1
|
Ikeda J, Ohe C, Yoshida T, Nakamoto T, Saito R, Tsuta K, Kinoshita H. Prognostic impact of lymph node invasion levels in patients with bladder cancer undergoing radical cystectomy and pelvic lymphadenectomy. Oncol Lett 2024; 28:517. [PMID: 39268166 PMCID: PMC11391254 DOI: 10.3892/ol.2024.14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/19/2024] [Indexed: 09/15/2024] Open
Abstract
Extranodal extension in metastatic lymph nodes (LNs) is a poor prognostic factor in bladder cancer (BC). Furthermore, cancer invasion levels in sentinel LNs are associated with prognosis in melanoma. The present study aimed to evaluate the LN invasion level, defined as the extent of cancer invasion in anatomical and immunological LN substructures, and compare it with the pathological node (pN) stage of the tumor-node-metastasis staging system in BC. A total of 98 patients with BC who underwent radical cystectomy and pelvic lymphadenectomy were retrospectively assessed. The LN invasion level was classified as follows: Level 0, no cancer cell within the resected LNs; Level 1, cancer cells confined to intracapsular lymph vessels and subcapsular or transverse sinuses; Level 2, cancer cells infiltrating the cortex, paracortex or medulla; and Level 3, cancer cells infiltrating or beyond the LN capsule. The proportion of patients with Levels 0, 1, 2 and 3 was 70.4% (69/98), 8.2% (8/98), 14.3% (14/98) and 7.1% (7/98), respectively. Kaplan-Meier survival curves of recurrence-free survival (RFS), cancer-specific survival (CSS) and overall survival (OS) with LN invasion levels better stratified outcome patient when using Levels 1-3 compared with pN1-3. In addition, LN invasion levels better predicted RFS, CSS and OS, in comparison with the pN stage (c-index of 0.672 vs. 0.646, 0.688 vs. 0.665, and 0.702 vs. 0.661, respectively). Finally, multivariate analysis revealed that the predictive accuracy of the model integrating pathological tumor (pT) stage and LN invasion levels in RFS, CSS and OS was greater than that of the conventional model that included pT and pN stage (c-index of 0.723 vs. 0.703, 0.710 vs. 0.694, and 0.725 vs. 0.692, respectively). In conclusion, the model with LN invasion levels accurately predicted the prognosis of patients with BC after radical cystectomy and pelvic lymphadenectomy.
Collapse
Affiliation(s)
- Junichi Ikeda
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Chisato Ohe
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- Department of Pathology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Takahiro Nakamoto
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
- Department of Pathology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Ryoichi Saito
- Department of Urology, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Tsuta
- Department of Pathology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Hidefumi Kinoshita
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
2
|
Arroyo-Ataz G, Jones D. Overview of Lymphatic Muscle Cells in Development, Physiology, and Disease. Microcirculation 2024:e12887. [PMID: 39329178 DOI: 10.1111/micc.12887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Lymphatic muscle cells (LMCs) are indispensable for proper functioning of the lymphatic system, as they provide the driving force for lymph transport. Recent studies have advanced our understanding of the molecular mechanisms that regulate LMCs, which control rhythmic contraction and vessel tone of lymphatic vessels-traits also found in cardiac and vascular smooth muscle. In this review, we discuss the molecular pathways that orchestrate LMC-mediated contractility and summarize current knowledge about their developmental origin, which may shed light on the distinct contractile characteristics of LMCs. Further, we highlight the growing evidence implicating LMC dysregulation in the pathogenesis of lymphedema and other diseases related to lymphatic vessel dysfunction. Given the limited number and efficacy of existing therapies to treat lymphedema, LMCs present a promising focus for identifying novel therapeutic targets aimed at improving lymphatic vessel contractility. Here, we discuss LMCs in health and disease, as well as therapeutic strategies aimed at targeting them to improve lymphatic vessel function.
Collapse
Affiliation(s)
- Guillermo Arroyo-Ataz
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Dennis Jones
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Bertram CD, Macaskill C. Fluid-Dynamic Modeling of Flow in Embryonic Tissue Indicates That Lymphatic Valve Location Is Not Consistently Determined by the Local Fluid Shear or Its Gradient. Microcirculation 2024; 31:e12873. [PMID: 38953384 PMCID: PMC11303113 DOI: 10.1111/micc.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 06/08/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE Intravascular lymphatic valves often occur in proximity to vessel junctions. It is commonly held that disturbed flow at junctions is responsible for accumulation of valve-forming cells (VFCs) at these locations as the initial step in valve creation, and the one which explains the association with these sites. However, evidence in favor is largely limited to cell culture experiments. METHODS We acquired images of embryonic lymphatic vascular networks from day E16.5, when VFC accumulation has started but the developing valve has not yet altered the local vessel geometry, stained for Prox1, which co-localizes with Foxc2. Using finite-element computational fluid mechanics, we simulated the flow through the networks, under conditions appropriate to this early development stage. Then we correlated the Prox1 distributions with the distributions of simulated fluid shear and shear stress gradient. RESULTS Across a total of 16 image sets, no consistent correlation was found between Prox1 distribution and the local magnitude of fluid shear, or its positive or negative gradient. CONCLUSIONS This, the first direct semi-empirical test of the localization hypothesis to interrogate the tissue from in vivo at the critical moment of development, does not support the idea that a feature of the local flow determines valve localization.
Collapse
Affiliation(s)
- Christopher D Bertram
- School of Mathematics and Statistics, University of Sydney, New South Wales, Australia
| | - Charlie Macaskill
- School of Mathematics and Statistics, University of Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Sáinz-Jaspeado M, Ring S, Proulx ST, Richards M, Martinsson P, Li X, Claesson-Welsh L, Ulvmar MH, Jin Y. VE-cadherin junction dynamics in initial lymphatic vessels promotes lymph node metastasis. Life Sci Alliance 2024; 7:e202302168. [PMID: 38148112 PMCID: PMC10751244 DOI: 10.26508/lsa.202302168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
The endothelial junction component vascular endothelial (VE)-cadherin governs junctional dynamics in the blood and lymphatic vasculature. Here, we explored how lymphatic junction stability is modulated by elevated VEGFA signaling to facilitate metastasis to sentinel lymph nodes. Zippering of VE-cadherin junctions was established in dermal initial lymphatic vessels after VEGFA injection and in tumor-proximal lymphatics in mice. Shape analysis of pan-cellular VE-cadherin fragments revealed that junctional zippering was accompanied by accumulation of small round-shaped VE-cadherin fragments in the lymphatic endothelium. In mice expressing a mutant VEGFR2 lacking the Y949 phosphosite (Vegfr2 Y949F/Y949F ) required for activation of Src family kinases, zippering of lymphatic junctions persisted, whereas accumulation of small VE-cadherin fragments was suppressed. Moreover, tumor cell entry into initial lymphatic vessels and subsequent metastatic spread to lymph nodes was reduced in mutant mice compared with WT, after challenge with B16F10 melanoma or EO771 breast cancer. We conclude that VEGFA mediates zippering of VE-cadherin junctions in initial lymphatics. Zippering is accompanied by increased VE-cadherin fragmentation through VEGFA-induced Src kinase activation, correlating with tumor dissemination to sentinel lymph nodes.
Collapse
Affiliation(s)
- Miguel Sáinz-Jaspeado
- https://ror.org/048a87296 Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Sarah Ring
- https://ror.org/048a87296 Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Steven T Proulx
- ETH Zürich, Institute of Pharmaceutical Sciences, Zürich, Switzerland
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Mark Richards
- https://ror.org/048a87296 Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Pernilla Martinsson
- https://ror.org/048a87296 Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Xiujuan Li
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lena Claesson-Welsh
- https://ror.org/048a87296 Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria H Ulvmar
- https://ror.org/048a87296 Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- https://ror.org/048a87296 Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Yi Jin
- https://ror.org/048a87296 Beijer and Science for Life Laboratories, Department Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Davis MJ, Zawieja SD, Yang Y. Developmental progression of lymphatic valve morphology and function. Front Cell Dev Biol 2024; 12:1331291. [PMID: 38450249 PMCID: PMC10915029 DOI: 10.3389/fcell.2024.1331291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction: The bileaflet valves found in collecting lymphatic vessels and some veins are essential for maintaining a unidirectional flow, which is important for lymphatic and venous function. Under an adverse pressure gradient, the two leaflets tightly overlap to prevent backflow. Valves are proposed to share four main stages of development, based on images obtained from randomly oriented valves in fixed mouse embryos, with the best structural views obtained from larger venous valves. It is not known at what stage lymphatic valves (LVs) become functional (e.g., able to oppose backflow), although a requirement for stage 4 is presumed. Methods: To gain an insight into this sequence of events for LVs, we used Prox1CreER T2 :Foxo1 fl/fl mice and Foxc2CreER T2 :Foxo1 fl/fl mouse models, in which deletion of the valve repressor factor Foxo1 promotes the development of new LVs in adult lymphatic vessels. Both strains also contained a Prox1eGFP reporter to image the lymphatic endothelium. Mesenteric collecting lymphatic vessels were dissected, cannulated, and pressurized for ex vivo tests of valve function. LVs at various stages (1-4 and intermediate) were identified in multi-valve segments, which were subsequently shortened to perform the backleak test on single valves. The GFP signal was then imaged at high magnification using a confocal microscope. Z-stack reconstructions enabled 1:1 comparisons of LV morphology with a quantitative measurement of back leak. Results: As expected, LVs of stages 1-3 were completely leaky in response to outflow pressure elevation. Stage 4 valves were generally not leaky, but valve integrity depended on the Cre line used to induce new valve formation. A high percentage of valves at leaflet an intermediate stage (3.5), in which there was an insertion of a second commissure, but without proper luminal alignment, effectively resisted back leak when the outflow pressure was increased. Discussion: Our findings represent the first 3D images of developing lymphatic valves and indicate that valves become competent between stages 3 and 4 of development.
Collapse
Affiliation(s)
- Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States
| | - Scott D. Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, USF Health Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Kraus S, Lee E. A human initial lymphatic chip reveals distinct mechanisms of primary lymphatic valve dysfunction in acute and chronic inflammation. LAB ON A CHIP 2023; 23:5180-5194. [PMID: 37981867 PMCID: PMC10908576 DOI: 10.1039/d3lc00486d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Interstitial fluid uptake and retention by lymphatic vessels (LVs) play a role in maintaining interstitial fluid homeostasis. While it is well-established that intraluminal lymphatic valves in the collecting LVs prevent fluid backflow (secondary lymphatic valves), a separate valve system in the initial LVs that only permits interstitial fluid influx into the LVs, preventing fluid leakage back to the interstitium (primary lymphatic valves), remains incompletely understood. Although lymphatic dysfunction is commonly observed in inflammation and autoimmune diseases, how the primary lymphatic valves are affected by acute and chronic inflammation has scarcely been explored and even less so using in vitro lymphatic models. Here, we developed a human initial lymphatic vessel chip where interstitial fluid pressure and luminal fluid pressure are controlled to examine primary lymph valve function. In normal conditions, lymphatic drainage (fluid uptake) and permeability (fluid leakage) in engineered LVs were maintained high and low, respectively, which was consistent with our understanding of healthy primary lymph valves. Next, we examined the effects of acute and chronic inflammation. Under the acute inflammation condition with a TNF-α treatment (2 hours), degradation of fibrillin and impeded lymphatic drainage were observed, which were reversed by treatment with anti-inflammatory dexamethasone. Surprisingly, the chronic inflammation condition (repeated TNF-α treatments during 48 hours) deposited fibrillin to compensate for the fibrillin loss, showing no change in lymphatic drainage. Instead, the chronic inflammation condition led to cell death and disruption of lymphatic endothelial cell-cell junctions, increasing lymphatic permeability and fluid leakage. Our human lymphatic model shows two distinct mechanisms by which primary lymphatic valve dysfunction occurs in acute and chronic inflammation.
Collapse
Affiliation(s)
- Samantha Kraus
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
7
|
Sedaghati F, Dixon JB, Gleason RL. A 1D model characterizing the role of spatiotemporal contraction distributions on lymph transport. Sci Rep 2023; 13:21241. [PMID: 38040740 PMCID: PMC10692214 DOI: 10.1038/s41598-023-48131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023] Open
Abstract
Lymphedema is a condition in which lymph transport is compromised. The factors that govern the timing of lymphatic contractions are largely unknown; however, these factors likely play a central role in lymphatic health. Computational models have proven useful in quantifying changes in lymph transport; nevertheless, there is still much unknown regarding the regulation of contractions. The purpose of this paper is to utilize computational modeling to examine the role of pacemaking activity in lymph transport. A 1D fluid-solid modeling framework was utilized to describe the interaction between the contracting vessel and the lymph flow. The distribution of contractions along a three-lymphangion chain in time and space was determined by specifying the pacemaking sites and parameters obtained from experimentation. The model effectively replicates the contractility patterns in experiments. Quantitatively, the flow rates were measured at 5.44 and 2.29 [Formula: see text], and the EF values were 78% and less than 33% in the WT and KO models, respectively, which are consistent with the literature. Applying pacemaking parameters in this modeling framework effectively captures lymphatic contractile wave propagations and their relation to lymph transport. It can serve as a motivation for conducting novel studies to evaluate lymphatic pumping function during the development of lymphedema.
Collapse
Affiliation(s)
- Farbod Sedaghati
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - J Brandon Dixon
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Wallace H. Coulter Georgia Tech/Emory Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rudolph L Gleason
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- The Wallace H. Coulter Georgia Tech/Emory Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle, Room 216F, Atlanta, GA, 30313, USA.
| |
Collapse
|
8
|
Chen D, Wiggins D, Sevick EM, Davis MJ, King PD. An EPHB4-RASA1 signaling complex inhibits shear stress-induced Ras-MAPK activation in lymphatic endothelial cells to promote the development of lymphatic vessel valves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568378. [PMID: 38045382 PMCID: PMC10690291 DOI: 10.1101/2023.11.22.568378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
EPHB4 is a receptor protein tyrosine kinase that is required for the development of lymphatic vessel (LV) valves. We show here that EPHB4 is necessary for the specification of LV valves, their continued development after specification, and the maintenance of LV valves in adult mice. EPHB4 promotes LV valve development by inhibiting the activation of the Ras-MAPK pathway in LV endothelial cells (LEC). For LV specification, this role for EPHB4 depends on its ability to interact physically with the p120 Ras-GTPase-activating protein (RASA1) that acts as a negative regulator of Ras. Through physical interaction, EPHB4 and RASA1 dampen oscillatory shear stress (OSS)-induced Ras-MAPK activation in LEC, which is required for LV specification. We identify the Piezo1 OSS sensor as a focus of EPHB4-RASA1 regulation of OSS-induced Ras-MAPK signaling mediated through physical interaction. These findings contribute to an understanding of the mechanism by which EPHB4, RASA1 and Ras regulate lymphatic valvulogenesis.
Collapse
|
9
|
O’Donnell A, Gonzalez BA, Mukherjee S, Wilson R, Alfieri CM, Swoboda CO, Millay DP, Zorn AM, Yutzey KE. Localized Prox1 Regulates Aortic Valve Endothelial Cell Diversity and Extracellular Matrix Stratification in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1478-1493. [PMID: 37381982 PMCID: PMC10528305 DOI: 10.1161/atvbaha.123.319424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Specialized valve endothelial cell (VEC) populations are localized oriented to blood flow in developing aortic and mitral valves, but their roles in valve development and disease are unknown. In the aortic valve (AoV), a population of VECs on the fibrosa side expresses the transcription factor Prox1 together with genes found in lymphatic ECs. In this study, we examine Prox1's role in regulating a lymphatic-like gene network and promoting VEC diversity required for the development of the stratified trilaminar extracellular matrix (ECM) of murine AoV leaflets. METHODS To determine whether disruption of Prox1 localization affects heart valve development, we generated mice (NFATc1enCre Prox1 gain-of-function) in which Prox1 is overexpressed on the ventricularis side of the AoV beginning in embryonic development. To identify potential targets of Prox1, we performed cleavage under targets and release using nuclease on wild-type and NFATc1enCre Prox1 gain-of-function AoVs with validation by colocalization in vivo using RNA in situ hybridization in NFATc1enCre Prox1 gain-of-function AoVs. Natural induction of Prox1 and target gene expression was evaluated in myxomatous AoVs in a mouse model of Marfan syndrome (Fbn1C1039G/+). RESULTS The overexpression of Prox1 is sufficient to cause enlargement of AoVs by postnatal day (P)0, as well as a decrease in ventricularis-specific gene expression and disorganized interstitial ECM layers at P7. We identified potential targets of Prox1 known to play roles in lymphatic ECs including Flt1, Efnb2, Egfl7, and Cx37. Ectopic Prox1 colocalized with induced Flt1, Efnb2, and Cx37 expression in NFATc1enCre Prox1 gain-of-function AoVs. Moreover, in Marfan syndrome myxomatous AoVs, endogenous Prox1, and its identified targets, were ectopically induced in ventricularis side VECs. CONCLUSIONS Our results support a role for Prox1 in localized lymphatic-like gene expression on the fibrosa side of the AoV. Furthermore, localized VEC specialization is required for development of the stratified trilaminar ECM critical for AoV function and is dysregulated in congenitally malformed valves.
Collapse
Affiliation(s)
- Anna O’Donnell
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Brittany A. Gonzalez
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Shreyasi Mukherjee
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Ruby Wilson
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Christina M. Alfieri
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O. Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Aaron M. Zorn
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
Kraus SE, Lee E. Engineering approaches to investigate the roles of lymphatics vessels in rheumatoid arthritis. Microcirculation 2023; 30:e12769. [PMID: 35611452 PMCID: PMC9684355 DOI: 10.1111/micc.12769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Rheumatoid arthritis (RA) is one of the most common chronic inflammatory joint disorders. While our understanding of the autoimmune processes that lead to synovial degradation has improved, a majority of patients are still resistant to current treatments and require new therapeutics. An understudied and promising area for therapy involves the roles of lymphatic vessels (LVs) in RA progression, which has been observed to have a significant effect on mediating chronic inflammation. RA disease progression has been shown to correlate with dramatic changes in LV structure and interstitial fluid drainage, manifesting in the retention of distinct immune cell phenotypes within the synovium. Advances in dynamic imaging technologies have demonstrated that LVs in RA undergo an initial expansion phase of increased LVs and abnormal contractions followed by a collapsed phase of reduced lymphatic function and immune cell clearance in vivo. However, current animal models of RA fail to decouple biological and biophysical factors that might be responsible for this lymphatic dysfunction in RA, and a few attempted in vitro models of the synovium in RA have not yet included the contributions from the LVs. Various methods of replicating LVs in vitro have been developed to study lymphatic biology, but these have yet not been integrated into the RA context. This review discusses the roles of LVs in RA and the current engineering approaches to improve our understanding of lymphatic pathophysiology in RA.
Collapse
Affiliation(s)
- Samantha E. Kraus
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Li H, Wei H, Padera TP, Baish JW, Munn LL. Computational simulations of the effects of gravity on lymphatic transport. PNAS NEXUS 2022; 1:pgac237. [PMID: 36712369 PMCID: PMC9802413 DOI: 10.1093/pnasnexus/pgac237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/15/2022] [Indexed: 11/07/2022]
Abstract
Physical forces, including mechanical stretch, fluid pressure, and shear forces alter lymphatic vessel contractions and lymph flow. Gravitational forces can affect these forces, resulting in altered lymphatic transport, but the mechanisms involved have not been studied in detail. Here, we combine a lattice Boltzmann-based fluid dynamics computational model with known lymphatic mechanobiological mechanisms to investigate the movement of fluid through a lymphatic vessel under the effects of gravity that may either oppose or assist flow. Regularly spaced, mechanical bi-leaflet valves in the vessel enforce net positive flow as the vessel walls contract autonomously in response to calcium and nitric oxide (NO) levels regulated by vessel stretch and shear stress levels. We find that large gravitational forces opposing flow can stall the contractions, leading to no net flow, but transient mechanical perturbations can re-establish pumping. In the case of gravity strongly assisting flow, the contractions also cease due to high shear stress and NO production, which dilates the vessel to allow gravity-driven flow. In the intermediate range of oppositional gravity forces, the vessel actively contracts to offset nominal gravity levels or to modestly assist the favorable hydrostatic pressure gradients.
Collapse
Affiliation(s)
- Huabing Li
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Material Science and Technology, Guilin University of Electronic Technology, Guilin 541004, China
| | - Huajian Wei
- Department of Material Science and Technology, Guilin University of Electronic Technology, Guilin 541004, China
| | - Timothy P Padera
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - James W Baish
- Biomedical Engineering, Bucknell University, Lewisburg, PA 17837, USA
| | - Lance L Munn
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
12
|
Lee S, Suh YS, Kang SH, Won Y, Park YS, Ahn SH, Kim HH. Should total omentectomy be performed for advanced gastric cancer?: The role of omentectomy during laparoscopic gastrectomy for advanced gastric cancer. Surg Endosc 2022; 36:6937-6948. [PMID: 35141774 DOI: 10.1007/s00464-022-09039-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND In the era of minimally invasive surgery, laparoscopic partial omentectomy (LPO) has seen widespread use as a curative surgical procedure for early gastric cancer. However, scientific evidence of the extent of omentectomy during laparoscopic gastrectomy remains unclear for advanced gastric cancer (AGC). METHODS We analyzed 666 eligible patients who underwent laparoscopic gastrectomy for AGC with curative intent between 2014 and 2018. Surgical outcome and postoperative prognosis were compared between LPO and laparoscopic total omentectomy (LTO) groups after 2:1 propensity score matching with age, sex, body mass index, tumor size, pT stage, pN stage, gastrectomy type, and clinical T stage as covariates. RESULTS After extensive matching, there was no significant difference in pathologic or clinical stages between the LPO (n = 254) and LTO (n = 177) groups. LPO provided a significantly shorter operation time than LTO (199.2 ± 64.8 vs. 248.1 ± 68.3 min, P < 0.001). Pulmonary complication within postoperative 30 days was significantly lower in the LPO group (4.4 vs. 10.3%, P = 0.018). In multivariate analysis, LTO was the independent risk factor for pulmonary complication (odds ratio [OR] 2.53, 95% confidence interval [95% CI] 1.12-5.73, P = 0.025), which became more obvious in patients with a Charlson's comorbidity index of 4 or higher (OR 27.43, 95% CI 1.35-558.34, P = 0.031). The 5-year overall survival rate (OS) and 3-year recurrence-free survival (RFS) rates were not significantly different between the two groups, even after stage stratification. CONCLUSION LPO provided significantly shorter operation time and less pulmonary complication than LTO without compromising 5-year OS and 3-year RFS for AGC. LTO was the independent risk factor for pulmonary complications, which became more evident in patients with severe comorbidities.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Surgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea.
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea.
| | - So Hyun Kang
- Department of Surgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Yongjoon Won
- Department of Surgery, Seongnam Citizens Medical Center, Seongnam-si, South Korea
| | - Young Suk Park
- Department of Surgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang-Hoon Ahn
- Department of Surgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyung-Ho Kim
- Department of Surgery, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Kim HJ, Seo SK, Park HY. Physical and chemical advances of synthetic delivery vehicles to enhance mRNA vaccine efficacy. J Control Release 2022; 345:405-416. [PMID: 35314261 DOI: 10.1016/j.jconrel.2022.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
The successful translation of mRNA vaccines slows down the spread of viral infectious diseases, which may be accomplished by developing novel chemically modified nucleotides (or nucleosides) and highly efficient, safe mRNA delivery vehicles. Delivery vehicles protect vulnerable antigen mRNA and increase the uptake of mRNA into antigen-presenting cells in the peripheral tissue or lymph nodes. This review introduces essential characteristics of mRNA vaccines (e.g., particle sizes, colloidal stability, surface charges/endosomal escape ability, and ligand conjugation) that may be used to generate high immune responses against foreign antigens. The significance and mechanism of each characteristic are described based on the results obtained from in vitro and in vivo studies. We also discuss the development of next generation delivery vehicles for future mRNA vaccines.
Collapse
Affiliation(s)
- Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
| | - Su Kyoung Seo
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
14
|
Solari E, Marcozzi C, Ottaviani C, Negrini D, Moriondo A. Draining the Pleural Space: Lymphatic Vessels Facing the Most Challenging Task. BIOLOGY 2022; 11:419. [PMID: 35336793 PMCID: PMC8945018 DOI: 10.3390/biology11030419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 03/08/2022] [Indexed: 01/06/2023]
Abstract
Lymphatic vessels exploit the mechanical stresses of their surroundings together with intrinsic rhythmic contractions to drain lymph from interstitial spaces and serosal cavities to eventually empty into the blood venous stream. This task is more difficult when the liquid to be drained has a very subatmospheric pressure, as it occurs in the pleural cavity. This peculiar space must maintain a very low fluid volume at negative hydraulic pressure in order to guarantee a proper mechanical coupling between the chest wall and lungs. To better understand the potential for liquid drainage, the key parameter to be considered is the difference in hydraulic pressure between the pleural space and the lymphatic lumen. In this review we collected old and new findings from in vivo direct measurements of hydraulic pressures in anaesthetized animals with the aim to better frame the complex physiology of diaphragmatic and intercostal lymphatics which drain liquid from the pleural cavity.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Moriondo
- Department of Medicine and Surgery, School of Medicine, University of Insubria, 21100 Varese, Italy; (E.S.); (C.M.); (C.O.); (D.N.)
| |
Collapse
|
15
|
Eleftheriadou D, Evans RE, Atkinson E, Abdalla A, Gavins FKH, Boyd AS, Williams GR, Knowles JC, Roberton VH, Phillips JB. An alginate-based encapsulation system for delivery of therapeutic cells to the CNS. RSC Adv 2022; 12:4005-4015. [PMID: 35425456 PMCID: PMC8981497 DOI: 10.1039/d1ra08563h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
Treatment options for neurodegenerative conditions such as Parkinson's disease have included the delivery of cells which release dopamine or neurotrophic factors to the brain. Here, we report the development of a novel approach for protecting cells after implantation into the central nervous system (CNS), by developing dual-layer alginate beads that encapsulate therapeutic cells and release an immunomodulatory compound in a sustained manner. An optimal alginate formulation was selected with a view to providing a sustained physical barrier between engrafted cells and host tissue, enabling exchange of small molecules while blocking components of the host immune response. In addition, a potent immunosuppressant, FK506, was incorporated into the outer layer of alginate beads using electrosprayed poly-ε-caprolactone core–shell nanoparticles with prolonged release profiles. The stiffness, porosity, stability and ability of the alginate beads to support and protect encapsulated SH-SY5Y cells was demonstrated, and the release profile of FK506 and its effect on T-cell proliferation in vitro was characterized. Collectively, our results indicate this multi-layer encapsulation technology has the potential to be suitable for use in CNS cell delivery, to protect implanted cells from host immune responses whilst providing permeability to nutrients and released therapeutic molecules. Novel composite cell encapsulation system: dual-layer, micro-scale beads maintain cell survival while releasing immunomodulatory FK506 in a sustained manner. This biotechnology platform could be applicable for treatment of CNS and other disorders.![]()
Collapse
Affiliation(s)
- Despoina Eleftheriadou
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Rachael E Evans
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Emily Atkinson
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Ahmed Abdalla
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Francesca K H Gavins
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Ashleigh S Boyd
- UCL Institute of Immunity and Transplantation, Royal Free Hospital London UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - Jonathan C Knowles
- Biomaterials & Tissue Engineering, UCL Eastman Dental Institute London UK
| | - Victoria H Roberton
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| | - James B Phillips
- UCL Centre for Nerve Engineering, University College London London UK.,UCL School of Pharmacy, University College London London WC1N 1AX UK
| |
Collapse
|
16
|
Chen D, Hughes ED, Saunders TL, Wu J, Hernández Vásquez MN, Makinen T, King PD. Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. JCI Insight 2022; 7:156928. [PMID: 35015735 PMCID: PMC8876457 DOI: 10.1172/jci.insight.156928] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood vascular anomaly caused by inherited loss of function mutations in RASA1 or EPHB4 genes that encode p120 Ras GTPase-activating protein (p120 RasGAP/RASA1) and Ephrin receptor B4 (EPHB4) respectively. However, whether RASA1 and EPHB4 function in the same molecular signaling pathway to regulate the blood vasculature is uncertain. Here, we show that induced endothelial cell (EC)-specific disruption of Ephb4 in mice results in accumulation of collagen IV in the EC endoplasmic reticulum leading to EC apoptotic death and defective developmental, neonatal and pathological angiogenesis, as reported previously in induced EC-specific RASA1-deficient mice. Moreover, defects in angiogenic responses in EPHB4-deficient mice can be rescued by drugs that inhibit signaling through the Ras pathway and drugs that promote collagen IV export from the ER. However, EPHB4 mutant mice that express a form of EPHB4 that is unable to physically engage RASA1 but retains protein tyrosine kinase activity show normal angiogenic responses. These findings provide strong evidence that RASA1 and EPHB4 function in the same signaling pathway to protect against the development of CM-AVM independent of physical interaction and have important implications with regards possible means of treatment of this disease.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States of America
| | - Elizabeth D Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | | | - Taija Makinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, United States of America
| |
Collapse
|
17
|
Biologically active lipids in the regulation of lymphangiogenesis in disease states. Pharmacol Ther 2021; 232:108011. [PMID: 34614423 DOI: 10.1016/j.pharmthera.2021.108011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Lymphatic vessels have crucial roles in the regulation of interstitial fluids, immune surveillance, and the absorption of dietary fat in the intestine. Lymphatic function is also closely related to the pathogenesis of various disease states such as inflammation, lymphedema, endometriosis, liver dysfunction, and tumor metastasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing lymphatic vessels, is a critical determinant in the above conditions. Although the effect of growth factors on lymphangiogenesis is well-characterized, and biologically active lipids are known to affect smooth muscle contractility and vasoaction, there is accumulating evidence that biologically active lipids are also important inducers of growth factors and cytokines that regulate lymphangiogenesis. This review discusses recent advances in our understanding of biologically active lipids, including arachidonic acid metabolites, sphingosine 1-phosphate, and lysophosphatidic acid, as regulators of lymphangiogenesis, and the emerging importance of the lymphangiogenesis as a therapeutic target.
Collapse
|
18
|
Ravaud C, Ved N, Jackson DG, Vieira JM, Riley PR. Lymphatic Clearance of Immune Cells in Cardiovascular Disease. Cells 2021; 10:cells10102594. [PMID: 34685572 PMCID: PMC8533855 DOI: 10.3390/cells10102594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Recent advances in our understanding of the lymphatic system, its function, development, and role in pathophysiology have changed our views on its importance. Historically thought to be solely involved in the transport of tissue fluid, lipids, and immune cells, the lymphatic system displays great heterogeneity and plasticity and is actively involved in immune cell regulation. Interference in any of these processes can be deleterious, both at the developmental and adult level. Preclinical studies into the cardiac lymphatic system have shown that invoking lymphangiogenesis and enhancing immune cell trafficking in ischaemic hearts can reduce myocardial oedema, reduce inflammation, and improve cardiac outcome. Understanding how immune cells and the lymphatic endothelium interact is also vital to understanding how the lymphatic vascular network can be manipulated to improve immune cell clearance. In this Review, we examine the different types of immune cells involved in fibrotic repair following myocardial infarction. We also discuss the development and function of the cardiac lymphatic vasculature and how some immune cells interact with the lymphatic endothelium in the heart. Finally, we establish how promoting lymphangiogenesis is now a prime therapeutic target for reducing immune cell persistence, inflammation, and oedema to restore heart function in ischaemic heart disease.
Collapse
Affiliation(s)
- Christophe Ravaud
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - Nikita Ved
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - David G. Jackson
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK;
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - Paul R. Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
- Correspondence:
| |
Collapse
|
19
|
Lyons O, Walker J, Seet C, Ikram M, Kuchta A, Arnold A, Hernández-Vásquez M, Frye M, Vizcay-Barrena G, Fleck RA, Patel AS, Padayachee S, Mortimer P, Jeffery S, Berland S, Mansour S, Ostergaard P, Makinen T, Modarai B, Saha P, Smith A. Mutations in EPHB4 cause human venous valve aplasia. JCI Insight 2021; 6:e140952. [PMID: 34403370 PMCID: PMC8492339 DOI: 10.1172/jci.insight.140952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/11/2021] [Indexed: 11/25/2022] Open
Abstract
Venous valve (VV) failure causes chronic venous insufficiency, but the molecular regulation of valve development is poorly understood. A primary lymphatic anomaly, caused by mutations in the receptor tyrosine kinase EPHB4, was recently described, with these patients also presenting with venous insufficiency. Whether the venous anomalies are the result of an effect on VVs is not known. VV formation requires complex "organization" of valve-forming endothelial cells, including their reorientation perpendicular to the direction of blood flow. Using quantitative ultrasound, we identified substantial VV aplasia and deep venous reflux in patients with mutations in EPHB4. We used a GFP reporter in mice to study expression of its ligand, ephrinB2, and analyzed developmental phenotypes after conditional deletion of floxed Ephb4 and Efnb2 alleles. EphB4 and ephrinB2 expression patterns were dynamically regulated around organizing valve-forming cells. Efnb2 deletion disrupted the normal endothelial expression patterns of the gap junction proteins connexin37 and connexin43 (both required for normal valve development) around reorientating valve-forming cells and produced deficient valve-forming cell elongation, reorientation, polarity, and proliferation. Ephb4 was also required for valve-forming cell organization and subsequent growth of the valve leaflets. These results uncover a potentially novel cause of primary human VV aplasia.
Collapse
Affiliation(s)
- Oliver Lyons
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - James Walker
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Christopher Seet
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Mohammed Ikram
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Adam Kuchta
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Andrew Arnold
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Magda Hernández-Vásquez
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Maike Frye
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Gema Vizcay-Barrena
- Centre for Ultrastructural Imaging, King’s College London, London, United Kingdom
| | - Roland A. Fleck
- Centre for Ultrastructural Imaging, King’s College London, London, United Kingdom
| | - Ashish S. Patel
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Soundrie Padayachee
- Department of Ultrasonic Angiology, Guy’s & St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Peter Mortimer
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Steve Jeffery
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Sahar Mansour
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
- South West Thames Regional Genetics Service, St. George’s Hospital, London, United Kingdom
| | - Pia Ostergaard
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Taija Makinen
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Bijan Modarai
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Prakash Saha
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| | - Alberto Smith
- Academic Department of Vascular Surgery, Section of Vascular Risk and Surgery, School of Cardiovascular Medicine and Sciences, BHF Centre of Research Excellence, King’s College London, St. Thomas’ Hospital, London, United Kingdom
| |
Collapse
|
20
|
Extranodal Extension Predicts Poor Survival Outcomes among Patients with Bladder Cancer. Cancers (Basel) 2021; 13:cancers13164108. [PMID: 34439261 PMCID: PMC8391350 DOI: 10.3390/cancers13164108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several lymph node-related prognosticators were reported in bladder cancer patients with lymph node involvement and receiving radical cystectomy. However, extranodal extension (ENE) remained a debate to predict outcomes. METHODS A retrospective analysis of 1303 bladder cancer patients receiving radical cystectomy and bilateral pelvic lymph node dissection were identified in the National Taiwan Cancer Registry database from 2011 to 2017. Based on the 304 patients with lymph node involvement, the presence of ENE and major clinical information were recorded and calculated. The overall survival (OS) and cancer-specific survival (CSS) were estimated with Kaplan-Meier analysis and compared using the log-rank test. Hazard ratios (HR) and the associated 95% confidence intervals were calculated in the univariate and stepwise multivariable models. RESULTS In the multivariable analysis, ENE significantly reduced OS (HR = 1.74, 95% CI 1.09-2.78) and CSS (HR = 1.69, 95% CI 1.01-2.83) more than non-ENE. In contrast, adjuvant chemotherapy was significantly associated with better OS and CSS upon the identification of pathological nodal disease. CONCLUSIONS Reduced OS and CSS outcomes were observed in the pathological nodal bladder cancer patients with ENE compared with those without ENE. After the identification of pathological nodal disease, adjuvant chemotherapy was associated with better survival outcomes.
Collapse
|
21
|
Abstract
The lymphatic vasculature plays important role in regulating fluid homeostasis, intestinal lipid absorption, and immune surveillance in humans. Malfunction of lymphatic vasculature leads to several human diseases. Understanding the fundamental mechanism in lymphatic vascular development not only expand our knowledge, but also provide a new therapeutic insight. Recently, Hippo-YAP/TAZ signaling pathway, a key mechanism of organ size and tissue homeostasis, has emerged as a critical player that regulate lymphatic specification, sprouting, and maturation. In this review, we discuss the mechanistic regulation and pathophysiological significant of Hippo pathway in lymphatic vascular development.
Collapse
Affiliation(s)
- Boksik Cha
- Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Sungjin Moon
- Department of Biological Science, Kangwon National University, Chuncheon 24341, Korea
| | - Wantae Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
22
|
Wasson EM, Dubbin K, Moya ML. Go with the flow: modeling unique biological flows in engineered in vitro platforms. LAB ON A CHIP 2021; 21:2095-2120. [PMID: 34008661 DOI: 10.1039/d1lc00014d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Interest in recapitulating in vivo phenomena in vitro using organ-on-a-chip technology has grown rapidly and with it, attention to the types of fluid flow experienced in the body has followed suit. These platforms offer distinct advantages over in vivo models with regards to human relevance, cost, and control of inputs (e.g., controlled manipulation of biomechanical cues from fluid perfusion). Given the critical role biophysical forces play in several tissues and organs, it is therefore imperative that engineered in vitro platforms capture the complex, unique flow profiles experienced in the body that are intimately tied with organ function. In this review, we outline the complex and unique flow regimes experienced by three different organ systems: blood vasculature, lymphatic vasculature, and the intestinal system. We highlight current state-of-the-art platforms that strive to replicate physiological flows within engineered tissues while introducing potential limitations in current approaches.
Collapse
Affiliation(s)
- Elisa M Wasson
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| | - Karen Dubbin
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| | - Monica L Moya
- Material Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave L-222, Livermore, CA 94551, USA.
| |
Collapse
|
23
|
Klaourakis K, Vieira JM, Riley PR. The evolving cardiac lymphatic vasculature in development, repair and regeneration. Nat Rev Cardiol 2021; 18:368-379. [PMID: 33462421 PMCID: PMC7812989 DOI: 10.1038/s41569-020-00489-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/08/2023]
Abstract
The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Konstantinos Klaourakis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK
| | - Joaquim M Vieira
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| | - Paul R Riley
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- British Heart Foundation-Oxbridge Centre of Regenerative Medicine, CRM, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis 2021; 24:213-236. [PMID: 33844116 PMCID: PMC8205897 DOI: 10.1007/s10456-021-09785-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
25
|
Expression of Lymphatic Markers in the Berger's Space and Bursa Premacularis. Int J Mol Sci 2021; 22:ijms22042086. [PMID: 33669860 PMCID: PMC7923221 DOI: 10.3390/ijms22042086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/15/2023] Open
Abstract
We previously reported that the bursa premacularis (BPM), a peculiar vitreous structure located above the macula, contains numerous cells expressing markers of lymphatic endothelial cells, such as podoplanin and LYVE-1. Herein, we examined the expression of lymphatic markers in the Berger’s space (BS), BPM, and vitreous core (VC). BS, BPM, and VC specimens were selectively collected in macular hole and epiretinal membrane patients during vitrectomy and were then immunostained with antibodies for podoplanin, LYVE-1, and fibrillin-1 and -2. By visualization using triamcinolone acetonide, the BS was recognized as a sac-like structure with a septum located behind the lens as well as BPM. Those tissues adhered to the lens or retina in a circular manner by means of a ligament-like structure. Immunostaining showed intense expression of podoplanin and LYVE-1 in the BS. Both BS and BPM stained strongly positive for fibrillin-1 and -2. The VC was faintly stained with antibodies for those lymph-node markers. Our findings indicate that both BS and BPM possibly belong to the lymphatic system, such as lymph nodes, draining excess fluid and waste products into lymphatic vessels in the dura mater of the optic nerve and the ciliary body, respectively, via intravitreal canals.
Collapse
|
26
|
Bertram CD, Ikhimwin BO, Macaskill C. Modeling flow in embryonic lymphatic vasculature: what is its role in valve development? MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:1406-1424. [PMID: 33757191 DOI: 10.3934/mbe.2021073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A majority of lymphatic valves tend to form in proximity to vessel junctions, and it is often proposed that disturbed flow at junctions creates oscillating shear stress that leads to accumulation of transcription factors which bring about valvogenesis at these sites. In images of networks of dorsal skin lymphatics from embryonic mice (day E16), we compared simulated fluid flow patterns and observed distributions of the transcription factor Prox1, which is implicated in valve formation. Because of creeping-flow conditions, flow across vessel junctions was not 'disturbed', and within a given vessel, shear stress varied inversely with local conduit width. Prox1 concentration was indeed localised to vessel end-regions, but over three networks was not consistently correlated with the vessel normalised-distance distribution of either fluid shear stress or shear-stress axial gradient. These findings do not support the presently accepted mechanism for the role of flow in valve localisation.
Collapse
Affiliation(s)
- Christopher D Bertram
- School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia
| | - Bernard O Ikhimwin
- School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia
| | - Charlie Macaskill
- School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|
27
|
Solari E, Marcozzi C, Negrini D, Moriondo A. Lymphatic Vessels and Their Surroundings: How Local Physical Factors Affect Lymph Flow. BIOLOGY 2020; 9:biology9120463. [PMID: 33322476 PMCID: PMC7763507 DOI: 10.3390/biology9120463] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022]
Abstract
Simple Summary Lymphatic vessels are responsible for the drainage of liquids, solutes, and cells from interstitial spaces and serosal cavities. Their task is fundamental in order to avoid fluid accumulation leading to tissue swelling and edema. The lymphatic system does not possess a central pump, instead lymph is propelled against an overall hydraulic pressure gradient from interstitial spaces to central veins thanks to two pumping mechanisms, which rely on extrinsic forces or the intrinsic rhythmic contractility of lymphatic muscle cells embedded in vessel walls. This latter mechanism can very rapidly adapt to subtle changes in the microenvironment due to hydraulic pressure, lymph flow-induced wall shear stress, liquid osmolarity, and local tissue temperature. Thus, endothelial and lymphatic muscle cells possess mechanosensors that sense these stimuli and promote a change in contraction frequency and amplitude to modulate lymph flow accordingly. In this review, we will focus on the known physical parameters that can modulate lymph flow and on their putative cellular and molecular mechanisms of transduction. Abstract Lymphatic vessels drain and propel lymph by exploiting external forces that surrounding tissues exert upon vessel walls (extrinsic mechanism) and by using active, rhythmic contractions of lymphatic muscle cells embedded in the vessel wall of collecting lymphatics (intrinsic mechanism). The latter mechanism is the major source of the hydraulic pressure gradient where scant extrinsic forces are generated in the microenvironment surrounding lymphatic vessels. It is mainly involved in generating pressure gradients between the interstitial spaces and the vessel lumen and between adjacent lymphatic vessels segments. Intrinsic pumping can very rapidly adapt to ambient physical stimuli such as hydraulic pressure, lymph flow-derived shear stress, fluid osmolarity, and temperature. This adaptation induces a variable lymph flow, which can precisely follow the local tissue state in terms of fluid and solutes removal. Several cellular systems are known to be sensitive to osmolarity, temperature, stretch, and shear stress, and some of them have been found either in lymphatic endothelial cells or lymphatic muscle. In this review, we will focus on how known physical stimuli affect intrinsic contractility and thus lymph flow and describe the most likely cellular mechanisms that mediate this phenomenon.
Collapse
|
28
|
Chen D, Geng X, Lapinski PE, Davis MJ, Srinivasan RS, King PD. RASA1-driven cellular export of collagen IV is required for the development of lymphovenous and venous valves in mice. Development 2020; 147:dev192351. [PMID: 33144395 PMCID: PMC7746672 DOI: 10.1242/dev.192351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
RASA1, a negative regulator of Ras-MAPK signaling, is essential for the development and maintenance of lymphatic vessel valves. However, whether RASA1 is required for the development and maintenance of lymphovenous valves (LVV) and venous valves (VV) is unknown. In this study, we show that induced disruption of Rasa1 in mouse embryos did not affect initial specification of LVV or central VV, but did affect their continued development. Similarly, a switch to expression of a catalytically inactive form of RASA1 resulted in impaired LVV and VV development. Blocked development of LVV was associated with accumulation of the basement membrane protein, collagen IV, in LVV-forming endothelial cells (EC), and could be partially or completely rescued by MAPK inhibitors and drugs that promote collagen IV folding. Disruption of Rasa1 in adult mice resulted in venous hypertension and impaired VV function that was associated with loss of EC from VV leaflets. In conclusion, RASA1 functions as a negative regulator of Ras signaling in EC that is necessary for EC export of collagen IV, thus permitting the development of LVV and the development and maintenance of VV.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65102, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
29
|
Si H, Wang J, Meininger CJ, Peng X, Zawieja DC, Zhang SL. Ca 2+ release-activated Ca 2+ channels are responsible for histamine-induced Ca 2+ entry, permeability increase, and interleukin synthesis in lymphatic endothelial cells. Am J Physiol Heart Circ Physiol 2020; 318:H1283-H1295. [PMID: 32275470 DOI: 10.1152/ajpheart.00544.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lymphatic functions in maintaining lymph transport, and immune surveillance can be impaired by infections and inflammation, thereby causing debilitating disorders, such as lymphedema and inflammatory bowel disease. Histamine is a key inflammatory mediator known to trigger vasodilation and vessel hyperpermeability upon binding to its receptors and evoking intracellular Ca2+ ([Ca2+]i) dynamics for downstream signal transductions. However, the exact molecular mechanisms beneath the [Ca2+]i dynamics and the downstream cellular effects have not been elucidated in the lymphatic system. Here, we show that Ca2+ release-activated Ca2+ (CRAC) channels, formed by Orai1 and stromal interaction molecule 1 (STIM1) proteins, are required for the histamine-elicited Ca2+ signaling in human dermal lymphatic endothelial cells (HDLECs). Blockers or antagonists against CRAC channels, phospholipase C, and H1R receptors can all significantly diminish the histamine-evoked [Ca2+]i dynamics in lymphatic endothelial cells (LECs), while short interfering RNA-mediated knockdown of endogenous Orai1 or STIM1 also abolished the Ca2+ entry upon histamine stimulation in LECs. Furthermore, we find that histamine compromises the lymphatic endothelial barrier function by increasing the intercellular permeability and disrupting vascular endothelial-cadherin integrity, which is remarkably attenuated by CRAC channel blockers. Additionally, the upregulated expression of inflammatory cytokines, IL-6 and IL-8, after histamine stimulation was abolished by silencing Orai1 or STIM1 with RNAi in LECs. Taken together, our data demonstrated the essential role of CRAC channels in mediating the [Ca2+]i signaling and downstream endothelial barrier and inflammatory functions induced by histamine in the LECs, suggesting a promising potential to relieve histamine-triggered vascular leakage and inflammatory disorders in the lymphatics by targeting CRAC channel functions.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Jian Wang
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Xu Peng
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - David C Zawieja
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Shenyuan L Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
30
|
The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations. Sci Rep 2019; 9:10649. [PMID: 31337769 PMCID: PMC6650476 DOI: 10.1038/s41598-019-46669-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 06/20/2019] [Indexed: 01/04/2023] Open
Abstract
The lymphatic system contains intraluminal leaflet valves that function to bias lymph flow back towards the heart. These valves are present in the collecting lymphatic vessels, which generally have lymphatic muscle cells and can spontaneously pump fluid. Recent studies have shown that the valves are open at rest, can allow some backflow, and are a source of nitric oxide (NO). To investigate how these valves function as a mechanical valve and source of vasoactive species to optimize throughput, we developed a mathematical model that explicitly includes Ca2+ -modulated contractions, NO production and valve structures. The 2D lattice Boltzmann model includes an initial lymphatic vessel and a collecting lymphangion embedded in a porous tissue. The lymphangion segment has mechanically-active vessel walls and is flanked by deformable valves. Vessel wall motion is passively affected by fluid pressure, while active contractions are driven by intracellular Ca2+ fluxes. The model reproduces NO and Ca2+ dynamics, valve motion and fluid drainage from tissue. We find that valve structural properties have dramatic effects on performance, and that valves with a stiffer base and flexible tips produce more stable cycling. In agreement with experimental observations, the valves are a major source of NO. Once initiated, the contractions are spontaneous and self-sustained, and the system exhibits interesting non-linear dynamics. For example, increased fluid pressure in the tissue or decreased lymph pressure at the outlet of the system produces high shear stress and high levels of NO, which inhibits contractions. On the other hand, a high outlet pressure opposes the flow, increasing the luminal pressure and the radius of the vessel, which results in strong contractions in response to mechanical stretch of the wall. We also find that the location of contraction initiation is affected by the extent of backflow through the valves.
Collapse
|
31
|
Morfoisse F, Noel A. Lymphatic and blood systems: Identical or fraternal twins? Int J Biochem Cell Biol 2019; 114:105562. [PMID: 31278994 DOI: 10.1016/j.biocel.2019.105562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Blood and lymphatic systems work in close collaboration to ensure their respective physiological functions. The lymphatic vessel network is being extensively studied, but has been overlooked as compared to the blood vasculature mainly due to the problematic discrimination of lymphatic vessels from the blood ones. This issue has been fortunately resolved in the past decade leading to the emergence of a huge amount of data in lymphatic biology revealing many shared features with the blood vasculature. However, this likeliness between the two vascular systems may lead to a simplistic view of lymphatics and a direct transcription of what is known for the blood system to the lymphatic one, thereby neglecting the lymphatic specificities. In this context, this review aims to clarify the main differences between the two vascular systems focusing on recently discovered lymphatic features.
Collapse
Affiliation(s)
- Florent Morfoisse
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium.
| |
Collapse
|
32
|
Chen D, Teng JM, North PE, Lapinski PE, King PD. RASA1-dependent cellular export of collagen IV controls blood and lymphatic vascular development. J Clin Invest 2019; 129:3545-3561. [PMID: 31185000 DOI: 10.1172/jci124917] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combined germline and somatic second hit inactivating mutations of the RASA1 gene, which encodes a negative regulator of the Ras signaling pathway, cause blood and lymphatic vascular lesions in the human autosomal dominant vascular disorder capillary malformation-arteriovenous malformation (CM-AVM). How RASA1 mutations in endothelial cells (EC) result in vascular lesions in CM-AVM is unknown. Here, using different murine models of RASA1-deficiency, we found that RASA1 was essential for the survival of EC during developmental angiogenesis in which primitive vascular plexuses are remodeled into hierarchical vascular networks. RASA1 was required for EC survival during developmental angiogenesis because it was necessary for export of collagen IV from EC and deposition in vascular basement membranes. In the absence of RASA1, dysregulated Ras mitogen-activated protein kinase (MAPK) signal transduction in EC resulted in impaired folding of collagen IV and its retention in the endoplasmic reticulum (ER) leading to EC death. Remarkably, the chemical chaperone, 4-phenylbutyric acid, and small molecule inhibitors of MAPK and 2-oxoglutarate dependent collagen IV modifying enzymes rescued ER retention of collagen IV and EC apoptosis and resulted in normal developmental angiogenesis. These findings have important implications with regards an understanding of the molecular pathogenesis of CM-AVM and possible means of treatment.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joyce M Teng
- Department of Dermatology, Stanford University, Stanford, California, USA
| | - Paula E North
- Department of Pathology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
33
|
Choi D, Park E, Jung E, Cha B, Lee S, Yu J, Kim PM, Lee S, Hong YJ, Koh CJ, Cho CW, Wu Y, Li Jeon N, Wong AK, Shin L, Kumar SR, Bermejo-Moreno I, Srinivasan RS, Cho IT, Hong YK. Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance. JCI Insight 2019; 4:125068. [PMID: 30676326 DOI: 10.1172/jci.insight.125068] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/17/2019] [Indexed: 01/05/2023] Open
Abstract
The lymphatic system plays crucial roles in tissue homeostasis, lipid absorption, and immune cell trafficking. Although lymphatic valves ensure unidirectional lymph flows, the flow itself controls lymphatic valve formation. Here, we demonstrate that a mechanically activated ion channel Piezo1 senses oscillating shear stress (OSS) and incorporates the signal into the genetic program controlling lymphatic valve development and maintenance. Time-controlled deletion of Piezo1 using a pan-endothelial Cre driver (Cdh5[PAC]-CreERT2) or lymphatic-specific Cre driver (Prox1-CreERT2) equally inhibited lymphatic valve formation in newborn mice. Furthermore, Piezo1 deletion in adult lymphatics caused substantial lymphatic valve degeneration. Piezo1 knockdown in cultured lymphatic endothelial cells (LECs) largely abrogated the OSS-induced upregulation of the lymphatic valve signature genes. Conversely, ectopic Piezo1 overexpression upregulated the lymphatic valve genes in the absence of OSS. Remarkably, activation of Piezo1 using chemical agonist Yoda1 not only accelerated lymphatic valve formation in animals, but also triggered upregulation of some lymphatic valve genes in cultured LECs without exposure to OSS. In summary, our studies together demonstrate that Piezo1 is the force sensor in the mechanotransduction pathway controlling lymphatic valve development and maintenance, and Piezo1 activation is a potentially novel therapeutic strategy for congenital and surgery-associated lymphedema.
Collapse
Affiliation(s)
- Dongwon Choi
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Eunkyung Park
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Eunson Jung
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Somin Lee
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - James Yu
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | - Paul M Kim
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Sunju Lee
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Yeo Jin Hong
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Chester J Koh
- Division of Pediatric Urology, Texas Children's Hospital, Baylor Collexge of Medicine, Houston, Texas, USA
| | - Chang-Won Cho
- Department of Surgery, and.,Traditional Food Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, South Korea
| | - Yifan Wu
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| | - Noo Li Jeon
- Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, South Korea
| | | | | | | | - Ivan Bermejo-Moreno
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | | | - Young-Kwon Hong
- Department of Surgery, and.,Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
34
|
Possenti L, Casagrande G, Di Gregorio S, Zunino P, Costantino ML. Numerical simulations of the microvascular fluid balance with a non-linear model of the lymphatic system. Microvasc Res 2018; 122:101-110. [PMID: 30448400 DOI: 10.1016/j.mvr.2018.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 02/03/2023]
Abstract
Fluid homeostasis is required for life. Processes involved in fluid balance are strongly related to exchanges at the microvascular level. Computational models have been presented in the literature to analyze the microvascular-interstitial interactions. As far as we know, none of those models consider a physiological description for the lymphatic drainage-interstitial pressure relation. We develop a computational model that consists of a network of straight cylindrical vessels and an isotropic porous media with a uniformly distributed sink term acting as the lymphatic system. In order to describe the lymphatic flow rate, a non-linear function of the interstitial pressure is defined, based on literature data on the lymphatic system. The proposed model of lymphatic drainage is compared to a linear one, as is typically used in computational models. To evaluate the response of the model, the two are compared with reference to both physiological and pathological conditions. Differences in the local fluid dynamic description have been observed using the non-linear model. In particular, the distribution of interstitial pressure is heterogeneous in all the cases analyzed. The resulting averaged values of the interstitial pressure are also different, and they agree with literature data when using the non-linear model. This work highlights the key role of lymphatic drainage and its modeling when studying the fluid balance in microcirculation for both to physiological and pathological conditions, e.g. uremia.
Collapse
Affiliation(s)
- Luca Possenti
- LaBS, Chemistry, Material and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Italy.
| | - Giustina Casagrande
- LaBS, Chemistry, Material and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Italy
| | - Simone Di Gregorio
- LaBS, Chemistry, Material and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Italy; MOX, Department of Mathematics, Politecnico di Milano, Italy
| | - Paolo Zunino
- MOX, Department of Mathematics, Politecnico di Milano, Italy
| | - Maria Laura Costantino
- LaBS, Chemistry, Material and Chemical Engineering Department "Giulio Natta", Politecnico di Milano, Italy
| |
Collapse
|
35
|
Jeong SH, Jang JH, Cho HY, Lee YB. Soft- and hard-lipid nanoparticles: a novel approach to lymphatic drug delivery. Arch Pharm Res 2018; 41:797-814. [PMID: 30074202 DOI: 10.1007/s12272-018-1060-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/25/2018] [Indexed: 12/31/2022]
Abstract
With the current advance in nanotechnology, the development has accelerated of a number of nanoparticle-type drugs such as nano-emulsions, lipid emulsions, liposomes, and cell therapeutics. With these developments, attempts are being made to apply these new drugs to healing many intractable diseases related to antibody production, autoimmune disorders, cancer, and organ transplantation in both clinical and nonclinical trials. Drug delivery to the lymphatic system is indispensable for treating these diseases, but the core technologies related to the in vivo distribution characteristics and lymphatic delivery evaluation of these particle-type drugs have not yet been established. Additionally, the core technologies for setting up the pharmacotherapeutic aspects such as their usage and dosages in the development of new drugs do not meet the needs of the market. Therefore, it is necessary to consider dividing these particle-type drugs into soft-lipid nanoparticles that can change size in the process of body distribution and hard-lipid nanoparticles whose surfaces are hardened and whose sizes do not easily change in vivo; these soft- and hard-lipid nanoparticles likely possess different biodistribution characteristics including delivery to the lymphatic system. In this review, we summarize the different types, advantages, limitations, possible remedies, and body distribution characteristics of soft- and hard-lipid nanoparticles based on their administration routes. We also emphasize that it will be necessary to fully understand the differences in distribution between these soft- and hard-lipid nanoparticle-type drugs and to establish pharmacokinetic models for their more ideal lymphatic delivery.
Collapse
Affiliation(s)
- Seung-Hyun Jeong
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ji-Hun Jang
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-Do, 13488, Republic of Korea
| | - Yong-Bok Lee
- College of Pharmacy, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
36
|
Geng X, Cha B, Mahamud MR, Srinivasan RS. Intraluminal valves: development, function and disease. Dis Model Mech 2018; 10:1273-1287. [PMID: 29125824 PMCID: PMC5719258 DOI: 10.1242/dmm.030825] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The circulatory system consists of the heart, blood vessels and lymphatic vessels, which function in parallel to provide nutrients and remove waste from the body. Vascular function depends on valves, which regulate unidirectional fluid flow against gravitational and pressure gradients. Severe valve disorders can cause mortality and some are associated with severe morbidity. Although cardiac valve defects can be treated by valve replacement surgery, no treatment is currently available for valve disorders of the veins and lymphatics. Thus, a better understanding of valves, their development and the progression of valve disease is warranted. In the past decade, molecules that are important for vascular function in humans have been identified, with mouse studies also providing new insights into valve formation and function. Intriguing similarities have recently emerged between the different types of valves concerning their molecular identity, architecture and development. Shear stress generated by fluid flow has also been shown to regulate endothelial cell identity in valves. Here, we review our current understanding of valve development with an emphasis on its mechanobiology and significance to human health, and highlight unanswered questions and translational opportunities.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA .,Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
37
|
Stylianopoulos T, Munn LL, Jain RK. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 2018; 4:292-319. [PMID: 29606314 PMCID: PMC5930008 DOI: 10.1016/j.trecan.2018.02.005] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/16/2022]
Abstract
Physical forces have a crucial role in tumor progression and cancer treatment. The application of principles of engineering and physical sciences to oncology has provided powerful insights into the mechanisms by which these forces affect tumor progression and confer resistance to delivery and efficacy of molecular, nano-, cellular, and immuno-medicines. Here, we discuss the mechanics of the solid and fluid components of a tumor, with a focus on how they impede the transport of therapeutic agents and create an abnormal tumor microenvironment (TME) that fuels tumor progression and treatment resistance. We also present strategies to reengineer the TME by normalizing the tumor vasculature and the extracellular matrix (ECM) to improve cancer treatment. Finally, we summarize various mathematical models that have provided insights into the physical barriers to cancer treatment and revealed new strategies to overcome these barriers.
Collapse
Affiliation(s)
- Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus.
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Abstract
The supply of oxygen and nutrients to tissues is performed by the blood system, and involves a net leakage of fluid outward at the capillary level. One of the principal functions of the lymphatic system is to gather this fluid and return it to the blood system to maintain overall fluid balance. Fluid in the interstitial spaces is often at subatmospheric pressure, and the return points into the venous system are at pressures of approximately 20 cmH2O. This adverse pressure difference is overcome by the active pumping of collecting lymphatic vessels, which feature closely spaced one-way valves and contractile muscle cells in their walls. Passive vessel squeezing causes further pumping. The dynamics of lymphatic pumping have been investigated experimentally and mathematically, revealing complex behaviours indicating that the system performance is robust against minor perturbations in pressure and flow. More serious disruptions can lead to incurable swelling of tissues called lymphœdema.
Collapse
Affiliation(s)
- James E Moore
- Department of Bioengineering, Imperial College London
| | | |
Collapse
|
39
|
Abstract
The supply of oxygen and nutrients to tissues is performed by the blood system, and involves a net leakage of fluid outward at the capillary level. One of the principal functions of the lymphatic system is to gather this fluid and return it to the blood system to maintain overall fluid balance. Fluid in the interstitial spaces is often at subatmospheric pressure, and the return points into the venous system are at pressures of approximately 20 cmH2O. This adverse pressure difference is overcome by the active pumping of collecting lymphatic vessels, which feature closely spaced one-way valves and contractile muscle cells in their walls. Passive vessel squeezing causes further pumping. The dynamics of lymphatic pumping have been investigated experimentally and mathematically, revealing complex behaviours indicating that the system performance is robust against minor perturbations in pressure and flow. More serious disruptions can lead to incurable swelling of tissues called lymphœdema.
Collapse
Affiliation(s)
- James E Moore
- Department of Bioengineering, Imperial College London
| | | |
Collapse
|
40
|
Sabine A, Davis MJ, Bovay E, Petrova TV. Characterization of Mouse Mesenteric Lymphatic Valve Structure and Function. Methods Mol Biol 2018; 1846:97-129. [PMID: 30242755 DOI: 10.1007/978-1-4939-8712-2_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intraluminal valves of collecting lymphatic vessels ensure unidirectional lymph transport against hydrostatic pressure gradient. Mouse mesentery harbors up to 800 valves and represents a convenient model for lymphatic valve quantification, high resolution imaging of different stages of valve development as well as for analysis of valve function. The protocol describes embryonic and postnatal mesenteric lymphatic vessel preparation for whole-mount immunofluorescent staining and visualization of valve organization, quantification of main morphological parameters such as valve size and leaflet length, and the quantitative assessment of functional properties of adult valves using back-leak and closure tests.
Collapse
Affiliation(s)
- Amélie Sabine
- Department of Oncology, Division of Experimental Pathology, CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
| | - Michael J Davis
- Medical Pharmacology & Physiology, University of Missouri, Columbia, MO, USA
| | - Esther Bovay
- Department of Oncology, Division of Experimental Pathology, CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, Division of Experimental Pathology, CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges, Switzerland.
- Swiss Institute for Cancer Research, EPFL, Lausanne, Switzerland.
| |
Collapse
|
41
|
Morley ST, Walsh MT, Newport DT. Opportunities for Studying the Hydrodynamic Context for Breast Cancer Cell Spread Through Lymph Flow. Lymphat Res Biol 2017; 15:204-219. [PMID: 28749743 DOI: 10.1089/lrb.2017.0005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system serves as the primary route for the metastatic spread of breast cancer cells (BCCs). A scarcity of information exists with regard to the advection of BCCs in lymph flow and a fundamental understanding of the response of BCCs to the forces in the lymphatics needs to be established. This review summarizes the flow environment metastatic BCCs are exposed to in the lymphatics. Special attention is paid to the behavior of cells/particles in microflows in an attempt to elucidate the behavior of BCCs under lymph flow conditions (Reynolds number <1).
Collapse
Affiliation(s)
- Sinéad T Morley
- 1 Faculty of Science & Engineering, School of Engineering, Bernal Institute, University of Limerick , Limerick, Ireland
| | - Michael T Walsh
- 1 Faculty of Science & Engineering, School of Engineering, Bernal Institute, University of Limerick , Limerick, Ireland .,2 Health Research Institute, University of Limerick , Limerick, Ireland
| | - David T Newport
- 1 Faculty of Science & Engineering, School of Engineering, Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
42
|
Lapinski PE, Lubeck BA, Chen D, Doosti A, Zawieja SD, Davis MJ, King PD. RASA1 regulates the function of lymphatic vessel valves in mice. J Clin Invest 2017; 127:2569-2585. [PMID: 28530642 DOI: 10.1172/jci89607] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood and lymphatic vessel (LV) disorder that is caused by inherited inactivating mutations of the RASA1 gene, which encodes p120 RasGAP (RASA1), a negative regulator of the Ras small GTP-binding protein. How RASA1 mutations lead to the LV leakage defects that occur in CM-AVM is not understood. Here, we report that disruption of the Rasa1 gene in adult mice resulted in loss of LV endothelial cells (LECs) specifically from the leaflets of intraluminal valves in collecting LVs. As a result, valves were unable to prevent fluid backflow and the vessels were ineffective pumps. Furthermore, disruption of Rasa1 in midgestation resulted in LEC apoptosis in developing LV valves and consequently failed LV valvulogenesis. Similar phenotypes were observed in induced RASA1-deficient adult mice and embryos expressing a catalytically inactive RASA1R780Q mutation. Thus, RASA1 catalytic activity is essential for the function and development of LV valves. These data provide a partial explanation for LV leakage defects and potentially other LV abnormalities observed in CM-AVM.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Beth A Lubeck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Abbas Doosti
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
43
|
Morley ST, Walsh MT, Newport DT. The advection of microparticles, MCF-7 and MDA-MB-231 breast cancer cells in response to very low Reynolds numbers. BIOMICROFLUIDICS 2017; 11:034105. [PMID: 28529671 PMCID: PMC5419862 DOI: 10.1063/1.4983149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/26/2017] [Indexed: 05/05/2023]
Abstract
The lymphatic system is an extensive vascular network that serves as the primary route for the metastatic spread of breast cancer cells (BCCs). The dynamics by which BCCs travel in the lymphatics to distant sites, and eventually establish metastatic tumors, remain poorly understood. Particle tracking techniques were employed to analyze the behavior of MCF-7 and MDA-MB-231 BCCs which were exposed to lymphatic flow conditions in a 100 μm square microchannel. The behavior of the BCCs was compared to rigid particles of various diameters (η = dp/H= 0.05-0.32) that have been used to simulate cell flow in lymph. Parabolic velocity profiles were recorded for all particle sizes. All particles were found to lag the fluid velocity, the larger the particle the slower its velocity relative to the local flow (5%-15% velocity lag recorded). A distinct difference between the behavior of BCCs and particles was recorded. The BCCs travelled approximately 40% slower than the undisturbed flow, indicating that morphology and size affects their response to lymphatic flow conditions (Re < 1). BCCs adhered together, forming aggregates whose behavior was irregular. At lymphatic flow rates, MCF-7s were distributed uniformly across the channel in comparison to the MDA-MB-231 cells which travelled in the central region (88% of cells found within 0.35 ≤ W ≤ 0.64), indicating that metastatic MDA-MB-231 cells are subjected to a lower range of shear stresses in vivo. This suggests that both size and deformability need to be considered when modelling BCC behavior in the lymphatics. This finding will inform the development of in vitro lymphatic flow and metastasis models.
Collapse
Affiliation(s)
- Sinéad T Morley
- School of Engineering, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | | | - David T Newport
- School of Engineering, Bernal Institute, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| |
Collapse
|
44
|
Triacca V, Güç E, Kilarski WW, Pisano M, Swartz MA. Transcellular Pathways in Lymphatic Endothelial Cells Regulate Changes in Solute Transport by Fluid Stress. Circ Res 2017; 120:1440-1452. [DOI: 10.1161/circresaha.116.309828] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 01/12/2023]
Abstract
Rationale:
The transport of interstitial fluid and solutes into lymphatic vessels is important for maintaining interstitial homeostasis and delivering antigens and soluble factors to the lymph node for immune surveillance. Transendothelial transport across lymphatic endothelial cells (LECs) is commonly considered to occur paracellularly, or between cell–cell junctions, and driven by local pressure and concentration gradients. However, emerging evidence suggests that LECs also play active roles in regulating interstitial solute balance and can scavenge and store antigens, raising the possibility that vesicular or transcellular pathways may be important in lymphatic solute transport.
Objective:
The aim of this study was to determine the relative importance of transcellular (vesicular) versus paracellular transport pathways by LECs and how mechanical stress (ie, fluid flow conditioning) alters either pathway.
Methods and Results:
We demonstrate that transcellular transport mechanisms substantially contribute to lymphatic solute transport and that solute uptake occurs in both caveolae- and clathrin-coated vesicles. In vivo, intracelluar uptake of fluorescently labeled albumin after intradermal injection by LECs was similar to that of dermal dendritic cells. In vitro, we developed a method to differentially quantify intracellular solute uptake versus transendothelial transport by LECs. LECs preconditioned to 1 µm/s transmural flow demonstrated increased uptake and basal-to-apical solute transport, which could be substantially reversed by blocking dynamin-dependent vesicle formation.
Conclusions:
These findings reveal the importance of intracellular transport in steady-state lymph formation and suggest that LECs use transcellular mechanisms in parallel to the well-described paracellular route to modulate solute transport from the interstitium according to biomechanical cues.
Collapse
Affiliation(s)
- Valentina Triacca
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Esra Güç
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Witold W. Kilarski
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Marco Pisano
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| | - Melody A. Swartz
- From the Institute of Bioengineering and Swiss Institute for Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne (V.T., E.G., W.W.K., M.P., M.A.S.); and Institute for Molecular Engineering, The University of Chicago, IL (W.W.K., M.A.S.)
| |
Collapse
|
45
|
CHIBA T, NARITA H, SHIMODA H. Fine structure of human thoracic duct as revealed by light and scanning electron microscopy . Biomed Res 2017. [DOI: 10.2220/biomedres.38.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tomohiro CHIBA
- Department of Anatomical Science, Cell Biology and Histology, Hirosaki University Graduate School of Medicine
| | - Hirokazu NARITA
- Department of Anatomical Science, Cell Biology and Histology, Hirosaki University Graduate School of Medicine
| | - Hiroshi SHIMODA
- Department of Anatomical Science, Cell Biology and Histology, Hirosaki University Graduate School of Medicine
- Department of Neuroanatomy, Cell Biology anf Histology, Hirosaki University Graduate School of Medicine
| |
Collapse
|
46
|
Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J Physiol 2016; 594:5749-5768. [PMID: 27219461 PMCID: PMC5063934 DOI: 10.1113/jp272088] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 05/17/2016] [Indexed: 12/19/2022] Open
Abstract
A combination of extrinsic (passive) and intrinsic (active) forces move lymph against a hydrostatic pressure gradient in most regions of the body. The effectiveness of the lymph pump system impacts not only interstitial fluid balance but other aspects of overall homeostasis. This review focuses on the mechanisms that regulate the intrinsic, active contractions of collecting lymphatic vessels in relation to their ability to actively transport lymph. Lymph propulsion requires not only robust contractions of lymphatic muscle cells, but contraction waves that are synchronized over the length of a lymphangion as well as properly functioning intraluminal valves. Normal lymphatic pump function is determined by the intrinsic properties of lymphatic muscle and the regulation of pumping by lymphatic preload, afterload, spontaneous contraction rate, contractility and neural influences. Lymphatic contractile dysfunction, barrier dysfunction and valve defects are common themes among pathologies that directly involve the lymphatic system, such as inherited and acquired forms of lymphoedema, and pathologies that indirectly involve the lymphatic system, such as inflammation, obesity and metabolic syndrome, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Joshua P Scallan
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
47
|
Munger SJ, Geng X, Srinivasan RS, Witte MH, Paul DL, Simon AM. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Dev Biol 2016; 412:173-90. [PMID: 26953188 PMCID: PMC4826804 DOI: 10.1016/j.ydbio.2016.02.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 01/25/2023]
Abstract
Venous valves (VVs) are critical for unidirectional blood flow from superficial and deep veins towards the heart. Congenital valve aplasia or agenesis may, in some cases, be a direct cause of vascular disease, motivating an understanding of the molecular mechanisms underlying the development and maintenance of VVs. Three gap junction proteins (Connexins), Cx37, Cx43, and Cx47, are specifically expressed at VVs in a highly polarized fashion. VVs are absent from adult mice lacking Cx37; however it is not known if Cx37 is required for the initial formation of valves. In addition, the requirement of Cx43 and Cx47 for VV development has not been studied. Here, we provide a detailed description of Cx37, Cx43, and Cx47 expression during mouse vein development and show by gene knockout that each Cx is necessary for normal valve development. The valve phenotypes in the knockout lines exhibit Cx-specific differences, however, including whether peripheral or central VVs are affected by gene inactivation. In addition, we show that a Cx47 null mutation impairs peripheral VV development but does not affect lymphatic valve formation, a finding of significance for understanding how some CX47 mutations cause inherited lymphedema in humans. Finally, we demonstrate a striking segregation of Foxc2 and NFATc1 transcription factor expression between the downstream and upstream faces, respectively, of developing VV leaflets and show that this segregation is closely associated with the highly polarized expression of Cx37, Cx43, and Cx47. The partition of Foxc2 and NFATc1 expression at VV leaflets makes it unlikely that these factors directly cooperate during the leaflet elongation stage of VV development.
Collapse
Affiliation(s)
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Marlys H Witte
- Department of Surgery, University of Arizona, Tucson, AZ 85724, USA.
| | - David L Paul
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Alexander M Simon
- Department of Physiology, University of Arizona, Tucson, AZ 85724, USA.
| |
Collapse
|
48
|
Moriondo A, Solari E, Marcozzi C, Negrini D. Lymph flow pattern in pleural diaphragmatic lymphatics during intrinsic and extrinsic isotonic contraction. Am J Physiol Heart Circ Physiol 2016; 310:H60-70. [DOI: 10.1152/ajpheart.00640.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/26/2015] [Indexed: 12/13/2022]
Abstract
Peripheral rat diaphragmatic lymphatic vessels, endowed with intrinsic spontaneous contractility, were in vivo filled with fluorescent dextrans and microspheres and subsequently studied ex vivo in excised diaphragmatic samples. Changes in diameter and lymph velocity were detected, in a vessel segment, during spontaneous lymphatic smooth muscle contraction and upon activation, through electrical whole-field stimulation, of diaphragmatic skeletal muscle fibers. During intrinsic contraction lymph flowed both forward and backward, with a net forward propulsion of 14.1 ± 2.9 μm at an average net forward speed of 18.0 ± 3.6 μm/s. Each skeletal muscle contraction sustained a net forward-lymph displacement of 441.9 ± 159.2 μm at an average velocity of 339.9 ± 122.7 μm/s, values significantly higher than those documented during spontaneous contraction. The flow velocity profile was parabolic during both spontaneous and skeletal muscle contraction, and the shear stress calculated at the vessel wall at the highest instantaneous velocity never exceeded 0.25 dyne/cm2. Therefore, we propose that the synchronous contraction of diaphragmatic skeletal muscle fibers recruited at every inspiratory act dramatically enhances diaphragmatic lymph propulsion, whereas the spontaneous lymphatic contractility might, at least in the diaphragm, be essential in organizing the pattern of flow redistribution within the diaphragmatic lymphatic circuit. Moreover, the very low shear stress values observed in diaphragmatic lymphatics suggest that, in contrast with other contractile lymphatic networks, a likely interplay between intrinsic and extrinsic mechanisms be based on a mechanical and/or electrical connection rather than on nitric oxide release.
Collapse
Affiliation(s)
- Andrea Moriondo
- Department of Surgical and Morphological Sciences, Università degli Studi dell′Insubria, Italy
| | - Eleonora Solari
- Department of Surgical and Morphological Sciences, Università degli Studi dell′Insubria, Italy
| | - Cristiana Marcozzi
- Department of Surgical and Morphological Sciences, Università degli Studi dell′Insubria, Italy
| | - Daniela Negrini
- Department of Surgical and Morphological Sciences, Università degli Studi dell′Insubria, Italy
| |
Collapse
|
49
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
50
|
Munn LL. Mechanobiology of lymphatic contractions. Semin Cell Dev Biol 2015; 38:67-74. [PMID: 25636584 DOI: 10.1016/j.semcdb.2015.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/30/2023]
Abstract
The lymphatic system is responsible for controlling tissue fluid pressure by facilitating flow of lymph (i.e. the plasma and cells that enter the lymphatic system). Because lymph contains cells of the immune system, its transport is not only important for fluid homeostasis, but also immune function. Lymph drainage can occur via passive flow or active pumping, and much research has identified the key biochemical and mechanical factors that affect output. Although many studies and reviews have addressed how tissue properties and fluid mechanics (i.e. pressure gradients) affect lymph transport [1-3] there is less known about lymphatic mechanobiology. As opposed to passive mechanical properties, mechanobiology describes the active coupling of mechanical signals and biochemical pathways. Lymphatic vasomotion is the result of a fascinating system affected by mechanical forces exerted by the flowing lymph, including pressure-induced vessel stretch and flow-induced shear stresses. These forces can trigger or modulate biochemical pathways important for controlling the lymphatic contractions. Here, I review the current understanding of lymphatic vessel function, focusing on vessel mechanobiology, and summarize the prospects for a comprehensive understanding that integrates the mechanical and biomechanical control mechanisms in the lymphatic system.
Collapse
Affiliation(s)
- Lance L Munn
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|