1
|
Anaki A, Tzror-Azankot C, Motiei M, Sadan T, Popovtzer R. Impact of synthesis methods on the functionality of antibody-conjugated gold nanoparticles for targeted therapy. NANOSCALE ADVANCES 2024:d4na00134f. [PMID: 39247853 PMCID: PMC11372556 DOI: 10.1039/d4na00134f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
Gold nanoparticles (GNPs) are emerging as promising modular platforms for antibody-based cancer therapeutics. Their unique physiochemical properties enable efficient binding of multiple antibodies upon a single particle, thereby enhancing therapeutic potential. However, the effect of widely used synthesis techniques on the characteristics and functionality of antibody-GNP platforms has yet to be fully understood. Here, we investigated the effect of key synthesis approaches, namely, covalent binding and physical adsorption, on the properties and anti-cancer functionality of antibody-coated GNPs. By carefully manipulating synthesis variables, including antibody mass in reaction and linker compositions, we revealed a direct impact of these synthesis methods on antibody binding efficiency and anti-cancer functionality. We found that covalent binding of antibodies to GNPs generated a platform with increased cancer cell killing functionality as compared to the adsorption approach. Additionally, a higher antibody mass in the synthesis reaction and a higher polyethylene glycol linker ratio upon covalently bound antibody-GNPs led to increased cell death. Our findings emphasize the critical role of synthesis strategies in determining the functionality of targeted GNPs for effective cancer therapy.
Collapse
Affiliation(s)
- Adi Anaki
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat Gan 5290002 Israel
| | - Chen Tzror-Azankot
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat Gan 5290002 Israel
| | - Menachem Motiei
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat Gan 5290002 Israel
| | - Tamar Sadan
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat Gan 5290002 Israel
| | - Rachela Popovtzer
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University Ramat Gan 5290002 Israel
| |
Collapse
|
2
|
Strickland S, Jorns M, Fourroux L, Heyd L, Pappas D. Cancer Cell Targeting Via Selective Transferrin Receptor Labeling Using Protein-Derived Carbon Dots. ACS OMEGA 2024; 9:2707-2718. [PMID: 38250381 PMCID: PMC10795060 DOI: 10.1021/acsomega.3c07744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Carbon dot (CD) nanoparticles offer tremendous advantages as fluorescent probes in bioimaging and biosensing; however, they lack specific affinity for biomolecules, limiting their practical applications in selective targeting. Nanoparticles with intrinsic affinity for a target have applications in imaging, cytometry, therapeutics, etc. Toward that end, we report the transferrin receptor (CD71) targeting CDs, synthesized for the first time. The formation of these particles is truly groundbreaking, as direct tuning of nanoparticle affinity was achieved by simple and careful precursor selection of a protein, which has the targeting characteristic of interest. We hypothesized that the retention of the original protein's peptides on the nanoparticle surface provides the CDs with some of the function of the precursor protein, enabling selective binding to the protein's receptor. This was confirmed with FTIR (Fourier transform infrared) data and subsequent affinity-based cell assays. These transferrin (Tf)-derived CDs have been shown to possess an affinity for CD71, a cancer biomarker that is ubiquitously expressed in nearly every cancer cell line due to its central role mediating the uptake of cellular iron. The CDs were tested using the human leukemia cell line HL60 and demonstrated the selective targeting of CD71 and specific triggering of transferrin-mediated endocytosis via clathrin-coated pits. The particle characterization results reflect a carbon-based nanoparticle with bright violet fluorescence and 7.9% quantum yield in aqueous solution. These unpresented CDs proved to retain the functional properties of the precursor protein. Indicating that this process can be repeated for other disease biomarkers for applications ranging from biosensing and diagnostic bioimaging to targeted therapeutics.
Collapse
Affiliation(s)
- Sara Strickland
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Mychele Jorns
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Luke Fourroux
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Lindsey Heyd
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Dimitri Pappas
- Department of Chemistry and
Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
3
|
Boltman T, Meyer M, Ekpo O. Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles. Cancers (Basel) 2023; 15:3388. [PMID: 37444498 DOI: 10.3390/cancers15133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.
Collapse
Affiliation(s)
- Taahirah Boltman
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Okobi Ekpo
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
4
|
Tiwari H, Rai N, Singh S, Gupta P, Verma A, Singh AK, Kajal, Salvi P, Singh SK, Gautam V. Recent Advances in Nanomaterials-Based Targeted Drug Delivery for Preclinical Cancer Diagnosis and Therapeutics. Bioengineering (Basel) 2023; 10:760. [PMID: 37508788 PMCID: PMC10376516 DOI: 10.3390/bioengineering10070760] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Nano-oncology is a branch of biomedical research and engineering that focuses on using nanotechnology in cancer diagnosis and treatment. Nanomaterials are extensively employed in the field of oncology because of their minute size and ultra-specificity. A wide range of nanocarriers, such as dendrimers, micelles, PEGylated liposomes, and polymeric nanoparticles are used to facilitate the efficient transport of anti-cancer drugs at the target tumor site. Real-time labeling and monitoring of cancer cells using quantum dots is essential for determining the level of therapy needed for treatment. The drug is targeted to the tumor site either by passive or active means. Passive targeting makes use of the tumor microenvironment and enhanced permeability and retention effect, while active targeting involves the use of ligand-coated nanoparticles. Nanotechnology is being used to diagnose the early stage of cancer by detecting cancer-specific biomarkers using tumor imaging. The implication of nanotechnology in cancer therapy employs photoinduced nanosensitizers, reverse multidrug resistance, and enabling efficient delivery of CRISPR/Cas9 and RNA molecules for therapeutic applications. However, despite recent advancements in nano-oncology, there is a need to delve deeper into the domain of designing and applying nanoparticles for improved cancer diagnostics.
Collapse
Affiliation(s)
- Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Akhilesh Kumar Singh
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Kajal
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Prafull Salvi
- Department of Agriculture Biotechnology, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
5
|
Sarkis M, Minassian G, Mitri N, Rahme K, Fracasso G, El Hage R, Ghanem E. D2B-Functionalized Gold Nanoparticles: Promising Vehicles for Targeted Drug Delivery to Prostate Cancer. ACS APPLIED BIO MATERIALS 2023; 6:819-827. [PMID: 36755401 PMCID: PMC9945086 DOI: 10.1021/acsabm.2c00975] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Despite the multitude of therapeutic agents available to treat prostate cancer (PC), there are still no effective and safe measures to treat the tumor. It remains a challenge to develop a simple approach to target PC with specific antibodies. In our study, D2B monoclonal antibodies against a prostate-specific membrane antigen (PSMA) were used. We investigated the functionalization of gold nanoparticles (AuNPs) with D2B to generate favorable physicochemical and biological properties that mediate specific binding to PC. For this purpose, AuNPs with a size of about 25 nm were synthesized in water using sodium citrate as a reducing and stabilizing agent and then coated with D2B. Major physicochemical properties of naked and D2B-coated AuNPs were investigated by ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), and zeta potential measurements. The successful binding of D2B to AuNPs-citrate caused a 15 nm red shift in the UV-vis. This was assessed by DLS as an increase in zeta potential from ∼-45 to ∼-23 mV and in the size of AuNPs from ∼25 to ∼63 nm. Scanning electron microscopy confirmed the size shift of AuNPs, which was detected as an exterior organic layer of D2Bs surrounding each AuNP. Even at high exposure levels of the bioconjugates, PSMA-PC-3 cells exhibited minimal cytotoxicity. The specific and dose-dependent binding of AuNPs-D2B to PC-3-PSMA cells was validated by flow cytometry analysis. Our data provide effective drug delivery systems in PC theranostics.
Collapse
Affiliation(s)
- Monira Sarkis
- Department of Sciences, Notre Dame University-Louaize, 72 Zouk Mosbeh, Lebanon
| | - Georges Minassian
- Department of Sciences, Notre Dame University-Louaize, 72 Zouk Mosbeh, Lebanon
| | - Nadim Mitri
- Department of Sciences, Notre Dame University-Louaize, 72 Zouk Mosbeh, Lebanon
| | - Kamil Rahme
- Department of Sciences, Notre Dame University-Louaize, 72 Zouk Mosbeh, Lebanon.,School of Chemistry & AMBER Centre, University College Cork, T12 YN60 Cork, Ireland
| | - Giulio Fracasso
- Department of Medicine, University of Verona, I-37134 Verona, Italy
| | - Roland El Hage
- Laboratory of Physical Chemistry of Materials (LCPM), PR2N (EDST), Faculty of Sciences II, Lebanese University, Campus Fanar P.O. Box 90656, 1103 Beirut, Lebanon.,Polymers Composites and Hybrids (PCH), IMT Mines Ales, 30100 Ales, France
| | - Esther Ghanem
- Department of Sciences, Notre Dame University-Louaize, 72 Zouk Mosbeh, Lebanon.,biobank.cy-Center of Excellence in Biobanking and Biomedical Research, Molecular Medicine Research Center, University of Cyprus, 1678 Nicosia, Cyprus
| |
Collapse
|
6
|
McDougall RM, Cahill HF, Power ME, MacCormack TJ, Meli MV, Rourke JL. Multiparametric cytotoxicity assessment: the effect of gold nanoparticle ligand functionalization on SKOV3 ovarian carcinoma cell death. Nanotoxicology 2022; 16:355-374. [PMID: 35787735 DOI: 10.1080/17435390.2022.2095312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Gold nanoparticles (AuNP) are promising anti-cancer agents because of their modifiable properties and high biocompatibility. This study used multiple parallel analyses to investigate the cytotoxic properties of 5 nm AuNP conjugated to four different ligands with distinct surface chemistry: polyethylene glycol (PEG), trimethylammonium bromide (TMAB), 4-dimethylaminopyridine (DMAP), and carboxyl (COOH). We used a range of biochemical and high-content microscopy methods to evaluate the metabolic function, oxidative stress, cell health, cell viability, and cell morphology in SKOV3 ovarian cancer cells. Each AuNP displayed a distinct cytotoxicity profile. All AuNP species assessed exhibited signs of dose-dependent cytotoxicity when morphology, clonogenic survival, lysosomal uptake, or cell number were measured as the marker of toxicity. All particles except for AuNP-COOH increased SKOV3 apoptosis. In contrast, AuNP-TMAB was the only particle that did not alter the metabolic function or induce significant signs of oxidative stress. These results demonstrate that AuNP surface chemistry impacts the magnitude and mechanism of SKOV3 cell death. Together, these findings reinforce the important role for multiparametric cytotoxicity characterization when considering the utility of novel particles and surface chemistries.
Collapse
Affiliation(s)
- Rachel M McDougall
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Hannah F Cahill
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Madeline E Power
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Tyson J MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - M-Vicki Meli
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| | - Jillian L Rourke
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, Canada
| |
Collapse
|
7
|
Yan X, Nie X, Tan Z, Liu P, Li X, Wang P, Shi H. A methanogenic protein facilitates the biosynthesis of the silver nanoparticles. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Liver cancer treatment with integration of laser emission and microwave irradiation with the aid of gold nanoparticles. Sci Rep 2022; 12:9271. [PMID: 35665760 PMCID: PMC9166745 DOI: 10.1038/s41598-022-13420-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
This paper studies the effectiveness of the integration of microwave field irradiation and laser emission in liver cancer therapy with the aid of gold nanorods, in order to find out the influences of these combinational methods in tumor necrosis. Hepatocellular carcinoma is a kind of liver cancer that usually has a complicated structure, including both of superficial and deep sections. In current research, in deep regions of cancerous tissue, microwave antenna is utilized and in superficial regions, laser beams are irradiated. A Pulsed laser with heating time of 50 s and cooling time of 20 s is utilized for hyperthermia treatment. It should be mentioned that gold nanorods are injected into the tumorous region to enhance the treatment process and reduce the patient’s exposure time. Simulation results showed that at the first step, without any injection of gold nanoparticles, 0.17% of the tumor’s volume encountered necrosis, while at the next stage, after injection of gold nanorods, the necrosis rate increased to 35%, which demonstrates the efficiency of gold nanorods injection on the tumor treatments. Furthermore, the combinational applying of both microwave antenna and laser illumination can eradiate the tumor tissue completely.
Collapse
|
9
|
Lee JW, Choi SR, Heo JH. Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42311-42328. [PMID: 34464527 DOI: 10.1021/acsami.1c10436] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Gold nanoparticles (AuNPs) are used in various biological applications because of their small surface area-to-volume ratios, ease of synthesis and modification, low toxicity, and unique optical properties. These properties can vary significantly with changes in AuNP size, shape, composition, and arrangement. Thus, the stabilization of AuNPs is crucial to preserve the properties required for biological applications. In recent years, various polymer-based physical and chemical methods have been extensively used for AuNP stabilization. However, a new stabilization approach using biomolecules has recently attracted considerable attention. Biomolecules such as DNA, RNA, peptides, and proteins are representative of the biomoieties that can functionalize AuNPs. According to several studies, biomolecules can stabilize AuNPs in biological media; in addition, AuNP-conjugated biomolecules can retain certain biological functions. Furthermore, the presence of biomolecules on AuNPs significantly enhances their biocompatibility. This review provides a representative overview of AuNP functionalization using various biomolecules. The strategies and mechanisms of AuNP functionalization using biomolecules are comprehensively discussed in the context of various biological fields.
Collapse
Affiliation(s)
- Jin Woong Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Seok-Ryul Choi
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Advanced Materials Technology Research Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Patel N, Ghali L, Roitt I, Munoz LP, Bayford R. Exploiting the efficacy of Tyro3 and folate receptors to enhance the delivery of gold nanoparticles into colorectal cancer cells in vitro. NANOSCALE ADVANCES 2021; 3:5373-5386. [PMID: 36132641 PMCID: PMC9419080 DOI: 10.1039/d1na00318f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/15/2021] [Indexed: 06/16/2023]
Abstract
Colorectal cancer (CRC) is the fourth most common cancer in the world. Due to its asymptomatic nature, CRC is diagnosed at an advanced stage where the survival rate is <5%. Besides, CRC treatment using chemotherapy, radiotherapy and surgery often causes undesirable side-effects. As such, gold nanoparticles (GNPs) are envisaged in the field for the diagnosis and treatment of CRC. GNPs have unique physical, chemical and electrical properties at the nanoscale which make them suitable for application in biomedicine. However, for GNPs to become clinically effective, their internalisation efficiency in cancer cells must be enhanced. Folate receptor-α (FR) is overexpressed in CRC cells wherein FR helps in the uptake of folic acid within the cells. Tyro3, a novel tyrosine kinase receptor, drives cell proliferation and its overexpression is correlated with poor prognosis in CRC. Their upregulated expression in CRC cells relative to normal cells makes them an ideal target for GNPs using active targeting. Therefore, in this study receptors FR and Tyro3 were simultaneously targeted using specific antibody-coated GNPs in order to enhance the uptake and internalisation of GNPs in CRC cells in vitro. Four different types of coated-GNPs were synthesised GNPs-PEG, GNPs-anti-FR, GNPs-anti-Tyro3 and GNPs-anti-(FR + Tyro3) and incubated (0-50 ng) with three CRC cell lines namely CRL1790, CRL2159 and HCT116. Simultaneous targeting of these receptors by GNPs-anti-(FR + Tyro3) was found to be the most effective in internalisation in CRC cells compared with GNPs targeted singly to FR or Tyro3 (p <0.05). Besides this, results show that Tyro3 mediated similar internalisation efficacy to FR (p <0.05) in CRC cells using ICP-OES.
Collapse
Affiliation(s)
- Nakul Patel
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Lucy Ghali
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Ivan Roitt
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Leonardo Puntoja Munoz
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| | - Richard Bayford
- Department of Science and Technology, Middlesex University The Burroughs, Hendon NW4 4BT London UK
| |
Collapse
|
11
|
Lü JM, Liang Z, Liu D, Zhan B, Yao Q, Chen C. Two Antibody-Guided Lactic-co-Glycolic Acid-Polyethylenimine (LGA-PEI) Nanoparticle Delivery Systems for Therapeutic Nucleic Acids. Pharmaceuticals (Basel) 2021; 14:841. [PMID: 34577541 PMCID: PMC8470087 DOI: 10.3390/ph14090841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 01/10/2023] Open
Abstract
We previously reported a new polymer, lactic-co-glycolic acid-polyethylenimine (LGA-PEI), as an improved nanoparticle (NP) delivery for therapeutic nucleic acids (TNAs). Here, we further developed two antibody (Ab)-conjugated LGA-PEI NP technologies for active-targeting delivery of TNAs. LGA-PEI was covalently conjugated with a single-chain variable fragment antibody (scFv) against mesothelin (MSLN), a biomarker for pancreatic cancer (PC), or a special Ab fragment crystallizable region-binding peptide (FcBP), which binds to any full Ab (IgG). TNAs used in the current study included tumor suppressor microRNA mimics (miR-198 and miR-520h) and non-coding RNA X-inactive specific transcript (XIST) fragments; green fluorescence protein gene (GFP plasmid DNA) was also used as an example of plasmid DNA. MSLN scFv-LGA-PEI NPs with TNAs significantly improved their binding and internalization in PC cells with high expression of MSLN in vitro and in vivo. Anti-epidermal growth factor receptor (EGFR) monoclonal Ab (Cetuximab) binding to FcBP-LGA-PEI showed active-targeting delivery of TNAs to EGFR-expressing PC cells.
Collapse
Affiliation(s)
- Jian-Ming Lü
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Zhengdong Liang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Dongliang Liu
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| | - Bin Zhan
- National School of Tropical Medicine and Department of Pediatrics, Section of Tropical Medicine, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA;
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX 77030, USA
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Plaza, Houston, TX 77030, USA; (J.-M.L.); (Z.L.); (D.L.); (Q.Y.)
| |
Collapse
|
12
|
Zhang B, Wang Y, Zhao Z, Han B, Yang J, Sun Y, Zhang B, Zang Y, Guan H. Temperature Plays an Essential Regulatory Role in the Tumor Immune Microenvironment. J Biomed Nanotechnol 2021; 17:169-195. [PMID: 33785090 DOI: 10.1166/jbn.2021.3030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, emerging immunotherapy has been included in various malignant tumor treatment standards. Temperature has been considered to affect different pathophysiological reactions such as inflammation and cancer for a long time. However, in tumor immunology research, temperature is still rarely considered a significant variable. In this review, we discuss the effects of room temperature, body temperature, and the local tumor temperature on the tumor immune microenvironment from multiple levels and perspectives, and we discuss changes in the body's local and whole-body temperature under tumor conditions. We analyze the current use of ablation treatment-the reason for the opposite immune effect. We should pay more attention to the therapeutic potential of temperature and create a better antitumor microenvironment that can be combined with immunotherapy.
Collapse
Affiliation(s)
- Bin Zhang
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Youpeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Ziyin Zhao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Jinbo Yang
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yang Sun
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Yunjin Zang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Huashi Guan
- Marine Drug and Food Institute, Ocean University of China, Qingdao, Shandong, 266100, China
| |
Collapse
|
13
|
LSPR biosensing for the early-stage prostate cancer detection using hydrogen bonds between PSA and antibody: Molecular dynamic and experimental study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
15
|
Zhang L, Mazouzi Y, Salmain M, Liedberg B, Boujday S. Antibody-Gold Nanoparticle Bioconjugates for Biosensors: Synthesis, Characterization and Selected Applications. Biosens Bioelectron 2020; 165:112370. [DOI: 10.1016/j.bios.2020.112370] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/22/2023]
|
16
|
Singh S, Melnik R. Thermal ablation of biological tissues in disease treatment: A review of computational models and future directions. Electromagn Biol Med 2020; 39:49-88. [PMID: 32233691 DOI: 10.1080/15368378.2020.1741383] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Percutaneous thermal ablation has proven to be an effective modality for treating both benign and malignant tumours in various tissues. Among these modalities, radiofrequency ablation (RFA) is the most promising and widely adopted approach that has been extensively studied in the past decades. Microwave ablation (MWA) is a newly emerging modality that is gaining rapid momentum due to its capability of inducing rapid heating and attaining larger ablation volumes, and its lesser susceptibility to the heat sink effects as compared to RFA. Although the goal of both these therapies is to attain cell death in the target tissue by virtue of heating above 50°C, their underlying mechanism of action and principles greatly differs. Computational modelling is a powerful tool for studying the effect of electromagnetic interactions within the biological tissues and predicting the treatment outcomes during thermal ablative therapies. Such a priori estimation can assist the clinical practitioners during treatment planning with the goal of attaining successful tumour destruction and preservation of the surrounding healthy tissue and critical structures. This review provides current state-of-the-art developments and associated challenges in the computational modelling of thermal ablative techniques, viz., RFA and MWA, as well as touch upon several promising avenues in the modelling of laser ablation, nanoparticles assisted magnetic hyperthermia and non-invasive RFA. The application of RFA in pain relief has been extensively reviewed from modelling point of view. Additionally, future directions have also been provided to improve these models for their successful translation and integration into the hospital work flow.
Collapse
Affiliation(s)
- Sundeep Singh
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Roderick Melnik
- MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Ontario, Canada.,BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
| |
Collapse
|
17
|
Janairo JIB, Sy-Janairo MLL. Estimating the Effectiveness of Gold and Iron Oxide Nanoparticles for Hepatocellular Carcinoma Ablation Therapy: a Meta-Analysis. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00733-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Direct quantification of surface coverage of antibody in IgG-Gold nanoparticles conjugates. Talanta 2019; 204:875-881. [DOI: 10.1016/j.talanta.2019.05.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
|
20
|
Sharifi M, Attar F, Saboury AA, Akhtari K, Hooshmand N, Hasan A, El-Sayed MA, Falahati M. Plasmonic gold nanoparticles: Optical manipulation, imaging, drug delivery and therapy. J Control Release 2019; 311-312:170-189. [PMID: 31472191 DOI: 10.1016/j.jconrel.2019.08.032] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Over the past two decades, the development of plasmonic nanoparticle (NPs), especially gold (Au) NPs, is being pursued more seriously in the medical fields such as imaging, drug delivery, and theranostic systems. However, there is no comprehensive review on the effect of the physical and chemical parameters of AuNPs on their plasmonic properties as well as the use of these unique characteristic in medical activities such as imaging and therapeutics. Therefore, in this literature the surface plasmon resonance (SPR) modeling of AuNPs was accurately captured toward precision medicine. Indeed, we investigated the importance of plasmonic properties of AuNPs in optical manipulation, imaging, drug delivery, and photothermal therapy (PTT) of cancerous cells based on their physicochemical properties. Finally, some challenges regarding the commercialization of AuNPs in future medicine such as, cytotoxicity, lack of standards for medical applications, high cost, and time-consuming process were discussed.
Collapse
Affiliation(s)
- Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute, Karaj, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar.
| | - Mostafa A El-Sayed
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
21
|
Nasseri B, Kocum IC, Seymen CM, Rabiee N. Penetration Depth in Nanoparticles Incorporated Radiofrequency Hyperthermia into the Tissue: Comprehensive Study with Histology and Pathology Observations. IET Nanobiotechnol 2019; 13:634-639. [PMID: 31432798 PMCID: PMC8676181 DOI: 10.1049/iet-nbt.2019.0066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/26/2019] [Accepted: 04/25/2019] [Indexed: 11/09/2023] Open
Abstract
In present study, the effective penetration of radiofrequency (RF) induced gold decorated iron oxide nanoparticles (GS@IONPs) hyperthermia was investigated. The effective penetration depth of RF also the damage potency of hyperthermia was evaluated during histopathology observations which were done on the chicken breast tissue and hepatocellular carcinoma (HCC) models. The thermal damages are well- documented in our previous cellular study which was engaged with potency of RF hyperthermia in Epithelial adenocarcinoma (MCF-7) and fibroblast (L-929) cells deaths [1]. In recent work, PEGylated iron oxide nanoparticles (IONPs) were used as base platform for gold magnetic nanoparticles (GS@IONPs) formation. The 144.00015 MHz, 180W RF generator was applied for stimulating the nanoparticles. The chicken breast tissue and the hepatocellular tumor model was considered in the experimental section. In histology studies, the structural changes also the effective penetration depth of RF induced nanoparticles was observed through microscopic monitoring of the tissue slices in histology observations (Gazi medical school). The highest damage level was seen in 8.0 µm tissue slices where lower damages were seen in depth of 1.0 cm and more inside tissue. The histology observations clarified the effective penetration depth of RF waves and irreversible damages in the 2.0 cm inside the tissue.
Collapse
Affiliation(s)
- Behzad Nasseri
- Atilim University, Chemical Engineering and Applied Chemistry Department, Ankara, Turkey.
| | | | | | - Navid Rabiee
- Division of Diseases, Advanced Technologies Research Group, Tehran, Iran
| |
Collapse
|
22
|
White BD, Duan C, Townley HE. Nanoparticle Activation Methods in Cancer Treatment. Biomolecules 2019; 9:E202. [PMID: 31137744 PMCID: PMC6572460 DOI: 10.3390/biom9050202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/25/2022] Open
Abstract
In this review, we intend to highlight the progress which has been made in recent years around different types of smart activation nanosystems for cancer treatment. Conventional treatment methods, such as chemotherapy or radiotherapy, suffer from a lack of specific targeting and consequent off-target effects. This has led to the development of smart nanosystems which can effect specific regional and temporal activation. In this review, we will discuss the different methodologies which have been designed to permit activation at the tumour site. These can be divided into mechanisms which take advantage of the differences between healthy cells and cancer cells to trigger activation, and those which activate by a mechanism extrinsic to the cell or tumour environment.
Collapse
Affiliation(s)
- Benjamin D White
- Department of Engineering Science, Oxford University, Parks Road, OX1 3PJ, Oxford, UK.
| | - Chengchen Duan
- Nuffield department of Women's and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| | - Helen E Townley
- Department of Engineering Science, Oxford University, Parks Road, OX1 3PJ, Oxford, UK.
- Nuffield department of Women's and Reproductive Health, Oxford University John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| |
Collapse
|
23
|
Xiang H, Chen Y. Energy-Converting Nanomedicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805339. [PMID: 30773837 DOI: 10.1002/smll.201805339] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/22/2019] [Indexed: 05/12/2023]
Abstract
Serious side effects to surrounding normal tissues and unsatisfactory therapeutic efficacy hamper the further clinic applications of conventional cancer-therapeutic strategies, such as chemotherapy and surgery. The fast development of nanotechnology provides unprecedented superiorities for cancer therapeutics. Externally activatable therapeutic modalities mediated by nanomaterials, relying on highly effective energy transformation to release therapeutic elements/effects (cytotoxic reactive oxygen species, thermal effect, photoelectric effect, Compton effect, cavitation effect, mechanical effect or chemotherapeutic drug) for cancer therapies, categorized and termed as "energy-converting nanomedicine," have arouse considerable concern due to their noninvasiveness, desirable tissue-penetration depth, and accurate modulation of therapeutic dose. This review summarizes the recent advances in the engineering of intelligent functional nanotherapeutics for energy-converting nanomedicine, including photo-based, radiation-based, ultrasound-based, magnetic field-based, microwave-based, electric field-based, and radiofrequency-based nanomedicines, which are enabled by external stimuli (light, radiation, ultrasound, magnetic field, microwave, electric field, and radiofrequency). Furthermore, biosafety issues of energy-converting nanomedicine related to future clinical translation are also addressed. Finally, the potential challenges and prospects of energy-converting nanomedicine for future clinical translation are discussed.
Collapse
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| |
Collapse
|
24
|
M SM, Veeranarayanan S, Maekawa T, D SK. External stimulus responsive inorganic nanomaterials for cancer theranostics. Adv Drug Deliv Rev 2019; 138:18-40. [PMID: 30321621 DOI: 10.1016/j.addr.2018.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 09/03/2018] [Accepted: 10/08/2018] [Indexed: 01/21/2023]
Abstract
Cancer is a highly intelligent system of cells, that works together with the body to thrive and subsequently overwhelm the host in order for its survival. Therefore, treatment regimens should be equally competent to outsmart these cells. Unfortunately, it is not the case with current therapeutic practices, the reason why it is still one of the most deadly adversaries and an imposing challenge to healthcare practitioners and researchers alike. With rapid nanotechnological interventions in the medical arena, the amalgamation of diagnostic and therapeutic functionalities into a single platform, theranostics provides a never before experienced hope of enhancing diagnostic accuracy and therapeutic efficiency. Additionally, the ability of these nanotheranostic agents to perform their actions on-demand, i.e. can be controlled by external stimulus such as light, magnetic field, sound waves and radiation has cemented their position as next generation anti-cancer candidates. Numerous reports exist of such stimuli-responsive theranostic nanomaterials against cancer, but few have broken through to clinical trials, let alone clinical practice. This review sheds light on the pros and cons of a few such theranostic nanomaterials, especially inorganic nanomaterials which do not require any additional chemical moieties to initiate the stimulus. The review will primarily focus on preclinical and clinical trial approved theranostic agents alone, describing their success or failure in the respective stages.
Collapse
Affiliation(s)
- Sheikh Mohamed M
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan
| | | | - Toru Maekawa
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan.
| | - Sakthi Kumar D
- Bio-Nano Electronics Research Centre, Toyo University, Kawagoe, 350-8585, Japan; Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe 350-8585, Japan.
| |
Collapse
|
25
|
Camodeca C, Nuti E, Tosetti F, Poggi A, D'Arrigo C, Zocchi MR, Rossello A. Synthesis and in vitro Evaluation of ADAM10 and ADAM17 Highly Selective Bioimaging Probes. ChemMedChem 2018; 13:2119-2131. [PMID: 30102846 DOI: 10.1002/cmdc.201800482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Indexed: 11/09/2022]
Abstract
A disintegrin and metalloproteinase (ADAMs) are membrane-bound metalloproteases responsible for the ectodomain shedding of various transmembrane proteins and play important roles in multiple relevant biological processes. Their altered expression is involved in several pathological conditions, and in particular ADAM10 or ADAM17 overexpression is found in various forms of cancer. To better understand how they are regulated in the cellular context, it is useful to visualize the specific ADAMs pathway by means of molecular imaging techniques. For this purpose, we synthesized bioactive fluorescent probes suitable for cell imaging and that are able to specifically target ADAM10 or ADAM17. Two previously developed ADAM17- and ADAM10-selective inhibitors were chosen for conjugation, respectively, to a Cy5.5 dye and to Cy5.5 and FITC dyes. Herein we also report the synthesis of a gold-labeled compound as an additional bioimaging probe for ADAM10. The newly synthesized ligands were found to be active in vitro on human recombinant ADAM10 and/or ADAM17, showing IC50 values in the nanomolar range and a good selectivity over matrix metalloproteinases (MMPs). Finally, these newly developed probes were successfully used for ADAMs staining on different lymphoma cell lines and lymph node mesenchymal stromal cells.
Collapse
Affiliation(s)
- Caterina Camodeca
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| | - Francesca Tosetti
- Unit of Molecular Oncology and Angiogenesis, IRCCS Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Alessandro Poggi
- Unit of Molecular Oncology and Angiogenesis, IRCCS Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Cristina D'Arrigo
- Istituto per lo Studio delle Macromolecole, CNR, Via De Marini 6, 16149, Genoa, Italy
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, San Raffaele Scientific Institute, via Olgettina 60, 20132, Milan, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126, Pisa, Italy
| |
Collapse
|
26
|
Mani G, Kim S, Kim K. Development of Folate-Thioglycolate-Gold Nanoconjugates by Using Citric Acid-PEG Branched Polymer for Inhibition of MCF-7 Cancer Cell Proliferation. Biomacromolecules 2018; 19:3257-3267. [PMID: 29979877 DOI: 10.1021/acs.biomac.8b00543] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Development of folate (FA)-functionalized gold nanoparticles (AuNPs) has greatly increased in recent years due to their potential in cancer treatment. As surface functionalization of polymer-free AuNPs with thiol groups could result in agglomeration and precipitation, AuNPs should be stabilized with an efficient polymer. In this study, citric acid-PEG branched polymer (CPEG) acted as a reducing as well as stabilizing agent in the synthesis of AuNPs. The thiol group of thioglycolic acid (TGA) attached to CPEG-stabilized AuNPs and interacted with the free carboxylic acid group on the surface of TGA-AuNP nanoconjugates. Stable TGA-AuNP nanoconjugates were obtained only with CPEG-stabilized AuNPs and not with citrate-stabilized AuNPs. The carboxylic acid group on the surface of AuNPs was used to attach FA via an EDC/NHS coupling reaction to obtain FA-TGA-AuNP nanoconjugates. In vitro cytotoxicity studies indicated that FA-TGA-AuNPs were not toxic to normal cells up to a concentration of 200 μg/mL. However, FA-TGA-AuNP nanoconjugates effectively inhibited proliferation of MCF-7 cancer cells at a low concentration of 25 μg/mL after 3 days of incubation. The anticancer activity of FA-TGA-AuNPs was enhanced by incorporating the anticancer drug 5-fluorouracil into the nanoconjugates, which exhibited sustained drug release up to 5 days. Hence, the developed biocompatible FA-TGA-AuNPs could be used for specific killing of breast cancer cells.
Collapse
Affiliation(s)
- Gajendiran Mani
- Division of Bioengineering, School of Life Sciences and Bioengineering , Incheon National University , Incheon , Korea 22012
| | - Sungjun Kim
- Division of Bioengineering, School of Life Sciences and Bioengineering , Incheon National University , Incheon , Korea 22012
| | - Kyobum Kim
- Division of Bioengineering, School of Life Sciences and Bioengineering , Incheon National University , Incheon , Korea 22012
| |
Collapse
|
27
|
Bera K, Maiti S, Maity M, Mandal C, Maiti NC. Porphyrin-Gold Nanomaterial for Efficient Drug Delivery to Cancerous Cells. ACS OMEGA 2018; 3:4602-4619. [PMID: 30023896 PMCID: PMC6045359 DOI: 10.1021/acsomega.8b00419] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/17/2018] [Indexed: 05/11/2023]
Abstract
With an aim to overcome multidrug resistance (MDR), nontargeted delivery, and drug toxicity, we developed a new nanochemotherapeutic system with tetrasodium salt of meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) armored on gold nanoparticles (TPPS-AuNPs). The nanocarrier is able to be selectively internalized within tumor cells than in normal cells followed by endocytosis and therefore delivers the antitumor drug doxorubicin (DOX) particularly to the nucleus of diseased cells. The embedment of TPPS on the gold nanosurface provides excellent stability and biocompatibility to the nanoparticles. Porphyrin interacts with the gold nanosurface through the coordination interaction between gold and pyrrolic nitrogen atoms of the porphyrin and forms a strong association complex. DOX-loaded nanocomposite (DOX@TPPS-AuNPs) demonstrated enhanced cellular uptake with significantly reduced drug efflux in MDR brain cancer cells, thereby increasing the retention time of the drug within tumor cells. It exhibited about 9 times greater potency for cellular apoptosis via triggered release commenced by acidic pH. DOX has been successfully loaded on the porphyrin-modified gold nanosurface noncovalently with high encapsulation efficacy (∼90%) and tightly associated under normal physiological conditions but capable of releasing ∼81% of drug in a low-pH environment. Subsequently, DOX-loaded TPPS-AuNPs exhibited higher inhibition of cellular metastasis, invasion, and angiogenesis, suggesting that TPPS-modified AuNPs could improve the therapeutic efficacy of the drug molecule. Unlike free DOX, drug-loaded TPPS-AuNPs did not show toxicity toward normal cells. Therefore, higher drug encapsulation efficacy with selective targeting potential and acidic-pH-mediated intracellular release of DOX at the nucleus make TPPS-AuNPs a "magic bullet" for implication in nanomedicine.
Collapse
Affiliation(s)
- Kaushik Bera
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Samarpan Maiti
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Mritunjoy Maity
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Chitra Mandal
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Nakul C. Maiti
- Structural
Biology and Bioinformatics Division and Cancer Biology & Inflammatory
Disorder Division, CSIR-Indian Institute
of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
28
|
Norouzi H, Khoshgard K, Akbarzadeh F. In vitro outlook of gold nanoparticles in photo-thermal therapy: a literature review. Lasers Med Sci 2018; 33:917-926. [PMID: 29492712 DOI: 10.1007/s10103-018-2467-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/08/2018] [Indexed: 12/31/2022]
Abstract
Hyperthermia is an anti-cancer treatment in which the temperature of the malignant tumor is increased more than other adjacent normal tissues. Microwave, ultrasound, laser, and radiofrequency sources have been used for hyperthermia of cancerous tissues. In the past decade, near-infrared (NIR) laser for cancer therapy, known as photo-thermal therapy (PTT), was expanded in which the photo-sensitizer agent converts the light photon energy to heat. The heat following PTT can destroy cancer cells. There are some photo-sensitizer agents which have been used for PTT; however, owing to recent advances in nanotechnology, noble metal nanoparticles like gold (Au) nanoparticles (GNPs) have been used successfully in PTT. GNPs have some desirable specifications, including simple and controlled synthesis, small size, high level of biocompatibility, and surface plasmon resonance (SPR). The SPR effect of the GNPs increases the radiative properties like absorption and scattering; therefore, they can be used in PTT. In this article, we reviewed recent in vitro studies of PTT using GNPs in literature. At first, we focus on the physical properties of GNPs, their interaction with infrared radiation, and physical parameters governing the interaction of infrared radiation with the GNPs. Then, we review the passive and active targeting of GNPs using the different coating to induce the thermal damage in cancer cells using low-level laser PPT. The GNPs' cellular internalization into cancer cells is a challenge which is consequently considered. In this review, we also summarize the results of synergistic cancer therapy studies on the combination of radiation therapy as a routine cancer treatment and PTT: in which significant improvement occurs in treatment efficacy.
Collapse
Affiliation(s)
- Hasan Norouzi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Karim Khoshgard
- Department of Medical Physics, School of Medicine, Kermanshah University of Medical Sciences, Sorkheh-Lizhe Blvd, P.O. Box: 1568, Kermanshah, Iran.
| | - Fatemeh Akbarzadeh
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
29
|
Fazal S, Paul-Prasanth B, Nair SV, Menon D. Theranostic Iron Oxide/Gold Ion Nanoprobes for MR Imaging and Noninvasive RF Hyperthermia. ACS APPLIED MATERIALS & INTERFACES 2017; 9:28260-28272. [PMID: 28789518 DOI: 10.1021/acsami.7b08939] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This work focuses on the development of a nanoparticulate system that can be used for magnetic resonance (MR) imaging and E-field noninvasive radiofrequency (RF) hyperthermia. For this purpose, an amine-functional gold ion complex (GIC), [Au(III)(diethylenetriamine)Cl]Cl2, which generates heat upon RF exposure, was conjugated to carboxyl-functional poly(acrylic acid)-capped iron-oxide nanoparticles (IO-PAA NPs) to form IO-GIC NPs of size ∼100 nm. The multimodal superparamagnetic IO-GIC NPs produced T2-contrast on MR imaging and unlike IO-PAA NPs generated heat on RF exposure. The RF heating response of IO-GIC NPs was found to be dependent on the RF power, exposure period, and particle concentration. IO-GIC NPs at a concentration of 2.5 mg/mL showed a high heating response (δT) of ∼40 °C when exposed to 100 W RF power for 1 min. In vitro cytotoxicity measurements on NIH-3T3 fibroblast cells and 4T1 cancer cells showed that IO-GIC NPs are cytocompatible at high NP concentrations for up to 72 h. Upon in vitro RF exposure (100 W, 1 min), a high thermal response leads to cell death of 4T1 cancer cells incubated with IO-GIC NPs (1 mg/mL). Hematoxylin and eosin imaging of rat liver tissues injected with 100 μL of 2.5 mg/mL IO-GIC NPs and exposed to low RF power of 20 W for 10 min showed significant loss of tissue morphology at the site of injection, as against RF-exposed or nanoparticle-injected controls. In vivo MR imaging and noninvasive RF exposure of 4T1-tumor-bearing mice after IO-GIC NP administration showed T2 contrast enhancement and a localized generation of high temperatures in tumors, leading to tumor tissue damage. Furthermore, the administration of IO-GIC NPs followed by RF exposure showed no adverse acute toxicity effects in vivo. Thus, IO-GIC NPs show good promise as a theranostic agent for magnetic resonance imaging and noninvasive RF hyperthermia for cancer.
Collapse
Affiliation(s)
- Sajid Fazal
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita University , Kochi 682041, Kerala, India
| | - Bindhu Paul-Prasanth
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita University , Kochi 682041, Kerala, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita University , Kochi 682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita University , Kochi 682041, Kerala, India
| |
Collapse
|
30
|
Lapin NA, Krzykawska-Serda M, Dilliard S, Mackeyev Y, Serda M, Wilson LJ, Curley SA, Corr SJ. The effects of non-invasive radiofrequency electric field hyperthermia on biotransport and biodistribution of fluorescent [60]fullerene derivative in a murine orthotopic model of breast adenocarcinoma. J Control Release 2017; 260:92-99. [PMID: 28527736 PMCID: PMC5549922 DOI: 10.1016/j.jconrel.2017.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/07/2017] [Accepted: 05/16/2017] [Indexed: 01/09/2023]
Abstract
The aim of this study is to understand the combined and differential biokinetic effects of radiofrequency (RF) electric-field hyperthermia as an adjunctive therapy to [60]fullerene nanoparticle-based drug delivery systems in targeting the micro-vasculature and micro-environments of breast cancer tumors. Intravital microscopy (IVM) is an ideal tool to provide the spatial and temporal resolution needed for quantification in this investigation. The water-soluble and fluorescent [60]fullerene derivative (C60-serPF) was designed to be an amphiphilic nanostructure, which is able to cross several biological membranes and accumulate in tumor tissues by passing through abnormally leaky tumor blood vessels. To elucidate the coupled effects of the highly permeable, but heterogeneous tumor vasculature, with the permeabilizing effects of mild (40-42°C) hyperthermia produced by a local RF field, we controlled variables across tumor and non-tumor mammary gland microvasculature with and without application of RF hyperthermia in each condition. We notice that tumor tissue is characterized by more intense drug extravasation than in contralateral mammary fat pad tissue, which is consistent with enhanced permeability and retention (EPR) effects. The analysis of a permeability parameter (Papp), C60-serPF velocity, and the time of compound influx into the intra- and extra-vascular space suggest that mild RF hyperthermia can improve nanoparticle delivery into tumor tissue.
Collapse
Affiliation(s)
- Norman A Lapin
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martyna Krzykawska-Serda
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków 30-387, Poland
| | - Sean Dilliard
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | - Yuri Mackeyev
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Maciej Serda
- Department of Chemistry, Rice University, Houston, TX 77005, USA; Institute of Chemistry, University of Silesia in Katowice, 40-006 Katowice, Poland
| | - Lon J Wilson
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Steven A Curley
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX 77005, USA
| | - Stuart J Corr
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA; Department of Chemistry, Rice University, Houston, TX 77005, USA; Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
31
|
Ho JC, Nguyen L, Law JJ, Ware MJ, Keshishian V, Lara NC, Nguyen T, Curley SA, Corr SJ. Non-Invasive Radiofrequency Field Treatment to Produce Hepatic Hyperthermia: Efficacy and Safety in Swine. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2017; 5:1500109. [PMID: 28507824 PMCID: PMC5411244 DOI: 10.1109/jtehm.2017.2672965] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/29/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022]
Abstract
The Kanzius non-invasive radio-frequency hyperthermia system (KNiRFH) has been investigated as a treatment option for hepatic hyperthermia cancer therapy. The treatment involves exposing the patient to an external high-power RF (13.56 MHz) electric field, whereby the propagating waves penetrate deep into the tumor causing targeted heating based on differential tissue dielectric properties. However, a comprehensive examination of the Kanzius system alongside any associated toxicities and its ability to induce hepatic hyperthermia in larger animal models, such as swine, are the subjects of the work herein. Ten Yucatan female mini-swine were treated with the KNiRFH system. Two of the pigs were treated a total of 17 times over a five-week period to evaluate short- and long-term KNiRFH-associated toxicities. The remaining eight pigs were subjected to single exposure sessions to evaluate heating efficacy in liver tissue. Our goal was to achieve a liver target temperature of 43°C and to evaluate toxicities and burns post-treatment. Potential toxicities were evaluated by contrast-enhanced MRI of the upper abdomen and blood work, including complete metabolic panel, complete blood count, and liver enzymes. The permittivities of subcutaneous fat and liver were also measured, which were used to calculate tissue specific absorption rates (SAR). Our results indicate negligible KNiRFH-associated toxicities; however, due to fat overheating, liver tissue temperature did not exceed 38.5°C. This experimental limitation was corroborated by tissue permittivity and SAR calculations of subcutaneous fat and liver. Significant steps must be taken to either reduce subcutaneous fat heating or increase localized heating, potentially through the use of KNiRFH-active nanomaterials, such as gold nanoparticles or single-walled carbon nanotubes, which have previously shown promising results in murine cancer models.
Collapse
Affiliation(s)
- Jason C Ho
- Baylor College of MedicineDepartment of Surgery
| | - Lam Nguyen
- Baylor College of MedicineDepartment of Surgery
| | | | | | | | - N C Lara
- Rice UniversityDepartment of Chemistry
| | - Trac Nguyen
- Baylor College of MedicineDepartment of Surgery
| | - Steven A Curley
- Baylor College of MedicineDepartment of Surgery.,Department of Mechanical Engineering and Materials ScienceRice University
| | - Stuart J Corr
- Baylor College of MedicineDepartment of Surgery.,Rice UniversityDepartment of Chemistry.,University of HoustonDepartment of Bioengineering
| |
Collapse
|
32
|
Luo K, Hu C, Luo Y, Li D, Xiang Y, Mu Y, Wang H, Luo Z. One-pot synthesis of ultrafine amphiphilic Janus gold nanoparticles by toluene/water emulsion reaction. RSC Adv 2017. [DOI: 10.1039/c7ra10323a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spontaneous phase separation of capping ligands at emulsion interfaces was used to synthesize amphiphilic Janus gold nanoparticles in batch.
Collapse
Affiliation(s)
- Kun Luo
- College of Materials Science and Engineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Chengliang Hu
- College of Materials Science and Engineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Yujia Luo
- The First Hospital of China Medical University
- Shenyang 10122
- P. R. China
| | - Degui Li
- College of Materials Science and Engineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Yongdong Xiang
- College of Materials Science and Engineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Yuanying Mu
- College of Materials Science and Engineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Haiming Wang
- College of Materials Science and Engineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| | - Zhihong Luo
- College of Materials Science and Engineering
- Guilin University of Technology
- Guilin 541004
- P. R. China
| |
Collapse
|
33
|
Choi K, Riviere JE, Monteiro-Riviere NA. Protein corona modulation of hepatocyte uptake and molecular mechanisms of gold nanoparticle toxicity. Nanotoxicology 2016; 11:64-75. [DOI: 10.1080/17435390.2016.1264638] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kyoungju Choi
- Department of Anatomy and Physiology, Kansas State University, Nanotechnology Innovation Center of Kansas State (NICKS), Manhattan, KS, USA
| | - Jim E. Riviere
- Department of Anatomy and Physiology, Kansas State University, Nanotechnology Innovation Center of Kansas State (NICKS), Manhattan, KS, USA
| | - Nancy A. Monteiro-Riviere
- Department of Anatomy and Physiology, Kansas State University, Nanotechnology Innovation Center of Kansas State (NICKS), Manhattan, KS, USA
| |
Collapse
|
34
|
Lara NC, Haider AA, Ho JC, Wilson LJ, Barron AR, Curley SA, Corr SJ. Water-structuring molecules and nanomaterials enhance radiofrequency heating in biologically relevant solutions. Chem Commun (Camb) 2016; 52:12630-12633. [PMID: 27722511 PMCID: PMC5079531 DOI: 10.1039/c6cc06573b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
For potential applications in nano-mediated radiofrequency cancer hyperthermia, the nanomaterial under investigation must increase the heating of any aqueous solution in which it is suspended when exposed to radiofrequency electric fields. This should also be true for a broad range of solution conductivities, especially those that artificially mimic the ionic environment of biological systems. Herein we demonstrate enhanced heating of biologically relevant aqueous solutions using kosmotropes and a hexamalonoserinolamide fullerene.
Collapse
Affiliation(s)
- Nadia C Lara
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Asad A Haider
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Jason C Ho
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Lon J Wilson
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - Andrew R Barron
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA and Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA and Energy Safety Research Institute (ESRI), Swansea University Bay Campus, Swansea, SA1 8EN, UK and Centre for NanoHealth (CNH), Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Steven A Curley
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA. and Department of Materials Science and Nanoengineering, Rice University, Houston, TX 77005, USA
| | - Stuart J Corr
- Department of Chemistry and Smalley-Curl Institute, Rice University, Houston, TX 77005, USA and Department of Surgery, Baylor College of Medicine, Houston, TX 77030, USA. and Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
35
|
Beik J, Abed Z, Ghoreishi FS, Hosseini-Nami S, Mehrzadi S, Shakeri-Zadeh A, Kamrava SK. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J Control Release 2016; 235:205-221. [DOI: 10.1016/j.jconrel.2016.05.062] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/28/2016] [Accepted: 05/30/2016] [Indexed: 01/05/2023]
|
36
|
Karponis D, Azzawi M, Seifalian A. An arsenal of magnetic nanoparticles; perspectives in the treatment of cancer. Nanomedicine (Lond) 2016; 11:2215-32. [DOI: 10.2217/nnm-2016-0113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine is an emerging field, which constitutes a new direction in the treatment of cancer. Magnetic nanoparticles (MNPs) can circumvent vascular tissue to concentrate at the site of the tumor. Under the influence of an external, alternating magnetic field, MNPs generate high temperatures within the tumor and ablate malignant cells while inflicting minimal damage to healthy host tissue. Due to their theranostic properties, they constitute a promising candidate for the treatment of cancer. A critical review of the type, size and therapeutic effect of different MNPs is presented, following an appraisal of the literature in the last 5 years. This is a multibillion dollar industry, with a few studies moving to clinical trials within the next 5 years.
Collapse
Affiliation(s)
| | - May Azzawi
- School of Healthcare Science, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, UK
| | - Alexander Seifalian
- Center for Nanotechnology & Regenerative Medicine, University College London, London, UK
- NanoRegMed Ltd, The London BioScience Innovation Center, London, UK
| |
Collapse
|
37
|
Somasundaram VH, Pillai R, Malarvizhi G, Ashokan A, Gowd S, Peethambaran R, Palaniswamy S, Unni AKK, Nair S, Koyakutty M. Biodegradable Radiofrequency Responsive Nanoparticles for Augmented Thermal Ablation Combined with Triggered Drug Release in Liver Tumors. ACS Biomater Sci Eng 2016; 2:768-779. [DOI: 10.1021/acsbiomaterials.5b00511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vijay Harish Somasundaram
- Amrita Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Kochi, Kerala 682041, India
| | - Rashmi Pillai
- Amrita Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Kochi, Kerala 682041, India
| | - Giridharan Malarvizhi
- Amrita Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Kochi, Kerala 682041, India
| | - Anusha Ashokan
- Amrita Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Kochi, Kerala 682041, India
| | - Siddaramana Gowd
- Amrita Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Kochi, Kerala 682041, India
| | - Reshmi Peethambaran
- Amrita Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Kochi, Kerala 682041, India
| | - Shanmugasundaram Palaniswamy
- Amrita Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Kochi, Kerala 682041, India
| | - AKK Unni
- Amrita Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Kochi, Kerala 682041, India
| | - Shantikumar Nair
- Amrita Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Kochi, Kerala 682041, India
| | - Manzoor Koyakutty
- Amrita Center for Nanosciences & Molecular Medicine, Amrita Institute of Medical Science & Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Kochi, Kerala 682041, India
| |
Collapse
|
38
|
Development of a localized surface plasmon resonance-based gold nanobiosensor for the determination of prolactin hormone in human serum. Anal Biochem 2016; 495:32-6. [DOI: 10.1016/j.ab.2015.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/18/2015] [Accepted: 11/26/2015] [Indexed: 11/18/2022]
|
39
|
Postnikov A, Moldosanov K. Phonon-Assisted Radiofrequency Absorption by Gold Nanoparticles Resulting in Hyperthermia. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2016. [DOI: 10.1007/978-94-017-7478-9_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Nasseri B, Yilmaz M, Turk M, Kocum IC, Piskin E. Antenna-type radiofrequency generator in nanoparticle-mediated hyperthermia. RSC Adv 2016. [DOI: 10.1039/c6ra03197h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study covers the employment an antenna-type RF generator modulus at varying powers for different nanoparticle types to evaluate viability, apoptosis and necrosis of L-929 fibroblast and MCF-7 breast cancer cell lines.
Collapse
Affiliation(s)
- B. Nasseri
- Chemical Engineering Department and Bioengineering Division
- Centre for Bioengineering and Biyomedtek
- Hacettepe University
- Ankara
- Turkey
| | - M. Yilmaz
- Bioengineering Department
- Sinop University
- Sinop
- Turkey
| | - M. Turk
- Bioengineering Department
- Kirikkale University
- Kirikkale
- Turkey
| | - I. C. Kocum
- Biomedical Engineering Department
- Baskent University
- Ankara
- Turkey
| | - E. Piskin
- Chemical Engineering Department and Bioengineering Division
- Centre for Bioengineering and Biyomedtek
- Hacettepe University
- Ankara
- Turkey
| |
Collapse
|
41
|
Fan L, Campagnoli S, Wu H, Grandi A, Parri M, De Camilli E, Grandi G, Viale G, Pileri P, Grifantini R, Song C, Jin B. Negatively charged AuNP modified with monoclonal antibody against novel tumor antigen FAT1 for tumor targeting. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:103. [PMID: 26373379 PMCID: PMC4570718 DOI: 10.1186/s13046-015-0214-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/31/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Herein, we demonstrated the use of a newly generated anti FAT1 antibody (clone mAB198.3) for intracellular delivery of anionic gold NPs, to form active targeting Au nanoparticles with high payload characteristics. METHODS In vitro characterizations were determined by DLS, confocal microscopy, TEM, western blot, MALDI-TOF MS/MS analysis, MTT, ICP-MS and flow cytometry analysis. In vivo targeting efficacy was investigated by in vivo bio-imaging study and ICP-MS. RESULTS The specificity of the FAT1 recognition in colon cancer was confirmed by pre-adsorbing mAb198.3, adsorption dramatically abolished the antibody reactivity on colon cancer, thus confirming the binding specificity. The DLS size distribution profile of the AuCOOH, AuCOOH(Cy5)_ mAb198.3, AuCOOH(Cy5)_isotype has showed that the modified gold nanoparticles are well dispersed in water, PBS buffer and cell culture medium with 10 % FBS. By TEM measurement, the size of Au nanoparticles with spherical morphology is about 10-20 nm. AuCOOH_198.3 NPs were stable in an acidic environment, as well as in PBS buffer, cell culture media and media with 10 % serum. MTT results revealed that Au nanoparticles have well biocompatibility. TEM results indicated that conjugation of mAb198.3 on Au nanoparticles can be an effective delivery vehicle for negatively charged gold nanoparticles and increased its intracellular transport. It was also demonstrated by confocal microscopy that AuCOOH(Cy5)_mAb198.3 could attach to the cell membrane in very short time, then gradually delivered into cells. After 4 h incubation, almost all AuCOOH(Cy5)_mAb198.3 have been uptaken into or surrounding the cytoplasm and nucleus. In vivo results showed that only about 20 % of AuCOOH accumulated in tumor site due to EPR effect, while nearly 90 % of AuCOOH_mAb198.3 was found in tumor, providing sufficient evidence for receptor-specific targeting by mAb198.3. CONCLUSION According to in vitro and in vivo research results, the intracellular uptake of negatively charged AuCOOH_mAB198.3 particles is enhanced to a greater extent. Thus, AuCOOH_mAb198.3 holds significant potential to improve the treatment of cancer.
Collapse
Affiliation(s)
- Li Fan
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China. .,Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | | | - Hong Wu
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | | | | | | | | | | | | | | | - Chaojun Song
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Boquan Jin
- Department of Immunology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
42
|
Chen Q, Ke H, Dai Z, Liu Z. Nanoscale theranostics for physical stimulus-responsive cancer therapies. Biomaterials 2015; 73:214-30. [PMID: 26410788 DOI: 10.1016/j.biomaterials.2015.09.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/10/2015] [Accepted: 09/10/2015] [Indexed: 01/26/2023]
Abstract
Physical stimulus-responsive therapies often employing multifunctional theranostic agents responsive to external physical stimuli such as light, magnetic field, ultra-sound, radiofrequency, X-ray, etc., have been widely explored as novel cancer therapy strategies, showing encouraging results in many pre-clinical animal experiments. Unlike conventional cancer chemotherapy which often accompanies with severe toxic side effects, physical stimulus-responsive agents usually are non-toxic by themselves and would destruct cancer cells only under specific external stimuli, and thus could offer greatly reduced toxicity and enhanced treatment specificity. In addition, physical stimulus-responsive therapies can also be combined with other traditional therapeutics to achieve synergistic anti-tumor effects via a variety of mechanisms. In this review, we will summarize the latest progress in the development of physical stimulus-responsive therapies, and discuss the important roles of nanoscale theranostic agents involved in those non-conventional therapeutic strategies.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Hengte Ke
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123 Jiangsu, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
43
|
Corr SJ, Shamsudeen S, Vergara LA, Ho JCS, Ware MJ, Keshishian V, Yokoi K, Savage DJ, Meraz IM, Kaluarachchi W, Cisneros BT, Raoof M, Nguyen DT, Zhang Y, Wilson LJ, Summers H, Rees P, Curley SA, Serda RE. A New Imaging Platform for Visualizing Biological Effects of Non-Invasive Radiofrequency Electric-Field Cancer Hyperthermia. PLoS One 2015; 10:e0136382. [PMID: 26308617 PMCID: PMC4550384 DOI: 10.1371/journal.pone.0136382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/03/2015] [Indexed: 12/25/2022] Open
Abstract
Herein, we present a novel imaging platform to study the biological effects of non-invasive radiofrequency (RF) electric field cancer hyperthermia. This system allows for real-time in vivo intravital microscopy (IVM) imaging of radiofrequency-induced biological alterations such as changes in vessel structure and drug perfusion. Our results indicate that the IVM system is able to handle exposure to high-power electric-fields without inducing significant hardware damage or imaging artifacts. Furthermore, short durations of low-power (< 200 W) radiofrequency exposure increased transport and perfusion of fluorescent tracers into the tumors at temperatures below 41°C. Vessel deformations and blood coagulation were seen for tumor temperatures around 44°C. These results highlight the use of our integrated IVM-RF imaging platform as a powerful new tool to visualize the dynamics and interplay between radiofrequency energy and biological tissues, organs, and tumors.
Collapse
Affiliation(s)
- Stuart J. Corr
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
- Department of Chemistry, Rice University, Houston, TX, United States of America
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Sabeel Shamsudeen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
- Department of Biomedical Engineering, University of Houston, TX, United States of America
| | - Leoncio A. Vergara
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Jason Chak-Shing Ho
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Matthew J. Ware
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Vazrik Keshishian
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Kenji Yokoi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
| | - David J. Savage
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
| | - Ismail M. Meraz
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
| | - Warna Kaluarachchi
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Brandon T. Cisneros
- Department of Chemistry, Rice University, Houston, TX, United States of America
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Mustafa Raoof
- Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, United States of America
| | - Duy Trac Nguyen
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
- Department of Biomedical Engineering, University of Houston, TX, United States of America
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, TX, United States of America
| | - Lon J. Wilson
- Department of Chemistry, Rice University, Houston, TX, United States of America
| | - Huw Summers
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
- Centre for Nanohealth, College of Engineering, Swansea University, Swansea, Wales, United Kingdom
| | - Paul Rees
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
- Centre for Nanohealth, College of Engineering, Swansea University, Swansea, Wales, United Kingdom
- The Broad Institute, Cambridge, MA, United States of America
| | - Steven A. Curley
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
- Department of Mechanical Engineering and Materials Science, Rice University, Houston, TX, United States of America
| | - Rita E. Serda
- Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, United States of America
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States of America
| |
Collapse
|
44
|
Zhu X, Shah P, Stoff S, Liu H, Li CZ. A paper electrode integrated lateral flow immunosensor for quantitative analysis of oxidative stress induced DNA damage. Analyst 2015; 139:2850-7. [PMID: 24733353 DOI: 10.1039/c4an00313f] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel device combining electrochemical and colorimetric detection is developed for the rapid measurement of 8-hydroxy-2'-deoxyguanosine (8-OHdG), a DNA oxidative damage biomarker. The device takes advantage of the speed and low cost of the conventional strip test as well as the high reliability and accuracy of the electrochemical assay. Competitive immunoreactions were performed on the lateral flow strip, and the captured 8-OHdG on the control line was determined by chronoamperometric measurement with carbon nanotube paper as the working electrode. At the same time, the color intensity of the test line was measured by a scanner and analyzed by the ImageJ software. The device was able to detect 8-OHdG concentrations in PBS as low as 2.07 ng mL(-1) by the colorimetric method and 3.11 ng mL(-1) by the electrochemical method. Furthermore, the device was successfully utilized to detect 8-OHdG in urine with a detection limit of 5.76 ng mL(-1) (colorimetric method) and 8.85 ng mL(-1) (electrochemical method), respectively. In conclusion, the integrated device with dual detection methods can provide a rapid, visual, quantitative and feasible detection method for 8-OHdG. The integration of these two methods holds two major advantages over tests based on a single method. Firstly, it can provide double confidence on the same assay. Secondly, by involving two methods that differ in principle, the integration could potentially avoid false results coming from one method. In addition, these methods do not require expensive equipment or trained personnel, making it suitable for use as a simple, economical, portable field kit for on-site monitoring of 8-OHdG in a variety of clinical settings.
Collapse
Affiliation(s)
- Xuena Zhu
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University, 10555 West Flagler Street, Miami, FL 33174, USA.
| | | | | | | | | |
Collapse
|
45
|
Pereira MC, Arachchige MCM, Reshetnyak YK, Andreev OA. Advanced targeted nanomedicine. J Biotechnol 2015; 202:88-97. [PMID: 25615945 PMCID: PMC4685670 DOI: 10.1016/j.jbiotec.2015.01.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery has been the major topic in drug formulation and delivery. As nanomedicine emerges to create nano scale therapeutics and diagnostics, it is still essential to embed targeting capability to these novel systems to make them useful. Here we discuss various targeting approaches for delivery of therapeutic and diagnostic nano materials in view of search for more universal methods to target diseased tissues. Many diseases are accompanied with hypoxia and acidosis. Coating nanoparticles with pH Low Insertion Peptides (pHLIPs) increases efficiency of targeting acidic diseased tissues. It has been showing promising results to create future nanotheranostics for cancer and other diseases which are dominating in the present world.
Collapse
Affiliation(s)
| | - Mohan C M Arachchige
- Department of Physics, University of Rhode Island, 2 Lippit Rd., Kingston, RI 028881, USA
| | - Yana K Reshetnyak
- Department of Physics, University of Rhode Island, 2 Lippit Rd., Kingston, RI 028881, USA
| | - Oleg A Andreev
- Department of Physics, University of Rhode Island, 2 Lippit Rd., Kingston, RI 028881, USA.
| |
Collapse
|
46
|
Sasidharan A, Sivaram AJ, Retnakumari AP, Chandran P, Malarvizhi GL, Nair S, Koyakutty M. Radiofrequency ablation of drug-resistant cancer cells using molecularly targeted carboxyl-functionalized biodegradable graphene. Adv Healthc Mater 2015; 4:679-84. [PMID: 25586821 DOI: 10.1002/adhm.201400670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/18/2014] [Indexed: 12/12/2022]
Abstract
Under ultralow radiofrequency (RF) power, transferrin-conjugated graphene nanoparticles can thermally ablate drug- or radiation-resistant cancer cells very effectively. The results suggest that graphene-based RF hyperthermia can be an efficient method to manage drug-/radiation-resistant cancers.
Collapse
Affiliation(s)
- Abhilash Sasidharan
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Amal J. Sivaram
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Archana P. Retnakumari
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Parwathy Chandran
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | | | - Shantikumar Nair
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| | - Manzoor Koyakutty
- Amrita Centre for Nanosciences and Molecular Medicine; Amrita Vishwa Vidyapeetham University; Cochin 682 041 Kerala India
| |
Collapse
|
47
|
Radio frequency responsive nano-biomaterials for cancer therapy. J Control Release 2015; 204:85-97. [DOI: 10.1016/j.jconrel.2015.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/27/2015] [Accepted: 02/28/2015] [Indexed: 12/25/2022]
|
48
|
Muddineti OS, Ghosh B, Biswas S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int J Pharm 2015; 484:252-67. [DOI: 10.1016/j.ijpharm.2015.02.038] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/11/2015] [Accepted: 02/14/2015] [Indexed: 02/06/2023]
|
49
|
Anti-cancer, pharmacokinetics and tumor localization studies of pH-, RF- and thermo-responsive nanoparticles. Int J Biol Macromol 2014; 74:249-62. [PMID: 25526695 DOI: 10.1016/j.ijbiomac.2014.11.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/22/2014] [Accepted: 11/25/2014] [Indexed: 11/21/2022]
Abstract
The curcumin-encapsulated chitosan-graft-poly(N-vinyl caprolactam) nanoparticles containing gold nanoparticles (Au-CRC-TRC-NPs) were developed by ionic cross-linking method. After "optimum RF exposure" at 40 W for 5 min, Au-CRC-TRC-NPs dissipated heat energy in the range of ∼42°C, the lower critical solution temperature (LCST) of chitosan-graft-poly(N-vinyl caprolactam), causing controlled curcumin release and apoptosis to cancer cells. Further, in vivo PK/PD studies on swiss albino mice revealed that Au-CRC-TRC-NPs could be sustained in circulation for a week with no harm to internal organs. The colon tumor localization studies revealed that Au-CRC-TRC-NPs were retained in tumor for a week. These results throw light on their feasibility as multi-responsive nanomedicine for RF-assisted cancer treatment modalities.
Collapse
|
50
|
Bogdanov AA, Gupta S, Koshkina N, Corr SJ, Zhang S, Curley SA, Han G. Gold nanoparticles stabilized with MPEG-grafted poly(l-lysine): in vitro and in vivo evaluation of a potential theranostic agent. Bioconjug Chem 2014; 26:39-50. [PMID: 25496453 PMCID: PMC4306512 DOI: 10.1021/bc5005087] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the number of diagnostic and therapeutic applications utilizing gold nanoparticles (AuNPs) increases, so does the need for AuNPs that are stable in vivo, biocompatible, and suitable for bioconjugation. We investigated a strategy for AuNP stabilization that uses methoxypolyethylene glycol-graft-poly(l-lysine) copolymer (MPEG-gPLL) bearing free amino groups as a stabilizing molecule. MPEG-gPLL injected into water solutions of HAuCl4 with or without trisodium citrate resulted in spherical (Zav = 36 nm), monodisperse (PDI = 0.27), weakly positively charged nanoparticles (AuNP3) with electron-dense cores (diameter: 10.4 ± 2.5 nm) and surface amino groups that were amenable to covalent modification. The AuNP3 were stable against aggregation in the presence of phosphate and serum proteins and remained dispersed after their uptake into endosomes. MPEG-gPLL-stabilized AuNP3 exhibited high uptake and very low toxicity in human endothelial cells, but showed a high dose-dependent toxicity in epithelioid cancer cells. Highly stable radioactive labeling of AuNP3 with (99m)Tc allowed imaging of AuNP3 biodistribution and revealed dose-dependent long circulation in the blood. The minor fraction of AuGNP3 was found in major organs and at sites of experimentally induced inflammation. Gold analysis showed evidence of a partial degradation of the MPEG-gPLL layer in AuNP3 particles accumulated in major organs. Radiofrequency-mediated heating of AuNP3 solutions showed that AuNP3 exhibited heating behavior consistent with 10 nm core nanoparticles. We conclude that PEG-pPLL coating of AuNPs confers "stealth" properties that enable these particles to exist in vivo in a nonaggregating, biocompatible state making them suitable for potential use in biomedical applications such as noninvasive radiofrequency cancer therapy.
Collapse
Affiliation(s)
- Alexei A Bogdanov
- Departments of Radiology and ‡Cell Biology, University of Massachusetts Medical School , Worcester, Massachusetts 01655, United States
| | | | | | | | | | | | | |
Collapse
|