| | - Ji-Hong Lin
- Laboratory Animals Center, Southern Medical University, Guangzhou, China
| | - An-Yang Wei
- Department of Urology, Medical Center for Overseas Patients, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Hachim D, Wang N, Lopresti ST, Stahl EC, Umeda YU, Rege RD, Carey ST, Mani D, Brown BN. Effects of aging upon the host response to implants. J Biomed Mater Res A 2017; 105:1281-1292. [PMID: 28130823 DOI: 10.1002/jbm.a.36013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 01/11/2023]
Abstract
Macrophage polarization during the host response is now a well-accepted predictor of outcomes following material implantation. Immunosenescence, dysregulation of macrophage function, and delayed resolution of immune responses in aged individuals have all been demonstrated, suggesting that host responses to materials in aged individuals should differ from those in younger individuals. However, few studies examining the effects of aging upon the host response have been performed. The present work sought to elucidate the impacts of aging upon the host response to polypropylene mesh implanted into 8-week-old and 18-month-old mice. The results showed that there are significant differences in macrophage surface marker expression, migration, and polarization during the early host macrophage response and delayed resolution of the host response in 18-month-old versus 8-week-old mice. These differences could not be attributed to cell-intrinsic defects alone, suggesting that the host macrophage response to implants is likely also dictated to a significant degree by the local tissue microenvironment. These results raise important questions about the design and testing of materials and devices often intended to treat aged individuals and suggest that an improved understanding of patient- and context-dependent macrophage responses has the potential to improve outcomes in aged individuals. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1281-1292, 2017.
Collapse
Affiliation(s)
- Daniel Hachim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania, 15219.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania, 15260
| | - Na Wang
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania, 15219
| | - Samuel T Lopresti
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania, 15219.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania, 15260
| | - Elizabeth C Stahl
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania, 15219.,Department of Pathology, University of Pittsburgh School of Medicine, University of Pittsburgh, 200 Lothrop St, Pittsburgh, Pennsylvania, 15261
| | - Yuta U Umeda
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania, 15260
| | - Rahul D Rege
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania, 15260
| | - Sean T Carey
- Department of Chemical Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania, 15260
| | - Deepa Mani
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania, 15219
| | - Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania, 15219.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, Pennsylvania, 15260.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, University of Pittsburgh, 300 Halket Street, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
19
|
Murine strain differences in inflammatory angiogenesis of internal wound in diabetes. Biomed Pharmacother 2017; 86:715-724. [PMID: 28063402 DOI: 10.1016/j.biopha.2016.11.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/22/2022] Open
|
20
|
Pinzón-García AD, Cassini-Vieira P, Ribeiro CC, de Matos Jensen CE, Barcelos LS, Cortes ME, Sinisterra RD. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. J Biomed Mater Res B Appl Biomater 2016; 105:1938-1949. [DOI: 10.1002/jbm.b.33724] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/30/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Ana Delia Pinzón-García
- Chemistry Department; Institute of Exact Sciences, Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Puebla Cassini-Vieira
- Department of Physiology and Biophysics; Institute of Biological Sciences, Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Cyntia Cabral Ribeiro
- Chemistry Department; Institute of Exact Sciences, Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | | | - Luciola Silva Barcelos
- Department of Physiology and Biophysics; Institute of Biological Sciences, Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Maria Esperanza Cortes
- Department of Restorative Dentistry, Faculty of Dentristry; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Ruben Dario Sinisterra
- Chemistry Department; Institute of Exact Sciences, Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
21
|
Christo SN, Diener KR, Manavis J, Grimbaldeston MA, Bachhuka A, Vasilev K, Hayball JD. Inflammasome components ASC and AIM2 modulate the acute phase of biomaterial implant-induced foreign body responses. Sci Rep 2016; 6:20635. [PMID: 26860464 PMCID: PMC4748295 DOI: 10.1038/srep20635] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/06/2016] [Indexed: 01/03/2023] Open
Abstract
Detailing the inflammatory mechanisms of biomaterial-implant induced foreign body responses (FBR) has implications for revealing targetable pathways that may reduce leukocyte activation and fibrotic encapsulation of the implant. We have adapted a model of poly(methylmethacrylate) (PMMA) bead injection to perform an assessment of the mechanistic role of the ASC-dependent inflammasome in this process. We first demonstrate that ASC−/− mice subjected to PMMA bead injections had reduced cell infiltration and altered collagen deposition, suggesting a role for the inflammasome in the FBR. We next investigated the NLRP3 and AIM2 sensors because of their known contributions in recognising damaged and apoptotic cells. We found that NLRP3 was dispensable for the fibrotic encapsulation; however AIM2 expression influenced leukocyte infiltration and controlled collagen deposition, suggesting a previously unexplored link between AIM2 and biomaterial-induced FBR.
Collapse
Affiliation(s)
- Susan N Christo
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jim Manavis
- Centre for Neurological Diseases, SA Pathology, Adelaide, SA 5000, Australia
| | - Michele A Grimbaldeston
- Centre for Cancer Biology, University of South Australia and SA Pathology, SA 5000, Australia
| | - Akash Bachhuka
- Mawson Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - Krasimir Vasilev
- Mawson Institute, University of South Australia, Adelaide, SA 5095, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia.,School of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
22
|
Innate Immunity and Biomaterials at the Nexus: Friends or Foes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342304. [PMID: 26247017 PMCID: PMC4515263 DOI: 10.1155/2015/342304] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
Abstract
Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.
Collapse
|
23
|
de Loura Santana C, de Fátima Teixeira Silva D, Deana AM, Prates RA, Souza AP, Gomes MT, de Azevedo Sampaio BP, Shibuya JF, Bussadori SK, Mesquita-Ferrari RA, Fernandes KPS, França CM. Tissue responses to postoperative laser therapy in diabetic rats submitted to excisional wounds. PLoS One 2015; 10:e0122042. [PMID: 25909480 PMCID: PMC4409316 DOI: 10.1371/journal.pone.0122042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/05/2015] [Indexed: 01/09/2023] Open
Abstract
In a previous study about low-level laser therapy biomodulation on a full-thickness burn model we showed that single and fractionated dose regimens increased wound healing and leukocyte influx similarly when compared with untreated control. In order to verify if this finding would be similar in an impaired wound model, we investigated the effect of single and multiple irradiations on wound closure rate, type of inflammatory infiltrate, myofibroblasts, collagen deposition, and optical retardation of collagen in diabetic rats. Female Wistar rats in the same estrous cycle had diabetes induced with streptozotocin and an 8-mm excisional wound performed with a punch. The experimental groups were: control group--untreated ulcer; single-dose group--ulcer submitted to single dose of diode laser therapy (λ = 660 ± 2 nm; P = 30 mW; energy density: 4 J/cm2) and fractionated-dose group--ulcer submitted to 1 J/cm2 laser therapy on Days 1, 3, 8, and 10. The ulcers were photographed on the experimental days and after euthanasia tissue samples were routinely processed for histological and immunohistochemistry analyses. Independently of the energy density, laser therapy accelerated wound closure by approximately 40% in the first three days in comparison to the control group. Laser therapy increased acute inflammatory infiltrate until Day 3. Both laser groups exhibited more myofibroblasts and better collagen organization than the control group. The findings demonstrate that low-level laser therapy in the immediate postoperative period can enhance the tissue repair process in a diabetes model. Similar effects were achieved with laser therapy applied a single time with an energy density of 4 J/cm2 and applied four times with an energy density of 1 J/cm2. The application of laser therapy in the inflammatory phase was the most important factor to the enhancement of the tissue repair process.
Collapse
Affiliation(s)
- Cristiano de Loura Santana
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Daniela de Fátima Teixeira Silva
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Alessandro Melo Deana
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Renato Araujo Prates
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Amanda Pires Souza
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Mariana Teixeira Gomes
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | | | - Josiane Ferraretto Shibuya
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
| | | | - Cristiane Miranda França
- Postgraduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
24
|
Socarrás TO, Vasconcelos AC, Campos PP, Pereira NB, Souza JPC, Andrade SP. Foreign body response to subcutaneous implants in diabetic rats. PLoS One 2014; 9:e110945. [PMID: 25372281 PMCID: PMC4220951 DOI: 10.1371/journal.pone.0110945] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/22/2014] [Indexed: 12/26/2022] Open
Abstract
Implantation of synthetic matrices and biomedical devices in diabetic individuals has become a common procedure to repair and/or replace biological tissues. However, an adverse foreign body reaction that invariably occurs adjacent to implant devices impairing their function is poorly characterized in the diabetic environment. We investigated the influence of this condition on the abnormal tissue healing response in implants placed subcutaneously in normoglycemic and streptozotocin-induced diabetes in rats. In polyether-polyurethane sponge discs removed 10 days after implantation, the components of the fibrovascular tissue (angiogenesis, inflammation, fibrogenesis, and apoptosis) were assessed. Intra-implant levels of hemoglobin and vascular endothelial growth factor were not different after diabetes when compared with normoglycemic counterparts. However, there were a lower number of vessels in the fibrovascular tissue from diabetic rats when compared with vessel numbers in implants from non-diabetic animals. Overall, the inflammatory parameters (neutrophil accumulation - myeloperoxidase activity, tumor necrosis factor alpha, and monocyte chemotactic protein-1 levels and mast cell counting) increased in subcutaneous implants after diabetes induction. However, macrophage activation (N-acetyl-β-D-glucosaminidase activity) was lower in implants from diabetic rats when compared with those from normoglycemic animals. All fibrogenic markers (transforming growth factor beta 1 levels, collagen deposition, fibrous capsule thickness, and foreign body giant cells) decreased after diabetes, whereas apoptosis (TUNEL) increased. Our results showing that hyperglycemia down regulates the main features of the foreign body reaction induced by subcutaneous implants in rats may be relevant in understanding biomaterial integration and performance in diabetes.
Collapse
Affiliation(s)
- Teresa Oviedo Socarrás
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Livestock Sciences, University of Córdoba, Montería, Córdoba, Colombia
| | - Anilton C. Vasconcelos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula P. Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| | - Nubia B. Pereira
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jessica P. C. Souza
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia P. Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|