1
|
Flores-Prieto DE, Stabenfeldt SE. Nanoparticle targeting strategies for traumatic brain injury. J Neural Eng 2024; 21:061007. [PMID: 39622184 DOI: 10.1088/1741-2552/ad995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle (NP)-based drug delivery systems hold immense potential for targeted therapy and diagnosis of neurological disorders, overcoming the limitations of conventional treatment modalities. This review explores the design considerations and functionalization strategies of NPs for precise targeting of the brain and central nervous system. This review discusses the challenges associated with drug delivery to the brain, including the blood-brain barrier and the complex heterogeneity of traumatic brain injury. We also examine the physicochemical properties of NPs, emphasizing the role of size, shape, and surface characteristics in their interactions with biological barriers and cellular uptake mechanisms. The review concludes by exploring the options of targeting ligands designed to augment NP affinity and retention to specific brain regions or cell types. Various targeting ligands are discussed for their ability to mimic receptor-ligand interaction, and brain-specific extracellular matrix components. Strategies to mimic viral mechanisms to increase uptake are discussed. Finally, the emergence of antibody, antibody fragments, and antibody mimicking peptides are discussed as promising targeting strategies. By integrating insights from these scientific fields, this review provides an understanding of NP-based targeting strategies for personalized medicine approaches to neurological disorders. The design considerations discussed here pave the way for the development of NP platforms with enhanced therapeutic efficacy and minimized off-target effects, ultimately advancing the field of neural engineering.
Collapse
Affiliation(s)
- David E Flores-Prieto
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| | - Sarah E Stabenfeldt
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
2
|
Rajan A, Laha SS, Sahu NK, Thorat ND, Shankar B. Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy. Mater Today Bio 2024; 29:101348. [PMID: 39669801 PMCID: PMC11636219 DOI: 10.1016/j.mtbio.2024.101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/15/2024] [Indexed: 12/14/2024] Open
Abstract
The pervasiveness of cancer is a global health concern posing a major threat in terms of mortality and incidence rates. Magnetic hyperthermia (MHT) employing biocompatible magnetic nanoparticles (MNPs) ensuring selective attachment to target sites, better colloidal stability and conserving nearby healthy tissues has garnered widespread acceptance as a promising clinical treatment for cancer cell death. In this direction, multifunctional iron oxide nanoparticles (IONPs) are of significant interest for improved cancer care due to finite size effect associated with inherent magnetic properties. This review offers a comprehensive perception of IONPs-mediated MHT from fundamentals to clinical translation, by elucidating the underlying mechanism of heat generation and the related influential factors. Biological mechanisms underlying MHT-mediated cancer cell death such as reactive oxygen species generation and lysosomal membrane permeabilization have been discussed in this review. Recent advances in biological interactions (in vitro and in vivo) of IONPs and their translation to clinical MHT applications are briefed. New frontiers and prospects of promising combination cancer therapies such as MHT with photothermal therapy, cancer starvation therapy and sonodynamic therapy are presented in detail. Finally, this review concludes by addressing current crucial challenges and proposing possible solutions to achieve clinical success.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
| | - Suvra S. Laha
- Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science, Bangalore, 560012, India
- Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Niroj Kumar Sahu
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India
| | - Nanasaheb D. Thorat
- Department of Physics, Bernal Institute and Limerick Digital Cancer Research Centre, University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, 690525, India
| |
Collapse
|
3
|
Pérez E, Acosta J, Pisabarro V, Cordani M, dos Santos JCS, Sanz-Landaluze J, Gallo J, Bañobre-López M, Fernández-Lucas J. Novel Directed Enzyme Prodrug Therapy for Cancer Treatment Based on 2'-Deoxyribosyltransferase-Conjugated Magnetic Nanoparticles. Biomolecules 2024; 14:894. [PMID: 39199282 PMCID: PMC11352528 DOI: 10.3390/biom14080894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Directed enzyme prodrug therapy (DEPT) strategies show promise in mitigating chemotherapy side effects during cancer treatment. Among these, the use of immobilized enzymes on solid matrices as prodrug activating agents (IDEPT) presents a compelling delivery strategy, offering enhanced tumor targeting and reduced toxicity. Herein, we report a novel IDEPT strategy by employing a His-tagged Leishmania mexicana type I 2'-deoxyribosyltransferase (His-LmPDT) covalently attached to glutaraldehyde-activated magnetic iron oxide nanoparticles (MIONPs). Among the resulting derivatives, PDT-MIONP3 displayed the most favorable catalyst load/retained activity ratio, prompting its selection for further investigation. Substrate specificity studies demonstrated that PDT-MIONP3 effectively hydrolyzed a diverse array of 6-oxo and/or 6-amino purine 2'-deoxynucleosides, including 2-fluoro-2'-deoxyadenosine (dFAdo) and 6-methylpurine-2'-deoxyribose (d6MetPRib), both well-known prodrugs commonly used in DEPT. The biophysical characterization of both MIONPs and PDT-MIONPs was conducted by TEM, DLS, and single particle ICPMS techniques, showing an ideal nanosized range and a zeta potential value of -47.9 mV and -78.2 mV for MIONPs and PDT-MIONPs, respectively. The intracellular uptake of MIONPs and PDT-MIONPs was also determined by TEM and single particle ICPMS on HeLa cancer cell lines and NIH3T3 normal cell lines, showing a higher intracellular uptake in tumor cells. Finally, the selectivity of the PDT-MIONP/dFAdo IDEPT system was tested on HeLa cells (24 h, 10 µM dFAdo), resulting in a significant reduction in tumoral cell survival (11% of viability). Based on the experimental results, PDT-MIONP/dFAdo presents a novel and alternative IDEPT strategy, providing a promising avenue for cancer treatment.
Collapse
Affiliation(s)
- Elena Pérez
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Victor Pisabarro
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
| | - Marco Cordani
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain;
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção 62790970, CE, Brazil;
| | - Jon Sanz-Landaluze
- Department of Analytical Chemistry, Faculty of Chemical Science, Universidad Complutense de Madrid, Avenida Complutense S/N, 28040 Madrid, Spain;
| | - Juan Gallo
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (J.G.); (M.B.-L.)
| | - Manuel Bañobre-López
- INL—International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, 4715-330 Braga, Portugal; (J.G.); (M.B.-L.)
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Urbanización El Bosque, 28670 Villaviciosa de Odón, Spain; (E.P.); (J.A.); (V.P.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universidad Complutense de Madrid, C. de José Antonio Novais, 12, 28040 Madrid, Spain;
- Grupo de Investigación en Ciencias Naturales y Exactas—GICNEX, Universidad de la Costa, CUC, Calle 58 # 55–66, Barranquilla 080002, Colombia
| |
Collapse
|
4
|
Petcov TE, Straticiuc M, Iancu D, Mirea DA, Trușcă R, Mereuță PE, Savu DI, Mogoșanu GD, Mogoantă L, Popescu RC, Kopatz V, Jinga SI. Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures. J Funct Biomater 2024; 15:169. [PMID: 38921542 PMCID: PMC11204647 DOI: 10.3390/jfb15060169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoparticle (NP)-based solutions for oncotherapy promise an improved efficiency of the anticancer response, as well as higher comfort for the patient. The current advancements in cancer treatment based on nanotechnology exploit the ability of these systems to pass biological barriers to target the tumor cell, as well as tumor cell organelles. In particular, iron oxide NPs are being clinically employed in oncological management due to this ability. When designing an efficient anti-cancer therapy based on NPs, it is important to know and to modulate the phenomena which take place during the interaction of the NPs with the tumor cells, as well as the normal tissues. In this regard, our review is focused on highlighting different approaches to studying the internalization patterns of iron oxide NPs in simple and complex 2D and 3D in vitro cell models, as well as in living tissues, in order to investigate the functionality of an NP-based treatment.
Collapse
Affiliation(s)
- Teodora Eliana Petcov
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| | - Mihai Straticiuc
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Decebal Iancu
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Dragoș Alexandru Mirea
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Roxana Trușcă
- National Research Center for Micro and Nanomaterials, National University for Science and Technology Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Paul Emil Mereuță
- Department of Applied Nuclear Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania; (M.S.); (D.I.); (D.A.M.); (P.E.M.)
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - George Dan Mogoșanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Laurențiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 2 Petru Rareș Street, 200349 Craiova, Romania;
| | - Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, 30 Reactorului Street, 077125 Magurele, Romania
| | - Verena Kopatz
- Department of Radiation Oncology, Medical University of Vienna, 18–20 Waehringer Guertel Street, 1090 Vienna, Austria;
| | - Sorin Ion Jinga
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (T.E.P.); (S.I.J.)
| |
Collapse
|
5
|
Wang N, Chen L, Huang W, Gao Z, Jin M. Current Advances of Nanomaterial-Based Oral Drug Delivery for Colorectal Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:557. [PMID: 38607092 PMCID: PMC11013305 DOI: 10.3390/nano14070557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024]
Abstract
Colorectal cancer (CRC) is a common malignant tumor, and traditional treatments include surgical resection and radiotherapy. However, local recurrence, distal metastasis, and intestinal obstruction are significant problems. Oral nano-formulation is a promising treatment strategy for CRC. This study introduces physiological and environmental factors, the main challenges of CRC treatment, and the need for a novel oral colon-targeted drug delivery system (OCDDS). This study reviews the research progress of controlled-release, responsive, magnetic, targeted, and other oral nano-formulations in the direction of CRC treatment, in addition to the advantages of oral colon-targeted nano-formulations and concerns about the oral delivery of related therapeutic agents to inspire related research.
Collapse
Affiliation(s)
- Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (N.W.); (L.C.); (W.H.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Meng YQ, Shi YN, Zhu YP, Liu YQ, Gu LW, Liu DD, Ma A, Xia F, Guo QY, Xu CC, Zhang JZ, Qiu C, Wang JG. Recent trends in preparation and biomedical applications of iron oxide nanoparticles. J Nanobiotechnology 2024; 22:24. [PMID: 38191388 PMCID: PMC10775472 DOI: 10.1186/s12951-023-02235-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The iron oxide nanoparticles (IONPs), possessing both magnetic behavior and semiconductor property, have been extensively used in multifunctional biomedical fields due to their biocompatible, biodegradable and low toxicity, such as anticancer, antibacterial, cell labelling activities. Nevertheless, there are few IONPs in clinical use at present. Some IONPs approved for clinical use have been withdrawn due to insufficient understanding of its biomedical applications. Therefore, a systematic summary of IONPs' preparation and biomedical applications is crucial for the next step of entering clinical practice from experimental stage. This review summarized the existing research in the past decade on the biological interaction of IONPs with animal/cells models, and their clinical applications in human. This review aims to provide cutting-edge knowledge involved with IONPs' biological effects in vivo and in vitro, and improve their smarter design and application in biomedical research and clinic trials.
Collapse
Affiliation(s)
- Yu Qing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ya Nan Shi
- School of Pharmacy, Yantai University, No. 30, Qingquan Road, Laishan District, Yantai, Shandong, China
| | - Yong Ping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yan Qing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Wei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dan Dan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
7
|
Van de Walle A, Figuerola A, Espinosa A, Abou-Hassan A, Estrader M, Wilhelm C. Emergence of magnetic nanoparticles in photothermal and ferroptotic therapies. MATERIALS HORIZONS 2023; 10:4757-4775. [PMID: 37740347 DOI: 10.1039/d3mh00831b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
With their distinctive physicochemical features, nanoparticles have gained recognition as effective multifunctional tools for biomedical applications, with designs and compositions tailored for specific uses. Notably, magnetic nanoparticles stand out as first-in-class examples of multiple modalities provided by the iron-based composition. They have long been exploited as contrast agents for magnetic resonance imaging (MRI) or as anti-cancer agents generating therapeutic hyperthermia through high-frequency magnetic field application, known as magnetic hyperthermia (MHT). This review focuses on two more recent applications in oncology using iron-based nanomaterials: photothermal therapy (PTT) and ferroptosis. In PTT, the iron oxide core responds to a near-infrared (NIR) excitation and generates heat in its surrounding area, rivaling the efficiency of plasmonic gold-standard nanoparticles. This opens up the possibility of a dual MHT + PTT approach using a single nanomaterial. Moreover, the iron composition of magnetic nanoparticles can be harnessed as a chemotherapeutic asset. Degradation in the intracellular environment triggers the release of iron ions, which can stimulate the production of reactive oxygen species (ROS) and induce cancer cell death through ferroptosis. Consequently, this review emphasizes these emerging physical and chemical approaches for anti-cancer therapy facilitated by magnetic nanoparticles, combining all-in-one functionalities.
Collapse
Affiliation(s)
- Aurore Van de Walle
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| | - Albert Figuerola
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Ana Espinosa
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain
| | - Ali Abou-Hassan
- Sorbonne Université, UMR CNRS 8234, Physico-chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), F-75005, Paris, France
- Institut Universitaire de France (IUF), 75231 Cedex 05, Paris, France
| | - Marta Estrader
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Universitat de Barcelona, Martí i Franqués 1, E-08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB), Martí i Franques 1, E-08028 Barcelona, Spain
| | - Claire Wilhelm
- Laboratory Physical Chemistry Curie (PCC), UMR168, Curie Institute and CNRS, 75005 Paris, France.
| |
Collapse
|
8
|
Ulanova M, Gloag L, Bongers A, Kim CK, Duong HTK, Kim HN, Gooding JJ, Tilley RD, Biazik J, Wen W, Sachdev PS, Braidy N. Evaluation of Dimercaptosuccinic Acid-Coated Iron Nanoparticles Immunotargeted to Amyloid Beta as MRI Contrast Agents for the Diagnosis of Alzheimer's Disease. Cells 2023; 12:2279. [PMID: 37759500 PMCID: PMC10527350 DOI: 10.3390/cells12182279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Nanoparticle-based magnetic contrast agents have opened the potential for magnetic resonance imaging (MRI) to be used for early non-invasive diagnosis of Alzheimer's disease (AD). Accumulation of amyloid pathology in the brain has shown association with cognitive decline and tauopathy; hence, it is an effective biomarker for the early detection of AD. The aim of this study was to develop a biocompatible magnetic nanoparticle targeted to amyloid beta (Aβ) plaques to increase the sensitivity of T2-weighted MRI for imaging of amyloid pathology in AD. We presented novel iron core-iron oxide nanoparticles stabilized with a dimercaptosuccinic acid coating and functionalized with an anti-Aβ antibody. Nanoparticle biocompatibility and cellular internalization were evaluated in vitro in U-251 glioblastoma cells using cellular assays, proteomics, and transmission electron microscopy. Iron nanoparticles demonstrated no significant in vitro cytotoxicity, and electron microscopy results showed their movement through the endocytic cycle within the cell over a 24 h period. In addition, immunostaining and bio-layer interferometry confirmed the targeted nanoparticle's binding affinity to amyloid species. The iron nanoparticles demonstrated favourable MRI contrast enhancement; however, the addition of the antibody resulted in a reduction in the relaxivity of the particles. The present work shows promising preliminary results in the development of a targeted non-invasive method of early AD diagnosis using contrast-enhanced MRI.
Collapse
Affiliation(s)
- Marina Ulanova
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Lucy Gloag
- Faculty of Science, School of Mathematical and Physical Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Andre Bongers
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
- Faculty of Medicine, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chul-Kyu Kim
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Hong Thien Kim Duong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia;
| | - John Justin Gooding
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D. Tilley
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia; (H.T.K.D.); (J.J.G.)
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joanna Biazik
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia; (A.B.); (R.D.T.); (J.B.)
| | - Wei Wen
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, NSW 2031, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, University of New South Wales, Sydney, NSW 2052, Australia; (M.U.); (C.-K.K.); (W.W.); (P.S.S.)
| |
Collapse
|
9
|
Spiridonov V, Zoirova Z, Alyokhina Y, Perov N, Afanasov M, Pozdyshev D, Krjukova D, Knotko A, Muronetz V, Yaroslavov A. Magnetically Controlled Hyaluronic Acid-Maghemite Nanocomposites with Embedded Doxorubicin. Polymers (Basel) 2023; 15:3644. [PMID: 37688267 PMCID: PMC10489843 DOI: 10.3390/polym15173644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The controllable delivery of drugs is a key task of pharmacology. For this purpose, a series of polymer composites was synthesized via the cross-linking of hyaluronate and a hyaluronate/polyacrylate mixture with Fe2O3 nanoparticles. The cross-linking imparts magnetic properties to the composites, which are more pronounced for the ternary hyaluronate/polyacrylate/γ-Fe2O3 composites compared with the binary hyaluronate/Fe2O3 composites. When dispersed in water, the composites produce microsized hydrogel particles. Circulation of the ternary microgels in an aqueous solution at a speed of 1.84 cm/s can be stopped using a permanent external magnet with a magnetic flux density of 400 T. The composite hydrogels can absorb the antitumor antibiotic doxorubicin (Dox); the resulting constructs show their cytotoxicity to tumor cells to be comparable to the cytotoxicity of Dox itself. The addition of the hyaluronidase enzyme induces degradation of the binary and ternary microgels down to smaller particles. This study presents prospectives for the preparation of magnetically controlled biodegradable polymer carriers for the encapsulation of bioactive substances.
Collapse
Affiliation(s)
- Vasily Spiridonov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Zukhra Zoirova
- Faculty of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1-73, 119991 Moscow, Russia
| | - Yuliya Alyokhina
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
| | - Nikolai Perov
- Department of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
| | - Mikhail Afanasov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Denis Pozdyshev
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye gory 1-40, 119992 Moscow, Russia (V.M.)
| | - Daria Krjukova
- Faculty of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1-73, 119991 Moscow, Russia
| | - Alexander Knotko
- Faculty of Materials Science, Lomonosov Moscow State University, Leninskie Gory 1-73, 119991 Moscow, Russia
| | - Vladimir Muronetz
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye gory 1-40, 119992 Moscow, Russia (V.M.)
| | - Alexander Yaroslavov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
10
|
Van de Walle A, Perez JE, Wilhelm C. Magnetic bioprinting of stem cell-based tissues. BIOPRINTING 2023; 30:e00265. [DOI: 10.1016/j.bprint.2023.e00265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
In Vitro Studies of Pegylated Magnetite Nanoparticles in a Cellular Model of Viral Oncogenesis: Initial Studies to Evaluate Their Potential as a Future Theranostic Tool. Pharmaceutics 2023; 15:pharmaceutics15020488. [PMID: 36839809 PMCID: PMC9967771 DOI: 10.3390/pharmaceutics15020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Magnetic nanosystems represent promising alternatives to the traditional diagnostic and treatment procedures available for different pathologies. In this work, a series of biological tests are proposed, aiming to validate a magnetic nanoplatform for Kaposi's sarcoma treatment. The selected nanosystems were polyethylene glycol-coated iron oxide nanoparticles (MAG.PEG), which were prepared by the hydrothermal method. Physicochemical characterization was performed to verify their suitable physicochemical properties to be administered in vivo. Exhaustive biological assays were conducted, aiming to validate this platform in a specific biomedical field related to viral oncogenesis diseases. As a first step, the MAG.PEG cytotoxicity was evaluated in a cellular model of Kaposi's sarcoma. By phase contrast microscopy, it was found that cell morphology remained unchanged regardless of the nanoparticles' concentration (1-150 µg mL-1). The results, arising from the crystal violet technique, revealed that the proliferation was also unaffected. In addition, cell viability analysis by MTS and neutral red assays revealed a significant increase in metabolic and lysosomal activity at high concentrations of MAG.PEG (100-150 µg mL-1). Moreover, an increase in ROS levels was observed at the highest concentration of MAG.PEG. Second, the iron quantification assays performed by Prussian blue staining showed that MAG.PEG cellular accumulation is dose dependent. Furthermore, the presence of vesicles containing MAG.PEG inside the cells was confirmed by TEM. Finally, the MAG.PEG steering was achieved using a static magnetic field generated by a moderate power magnet. In conclusion, MAG.PEG at a moderate concentration would be a suitable drug carrier for Kaposi's sarcoma treatment, avoiding adverse effects on normal tissues. The data included in this contribution appear as the first stage in proposing this platform as a suitable future theranostic to improve Kaposi's sarcoma therapy.
Collapse
|
12
|
Influence of PEG Chain Length of Functionalized Magnetic Nanoparticles on the Cytocompatibility and Immune Competence of Primary Murine Macrophages and Dendritic Cells. Int J Mol Sci 2023; 24:ijms24032565. [PMID: 36768890 PMCID: PMC9916475 DOI: 10.3390/ijms24032565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
A major drawback of nanoparticles (NPs) for biomedical applications is their preferential phagocytosis in immune cells, which can be avoided by surface modifications like PEGylation. Nevertheless, examinations of different polyethylene glycol (PEG) chain lengths on the competence of immune cells as well as possible immunotoxic effects are still sparse. Therefore, primary murine macrophages and dendritic cells were generated and incubated with magnetic nanoporous silica nanoparticles (MNPSNPs) modified with different mPEG chains (2 kDa, 5 kDa, and 10 kDa). Cytotoxicity, cytokine release, and the formation of reactive oxygen species (ROS) were determined. Immune competence of both cell types was examined and uptake of MNPSNPs into macrophages was visualized. Concentrations up to 150 µg/mL MNPSNPs showed no effects on the metabolic activity or immune competence of both cell types. However, ROS significantly increased in macrophages incubated with larger PEG chains, while the concentration of cytokines (TNF-α and IL-6) did not indicate a proinflammatory process. Investigations on the uptake of MNPSNPs revealed no differences in the onset of internalization and the intensity of intracellular fluorescence. The study gives no indication for an immunotoxic effect of PEGylated MNPSNPs. Nevertheless, there is still a need for optimization regarding their internalization to ensure an efficient drug delivery.
Collapse
|
13
|
Hasan MJ, Westphal E, Chen P, Saini A, Chu IW, Watzman SJ, Ureña-Benavides E, Vasquez ES. Adsorptive properties and on-demand magnetic response of lignin@Fe 3O 4 nanoparticles at castor oil-water interfaces. RSC Adv 2023; 13:2768-2779. [PMID: 36756408 PMCID: PMC9850361 DOI: 10.1039/d2ra07952f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
Lignin@Fe3O4 nanoparticles adsorb at oil-water interfaces, form Pickering emulsions, induce on-demand magnetic responses to break emulsions, and can sequester oil from water. Lignin@Fe3O4 nanoparticles were prepared using a pH-induced precipitation method and were fully characterized. These were used to prepare Pickering emulsions with castor oil/Sudan red G dye and water at various oil/water volume ratios and nanoparticle concentrations. The stability and demulsification of the emulsions under different magnetic fields generated with permanent magnets (0-540 mT) were investigated using microscopy images and by visual inspection over time. The results showed that the Pickering emulsions were more stable at the castor oil/water ratio of 50/50 and above. Increasing the concentration of lignin@Fe3O4 improved the emulsion stability and demulsification rates with 540 mT applied magnetic field strength. The adsorption of lignin@Fe3O4 nanoparticles at the oil/water interface using 1-pentanol evaporation through Marangoni effects was demonstrated, and magnetic manipulation of a lignin@Fe3O4 stabilized castor oil spill in water was shown. Nanoparticle concentration and applied magnetic field strengths were analyzed for the recovery of spilled oil from water; it was observed that increasing the magnetic strength increased oil spill motion for a lignin@Fe3O4 concentration of up to 0.8 mg mL-1 at 540 mT. Overall, this study demonstrates the potential of lignin-magnetite nanocomposites for rapid on-demand magnetic responses to externally induced stimuli.
Collapse
Affiliation(s)
- Mohammad Jahid Hasan
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San AntonioOne UTSA CircleSan Antonio78249TXUSA
| | - Emily Westphal
- Department of Chemical and Materials Engineering, University of Dayton, 300 College Park Dayton OH 45469-0256 USA
| | - Peng Chen
- Department of Chemical and Materials Engineering, University of Dayton, 300 College Park Dayton OH 45469-0256 USA
| | - Abhishek Saini
- Department of Mechanical and Materials Engineering, University of Cincinnati2901Woodside DriveCincinnatiOH45221USA
| | - I-Wei Chu
- Institute of Imaging and Analytical Technology, Mississippi State UniversityMississippi StateMS39762USA
| | - Sarah J. Watzman
- Department of Mechanical and Materials Engineering, University of Cincinnati2901Woodside DriveCincinnatiOH45221USA
| | - Esteban Ureña-Benavides
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San AntonioOne UTSA CircleSan Antonio78249TXUSA
| | - Erick S. Vasquez
- Department of Chemical and Materials Engineering, University of Dayton, 300 College ParkDaytonOH45469-0256USA,Integrative Science and Engineering Center, University of Dayton, 300 College ParkDaytonOH45469USA
| |
Collapse
|
14
|
Abstract
Nanocomposites based on polymers and nanoparticles are used in agriculture for photoconversion of solar radiation, as a basis for covering material, as a packaging material, and as functional films. At the same time, nanocomposites are almost never used in agriculture as biosafe structural materials. In this work, we have developed a technology for obtaining a nanocomposite based on PLGA and iron oxide nanoparticles. The nanocomposite has unique physical and chemical properties and also exhibits pronounced antibacterial properties at a concentration of iron oxide nanoparticles of more than 0.01%. At the same time, the nanocomposite does not affect the growth and development of pepper and is biocompatible with mammalian cells. Nanocomposites based on PLGA and iron oxide nanoparticles can be an attractive candidate for the manufacture of structural and packaging materials in agriculture.
Collapse
|
15
|
Nitica S, Fizesan I, Dudric R, Barbu-Tudoran L, Pop A, Loghin F, Vedeanu N, Lucaciu CM, Iacovita C. A Fast, Reliable Oil-In-Water Microemulsion Procedure for Silica Coating of Ferromagnetic Zn Ferrite Nanoparticles Capable of Inducing Cancer Cell Death In Vitro. Biomedicines 2022; 10:1647. [PMID: 35884954 PMCID: PMC9313231 DOI: 10.3390/biomedicines10071647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
The applications of ferrimagnetic nanoparticles (F-MNPs) in magnetic hyperthermia (MH) are restricted by their stabilization in microscale aggregates due to magnetostatic interactions significantly reducing their heating performances. Coating the F-MNPs in a silica layer is expected to significantly reduce the magnetostatic interactions, thereby increasing their heating ability. A new fast, facile, and eco-friendly oil-in-water microemulsion-based method was used for coating Zn0.4Fe2.6O4 F-MNPs in a silica layer within 30 min by using ultrasounds. The silica-coated clusters were characterized by various physicochemical techniques and MH, while cytotoxicity studies, cellular uptake determination, and in vitro MH experiments were performed on normal and malignant cell lines. The average hydrodynamic diameter of silica-coated clusters was approximately 145 nm, displaying a high heating performance (up to 2600 W/gFe). Biocompatibility up to 250 μg/cm2 (0.8 mg/mL) was recorded by Alamar Blue and Neutral Red assays. The silica-coating increases the cellular uptake of Zn0.4Fe2.6O4 clusters up to three times and significantly improves their intracellular MH performances. A 90% drop in cellular viability was recorded after 30 min of MH treatment (20 kA/m, 355 kHz) for a dosage level of 62.5 μg/cm2 (0.2 mg/mL), while normal cells were more resilient to MH treatment.
Collapse
Affiliation(s)
- Stefan Nitica
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (S.N.); (N.V.)
| | - Ionel Fizesan
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Roxana Dudric
- Faculty of Physics, “Babes-Bolyai” University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania;
| | - Lucian Barbu-Tudoran
- Electron Microscopy Center “Prof. C. Craciun”, Faculty of Biology & Geology, “Babes-Bolyai” University, 5–7 Clinicilor St., 400006 Cluj-Napoca, Romania;
- Electron Microscopy Integrated Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67–103 Donath St., 400293 Cluj-Napoca, Romania
| | - Anca Pop
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Felicia Loghin
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Pasteur St., 400349 Cluj-Napoca, Romania; (I.F.); (A.P.); (F.L.)
| | - Nicoleta Vedeanu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (S.N.); (N.V.)
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (S.N.); (N.V.)
| | - Cristian Iacovita
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania; (S.N.); (N.V.)
| |
Collapse
|
16
|
Wang X, Cao Q, Wu S, Bahrani Fard MR, Wang N, Cao J, Zhu W. Magnetic Nano-Platform Enhanced iPSC-Derived Trabecular Meshwork Delivery and Tracking Efficiency. Int J Nanomedicine 2022; 17:1285-1307. [PMID: 35345785 PMCID: PMC8957401 DOI: 10.2147/ijn.s346141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Transplantation of stem cells to remodel the trabecular meshwork (TM) has become a new option for restoring aqueous humor dynamics and intraocular pressure homeostasis in glaucoma. In this study, we aimed to design a nanoparticle to label induced pluripotent stem cell (iPSC)-derived TM and improve the delivery accuracy and in vivo tracking efficiency. Methods PLGA-SPIO-Cypate (PSC) NPs were designed with polylactic acid-glycolic acid (PLGA) polymers as the backbone, superparamagnetic iron oxide (SPIO) nanoparticles, and near-infrared (NIR) dye cypate. In vitro assessment of cytotoxicity, iron content after NPs labeling, and the dual-model monitor was performed on mouse iPSC-derived TM (miPSC-TM) cells, as well as immortalized and primary human TM cells. Cell function after labeling, the delivery accuracy, in vivo tracking efficiency, and its effect on lowering IOP were evaluated following miPSC-TM transplantation in mice. Results Initial in vitro experiments showed that a single-time nanoparticles incubation was sufficient to label iPSC-derived TM and was not related to any change in both cell viability and fate. Subsequent in vivo evaluation revealed that the use of this nanoparticle not only improves the delivery accuracy of the transplanted cells in live animals but also benefits the dual-model tracking in the long term. More importantly, the use of the magnet triggers a temporary enhancement in the effectiveness of cell-based therapy in alleviating the pathologies associated with glaucoma. Conclusion This study provided a promising approach for enhancing both the delivery and in vivo tracking efficiency of the transplanted cells, which facilitates the clinical translation of stem cell-based therapy for glaucoma.
Collapse
Affiliation(s)
- Xiangji Wang
- School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd, Qingdao, People's Republic of China
| | - Shen Wu
- Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, People's Republic of China
| | | | - Ningli Wang
- Beijing Tongren Hospital Eye Center, Capital Medical University, Beijing, People's Republic of China
| | - Jie Cao
- School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Wei Zhu
- School of Pharmacy, Qingdao University, Qingdao, People's Republic of China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
17
|
Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI. NANOMATERIALS 2021; 11:nano11112888. [PMID: 34835651 PMCID: PMC8625532 DOI: 10.3390/nano11112888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
Iron oxide nanoparticles (IONPs) are suitable materials for contrast enhancement in magnetic resonance imaging (MRI). Their potential clinical applications range from diagnosis to therapy and follow-up treatments. However, a deeper understanding of the interaction between IONPs, culture media and cells is necessary for expanding the application of this technology to different types of cancer therapies. To achieve new insights of these interactions, a set of IONPs were prepared with the same inorganic core and five distinct coatings, to study their aggregation and interactions in different physiological media, as well as their cell labelling efficiency. Then, a second set of IONPs, with six different core sizes and the same coating, were used to study how the core size affects cell labelling and MRI in vitro. Here, IONPs suspended in biological media experience a partial removal of the coating and adhesion of molecules. The FBS concentration alters the labelling of all types of IONPs and hydrodynamic sizes ≥ 300 nm provide the greatest labelling using the centrifugation-mediated internalization (CMI). The best contrast for MRI results requires a core size range between 12–14 nm coated with dimercaptosuccinic acid (DMSA) producing R2* values of 393.7 s−1 and 428.3 s−1, respectively. These findings will help to bring IONPs as negative contrast agents into clinical settings.
Collapse
|
18
|
Çitoğlu S, Coşkun ÖD, Tung LD, Onur MA, Thanh NTK. DMSA-coated cubic iron oxide nanoparticles as potential therapeutic agents. Nanomedicine (Lond) 2021; 16:925-941. [PMID: 34015971 DOI: 10.2217/nnm-2020-0467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Superparamagnetic cubic iron oxide nanoparticles (IONPs) were synthesized and functionalized with meso-2,3-dimercaptosuccinic acid (DMSA) as a potential agent for cancer treatment. Methods: Monodisperse cubic IONPs with a high value of saturation magnetization were synthesized by thermal decomposition method and functionalized with DMSA via ligand exchange reaction, and their cytotoxic effects on HeLa cells were investigated. Results: DMSA functionalized cubic IONPs with an edge length of 24.5 ± 1.9 nm had a specific absorption rate value of 197.4 W/gFe (15.95 kA/m and 488 kHz) and showed slight cytotoxicity on HeLa cells when incubated with 3.3 × 1010, 6.6 × 1010 and 9.9 × 1010 NP/mL for 24, 48 and 72 h. Conclusion: To the best of our knowledge, this is the first study to investigate both the cytotoxic effects of DMSA-coated cubic IONPs on HeLa cells and hyperthermia performance of these nanoparticles.
Collapse
Affiliation(s)
- Senem Çitoğlu
- Department of Nanotechnology & Nanomedicine, Institute of Science, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Özlem Duyar Coşkun
- Thin Film Preparation and Characterization Laboratory, Department of Physics Engineering, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Le Duc Tung
- UCL Healthcare Biomagnetic & Nanomaterials Laboratories, The Royal Institution of Great Britain, 21 Albemarle Street, London, W1S 4BS, UK.,Biophysics Group, Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Mehmet Ali Onur
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetic & Nanomaterials Laboratories, The Royal Institution of Great Britain, 21 Albemarle Street, London, W1S 4BS, UK.,Biophysics Group, Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
19
|
Huang H, Du X, He Z, Yan Z, Han W. Nanoparticles for Stem Cell Tracking and the Potential Treatment of Cardiovascular Diseases. Front Cell Dev Biol 2021; 9:662406. [PMID: 34277609 PMCID: PMC8283769 DOI: 10.3389/fcell.2021.662406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/12/2021] [Indexed: 01/15/2023] Open
Abstract
Stem cell-based therapies have been shown potential in regenerative medicine. In these cells, mesenchymal stem cells (MSCs) have the ability of self-renewal and being differentiated into different types of cells, such as cardiovascular cells. Moreover, MSCs have low immunogenicity and immunomodulatory properties, and can protect the myocardium, which are ideal qualities for cardiovascular repair. Transplanting mesenchymal stem cells has demonstrated improved outcomes for treating cardiovascular diseases in preclinical trials. However, there still are some challenges, such as their low rate of migration to the ischemic myocardium, low tissue retention, and low survival rate after the transplantation. To solve these problems, an ideal method should be developed to precisely and quantitatively monitor the viability of the transplanted cells in vivo for providing the guidance of clinical translation. Cell imaging is an ideal method, but requires a suitable contrast agent to label and track the cells. This article reviews the uses of nanoparticles as contrast agents for tracking MSCs and the challenges of clinical use of MSCs in the potential treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Huihua Huang
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Health Science Center, Shenzhen, China
| | - Xuejun Du
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Zhiguo He
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Zifeng Yan
- Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Kamal N, Zaki AH, El-Shahawy AA, Sayed OM, El-Dek SI. Changing the morphology of one-dimensional titanate nanostructures affects its tissue distribution and toxicity. Toxicol Ind Health 2021; 36:272-286. [PMID: 32552542 DOI: 10.1177/0748233720921693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present research investigated the impact of the morphology change of titanate (TiO2) nanostructures on its tissue distribution and toxicity. The TiO2 nanotubes, rods, and ribbons were synthesized by the hydrothermal technique, and the morphology was adjusted by alteration of the hydrothermal duration time. The characterization techniques were X-ray diffraction, high-resolution transmission electron microscopy, dynamic light scattering, and the Brunauer-Emmett-Teller method for measuring the surface area. The intravenously administrated dose (5 mg/kg) was injected as a single dose for 1 day and consecutively for 42 days. The quantitative analysis of accumulated TiO2 nanostructures in the liver, spleen, and the heart was performed using an inductively coupled plasma emission spectrometer, and the organs' toxicity was estimated by histopathological analysis. The prepared nanostructures exhibited differences in morphology, crystallinity, size distribution, surface area, zeta potential, and aspect ratio. The results revealed a tissue distribution difference between the liver, spleen, and heart of these nanostructures, the distribution order was the liver, spleen, and the heart for all TiO2 nanostructures. The toxicity was induced with different degrees. The nanotubes were the most harmful among the three formats. In summary, changes in the morphology of the TiO2 nanostructures change its distribution and toxicity.
Collapse
Affiliation(s)
- Nahla Kamal
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - A H Zaki
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed Ag El-Shahawy
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni-Suef, Egypt
| | - S I El-Dek
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni-Suef, Egypt
| |
Collapse
|
21
|
Huang Z, He Y, Chang X, Liu J, Yu L, Wu Y, Li Y, Tian J, Kang L, Wu D, Wang H, Wu Z, Qiu G. A Magnetic Iron Oxide/Polydopamine Coating Can Improve Osteogenesis of 3D-Printed Porous Titanium Scaffolds with a Static Magnetic Field by Upregulating the TGFβ-Smads Pathway. Adv Healthc Mater 2020; 9:e2000318. [PMID: 32548975 DOI: 10.1002/adhm.202000318] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/21/2020] [Indexed: 12/14/2022]
Abstract
3D-printed porous titanium-aluminum-vanadium (Ti6Al4V, pTi) scaffolds offer surgeons a good option for the reconstruction of large bone defects, especially at the load-bearing sites. However, poor osteogenesis limits its application in clinic. In this study, a new magnetic coating is successfully fabricated by codepositing of Fe3 O4 nanoparticles and polydopamine (PDA) on the surface of 3D-printed pTi scaffolds, which enhances cell attachment, proliferation, and osteogenic differentiation of hBMSCs in vitro and new bone formation of rabbit femoral bone defects in vivo with/without a static magnetic field (SMF). Furthermore, through proteomic analysis, the enhanced osteogenic effect of the magnetic Fe3 O4 /PDA coating with the SMF is found to be related to upregulate the TGFβ-Smads signaling pathway. Therefore, this work provides a simple protocol to improve the osteogenesis of 3D-printed porous pTi scaffolds, which will help their application in clinic.
Collapse
Affiliation(s)
- Zhenfei Huang
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
- Department of Orthopaedic SurgeryFirst Affiliated Hospital of Nanjing Medical University No.300 Guangzhou Road Nanjing 210029 P. R. China
| | - Yu He
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
- Department of Plastic SurgeryPlastic Surgery HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.33 Badachu Road Beijing 100144 P. R. China
| | - Xiao Chang
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
| | - Jieying Liu
- Medical Science Research Center (MRC)Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
| | - Lingjia Yu
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
- Department of Orthopaedic SurgeryBeijing Friendship HospitalCapital Medical University No.95 Yong'an Road Beijing 100050 P. R. China
| | - Yuanhao Wu
- Medical Science Research Center (MRC)Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
| | - Yaqian Li
- Medical Science Research Center (MRC)Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
| | - Jingjing Tian
- Medical Science Research Center (MRC)Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
| | - Lin Kang
- Medical Science Research Center (MRC)Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
| | - Di Wu
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
| | - Hai Wang
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
| | - Zhihong Wu
- Medical Science Research Center (MRC)Peking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease No.1 Shuaifuyuan Beijing 100730 P. R. China
| | - Guixing Qiu
- Department of Orthopaedic SurgeryPeking Union Medical College HospitalPeking Union Medical College and Chinese Academy of Medical Sciences No.1 Shuaifuyuan Beijing 100730 P. R. China
| |
Collapse
|
22
|
Photo-Functionalized Magnetic Nanoparticles as a Nanocarrier of Photodynamic Anticancer Agent for Biomedical Theragnostics. Cancers (Basel) 2020; 12:cancers12030571. [PMID: 32121558 PMCID: PMC7139909 DOI: 10.3390/cancers12030571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
Various theragnostic agents have been devised and developed as cancer treatments; however, existing agents are often limited by their specific functions and complexities. Here, we report multifunctional magnetite (Fe3O4) nanoparticles functionalized with chlorin e6 (Ce6) and folic acid (FA) using a simple fabrication process to be used as theragnostic agents in photodynamic therapy (PDT). The effectiveness of cellular uptake of Fe3O4-Ce6-FA nanoparticles (FCF NPs) and its visualization as well as the photodynamic anticancer activities were evaluated. The mechanism of cancer cell death by the FCF NPs was also verified with qualitative and quantitative methods. Results indicate that FCF NPs have good penetration efficacy, resulting in excellent in vitro fluorescence and magnetic resonance imaging in cancer cells. FCF NPs exhibited promising anticancer activity in an irradiation time- and FCF NPs-dose-dependent manner in various cancer cell lines, leading to apoptotic cell death via morphological changes in cell membrane, nuclear, and DNA damage, and via overexpression of apoptosis-related genes, such as ZFP36L1, CYR61, GADD45G, caspases-2, -3, -9, 10, and -14. This study suggests that FCF NPs may be safely used in cancer therapy via PDT and could be a versatile therapeutic tool and biocompatible theragnostic agent, which may be used in diagnostic imaging.
Collapse
|
23
|
Palacios-Hernandez T, Diaz-Diestra DM, Nguyen AK, Skoog SA, Vijaya Chikkaveeraiah B, Tang X, Wu Y, Petrochenko PE, Sussman EM, Goering PL. Cytotoxicity, cellular uptake and apoptotic responses in human coronary artery endothelial cells exposed to ultrasmall superparamagnetic iron oxide nanoparticles. J Appl Toxicol 2020; 40:918-930. [PMID: 32080871 DOI: 10.1002/jat.3953] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/12/2020] [Accepted: 01/23/2020] [Indexed: 01/11/2023]
Abstract
Ultrasmall superparamagnetic iron oxide nanoparticles (USPION) possess reactive surfaces, are metabolized and exhibit unique magnetic properties. These properties are desirable for designing novel theranostic biomedical products; however, toxicity mechanisms of USPION are not completely elucidated. The goal of this study was to investigate cell interactions (uptake and cytotoxicity) of USPION using human coronary artery endothelial cells as a vascular cell model. Polyvinylpirrolidone-coated USPION were characterized: average diameter 17 nm (transmission electron microscopy [TEM]), average hydrodynamic diameter 44 nm (dynamic light scattering) and zeta potential -38.75 mV. Cells were exposed to 0 (control), 25, 50, 100 or 200 μg/mL USPION. Concentration- and time-dependent cytotoxicity were observed after 3-6 hours through 24 hours of exposure using Alamar Blue and Real-Time Cell Electronic Sensing assays. Cell uptake was evaluated by imaging using live-dead confocal microscopy, actin and nuclear fluorescent staining, and TEM. Phase-contrast, confocal microscopy, and TEM imaging showed significant USPION internalization as early as 3 hours after exposure to 25 μg/mL. TEM imaging demonstrated particle internalization in secondary lysosomes with perinuclear localization. Three orthogonal assays were conducted to assess apoptosis. TUNEL staining demonstrated a marked increase in fragmented DNA, a response pathognomonic of apoptosis, after a 4-hour exposure. Cells subjected to agarose gel electrophoresis exhibited degraded DNA 3 hours after exposure. Caspase-3/7 activity increased after a 3-hour exposure. USPION uptake resulted in cytotoxicity involving apoptosis and these results contribute to further mechanistic understanding of the USPION toxicity in vitro in cardiovascular endothelial cells.
Collapse
Affiliation(s)
- Teresa Palacios-Hernandez
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Daysi M Diaz-Diestra
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Alexander K Nguyen
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Shelby A Skoog
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Bhaskara Vijaya Chikkaveeraiah
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Xing Tang
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Yong Wu
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Peter E Petrochenko
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Eric M Sussman
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Peter L Goering
- Division of Biology, Chemistry and Materials Science, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
24
|
Fortes Brollo ME, Domínguez-Bajo A, Tabero A, Domínguez-Arca V, Gisbert V, Prieto G, Johansson C, Garcia R, Villanueva A, Serrano MC, Morales MDP. Combined Magnetoliposome Formation and Drug Loading in One Step for Efficient Alternating Current-Magnetic Field Remote-Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4295-4307. [PMID: 31904927 DOI: 10.1021/acsami.9b20603] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have developed a reproducible and facile one step strategy for the synthesis of doxorubicin loaded magnetoliposomes by using a thin-layer evaporation method. Liposomes of around 200 nm were made of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and iron oxide nanoparticles (NPs) with negative, positive, and hydrophobic surfaces that were incorporated outside, inside, or between the lipid bilayers, respectively. To characterize how NPs are incorporated in liposomes, advanced cryoTEM and atomic force microscope (AFM) techniques have been used. It was observed that only when the NPs are attached outside the liposomes, the membrane integrity is preserved (lipid melt transition shifts to 38.7 °C with high enthalpy 34.8 J/g) avoiding the leakage of the encapsulated drug while having good colloidal properties and the best heating efficiency under an alternating magnetic field (AMF). These magnetoliposomes were tested with two cancer cell lines, MDA-MB-231 and HeLa cells. First, 100% of cellular uptake was achieved with a high cell survival (above 80%), which is preserved (83%) for doxorubicin-loaded magnetoliposomes. Then, we demonstrate that doxorubicin release can be triggered by remote control, using a noninvasive external AMF for 1 h, leading to a cell survival reduction of 20%. Magnetic field conditions of 202 kHz and 30 mT seem to be enough to produce an effective heating to avoid drug degradation. In conclusion, these drug-loaded magnetoliposomes prepared in one step could be used for drug release on demand at a specific time and place, efficiently using an external AMF to reduce or even eliminate side effects.
Collapse
Affiliation(s)
- Maria Eugenia Fortes Brollo
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| | - Ana Domínguez-Bajo
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| | - Andrea Tabero
- Departamento de Biología , Universidad Autónoma de Madrid , Madrid 28049 Spain
| | - Vicente Domínguez-Arca
- Departamento de Física Aplicada , Universidad de Santiago de Compostela , Santiago de Compostela 15782 Spain
| | - Victor Gisbert
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| | - Gerardo Prieto
- Departamento de Física Aplicada , Universidad de Santiago de Compostela , Santiago de Compostela 15782 Spain
| | | | - Ricardo Garcia
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| | - Angeles Villanueva
- Departamento de Biología , Universidad Autónoma de Madrid , Madrid 28049 Spain
- IMDEA-Nanociencia , Madrid 28049 Spain
| | - María Concepción Serrano
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| | - María Del Puerto Morales
- Departamento de Energia, Medio Ambiente y Salud , Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas , Madrid 28049 , Spain
| |
Collapse
|
25
|
Shen Y, Xiao Y, Zhang S, Wu S, Gao L, Shi S. Fe 3O 4 Nanoparticles Attenuated Salmonella Infection in Chicken Liver Through Reactive Oxygen and Autophagy via PI3K/Akt/mTOR Signaling. Front Physiol 2020; 10:1580. [PMID: 32009981 PMCID: PMC6978669 DOI: 10.3389/fphys.2019.01580] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/17/2019] [Indexed: 01/10/2023] Open
Abstract
Recently nanomaterials have received substantial attention in biotechnology areas for their innovative properties in physical and chemical function. One of the most arrestive properties of nanomaterials that has been reported is their bacteriostatic activity. Our previous research found that Fe3O4 magnetic nanoparticles (Fe3O4-NPs) could effectively reduce the viability of intracellular Salmonella Enteritidis in chicken cells. There is an essential need to explore whether the bacteriostatic activity of Fe3O4-NPs is available in vivo. As an extension of this research, we conducted the present study to investigate the potential effect of Fe3O4-NPs used for S. Enteritidis control in chickens and to extensively investigate the underlying mechanisms in the process. The overall study included the evaluation of pathological sections, antioxidant status, inflammation, and the autophagy status of chicken liver, including the signaling pathway involved in the process. Results indicated that Fe3O4-NPs pretreatment can effectively inhibit the invasion of S. Enteritidis in chicken liver. Fe3O4-NPs pretreatment significantly increased reactive oxygen species (ROS) generation in chickens, including antioxidant enzyme activities. S. Enteritidis infection significantly increased the protein expression of the autophagy marker LC3. Additionally, the inflammation response and pathological changes caused by S. Enteritidis infection were alleviated by Fe3O4-NPs pretreatment. Phosphorylated mTOR was significantly increased in S. Enteritidis infected chickens, but showed no difference in chickens pretreated with Fe3O4-NPs. In summary, the results demonstrated that ROS and autophagy were involved in the inhibition of S. Enteritidis in chickens by Fe3O4-NPs pretreatment. The redox balance and inflammation response appeared normal in the process, as did the expression of the PI3K/Akt/mTOR signaling pathways. Taken together, our research demonstrate that the bacteriostatic activity of Fe3O4-NPs in chickens is avaliable and safe, which can be an alternative to antibiotics for bacterial inhibition in poultry industry.
Collapse
Affiliation(s)
- Yiru Shen
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry Institute), Ministry of Agriculture, Yangzhou, China
| | - Yunqi Xiao
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, China
| | - Shan Zhang
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, China
| | - Shu Wu
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, China
| | - Lizeng Gao
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, China
| | - Shourong Shi
- Poultry Institute, Chinese Academy of Agriculture Science, Yangzhou, China
- Institute of Effective Evaluation of Feed and Feed Additive (Poultry Institute), Ministry of Agriculture, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
26
|
Hurtado-Gallego J, Pulido-Reyes G, González-Pleiter M, Salas G, Leganés F, Rosal R, Fernández-Piñas F. Toxicity of superparamagnetic iron oxide nanoparticles to the microalga Chlamydomonas reinhardtii. CHEMOSPHERE 2020; 238:124562. [PMID: 31442774 DOI: 10.1016/j.chemosphere.2019.124562] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/22/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPION) have been widely studied for different biomedical and environmental applications. In this study we evaluated the toxicity and potential alterations of relevant physiological parameters caused to the microalga Chlamydomonas reinhardtii (C. reinhardtii) upon exposure to SPION. The results showed dose-dependent toxicity. A mechanistic study combining flow cytometry and physiological endpoints showed a toxic response consisting of a decrease in metabolic activity, increased oxidative stress and alterations in the mitochondrial membrane potential. Additionally, and due to the light absorption of SPION suspensions, we observed a significant shading effect, causing a marked decrease in photosynthetic activity. In this work, we demonstrated for the first time, the internalization of SPION by endocytosis in C. reinhardtii. These results demonstrated that SPION pose a potential risk for the environment if not managed properly.
Collapse
Affiliation(s)
- Jara Hurtado-Gallego
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Gerardo Pulido-Reyes
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Miguel González-Pleiter
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Gorka Salas
- IMDEA Nanociencia, C/Faraday 9, Cantoblanco, 28049 Madrid, Spain
| | - Francisco Leganés
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, 28871, Alcalá de Henares, Madrid, Spain
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| |
Collapse
|
27
|
Mendozza M, Caselli L, Salvatore A, Montis C, Berti D. Nanoparticles and organized lipid assemblies: from interaction to design of hybrid soft devices. SOFT MATTER 2019; 15:8951-8970. [PMID: 31680131 DOI: 10.1039/c9sm01601e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This contribution reviews the state of art on hybrid soft matter assemblies composed of inorganic nanoparticles (NP) and lamellar or non-lamellar lipid bilayers. After a short outline of the relevant energetic contributions, we address the interaction of NPs with synthetic lamellar bilayers, meant as cell membrane mimics. We then review the design of hybrid nanostructured materials composed of lipid bilayers and some classes of inorganic NPs, with particular emphasis on the effects on the amphiphilic phase diagram and on the additional properties contributed by the NPs. Then, we present the latest developments on the use of lipid bilayers as coating agents for inorganic NPs. Finally, we remark on the main achievements of the last years and our vision for the development of the field.
Collapse
Affiliation(s)
- Marco Mendozza
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Lucrezia Caselli
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Annalisa Salvatore
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
28
|
Mousavi M, Hakimian S, Mustafa TA, Aziz FM, Salihi A, Ale-Ebrahim M, Mirpour M, Rasti B, Akhtari K, Shahpasand K, Abou-Zied OK, Falahati M. The interaction of silica nanoparticles with catalase and human mesenchymal stem cells: biophysical, theoretical and cellular studies. Int J Nanomedicine 2019; 14:5355-5368. [PMID: 31409992 PMCID: PMC6643057 DOI: 10.2147/ijn.s210136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/04/2019] [Indexed: 11/23/2022] Open
Abstract
Aim Nanoparticles (NPs) have been receiving potential interests in protein delivery and cell therapy. As a matter of fact, NPs may be used as great candidates in promoting cell therapy by catalase (CAT) delivery into high oxidative stress tissues. However, for using NPs like SiO2 as carriers, the interaction of NPs with proteins and mesenchymal stem cells (MSCs) should be explored in advance. Methods In the present study, the interaction of SiO2 NPs with CAT and human MSCs (hMSCs) was explored by various spectroscopic methods (fluorescence, circular dichroism (CD), UV-visible), molecular docking and dynamics studies, and cellular (MTT, cellular morphology, cellular uptake, lactate dehydrogenase, ROS, caspase-3, flow cytometry) assays. Results Fluorescence study displayed that both dynamic and static quenching mechanisms and hydrophobic interactions are involved in the spontaneous interaction of SiO2 NPs with CAT. CD spectra indicated that native structure of CAT remains stable after interaction with SiO2 NPs. UV-visible study also revealed that the kinetic parameters of CAT such as Km, Vmax, Kcat, and enzyme efficiency were not changed after the addition of SiO2 NPs. Molecular docking and dynamics studies showed that Si and SiO2 clusters interact with hydrophobic residues of CAT and SiO2 cluster causes minor changes in the CAT structure at a total simulation time of 200 ps. Cellular assays depicted that SiO2 NPs induce significant cell mortality, change in cellular morphology, cellular internalization, ROS elevation, and apoptosis in hMSCs at higher concentration than 100 µg/mL (170 µM). Conclusion The current results suggest that low concentrations of SiO2 NPs induce no substantial change or mortality against CAT and hMSCs, and potentially useful carriers in CAT delivery to hMSC.
Collapse
Affiliation(s)
- Mina Mousavi
- Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saman Hakimian
- Department of Biochemistry and Biophysics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Twana Ahmed Mustafa
- Department of Medical Laboratory Technology, Health Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.,Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mirsasan Mirpour
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Osama K Abou-Zied
- Department of Chemistry, Faculty of Science, Sultan Qaboos University, P.O. Box 36, Postal Code 123 Muscat, Oman
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
29
|
Shan D, Ma C, Yang J. Enabling biodegradable functional biomaterials for the management of neurological disorders. Adv Drug Deliv Rev 2019; 148:219-238. [PMID: 31228483 PMCID: PMC6888967 DOI: 10.1016/j.addr.2019.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of patients are being diagnosed with neurological diseases, but are rarely cured because of the lack of curative therapeutic approaches. This situation creates an urgent clinical need to develop effective diagnosis and treatment strategies for repair and regeneration of injured or diseased neural tissues. In this regard, biodegradable functional biomaterials provide promising solutions to meet this demand owing to their unique responsiveness to external stimulation fields, which enable neuro-imaging, neuro-sensing, specific targeting, hyperthermia treatment, controlled drug delivery, and nerve regeneration. This review discusses recent progress in the research and development of biodegradable functional biomaterials including electroactive biomaterials, magnetic materials and photoactive biomaterials for the management of neurological disorders with emphasis on their applications in bioimaging (photoacoustic imaging, MRI and fluorescence imaging), biosensing (electrochemical sensing, magnetic sensing and opical sensing), and therapy strategies (drug delivery, hyperthermia treatment, and tissue engineering). It is expected that this review will provide an insightful discussion on the roles of biodegradable functional biomaterials in the diagnosis and treatment of neurological diseases, and lead to innovations for the design and development of the next generation biodegradable functional biomaterials.
Collapse
Affiliation(s)
- Dingying Shan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chuying Ma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
30
|
The Effect of Uncoated SPIONs on hiPSC-Differentiated Endothelial Cells. Int J Mol Sci 2019; 20:ijms20143536. [PMID: 31331030 PMCID: PMC6678752 DOI: 10.3390/ijms20143536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 01/29/2023] Open
Abstract
Background: Endothelial progenitor cells (EPCs) were indicated in vascular repair, angiogenesis of ischemic organs, and inhibition of formation of initial hyperplasia. Differentiation of endothelial cells (ECs) from human induced pluripotent stem cells (hiPSC)-derived endothelial cells (hiPSC-ECs) provides an unlimited supply for clinical application. Furthermore, magnetic cell labelling offers an effective way of targeting and visualization of hiPSC-ECs and is the next step towards in vivo studies. Methods: ECs were differentiated from hiPSCs and labelled with uncoated superparamagnetic iron-oxide nanoparticles (uSPIONs). uSPION uptake was compared between hiPSC-ECs and mature ECs isolated from patients by software analysis of microscopy pictures after Prussian blue cell staining. The acute and long-term cytotoxic effects of uSPIONs were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) and Annexin assay. Results: We showed, for the first time, uptake of uncoated SPIONs (uSPIONs) by hiPSC-ECs. In comparison with mature ECs of identical genetic background hiPSC-ECs showed lower uSPION uptake. However, all the studied endothelial cells were effectively labelled and showed magnetic properties even with low labelling concentration of uSPIONs. uSPIONs prepared by microwave plasma synthesis did not show any cytotoxicity nor impair endothelial properties. Conclusion: We show that hiPSC-ECs labelling with low concentration of uSPIONs is feasible and does not show any toxic effects in vitro, which is an important step towards animal studies.
Collapse
|
31
|
Cell Internalization in Fluidic Culture Conditions Is Improved When Microparticles Are Specifically Targeted to the Human Epidermal Growth Factor Receptor 2 (HER2). Pharmaceutics 2019; 11:pharmaceutics11040177. [PMID: 30978948 PMCID: PMC6523092 DOI: 10.3390/pharmaceutics11040177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose: To determine if the specific targeting of microparticles improves their internalization by cells under fluidic conditions. Methods: Two isogenic breast epithelial cell lines, one overexpressing the Human Epidermal Growth Factor Receptor 2 (HER2) oncogene (D492HER2) and highly tumorigenic and the other expressing HER2 at much lower levels and non-tumorigenic (D492), were cultured in the presence of polystyrene microparticles of 1 µm in diameter, biofunctionalized with either a specific anti-HER2 antibody or a non-specific secondary antibody. Mono- and cocultures of both cell lines in static and fluidic conditions were performed, and the cells with internalized microparticles were scored. Results: Globally, the D492 cell line showed a higher endocytic capacity than the D492HER2 cell line. Microparticles that were functionalized with the anti-HER2 antibody were internalized by a higher percentage of cells than microparticles functionalized with the non-specific secondary antibody. Although internalization was reduced in fluidic culture conditions in comparison with static conditions, the increase in the internalization of microparticles biofunctionalized with the anti-HER2 antibody was higher for the cell line overexpressing HER2. Conclusion: The biofunctionalization of microparticles with a specific targeting molecule remarkably increases their internalization by cells in fluidic culture conditions (simulating the blood stream). This result emphasizes the importance of targeting for future in vivo delivery of drugs and bioactive molecules through microparticles.
Collapse
|
32
|
Yaman S, Anil-Inevi M, Ozcivici E, Tekin HC. Magnetic Force-Based Microfluidic Techniques for Cellular and Tissue Bioengineering. Front Bioeng Biotechnol 2018; 6:192. [PMID: 30619842 PMCID: PMC6305723 DOI: 10.3389/fbioe.2018.00192] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/23/2018] [Indexed: 01/21/2023] Open
Abstract
Live cell manipulation is an important biotechnological tool for cellular and tissue level bioengineering applications due to its capacity for guiding cells for separation, isolation, concentration, and patterning. Magnetic force-based cell manipulation methods offer several advantages, such as low adverse effects on cell viability and low interference with the cellular environment. Furthermore, magnetic-based operations can be readily combined with microfluidic principles by precisely allowing control over the spatiotemporal distribution of physical and chemical factors for cell manipulation. In this review, we present recent applications of magnetic force-based cell manipulation in cellular and tissue bioengineering with an emphasis on applications with microfluidic components. Following an introduction of the theoretical background of magnetic manipulation, components of magnetic force-based cell manipulation systems are described. Thereafter, different applications, including separation of certain cell fractions, enrichment of rare cells, and guidance of cells into specific macro- or micro-arrangements to mimic natural cell organization and function, are explained. Finally, we discuss the current challenges and limitations of magnetic cell manipulation technologies in microfluidic devices with an outlook on future developments in the field.
Collapse
|
33
|
Montiel Schneider MG, Martin MJ, Coral DF, Muraca D, Gentili C, Fernández van Raap M, Lassalle VL. Selective contrast agents with potential to the earlier detection of tumors: Insights on synthetic pathways, physicochemical properties and performance in MRI assays. Colloids Surf B Biointerfaces 2018; 170:470-478. [DOI: 10.1016/j.colsurfb.2018.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023]
|
34
|
Dey C, Ghosh A, Ahir M, Ghosh A, Goswami MM. Improvement of Anticancer Drug Release by Cobalt Ferrite Magnetic Nanoparticles through Combined pH and Temperature Responsive Technique. Chemphyschem 2018; 19:2872-2878. [PMID: 30133086 DOI: 10.1002/cphc.201800535] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 12/18/2022]
Abstract
This work reports the application possibilities of cobalt ferrite (CoFe2 O4 ) magnetic nanoparticles (CFMNPs) for stimuli responsive drug delivery by magnetic field induced hyperthermia technique. The CFMNPs were characterized by X-ray diffraction (XRD) with Rietveld analysis, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), fourier transform infrared spectroscopy (FTIR), thermogravimetry and differential thermal analysis (TG-DTA), vibrating sample magnetometer (VSM) and superconducting quantum interference device (SQUID) magnetometry. Particles were functionalized with folic acid (FA) by EDC-NHS coupling method and loaded with anticancer drug (DOX) by activated folate ions. The drug release was studied as a function of time at two different temperatures (37 and 44 °C) under pH∼5.5 and 7. It was observed that the drug release rate is higher at elevated temperature (44 °C) and acidic pH∼5.5 as compared to our normal body temperature and pH∼7 using the CFMNPs. This way, we have developed a pH and temperature sensitive drug delivery system, which can release the anticancer drug selectively by applying ac magnetic field as under ac field particles are heated up. We have calculated the amount of heat generation by the particles around 1.67 °C per second at ∼600 Hz frequency. By MTT assay on cancer cell and normal cell, it was confirmed that CFMNPs are nontoxic and biocompatible in nature, which assures that our synthesized particles can be successfully used in localized cancer treatment by stimuli responsive drug delivery technique.
Collapse
Affiliation(s)
- Chaitali Dey
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, Block-JD-2, Sector-III, Salt Lake, Kolkata-, 700106
| | - Arup Ghosh
- Department of Physics, National University of Singapore, 2 Science Drive 3, Blk S12, Singapore, 117551
| | - Manisha Ahir
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, Block-JD-2, Sector-III, Salt Lake, Kolkata-, 700106
| | - Ajay Ghosh
- Department of Applied Optics and Photonics, University of Calcutta, Block-JD-2, Sector-III, Salt Lake, Kolkata-, 700106
| | - Madhuri Mandal Goswami
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta, Block-JD-2, Sector-III, Salt Lake, Kolkata-, 700106.,S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata-, 700106
| |
Collapse
|
35
|
Willmann W, Dringen R. How to Study the Uptake and Toxicity of Nanoparticles in Cultured Brain Cells: The Dos and Don't Forgets. Neurochem Res 2018; 44:1330-1345. [PMID: 30088236 DOI: 10.1007/s11064-018-2598-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Due to their exciting properties, engineered nanoparticles have obtained substantial attention over the last two decades. As many types of nanoparticles are already used for technical and biomedical applications, the chances that cells in the brain will encounter nanoparticles have strongly increased. To test for potential consequences of an exposure of brain cells to engineered nanoparticles, cell culture models for different types of neural cells are frequently used. In this review article we will discuss experimental strategies and important controls that should be used to investigate the physicochemical properties of nanoparticles for the cell incubation conditions applied as well as for studies on the biocompatibility and the cellular uptake of nanoparticles in neural cells. The main focus of this article will be the interaction of cultured neural cells with iron oxide nanoparticles, but similar considerations are important for studying the consequences of an exposure of other types of cultured cells with other types of nanoparticles. Our article aims to improve the understanding of the special technical challenges of working with nanoparticles on cultured neural cells, to identify potential artifacts and to prevent misinterpretation of data on the potential adverse or beneficial consequences of a treatment of cultured cells with nanoparticles.
Collapse
Affiliation(s)
- Wiebke Willmann
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
36
|
Jardim KV, Palomec-Garfias AF, Andrade BYG, Chaker JA, Báo SN, Márquez-Beltrán C, Moya SE, Parize AL, Sousa MH. Novel magneto-responsive nanoplatforms based on MnFe 2O 4 nanoparticles layer-by-layer functionalized with chitosan and sodium alginate for magnetic controlled release of curcumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:184-195. [PMID: 30184741 DOI: 10.1016/j.msec.2018.06.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 05/22/2018] [Accepted: 06/18/2018] [Indexed: 02/08/2023]
Abstract
Remotely assisted drug delivery by means of magnetic biopolymeric nanoplatforms has been utilized as an important tool to improve the delivery/release of hydrophobic drugs and to address their low cargo capacity. In this work, MnFe2O4 magnetic nanoparticles (MNPs) were synthesized by thermal decomposition, coated with citrate and then functionalized with the layer-by-layer (LbL) assembly of polyelectrolyte multilayers, with chitosan as polycation and sodium alginate as polyanion. Simultaneous conductimetric and potentiometric titrations were employed to optimize the LbL deposition and to enhance the loading capacity of nanoplatforms for curcumin, a hydrophobic drug used in cancer treatment. ~200 nm sized biopolymer platforms with ~12 nm homogeneously embedded MNPs were obtained and characterized by means of XRD, HRTEM, DLS, TGA, FTIR, XPS and fluorescence spectroscopy techniques to access structural, morphological and surface properties, to probe biopolymer functionalization and to quantify drug-loading. Charge reversals (±30 mV) after each deposition confirmed polyelectrolyte adsorption and a stable LbL assembly. Magnetic interparticle interaction was reduced in the biopolymeric structure, hinting at an optimized performance in magnetic hyperthermia for magneto-assisted drug release applications. Curcumin was encapsulated, resulting in an enhanced payload (~100 μg/mg). Nanocytotoxicity assays showed that the biopolymer capping enhanced the biocompatibility of nanoplatforms, maintaining entrapped curcumin. Our results indicate the potential of synthesized nanoplatforms as an alternative way of remotely delivering/releasing curcumin for medical purposes, upon application of an alternating magnetic field, demonstrating improved efficiency and reduced toxicity.
Collapse
Affiliation(s)
| | | | - Bárbara Yasmin Garcia Andrade
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | | | - Sônia Nair Báo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil
| | - César Márquez-Beltrán
- Instituto de Física - Benemérita Universidad Autónoma de Puebla, Puebla, Pue 72570, Mexico
| | - Sergio Enrique Moya
- Soft Matter Nanotechnology Laboratory, CIC biomaGUNE, San Sebastián, Guip 20009, Spain
| | - Alexandre Luis Parize
- Polimat, Grupo de Estudos em Materiais Poliméricos, Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil
| | | |
Collapse
|
37
|
Arias LS, Pessan JP, Vieira APM, Lima TMTD, Delbem ACB, Monteiro DR. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics (Basel) 2018; 7:antibiotics7020046. [PMID: 29890753 PMCID: PMC6023022 DOI: 10.3390/antibiotics7020046] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022] Open
Abstract
Medical applications and biotechnological advances, including magnetic resonance imaging, cell separation and detection, tissue repair, magnetic hyperthermia and drug delivery, have strongly benefited from employing iron oxide nanoparticles (IONPs) due to their remarkable properties, such as superparamagnetism, size and possibility of receiving a biocompatible coating. Ongoing research efforts focus on reducing drug concentration, toxicity, and other side effects, while increasing efficacy of IONPs-based treatments. This review highlights the methods of synthesis and presents the most recent reports in the literature regarding advances in drug delivery using IONPs-based systems, as well as their antimicrobial activity against different microorganisms. Furthermore, the toxicity of IONPs alone and constituting nanosystems is also addressed.
Collapse
Affiliation(s)
- Laís Salomão Arias
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Juliano Pelim Pessan
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Ana Paula Miranda Vieira
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Taynara Maria Toito de Lima
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| | - Alberto Carlos Botazzo Delbem
- Department of Pediatric Dentistry and Public Health, School of Dentistry, Araçatuba, São Paulo State University (Unesp), 16015-050 Araçatuba/São Paulo, Brazil.
| | - Douglas Roberto Monteiro
- Graduate Program in Dentistry (GPD-Master's Degree), University of Western São Paulo (UNOESTE), 19050-920 Presidente Prudente/São Paulo, Brazil.
| |
Collapse
|
38
|
Cabrera D, Coene A, Leliaert J, Artés-Ibáñez EJ, Dupré L, Telling ND, Teran FJ. Dynamical Magnetic Response of Iron Oxide Nanoparticles Inside Live Cells. ACS NANO 2018; 12:2741-2752. [PMID: 29508990 DOI: 10.1021/acsnano.7b08995] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetic nanoparticles exposed to alternating magnetic fields have shown a great potential acting as magnetic hyperthermia mediators for cancer treatment. However, a dramatic and unexplained reduction of the nanoparticle magnetic heating efficiency has been evidenced when nanoparticles are located inside cells or tissues. Recent studies suggest the enhancement of nanoparticle clustering and/or immobilization after interaction with cells as possible causes, although a quantitative description of the influence of biological matrices on the magnetic response of magnetic nanoparticles under AC magnetic fields is still lacking. Here, we studied the effect of cell internalization on the dynamical magnetic response of iron oxide nanoparticles (IONPs). AC magnetometry and magnetic susceptibility measurements of two magnetic core sizes (11 and 21 nm) underscored differences in the dynamical magnetic response following cell uptake with effects more pronounced for larger sizes. Two methodologies have been employed for experimentally determining the magnetic heat losses of magnetic nanoparticles inside live cells without risking their viability as well as the suitability of magnetic nanostructures for in vitro hyperthermia studies. Our experimental results-supported by theoretical calculations-reveal that the enhancement of intracellular IONP clustering mainly drives the cell internalization effects rather than intracellular IONP immobilization. Understanding the effects related to the nanoparticle transit into live cells on their magnetic response will allow the design of nanostructures containing magnetic nanoparticles whose dynamical magnetic response will remain invariable in any biological environments, allowing sustained and predictable in vivo heating efficiency.
Collapse
Affiliation(s)
- David Cabrera
- iMdea Nanociencia , Campus Universitario de Cantoblanco, C\Faraday, 9 , 28049 Madrid , Spain
- Institute for Science and Technology in Medicine , Keele University , Guy Hilton Research Centre, Thornburrow Drive , Hartshill, Stoke-on-Trent ST4 7QB , United Kingdom
| | - Annelies Coene
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems , Ghent University , Technologiepark 913 , 9052 Zwijnaarde , Belgium
| | - Jonathan Leliaert
- Department of Solid State Sciences , Ghent University , Krijgslaan 281/S1 , 9000 Ghent , Belgium
| | - Emilio J Artés-Ibáñez
- iMdea Nanociencia , Campus Universitario de Cantoblanco, C\Faraday, 9 , 28049 Madrid , Spain
| | - Luc Dupré
- Department of Electrical Energy, Metals, Mechanical Constructions and Systems , Ghent University , Technologiepark 913 , 9052 Zwijnaarde , Belgium
| | - Neil D Telling
- Institute for Science and Technology in Medicine , Keele University , Guy Hilton Research Centre, Thornburrow Drive , Hartshill, Stoke-on-Trent ST4 7QB , United Kingdom
| | - Francisco J Teran
- iMdea Nanociencia , Campus Universitario de Cantoblanco, C\Faraday, 9 , 28049 Madrid , Spain
- Nanobiotecnología (iMdea-Nanociencia) , Unidad Asociada al Centro Nacional de Biotecnología (CSIC) , 28049 Madrid , Spain
| |
Collapse
|
39
|
Fracasso G, Ghigna P, Nodari L, Agnoli S, Badocco D, Pastore P, Nicolato E, Marzola P, Mihajlović D, Markovic M, Čolić M, Amendola V. Nanoaggregates of iron poly-oxo-clusters obtained by laser ablation in aqueous solution of phosphonates. J Colloid Interface Sci 2018; 522:208-216. [PMID: 29604440 DOI: 10.1016/j.jcis.2018.03.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/20/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Laser ablation in liquid (LAL) emerged as a versatile technique for the synthesis of nanoparticles with various structures and compositions, although the control over products remains challenging in most cases. For instance, it is still difficult to drive the size of metal oxide crystalline domains down to the level of few atom clusters with LAL. Here we demonstrate that laser ablation of a bulk iron target in aqueous solution of phosphonates gives phosphonate-grafted iron oxo-clusters polymerized into nanoaggregates with Fe:ligand ratio of 2:1, instead of the usual nanocrystalline iron oxides. We attribute this result to the strong ability of phosphonate groups to bind iron oxide clusters and prevent their further growth into crystalline iron oxide. These laser generated poly-oxo-clusters are biocompatible and trackable by magnetic resonance imaging, providing interesting features for use in biological environments, such as nano-vehicles for iron administration. Besides, this method is promising for the generation of atom-scale metal-oxide clusters, which are ubiquitary in chemistry and of interest in biochemistry, catalysis, molecular magnetism and materials science.
Collapse
Affiliation(s)
- Giulio Fracasso
- Department of Medicine, Immunology Section, University of Verona, Verona, Italy
| | - Paolo Ghigna
- Department of Chemistry, University of Pavia, Pavia, Italy
| | | | - Stefano Agnoli
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Elena Nicolato
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Pasquina Marzola
- Department of Computer Sciences, University of Verona, Verona, Italy
| | - Dušan Mihajlović
- University of Belgrade, Institute for Application of Nuclear Energy, Zemun, Serbia
| | - Milan Markovic
- University of Belgrade, Institute for Application of Nuclear Energy, Zemun, Serbia
| | - Miodrag Čolić
- University of Belgrade, Institute for Application of Nuclear Energy, Zemun, Serbia; University of Defence in Belgrade, Medical Faculty of the Military Medical Academy, Belgrade, Serbia
| | - Vincenzo Amendola
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
40
|
El-Boubbou K. Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine (Lond) 2018; 13:929-952. [PMID: 29546817 DOI: 10.2217/nnm-2017-0320] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanoparticles (MNPs), particularly made of iron oxides, have been extensively studied as diagnostic imaging agents and therapeutic delivery vehicles. In this review, special emphasis is set on the 'recent advancements of drug-conjugated MNPs used for therapeutic applications'. The most prevalent preparation methods and chemical functionalization strategies required for translational biomedical nanoformulations are outlined. Particular attention is, then, devoted to the tailored conjugation of drugs to the MNP carrier according to either noncovalent or covalent attachments, with advantages and drawbacks of both pathways conferred. Notable examples are presented to demonstrate the advantages of MNPs in respective drug-delivery applications. Understanding of the preparation, conjugation and delivery processes will definitely bring, in the next decades, a novel magneto-nanovehicle for effective theranostics.
Collapse
Affiliation(s)
- Kheireddine El-Boubbou
- Department of Basic Sciences, College of Science & Health Professions, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City, National Guard Health Affairs, Riyadh 11481, Saudi Arabia.,King Abdullah International Medical Research Center (KAIMRC), King Abdulaziz Medical City, National Guard Hospital, Riyadh 11426, Saudi Arabia
| |
Collapse
|
41
|
Patil RM, Thorat ND, Shete PB, Bedge PA, Gavde S, Joshi MG, Tofail SA, Bohara RA. Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochem Biophys Rep 2018; 13:63-72. [PMID: 29349357 PMCID: PMC5766481 DOI: 10.1016/j.bbrep.2017.12.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022] Open
Abstract
Recently lots of efforts have been taken to develop superparamagnetic iron oxide nanoparticles (SPIONs) for biomedical applications. So it is utmost necessary to have in depth knowledge of the toxicity occurred by this material. This article is designed in such way that it covers all the associated toxicity issues of SPIONs. It mainly emphasis on toxicity occurred at different levels including cellular alterations in the form of damage to nucleic acids due to oxidative stress and altered cellular response. In addition focus is been devoted for in vitro and in vivo toxicity of SPIONs, so that a better therapeutics can be designed. At the end the time dependent nature of toxicity and its ultimate faith inside the body is being discussed.
Collapse
Affiliation(s)
- Rakesh M. Patil
- Directorate of Forensic Science Laboratory, Govt. of Maharashtra Kalina, Mumbai, India
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
| | - Nanasaheb D. Thorat
- Material and Surface Science Institute, Bernal Institute, University of Limerick, Ireland
| | - Prajkta B. Shete
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
| | - Poonam A. Bedge
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, Kolhapur, India
| | - Shambala Gavde
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
| | - Meghnad G. Joshi
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, Kolhapur, India
| | - Syed A.M. Tofail
- Material and Surface Science Institute, Bernal Institute, University of Limerick, Ireland
| | - Raghvendra A. Bohara
- Centre for Interdisciplinary Research, D.Y.Patil University, Kolhapur, India
- Department of Stem Cells and Regenerative Medicine, D.Y.Patil University, Kolhapur, India
- Research and Innovations for Comprehensive Health (RICH), Cell D.Y.Patil University, Kolhapur, India
| |
Collapse
|
42
|
Cardoso VF, Francesko A, Ribeiro C, Bañobre-López M, Martins P, Lanceros-Mendez S. Advances in Magnetic Nanoparticles for Biomedical Applications. Adv Healthc Mater 2018; 7. [PMID: 29280314 DOI: 10.1002/adhm.201700845] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/28/2017] [Indexed: 12/17/2022]
Abstract
Magnetic nanoparticles (NPs) are emerging as an important class of biomedical functional nanomaterials in areas such as hyperthermia, drug release, tissue engineering, theranostic, and lab-on-a-chip, due to their exclusive chemical and physical properties. Although some works can be found reviewing the main application of magnetic NPs in the area of biomedical engineering, recent and intense progress on magnetic nanoparticle research, from synthesis to surface functionalization strategies, demands for a work that includes, summarizes, and debates current directions and ongoing advancements in this research field. Thus, the present work addresses the structure, synthesis, properties, and the incorporation of magnetic NPs in nanocomposites, highlighting the most relevant effects of the synthesis on the magnetic and structural properties of the magnetic NPs and how these effects limit their utilization in the biomedical area. Furthermore, this review next focuses on the application of magnetic NPs on the biomedical field. Finally, a discussion of the main challenges and an outlook of the future developments in the use of magnetic NPs for advanced biomedical applications are critically provided.
Collapse
Affiliation(s)
- Vanessa Fernandes Cardoso
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- MEMS-Microelectromechanical Systems Research Unit; Universidade do Minho; 4800-058 Guimarães Portugal
| | | | - Clarisse Ribeiro
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
- CEB-Centre of Biological Engineering; University of Minho; Campus de Gualtar 4710-057 Braga Portugal
| | | | - Pedro Martins
- Centro de Física; Universidade do Minho; 4710-057 Braga Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials; Parque Científico y Tecnológico de Bizkaia; 48160 Derio Spain
- IKERBASQUE; Basque Foundation for Science; 48013 Bilbao Spain
| |
Collapse
|
43
|
Testing the stability of magnetic iron oxides/kaolinite nanocomposite under various pH conditions. J SOLID STATE CHEM 2017. [DOI: 10.1016/j.jssc.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Rojas JM, Gavilán H, Del Dedo V, Lorente-Sorolla E, Sanz-Ortega L, da Silva GB, Costo R, Perez-Yagüe S, Talelli M, Marciello M, Morales MP, Barber DF, Gutiérrez L. Time-course assessment of the aggregation and metabolization of magnetic nanoparticles. Acta Biomater 2017; 58:181-195. [PMID: 28536061 DOI: 10.1016/j.actbio.2017.05.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
Abstract
To successfully develop biomedical applications for magnetic nanoparticles, it is imperative that these nanoreagents maintain their magnetic properties in vivo and that their by-products are safely metabolized. When placed in biological milieu or internalized into cells, nanoparticle aggregation degree can increase which could affect magnetic properties and metabolization. To evaluate these aggregation effects, we synthesized citric acid-coated iron oxide nanoparticles whose magnetic susceptibility can be modified by aggregation in agar dilutions and dextran-layered counterparts that maintain their magnetic properties unchanged. Macrophage models were used for in vitro uptake and metabolization studies, as these cells control iron homeostasis in the organism. Electron microscopy and magnetic susceptibility studies revealed a cellular mechanism of nanoparticle degradation, in which a small fraction of the particles is rapidly degraded while the remaining ones maintain their size. Both nanoparticle types produced similar iron metabolic profiles but these profiles differed in each macrophage model. Thus, nanoparticles induced iron responses that depended on macrophage programming. In vivo studies showed that nanoparticles susceptible to changes in magnetic properties through aggregation effects had different behavior in lungs, liver and spleen. Liver ferritin levels increased in these animals showing that nanoparticles are degraded and their by-products incorporated into normal metabolic routes. These data show that nanoparticle iron metabolization depends on cell type and highlight the necessity to assess nanoparticle aggregation in complex biological systems to develop effective in vivo biomedical applications. STATEMENT OF SIGNIFICANCE Magnetic iron oxide nanoparticles have great potential for biomedical applications. It is however imperative that these nanoreagents preserve their magnetic properties once inoculated, and that their degradation products can be eliminated. When placed in a biological milieu nanoparticles can aggregate and this can affect their magnetic properties and their degradation. In this work, we showed that iron oxide nanoparticles trigger the iron metabolism in macrophages, the main cell type involved in iron homeostasis in the organism. We also show that aggregation can affect nanoparticle magnetic properties when inoculated in animal models. This work confirms iron oxide nanoparticle biocompatibility and highlights the necessity to assess in vivo nanoparticle aggregation to successfully develop biomedical applications.
Collapse
Affiliation(s)
- José M Rojas
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain; Centro de Investigación en Sanidad Animal (CISA-INIA), Ctra. de Algete a El Casar s/n, Valdeolmos, 28130 Madrid, Spain
| | - Helena Gavilán
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Vanesa Del Dedo
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Eduardo Lorente-Sorolla
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Laura Sanz-Ortega
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Gustavo B da Silva
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; Department of Chemistry, Universidade Federal Rural do Rio de Janeiro, BR-465 km 7, Seropédica, 23897-000 RJ, Brazil
| | - Rocío Costo
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Sonia Perez-Yagüe
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Marina Talelli
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Marzia Marciello
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - M Puerto Morales
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain
| | - Domingo F Barber
- Department of Immunology and Oncology and Nanobiomedicine Initiative, Centro Nacional de Biotecnología/CSIC (CNB-CSIC), Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Lucía Gutiérrez
- Department of Energy, Environment and Health, Instituto de Ciencias Materiales de Madrid/CSIC (ICMM-CSIC), Sor Juana Inés de la Cruz 3, Cantoblanco, 28049 Madrid, Spain; Department of Analytical Chemistry, Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza and CIBER-BBN, C/ Mariano Esquillor, s/n, 50018 Zaragoza, Spain.
| |
Collapse
|
45
|
Montiel Schneider MG, Lassalle VL. Magnetic iron oxide nanoparticles as novel and efficient tools for atherosclerosis diagnosis. Biomed Pharmacother 2017; 93:1098-1115. [PMID: 28738519 DOI: 10.1016/j.biopha.2017.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/14/2017] [Accepted: 07/05/2017] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular complications derivate from atherosclerosis are the main cause of death in western world. An early detection of vulnerable atherosclerotic plaques is primordial for a better care of patients suffering the pathology. In this context nanotechnology has emerged as a promising tool to achieve this goal. Nanoparticles based on magnetic iron oxide (MNPs) have been extensively studied in cardiovascular diseases diagnosis, as well as in the treatment and diagnostic of other pathologies. The present review aims to describe and analyze the most current literature regarding to this topic, offering the level of detail required to reproduce the experimental tasks providing a critical input of the latest available reports. The current diagnostic features are presented and compared, highlighting their advantages and disadvantages. Information on novel technology intended to this purpose is also recompiled and in deep analyzed. Special emphasis is placed in magnetic nanotechnology, remarking the possibility to assess selective and multifunctional systems to the early detection of artherosclerotic pathologies. Finally, in view of the state of the art, the future perspectives about the trends on MNPs in artherosclerorsis diagnostic and treatment have also been addressed.
Collapse
Affiliation(s)
| | - Verónica Leticia Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
46
|
Sameena Y, Enoch IV. Interaction of a flavone loaded on surface-modified dextran-spooled superparamagnetic nanoparticles with β-cyclodextrin and DNA. J Biomol Struct Dyn 2017; 36:1908-1917. [DOI: 10.1080/07391102.2017.1337592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yousuf Sameena
- Department of Chemistry, Sri Shakthi Institute of Engineering and Technology , Coimbatore 641 062, Tamil Nadu, India
- Chemistry Research Lab, Department of Science & Humanities, Karunya University , Coimbatore 641 114, Tamil Nadu, India
| | - Israel V.M.V. Enoch
- Chemistry Research Lab, Department of Science & Humanities, Karunya University , Coimbatore 641 114, Tamil Nadu, India
- Nanotoxicology Research Lab, Department of Science & Humanities, Karunya University , Coimbatore 641 114, Tamil Nadu, India
| |
Collapse
|
47
|
Sahoo SL, Liu CH, Wu WC. Lymphoma cell isolation using multifunctional magnetic nanoparticles: antibody conjugation and characterization. RSC Adv 2017. [DOI: 10.1039/c7ra02084h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The early detection of B-cell lymphoma cells using multifunctional magnetic nanoparticles has a wide impact on the diagnosis of lymphoma patients.
Collapse
Affiliation(s)
- Soubhagya Laxmi Sahoo
- Graduate Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Tao-Yuan 333
- Taiwan
| | - Chi-Hsien Liu
- Graduate Institute of Biochemical and Biomedical Engineering
- Chang Gung University
- Tao-Yuan 333
- Taiwan
- Research Center for Chinese Herbal Medicine
| | - Wei-Chi Wu
- Department of Ophthalmology
- Chang Gung Memorial Hospital
- Taoyuan
- Taiwan
- College of Medicine
| |
Collapse
|
48
|
Davis K, Cole B, Ghelardini M, Powell BA, Mefford OT. Quantitative Measurement of Ligand Exchange with Small-Molecule Ligands on Iron Oxide Nanoparticles via Radioanalytical Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13716-13727. [PMID: 27966977 DOI: 10.1021/acs.langmuir.6b03644] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ligand exchange on the surface of hydrophobic iron oxide nanoparticles is a common method for controlling surface chemistry for a desired application. Furthermore, ligand exchange with small-molecule ligands may be necessary to obtain particles with a specific size or functionality. Understanding to what extent ligand exchange occurs and what factors affect it is important for the optimization of this critical procedure. However, quantifying the amount of exchange may be difficult because of the limitations of commonly used characterization techniques. Therefore, we utilized a radiotracer technique to track the exchange of a radiolabeled 14C-oleic acid ligand with hydrophilic small-molecule ligands on the surface of iron oxide nanoparticles. Iron oxide nanoparticles functionalized with 14C-oleic acid were modified with small-molecule ligands with terminal functional groups including catechols, phosphonates, sulfonates, thiols, carboxylic acids, and silanes. These moieties were selected because they represent the most commonly used ligands for this procedure. The effectiveness of these molecules was compared using both procedures widely found in the literature and using a standardized procedure. After ligand exchange, the nanoparticles were analyzed using liquid scintillation counting (LSC) and inductively coupled plasma-mass spectrometry. The labeled and unlabeled particles were further characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) to determine the particle size, hydrodynamic diameter, and zeta potential. The unlabeled particles were characterized via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and vibrating sample magnetometry (VSM) to confirm the presence of the small molecules on the particles and verify the magnetic properties, respectively. Radioanalytical determination of 14C-oleic acid was used to calculate the total amount of oleic acid remaining on the surface of the particles after ligand exchange. The results revealed that the ligand-exchange reactions performed using widely cited procedures did not go to completion. Residual oleic acid remained on the particles after these reactions and the reactions using a standardized protocol. A comparison of the ligand-exchange procedures indicated that the binding moiety, multidenticity, reaction time, temperature, and presence of a catalyst impacted the extent of exchange. Quantification of the oleic acid remaining after ligand exchange revealed a binding hierarchy in which catechol-derived anchor groups displace the most oleic acid on the surface of the nanoparticles and the thiol group displaces the least amount of oleic acid. Thorough characterization of ligand exchange is required to develop nanoparticles suitable for their intended application.
Collapse
Affiliation(s)
| | - Brian Cole
- Department of Chemistry, Henderson State University , Arkadelphia, Arkansas 71999, United States
| | | | | | | |
Collapse
|
49
|
Simeonidis K, Morales MP, Marciello M, Angelakeris M, de la Presa P, Lazaro-Carrillo A, Tabero A, Villanueva A, Chubykalo-Fesenko O, Serantes D. In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice. Sci Rep 2016; 6:38382. [PMID: 27922119 PMCID: PMC5138615 DOI: 10.1038/srep38382] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022] Open
Abstract
Promising advances in nanomedicine such as magnetic hyperthermia rely on a precise control of the nanoparticle performance in the cellular environment. This constitutes a huge research challenge due to difficulties for achieving a remote control within the human body. Here we report on the significant double role of the shape of ellipsoidal magnetic nanoparticles (nanorods) subjected to an external AC magnetic field: first, the heat release is increased due to the additional shape anisotropy; second, the rods dynamically reorientate in the orthogonal direction to the AC field direction. Importantly, the heating performance and the directional orientation occur in synergy and can be easily controlled by changing the AC field treatment duration, thus opening the pathway to combined hyperthermic/mechanical nanoactuators for biomedicine. Preliminary studies demonstrate the high accumulation of nanorods into HeLa cells whereas viability analysis supports their low toxicity and the absence of apoptotic or necrotic cell death after 24 or 48 h of incubation.
Collapse
Affiliation(s)
| | - M. Puerto Morales
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, ES-28049 Madrid, Spain
| | - Marzia Marciello
- Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, ES-28049 Madrid, Spain
| | - Makis Angelakeris
- Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki Greece
| | - Patricia de la Presa
- Instituto de Magnetismo Aplicado (ADIF-UCM-CSIC), Las Rozas, Madrid 28230, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain
| | - Ana Lazaro-Carrillo
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Andrea Tabero
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Angeles Villanueva
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- IMDEA Nanociencia, Faraday 9, Cantoblanco, Madrid, Spain
| | | | - David Serantes
- Applied Physics Department and Instituto de Investigacións Tecnolóxicas, Universidade de Santiago de Compostela, 15782, Spain
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
50
|
Siddiqi KS, ur Rahman A, Husen A. Biogenic Fabrication of Iron/Iron Oxide Nanoparticles and Their Application. NANOSCALE RESEARCH LETTERS 2016; 11:498. [PMID: 27837567 PMCID: PMC5106417 DOI: 10.1186/s11671-016-1714-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 05/15/2023]
Abstract
Enshrined in this review are the biogenic fabrication and applications of coated and uncoated iron and iron oxide nanoparticles. Depending on their magnetic properties, they have been used in the treatment of cancer, drug delivery system, MRI, and catalysis and removal of pesticides from potable water. The polymer-coated iron and iron oxide nanoparticles are made biocompatible, and their slow release makes them more effective and lasting. Their cytotoxicity against microbes under aerobic/anaerobic conditions has also been discussed. The magnetic moment of superparamagnetic iron oxide nanoparticles changes with their interaction with biomolecules as a consequence of which their size decreases. Their biological efficacy has been found to be dependent on the shape, size, and concentration of these nanoparticles.
Collapse
Affiliation(s)
| | - Aziz ur Rahman
- Department of Saidla (Unani Pharmacy), Aligarh Muslim University, Aligarh, 202002 Uttar Pradesh India
| | - Azamal Husen
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, P.O. Box #196, Gondar, Ethiopia
| |
Collapse
|