1
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
2
|
Li X, Wang S, Wu P, Nan D, Chen D, Suo L, Lu X, Rao C, Li Q, Yue J, Xiang Y, Mao X, Yan J. Effect of O antigen glycosyl isomerase gene mutation on biological property and pathogenicity of Burkholderia pseudomallei strain BPC006. Int J Biol Macromol 2024; 258:128922. [PMID: 38141699 DOI: 10.1016/j.ijbiomac.2023.128922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Burkholderia pseudomallei, an intracellular pathogen, is responsible for melioidosis, a zoonotic disease. Its pathogenesis involves several virulence factors, among which lipopolysaccharide (LPS) plays a crucial role. Our research reveals that the O antigen present within the LPS significantly regulates the host immune response. In a previous study, we obtained a B. pseudomallei mutant strain ΔwbiI. Here, the purification of LPS from ΔwbiI and a gas chromatography-mass spectrometry (GC-MS) analysis were conducted. The results confirmed the absence of specific sugar 6-deoxy-Talp, which is a typical component of the O antigen in the wild type B. pseudomallei. Our findings underscore the potent impact the O antigen exerts on the virulence of B. pseudomallei. The ΔwbiI strain displayed significantly increased invasiveness and cytotoxicity in vitro. This enhanced cytotoxicity seems to be related to the exposure of lipid A and an increased cell membrane hydrophobicity resulting from the deletion of the O antigen. Additionally, in mouse models, the ΔwbiI strain resulted in a heightened host lethality and an excessive inflammatory response in mice. These findings indicate that the O-antigenic polysaccharide moiety of B. pseudomallei plays a role in its pathogenicity in vitro and in vivo.
Collapse
Affiliation(s)
- Xiao Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Shiwei Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Pan Wu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dongqi Nan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Dan Chen
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Liangpeng Suo
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xiaoxue Lu
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Juanjuan Yue
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yang Xiang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
3
|
Bowser S, Melton-Celsa A, Chapartegui-González I, Torres AG. Efficacy of EHEC gold nanoparticle vaccines evaluated with the Shiga toxin-producing Citrobacter rodentium mouse model. Microbiol Spectr 2024; 12:e0226123. [PMID: 38047703 PMCID: PMC10783022 DOI: 10.1128/spectrum.02261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Enterohemorrhagic Escherichia coli (EHEC) remains an important cause of diarrheal disease and complications worldwide, especially in children, yet there are no available vaccines for human use. Inadequate pre-clinical evaluation due to inconsistent animal models remains a major barrier to novel vaccine development. We demonstrate the usefulness of Stx2d-producing Citrobacter rodentium in assessing vaccine effectiveness because it more closely recapitulates human disease caused by EHEC.
Collapse
Affiliation(s)
- Sarah Bowser
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Angela Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Itziar Chapartegui-González
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Files MA, Kristjansson KM, Rudra JS, Endsley JJ. Nanomaterials-based vaccines to target intracellular bacterial pathogens. Front Microbiol 2022; 13:1040105. [PMID: 36466676 PMCID: PMC9715960 DOI: 10.3389/fmicb.2022.1040105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Development of novel immunization approaches to combat a growing list of emerging and ancient infectious agents is a global health priority. Intensive efforts over the last several decades have identified alternative approaches to improve upon traditional vaccines that are based on live, attenuated agents, or formulations of inactivated agents with adjuvants. Rapid advances in RNA-based and other delivery systems for immunization have recently revolutionized the potential to protect populations from viral pathogens, such as SARS-CoV-2. Similar efforts to combat bacterial pathogens, especially species with an intracellular niche, have lagged significantly. In the past decade, advances in nanotechnology have yielded a variety of new antigen/adjuvant carrier systems for use in vaccine development against infectious viruses and bacteria. The tunable properties of nanomaterial-based vaccines allow for balancing immunogenicity and safety which is a key hurdle in traditional antigen and adjuvant formulations. In this review, we discuss several novel nanoparticle-based vaccine platforms that show promise for use against intracellular bacteria as demonstrated by the feasibility of construction, enhanced antigen presentation, induction of cell mediated and humoral immune responses, and improved survival outcomes in in vivo models.
Collapse
Affiliation(s)
- Megan A. Files
- Department of Microbiology and Immunology, Galveston, TX, United States
- Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, United States
- Department of Medicine, School of Medicine, Seattle, WA, United States
| | - Kadin M. Kristjansson
- Department of Chemistry, Smith College, Northampton MA, United States
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Jai S. Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Janice J. Endsley
- Department of Microbiology and Immunology, Galveston, TX, United States
| |
Collapse
|
5
|
Azharuddin M, Zhu GH, Sengupta A, Hinkula J, Slater NKH, Patra HK. Nano toolbox in immune modulation and nanovaccines. Trends Biotechnol 2022; 40:1195-1212. [PMID: 35450779 PMCID: PMC10439010 DOI: 10.1016/j.tibtech.2022.03.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022]
Abstract
Despite the great success of vaccines over two centuries, the conventional strategy is based on attenuated/altered microorganisms. However, this is not effective for all microbes and often fails to elicit a protective immune response, and sometimes poses unexpected safety risks. The expanding nano toolbox may overcome some of the roadblocks in vaccine development given the plethora of unique nanoparticle (NP)-based platforms that can successfully induce specific immune responses leading to exciting and novel solutions. Nanovaccines necessitate a thorough understanding of the immunostimulatory effect of these nanotools. We present a comprehensive description of strategies in which nanotools have been used to elicit an immune response and provide a perspective on how nanotechnology can lead to future personalized nanovaccines.
Collapse
Affiliation(s)
- Mohammad Azharuddin
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Geyunjian Harry Zhu
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Anirban Sengupta
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Jorma Hinkula
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hirak K Patra
- Department of Surgical Biotechnology, University College London, London, UK.
| |
Collapse
|
6
|
Biryukov SS, Cote CK, Klimko CP, Dankmeyer JL, Rill NO, Shoe JL, Hunter M, Shamsuddin Z, Velez I, Hedrick ZM, Rosario-Acevedo R, Talyansky Y, Schmidt LK, Orne CE, Fetterer DP, Burtnick MN, Brett PJ, Welkos SL, DeShazer D. Evaluation of two different vaccine platforms for immunization against melioidosis and glanders. Front Microbiol 2022; 13:965518. [PMID: 36060742 PMCID: PMC9428723 DOI: 10.3389/fmicb.2022.965518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei and the closely related species, Burkholderia mallei, produce similar multifaceted diseases which range from rapidly fatal to protracted and chronic, and are a major cause of mortality in endemic regions. Besides causing natural infections, both microbes are Tier 1 potential biothreat agents. Antibiotic treatment is prolonged with variable results, hence effective vaccines are urgently needed. The purpose of our studies was to compare candidate vaccines that target both melioidosis and glanders to identify the most efficacious one(s) and define residual requirements for their transition to the non-human primate aerosol model. Studies were conducted in the C57BL/6 mouse model to evaluate the humoral and cell-mediated immune response and protective efficacy of three Burkholderia vaccine candidates against lethal aerosol challenges with B. pseudomallei K96243, B. pseudomallei MSHR5855, and B. mallei FMH. The recombinant vaccines generated significant immune responses to the vaccine antigens, and the live attenuated vaccine generated a greater immune response to OPS and the whole bacterial cells. Regardless of the candidate vaccine evaluated, the protection of mice was associated with a dampened cytokine response within the lungs after exposure to aerosolized bacteria. Despite being delivered by two different platforms and generating distinct immune responses, two experimental vaccines, a capsule conjugate + Hcp1 subunit vaccine and the live B. pseudomallei 668 ΔilvI strain, provided significant protection and were down-selected for further investigation and advanced development.
Collapse
Affiliation(s)
- Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
- *Correspondence: Christopher K. Cote
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Zain Shamsuddin
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Ivan Velez
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Zander M. Hedrick
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Raysa Rosario-Acevedo
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Caitlyn E. Orne
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Susan L. Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States
- David DeShazer
| |
Collapse
|
7
|
Osterloh A. Vaccination against Bacterial Infections: Challenges, Progress, and New Approaches with a Focus on Intracellular Bacteria. Vaccines (Basel) 2022; 10:751. [PMID: 35632507 PMCID: PMC9144739 DOI: 10.3390/vaccines10050751] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 12/13/2022] Open
Abstract
Many bacterial infections are major health problems worldwide, and treatment of many of these infectious diseases is becoming increasingly difficult due to the development of antibiotic resistance, which is a major threat. Prophylactic vaccines against these bacterial pathogens are urgently needed. This is also true for bacterial infections that are still neglected, even though they affect a large part of the world's population, especially under poor hygienic conditions. One example is typhus, a life-threatening disease also known as "war plague" caused by Rickettsia prowazekii, which could potentially come back in a war situation such as the one in Ukraine. However, vaccination against bacterial infections is a challenge. In general, bacteria are much more complex organisms than viruses and as such are more difficult targets. Unlike comparatively simple viruses, bacteria possess a variety of antigens whose immunogenic potential is often unknown, and it is unclear which antigen can elicit a protective and long-lasting immune response. Several vaccines against extracellular bacteria have been developed in the past and are still used successfully today, e.g., vaccines against tetanus, pertussis, and diphtheria. However, while induction of antibody production is usually sufficient for protection against extracellular bacteria, vaccination against intracellular bacteria is much more difficult because effective defense against these pathogens requires T cell-mediated responses, particularly the activation of cytotoxic CD8+ T cells. These responses are usually not efficiently elicited by immunization with non-living whole cell antigens or subunit vaccines, so that other antigen delivery strategies are required. This review provides an overview of existing antibacterial vaccines and novel approaches to vaccination with a focus on immunization against intracellular bacteria.
Collapse
Affiliation(s)
- Anke Osterloh
- Department of Infection Immunology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| |
Collapse
|
8
|
Efficacy and Immune Response Elicited by Gold Nanoparticle- Based Nanovaccines against Infectious Diseases. Vaccines (Basel) 2022; 10:vaccines10040505. [PMID: 35455254 PMCID: PMC9030786 DOI: 10.3390/vaccines10040505] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/04/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022] Open
Abstract
The use of nanoparticles for developing vaccines has become a routine process for researchers and pharmaceutical companies. Gold nanoparticles (GNPs) are chemical inert, have low toxicity, and are easy to modify and functionalize, making them an attractive choice for nanovaccine development. GNPs are modified for diagnostics and detection of many pathogens. The biocompatibility and biodistribution properties of GNPs render them ideal for use in clinical settings. They have excellent immune modulatory and adjuvant properties. They have been used as the antigen carrier for the delivery system to a targeted site. Tagging them with antibodies can direct the drug or antigen-carrying GNPs to specific tissues or cells. The physicochemical properties of the GNP, together with its dynamic immune response based on its size, shape, surface charge, and optical properties, make it a suitable candidate for vaccine development. The clear outcome of modulating dendritic cells, T and B lymphocytes, which trigger cytokine release in the host, indicates GNPs' efficiency in combating pathogens. The high titer of IgG and IgA antibody subtypes and their enhanced capacity to neutralize pathogens are reported in multiple studies on GNP-based vaccine development. The major focus of this review is to illustrate the role of GNPs in developing nanovaccines against multiple infectious agents, ranging from viruses to bacteria and parasites. Although the use of GNPs has its shortcomings and a low but detectable level of toxicity, their benefits warrant investing more thought and energy into the development of novel vaccine strategies.
Collapse
|
9
|
Mateu Ferrando R, Lay L, Polito L. Gold nanoparticle-based platforms for vaccine development. DRUG DISCOVERY TODAY. TECHNOLOGIES 2021; 38:57-67. [PMID: 34895641 DOI: 10.1016/j.ddtec.2021.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/14/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
Since their discovery, therapeutic or prophylactic vaccines represent a promising option to prevent or cure infections and other pathologies, such as cancer or autoimmune disorders. More recently, among a number of nanomaterials, gold nanoparticles (AuNPs) have emerged as novel tools for vaccine developments, thanks to their inherent ability to tune and upregulate immune response. Moreover, owing to their features, AuNPs can exert optimal actions both as delivery systems and as adjuvants. Notwithstanding the potential huge impact in vaccinology, some challenges remain before AuNPs in vaccine formulations can be translated into the clinic. The current review provides an updated overview of the most recent and effective application of gold nanoparticles as efficient means to develop a new generation of vaccine.
Collapse
Affiliation(s)
- Ruth Mateu Ferrando
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy
| | - Luigi Lay
- Department of Chemistry, University of Milan, Via C. Golgi 19, 20133 Milan, Italy; CRC Materiali Polimerici (LaMPo), University of Milan, Via C. Golgi 19, 20133 Milan, Italy.
| | - Laura Polito
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, 20138 Milan, Italy.
| |
Collapse
|
10
|
Saini S, Singha H, Shanmugasundaram K, Tripathi BN. Characterization of immunoglobulin and cytokine responses in Burkholderia mallei infected equids. Microb Pathog 2021; 162:105310. [PMID: 34838612 DOI: 10.1016/j.micpath.2021.105310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 01/30/2023]
Abstract
Burkholderia mallei causes a highly fatal infectious disease in equines known as glanders. It is one of the OIE listed notifiable diseases, which entails strict control policy measures once B. mallei infection is confirmed in the susceptible hosts. Humans, especially equine handlers, veterinary professionals and laboratory workers are at greater risk to acquire the B. mallei infection directly through prolonged contact with glanderous equines, and indirectly through unprotected handling of B. mallei contaminated materials. Further, natural resistance of B. mallei to multiple antibiotics, aerosol transmission, lack of effective vaccine and treatment make this organism a potential agent of biological warfare. Results of experimental B. mallei infection in mouse and non-human primates and immunization with live attenuated B. mallei strains demonstrated that activation of early innate and adaptive immune responses play a critical role in controlling B. mallei infection. However, the immune response elicited by the primary hosts (equids) B. mallei infection is poorly understood. Therefore, we aimed to investigate immune responses in glanders affected horses (n = 23) and mules (n = 1). In this study, chronically infected equids showed strong humoral responses (IgM, IgG and IgA) specific to B. mallei type 6 secretory proteins such as Hcp1, TssA and TssB. The infected equids also elicited robust cellular responses characterized by significantly elevated levels of IFN-γ, TNF-α, IL-12, IL-17 and IL-6 in PBMCs. In addition, stimulation of equine PBMCs by Hcp1 resulted in the further elevation of these cytokines. Thus, the present study indicated that antibody response and T helper cell (Th) type 1-associated cytokines were the salient features of chronic B. mallei infection in horses. The immune responses also suggest further evaluation of these proteins as potential vaccine candidates.
Collapse
Affiliation(s)
- Sheetal Saini
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India
| | - Harisankar Singha
- ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India.
| | - Karuppusamy Shanmugasundaram
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Sirsa Road, Hisar, 125001, Haryana, India
| | - Bhupendra Nath Tripathi
- Division of Animal Sciences, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001, India.
| |
Collapse
|
11
|
Shende P, Gupta S. Role of lipopolysaccharides in potential applications of nanocarrier systems. Curr Pharm Des 2021; 28:1000-1010. [PMID: 34818999 DOI: 10.2174/1381612827666211124094302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lipopolysaccharides (LPS) are considered the main molecular component in the outer membrane of gram-negative bacteria. The LPS molecule in the bacterial cell wall acts as a primary physical barrier and protects gram-negative bacteria from the surrounding environment. LPS (endotoxins) show immunomodulatory therapeutic properties as well as toxicity to the host cell, whereas potential applications encompass. OBJECTIVE This review article aims to describe the recent developments of lipopolysaccharides in nanocarrier systems for various applications such as vaccination, cancer chemotherapy and immune stimulants action. Different nanocarriers like cubosomes, niosomes, dendrimers and metal nanoparticles used in the delivery of actives are employed to decorate lipopolysaccharide molecules superficially. METHODS A narrative review of all the relevant papers known to the author was conducted. CONCLUSION Commercially available lipid nanoparticles contribute to many advances as promising nanocarriers in cancer therapy and are used as a vaccine adjuvant by improving the immune response due to their properties such as size, shape, biocompatibility, and biodegradability. Whereas lipopolysaccharide-decorated nanoparticles change the host's tolerability and increase the effectiveness of molecule in cancer immunotherapy. These nanoconjugate systems enhance overall immunogenic response and effectiveness in vaccine immunotherapy and targeted therapy, not only limited to humans application but also for poultry and aquaculture. Newer opportunities using lipopolysaccharides for the treatment and management of diseases with unique characteristics like the presence of lipoprotein that act as an alternative for bacterial infections over conventional dosage forms.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai. India
| | - Shubham Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai. India
| |
Collapse
|
12
|
Advances in the Application of Nanomaterials as Treatments for Bacterial Infectious Diseases. Pharmaceutics 2021; 13:pharmaceutics13111913. [PMID: 34834328 PMCID: PMC8618949 DOI: 10.3390/pharmaceutics13111913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/01/2022] Open
Abstract
Bacteria-targeting nanomaterials have been widely used in the diagnosis and treatment of bacterial infectious diseases. These nanomaterials show great potential as antimicrobial agents due to their broad-spectrum antibacterial capacity and relatively low toxicity. Recently, nanomaterials have improved the accurate detection of pathogens, provided therapeutic strategies against nosocomial infections and facilitated the delivery of antigenic protein vaccines that induce humoral and cellular immunity. Biomaterial implants, which have traditionally been hindered by bacterial colonization, benefit from their ability to prevent bacteria from forming biofilms and spreading into adjacent tissues. Wound repair is improving in terms of both the function and prevention of bacterial infection, as we tailor nanomaterials to their needs, select encapsulation methods and materials, incorporate activation systems and add immune-activating adjuvants. Recent years have produced numerous advances in their antibacterial applications, but even further expansion in the diagnosis and treatment of infectious diseases is expected in the future.
Collapse
|
13
|
Zhang M, Li X, Yang W, Rao C, Xia Y, Wang S, Mao X, Li Q, Yan J. Structural characterization of a novel pentasaccharide repeating unit from Burkholderia pseudomallei strain BPC006 and its role in diagnosis and immunogenicity. J Pharm Biomed Anal 2021; 205:114340. [PMID: 34474230 DOI: 10.1016/j.jpba.2021.114340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 11/18/2022]
Abstract
Burkholderia pseudomallei causes melioidosis - an infectious disease with high mortality. Its varied clinical manifestations and resistance to many antibiotics make it a potential biothreat agent and calls for a robust diagnostic assay and effective vaccines. Bacterial cell surface polysaccharides are considered a valuable target for diagnostics and as protective antigen candidates. This study characterized the structure of polysaccharides of B. pseudomallei clinical strain from Hainan, China. A novel structural domain [→3-(α-D-Manp-1→3-α-D-Manp)2-2Me-α-L-6dTalp-1→] was identified by chemical analysis, gas chromatography-mass spectrometry (GC-MS), and 1D/2D nuclear magnetic resonance (NMR) spectroscopy. Immunofluorescence and enzyme-linked immunosorbent assay (ELISA) showed that the serum antibodies against the purified polysaccharide antigen could recognize and bind specifically to B. pseudomallei strains. Additionally, the assays revealed cross-reactivity with polysaccharides from different clinical strains. The polysaccharide antigen also exhibited a strong reaction with the sera from melioidosis patients. Thus, the pentasaccharide repeating unit residue could be a potential candidate antigen for the melioidosis serodiagnosis and vaccine development.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Xiao Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Wenbo Yang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Chenglong Rao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Yupei Xia
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Shiwei Wang
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Xuhu Mao
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Qian Li
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, PR China
| | - Jingmin Yan
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, PR China.
| |
Collapse
|
14
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
15
|
Behzadi M, Vakili B, Ebrahiminezhad A, Nezafat N. Iron nanoparticles as novel vaccine adjuvants. Eur J Pharm Sci 2021; 159:105718. [PMID: 33465476 DOI: 10.1016/j.ejps.2021.105718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
The poor immunogenicity of peptide vaccines compared to conventional ones re usually improved by applying different adjuvants. As chemical or biological substances, adjuvants are added to vaccines to enhance and prolong the immune response. According to considerable investigations over the recent years in the context of finding new adjuvants, a handful of vaccine adjuvants have been licensed for human use. Recently, engineered nanoparticles (NPs) have been introduced as novel alternatives to traditional vaccine adjuvant. Metallic nanoparticles (MeNPs) are among the most promising NPs used for vaccine adjuvant as well as the delivery system that can improve immune responses against pathogens. Iron NPs, as an important class of MeNPs, have gained increasing attention as novel vaccine adjuvants. These particles have shown acceptable results in preclinical studies. Hence, understanding the physicochemical properties of iron NPs, including size, surface properties, charge and route of administration, is of substantial importance. The aim of this review is to provide an overview of the immunomodulatory effects of iron NPs as novel adjuvants. Furthermore, physicochemical properties of these NPs were also discussed.
Collapse
Affiliation(s)
- Maryam Behzadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahareh Vakili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Ebrahiminezhad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Nezafat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Hoseini ZS, Hajizade A, Easton AJ, Ahmadian G, Ramezani F. A meta-analysis of the efficiency of metal nanoparticles in vaccine delivery against infectious disease. Nanomedicine (Lond) 2021; 16:481-495. [PMID: 33683147 DOI: 10.2217/nnm-2020-0358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: Exploration of the efficiency of metal nanoparticles as adjuvants have reported varying results. Objective: The efficacy of metal nanoparticles as adjuvants was investigated Data sources: Database were searched using the terms 'metal nanoparticles' and 'vaccines'. Study eligibility criteria: Studies in animal models utilizing any metal-based vaccines, where the survival rate was described. Study appraisal: The quality of the studies was examined using aspects of the ARRIVE guidelines and assessment of the risk of bias of included studies. Results: Metal nanoparticle-based adjuvants were more effective compared with control (unvaccinated groups) but have not been more successful in competing with common adjuvants or even antigens alone. Limitation: More than 75% of articles have used only gold nanoparticles. Conclusion: Nano-adjuvants do not have a significant effect on reducing mortality.
Collapse
Affiliation(s)
- Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology & Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Grund ME, Choi Soo J, Cote CK, Berisio R, Lukomski S. Thinking Outside the Bug: Targeting Outer Membrane Proteins for Burkholderia Vaccines. Cells 2021; 10:cells10030495. [PMID: 33668922 PMCID: PMC7996558 DOI: 10.3390/cells10030495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing antimicrobial resistance due to misuse and overuse of antimicrobials, as well as a lack of new and innovative antibiotics in development has become an alarming global threat. Preventative therapeutics, like vaccines, are combative measures that aim to stop infections at the source, thereby decreasing the overall use of antibiotics. Infections due to Gram-negative pathogens pose a significant treatment challenge because of substantial multidrug resistance that is acquired and spread throughout the bacterial population. Burkholderia spp. are Gram-negative intrinsically resistant bacteria that are responsible for environmental and nosocomial infections. The Burkholderia cepacia complex are respiratory pathogens that primarily infect immunocompromised and cystic fibrosis patients, and are acquired through contaminated products and equipment, or via patient-to-patient transmission. The Burkholderia pseudomallei complex causes percutaneous wound, cardiovascular, and respiratory infections. Transmission occurs through direct exposure to contaminated water, water-vapors, or soil, leading to the human disease melioidosis, or the equine disease glanders. Currently there is no licensed vaccine against any Burkholderia pathogen. This review will discuss Burkholderia vaccine candidates derived from outer membrane proteins, OmpA, OmpW, Omp85, and Bucl8, encompassing their structures, conservation, and vaccine formulation.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Jeon Choi Soo
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD 21702, USA;
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council (CNR-IBB), 80145 Naples, Italy;
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA; (M.E.G.); (S.J.C.)
- Correspondence: ; Tel.: +1-304-293-6405
| |
Collapse
|
18
|
Seaberg J, Montazerian H, Hossen MN, Bhattacharya R, Khademhosseini A, Mukherjee P. Hybrid Nanosystems for Biomedical Applications. ACS NANO 2021; 15:2099-2142. [PMID: 33497197 PMCID: PMC9521743 DOI: 10.1021/acsnano.0c09382] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Inorganic/organic hybrid nanosystems have been increasingly developed for their versatility and efficacy at overcoming obstacles not readily surmounted by nonhybridized counterparts. Currently, hybrid nanosystems are implemented for gene therapy, drug delivery, and phototherapy in addition to tissue regeneration, vaccines, antibacterials, biomolecule detection, imaging probes, and theranostics. Though diverse, these nanosystems can be classified according to foundational inorganic/organic components, accessory moieties, and architecture of hybridization. Within this Review, we begin by providing a historical context for the development of biomedical hybrid nanosystems before describing the properties, synthesis, and characterization of their component building blocks. Afterward, we introduce the architectures of hybridization and highlight recent biomedical nanosystem developments by area of application, emphasizing hybrids of distinctive utility and innovation. Finally, we draw attention to ongoing clinical trials before recapping our discussion of hybrid nanosystems and providing a perspective on the future of the field.
Collapse
Affiliation(s)
- Joshua Seaberg
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
| | - Hossein Montazerian
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Md Nazir Hossen
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90024, USA
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
19
|
Chomkatekaew C, Boonklang P, Sangphukieo A, Chewapreecha C. An Evolutionary Arms Race Between Burkholderia pseudomallei and Host Immune System: What Do We Know? Front Microbiol 2021; 11:612568. [PMID: 33552023 PMCID: PMC7858667 DOI: 10.3389/fmicb.2020.612568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
A better understanding of co-evolution between pathogens and hosts holds promise for better prevention and control strategies. This review will explore the interactions between Burkholderia pseudomallei, an environmental and opportunistic pathogen, and the human host immune system. B. pseudomallei causes "Melioidosis," a rapidly fatal tropical infectious disease predicted to affect 165,000 cases annually worldwide, of which 89,000 are fatal. Genetic heterogeneities were reported in both B. pseudomallei and human host population, some of which may, at least in part, contribute to inter-individual differences in disease susceptibility. Here, we review (i) a multi-host-pathogen characteristic of the interaction; (ii) selection pressures acting on B. pseudomallei and human genomes with the former being driven by bacterial adaptation across ranges of ecological niches while the latter are driven by human encounter of broad ranges of pathogens; (iii) the mechanisms that generate genetic diversity in bacterial and host population particularly in sequences encoding proteins functioning in host-pathogen interaction; (iv) reported genetic and structural variations of proteins or molecules observed in B. pseudomallei-human host interactions and their implications in infection outcomes. Together, these predict bacterial and host evolutionary trajectory which continues to generate genetic diversity in bacterium and operates host immune selection at the molecular level.
Collapse
Affiliation(s)
| | | | - Apiwat Sangphukieo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
20
|
Wang G, Zarodkiewicz P, Valvano MA. Current Advances in Burkholderia Vaccines Development. Cells 2020; 9:E2671. [PMID: 33322641 PMCID: PMC7762980 DOI: 10.3390/cells9122671] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
The genus Burkholderia includes a wide range of Gram-negative bacterial species some of which are pathogenic to humans and other vertebrates. The most pathogenic species are Burkholderia mallei, Burkholderia pseudomallei, and the members of the Burkholderia cepacia complex (Bcc). B. mallei and B. pseudomallei, the cause of glanders and melioidosis, respectively, are considered potential bioweapons. The Bcc comprises a subset of Burkholderia species associated with respiratory infections in people with chronic granulomatous disease and cystic fibrosis. Antimicrobial treatment of Burkholderia infections is difficult due to the intrinsic multidrug antibiotic resistance of these bacteria; prophylactic vaccines provide an attractive alternative to counteract these infections. Although commercial vaccines against Burkholderia infections are still unavailable, substantial progress has been made over recent years in the development of vaccines against B. pseudomallei and B. mallei. This review critically discusses the current advances in vaccine development against B. mallei, B. pseudomallei, and the Bcc.
Collapse
Affiliation(s)
| | | | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.W.); (P.Z.)
| |
Collapse
|
21
|
Dyke JS, Huertas-Diaz MC, Michel F, Holladay NE, Hogan RJ, He B, Lafontaine ER. The Peptidoglycan-associated lipoprotein Pal contributes to the virulence of Burkholderia mallei and provides protection against lethal aerosol challenge. Virulence 2020; 11:1024-1040. [PMID: 32799724 PMCID: PMC7567441 DOI: 10.1080/21505594.2020.1804275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 11/07/2022] Open
Abstract
BURKHOLDERIA MALLEI is a highly pathogenic bacterium that causes the fatal zoonosis glanders. The organism specifies multiple membrane proteins, which represent prime targets for the development of countermeasures given their location at the host-pathogen interface. We investigated one of these proteins, Pal, and discovered that it is involved in the ability of B. mallei to resist complement-mediated killing and replicate inside host cells in vitro, is expressed in vivo and induces antibodies during the course of infection, and contributes to virulence in a mouse model of aerosol infection. A mutant in the pal gene of the B. mallei wild-type strain ATCC 23344 was found to be especially attenuated, as BALB/c mice challenged with the equivalent of 5,350 LD50 completely cleared infection. Based on these findings, we tested the hypothesis that a vaccine containing the Pal protein elicits protective immunity against aerosol challenge. To achieve this, the pal gene was cloned in the vaccine vector Parainfluenza Virus 5 (PIV5) and mice immunized with the virus were infected with a lethal dose of B. mallei. These experiments revealed that a single dose of PIV5 expressing Pal provided 80% survival over a period of 40 days post-challenge. In contrast, only 10% of mice vaccinated with a PIV5 control virus construct survived infection. Taken together, our data establish that the Peptidoglycan-associated lipoprotein Pal is a critical virulence determinant of B. mallei and effective target for developing a glanders vaccine.
Collapse
Affiliation(s)
- Jeremy S. Dyke
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | | | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Nathan E. Holladay
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
22
|
Multicomponent gold nano-glycoconjugate as a highly immunogenic and protective platform against Burkholderia mallei. NPJ Vaccines 2020; 5:82. [PMID: 32963813 PMCID: PMC7483444 DOI: 10.1038/s41541-020-00229-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/14/2020] [Indexed: 01/20/2023] Open
Abstract
Burkholderia mallei (Bm) is a facultative intracellular pathogen and the etiological agent of glanders, a highly infectious zoonotic disease occurring in equines and humans. The intrinsic resistance to antibiotics, lack of specific therapy, high mortality, and history as a biothreat agent, prompt the need of a safe and effective vaccine. However, the limited knowledge of protective Bm-specific antigens has hampered the development of a vaccine. Further, the use of antigen-delivery systems that enhance antigen immunogenicity and elicit robust antigen-specific immune responses has been limited and could improve vaccines against Bm. Nanovaccines, in particular gold nanoparticles (AuNPs), have been investigated as a strategy to broaden the repertoire of vaccine-mediated immunity and as a tool to produce multivalent vaccines. To synthesize a nano-glycoconjugate vaccine, six predicted highly immunogenic antigens identified by a genome-wide bio- and immuno-informatic analysis were purified and coupled to AuNPs along with lipopolysaccharide (LPS) from B. thailandensis. Mice immunized intranasally with individual AuNP-protein-LPS conjugates, showed variable degrees of protection against intranasal Bm infection, while an optimized combination formulation (containing protein antigens OmpW, OpcP, and Hemagglutinin, along with LPS) showed complete protection against lethality in a mouse model of inhalational glanders. Animals immunized with different nano-glycoconjugates showed robust antigen-specific antibody responses. Moreover, serum from animals immunized with the optimized nano-glycoconjugate formulation showed sustained antibody responses with increased serum-mediated inhibition of adherence and opsonophagocytic activity in vitro. This study provides the basis for the rational design and construction of a multicomponent vaccine platform against Bm.
Collapse
|
23
|
Khakhum N, Chapartegui-González I, Torres AG. Combating the great mimicker: latest progress in the development of Burkholderia pseudomallei vaccines. Expert Rev Vaccines 2020; 19:653-660. [PMID: 32669008 DOI: 10.1080/14760584.2020.1791089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Introduction Burkholderia pseudomallei is an environmental intracellular Gram-negative bacterium that causes melioidosis, a severe infectious disease affecting humans and animals. An increase in melioidosis cases worldwide and the high mortality rate of the disease makes it a public health concern. Melioidosis is known as the 'great mimicker' because it presents with a wide range of disease manifestations. B. pseudomallei is naturally resistant to antibiotics and delay in diagnosis leads to ineffective treatment. Furthermore, there is no approved vaccine to prevent melioidosis infection in humans. Therefore, it is a priority to license a vaccine that can be used for both high-risk endemic areas and for biodefense purposes. Areas covered In this review, we have focussed on recent progress in the USA for the development and advancement of lead B. pseudomallei vaccine candidate(s) ready for testing in pre-clinical trials. Those candidates include live-attenuated vaccines, glycoconjugate vaccines, outer-membrane vesicles, and gold nanoparticle vaccines. Expert opinion Side-by-side comparison of the leading B. pseudomallei vaccine candidates will provide important information to further advance studies into pre-clinical trials. The likelihood of any of these current vaccines becoming the selected candidate that will reduce the occurrence of melioidosis worldwide is closer than ever.
Collapse
Affiliation(s)
- Nittaya Khakhum
- Department of Microbiology & Immunology, University of Texas Medical Branch , Galveston, TX, USA
| | | | - Alfredo G Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch , Galveston, TX, USA.,Department of Pathology, University of Texas Medical Branch , Galveston, TX, USA
| |
Collapse
|
24
|
Dykman LA. Gold nanoparticles for preparation of antibodies and vaccines against infectious diseases. Expert Rev Vaccines 2020; 19:465-477. [PMID: 32306785 PMCID: PMC7196924 DOI: 10.1080/14760584.2020.1758070] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Vaccination remains very effective in stimulating protective immune responses against infections. An important task in antibody and vaccine preparation is to choose an optimal carrier that will ensure a high immune response. Particularly promising in this regard are nanoscale particle carriers. An antigen that is adsorbed or encapsulated by nanoparticles can be used as an adjuvant to optimize the immune response during vaccination. a very popular antigen carrier used for immunization and vaccination is gold nanoparticles, with are being used to make new vaccines against viral, bacterial, and parasitic infections. AREAS COVERED This review summarizes what is currently known about the use of gold nanoparticles as an antigen carrier and adjuvant to prepare antibodies in vivo and design vaccines against viral, bacterial, and parasitic infections. The basic principles, recent advances, and current problems in the use of gold nanoparticles are discussed. EXPERT OPINION Gold nanoparticles can be used as adjuvants to increase the effectiveness of vaccines by stimulating antigen-presenting cells and ensuring controlled antigen release. Studying the characteristics of the immune response obtained from the use of gold nanoparticles as a carrier and an adjuvant will permit the particles' potential for vaccine design to be increased.
Collapse
Affiliation(s)
- Lev A. Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov, Russia
| |
Collapse
|
25
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Soria-Martinez L, Bauer S, Giesler M, Schelhaas S, Materlik J, Janus K, Pierzyna P, Becker M, Snyder NL, Hartmann L, Schelhaas M. Prophylactic Antiviral Activity of Sulfated Glycomimetic Oligomers and Polymers. J Am Chem Soc 2020; 142:5252-5265. [PMID: 32105452 DOI: 10.1021/jacs.9b13484] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we investigate the potential of highly sulfated synthetic glycomimetics to act as inhibitors of viral binding/infection. Our results indicate that both long-chain glycopolymers and short-chain glycooligomers are capable of preventing viral infection. Notably, glycopolymers efficiently inhibit Human Papillomavirus (HPV16) infection in vitro and maintain their antiviral activity in vivo, while the glycooligomers exert their inhibitory function post attachment of viruses to cells. Moreover, when we tested the potential for broader activity against several other human pathogenic viruses, we observed broad-spectrum antiviral activity of these compounds beyond our initial assumptions. While the compounds tested displayed a range of antiviral efficacies, viruses with rather diverse glycan specificities such as Herpes Simplex Virus (HSV), Influenza A Virus (IAV), and Merkel Cell Polyomavirus (MCPyV) could be targeted. This opens new opportunities to develop broadly active glycomimetic inhibitors of viral entry and infection.
Collapse
Affiliation(s)
- Laura Soria-Martinez
- Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany.,Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
| | - Sebastian Bauer
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Markus Giesler
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Sonja Schelhaas
- European Institute for Molecular Imaging, University of Münster, Münster 48149, Germany.,Cells in Motion Interfaculty Centre CiMIC, University of Münster, Münster 48149, Germany
| | - Jennifer Materlik
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Kevin Janus
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Patrick Pierzyna
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Miriam Becker
- Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany.,Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany
| | - Nicole L Snyder
- Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany.,Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany.,Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Münster 48149, Germany.,Research Group "ViroCarb: glycans controlling non-enveloped virus infections" (FOR2327), Coordinating University of Tübingen, Tübingen 72074, Germany.,Cells in Motion Interfaculty Centre CiMIC, University of Münster, Münster 48149, Germany
| |
Collapse
|
27
|
Burygin GL, Abronina PI, Podvalnyy NM, Staroverov SA, Kononov LO, Dykman LA. Preparation and in vivo evaluation of glyco-gold nanoparticles carrying synthetic mycobacterial hexaarabinofuranoside. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:480-493. [PMID: 32274287 PMCID: PMC7113550 DOI: 10.3762/bjnano.11.39] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/20/2020] [Indexed: 05/07/2023]
Abstract
A number of bacterial glycans are specific markers for the detection and the serological identification of microorganisms and are also widely used as antigenic components of vaccines. The use of gold nanoparticles as carriers for glyco-epitopes is becoming an important alternative to the traditional conjugation with proteins and synthetic polymers. In this study, we aimed to prepare and evaluate in vivo glyco-gold nanoparticles (glyco-GNPs) bearing the terminal-branched hexaarabinofuranoside fragment (Ara6) of arabinan domains of lipoarabinomannan and arabinogalactan, which are principal polysaccharides of the cell wall of Mycobacterium tuberculosis, the causative agent of tuberculosis. In particular, we were interested whether the antibodies generated against Ara6-GNPs would recognize the natural saccharides on the cell surface of different mycobacterial strains. Two synthetic Ara6 glycosides with amino-functionalized spacer aglycons differing in length and hydrophilicity were directly conjugated with spherical gold nanoparticles (d = 15 nm) to give two sets of glyco-GNPs, which were used for the immunization of rabbits. Dot assays revealed cross-reactions between the two obtained antisera with the hexaarabinofuranoside and the 2-aminoethyl aglycon used for the preparation of glyco-GNPs. Both antisera contained high titers of antibodies specific for Mycobacteria as shown by enzyme-linked immunosorbent assay using M. bovis and M. smegmatis cells as antigens while there was only a weak response to M. phlei cells and no interaction with E. coli cells. The results obtained suggest that glyco-GNPs are promising agents for the generation of anti-mycobacterial antibodies.
Collapse
Affiliation(s)
- Gennady L Burygin
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
- Department of Horticulture, Breeding, and Genetics, Vavilov Saratov State Agrarian University, Teatralnaya Ploshchad 1, Saratov, 410012, Russia
| | - Polina I Abronina
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Nikita M Podvalnyy
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
| | - Sergey A Staroverov
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| | - Leonid O Kononov
- Laboratory of Carbohydrate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Institutsky per. 9, Dolgoprudnyi, Moscow Region, 141701, Russia
| | - Lev A Dykman
- Laboratory of Immunochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prospekt Entuziastov 13, Saratov, 410049, Russia
| |
Collapse
|
28
|
One-pot synthesis and characterization of ovalbumin-conjugated gold nanoparticles: A comparative study of adjuvanticity against the physical mixture of ovalbumin and gold nanoparticles. Int J Pharm 2019; 571:118704. [PMID: 31536763 DOI: 10.1016/j.ijpharm.2019.118704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 11/21/2022]
Abstract
Only few adjuvants are licensed for use in humans and there is a need to develop safe and improved vaccine adjuvants. In this study, we report the one-pot synthesis of antigen ovalbumin (OVA)-conjugated gold nanoparticles (OVA@GNPs). A systematical study was performed by comparing OVA@GNPs with the simple mixture of OVA and gold nanoparticles (OVA+GNPs), including their physiochemical properties through spectrometric and electrophoretic analysis, in vitro stability, cytotoxicity and cellular uptake, and in vivo humoral immune responses following subcutaneous and transcutaneous immunization in mice. The results demonstrate a much stronger interaction between protein and GNPs in OVA@GNPs than OVA+GNPs, which makes OVA@GNPs more stable under in vitro conditions than OVA+GNPs with the ability to induce 4 times higher OVA-specific serum IgG titers following subcutaneous immunization. We also show the dose sparing of OVA@GNPs, as the dosage for aluminum adjuvant required to reach to an equivalent OVA-specific antibody titer was almost five times higher than OVA@GNPs. However, we found that the co-administration of small-sized GNPs had a limited ability for the transcutaneous delivery of OVA. These results demonstrate the potential application of one-pot synthesis approach for producing antigen protein-conjugated gold nanoparticles for vaccine delivery.
Collapse
|
29
|
Abstract
Enterohemorrhagic E. coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis, which can progress to hemolytic uremic syndrome. These complications represent a serious global public health problem that requires laborious public health interventions and safety control measures to combat recurrent outbreaks worldwide. Today, there are no effective interventions for the control of EHEC infections, and, in fact, the use of antibiotics is counterindicated for EHEC disease. Therefore, a viable alternative for the prevention of human infections is the development of vaccines; however, no such vaccines are approved for human use. In this study, we developed a novel gold nanoparticle platform which acts as a scaffold for the delivery of various antigens, representing a nanovaccine technology which can be applied to several disease models. Here we exploit the natural properties of a synthetic nanoparticle (NP) scaffold as a subunit vaccine against enterohemorrhagic Escherichiacoli (EHEC). Two EHEC-specific immunogenic antigens, namely, LomW and EscC, either alone or in combination, were covalently linked on the surface of gold nanoparticles (AuNPs) and used to immunize mice prior to challenge with EHEC O157:H7 strain 86-24. LomW is a putative outer membrane protein encoded in bacteriophage BP-933W, while EscC is a structural type III secretion system protein which forms a ring in the outer membrane. The resulting AuNP preparations, AuNP-LomW and AuNP-EscC, showed that the nanoparticles were able to incorporate the antigens, forming stable formulations that retained robust immunogenicity in vivo after subcutaneous immunization. When administered subcutaneously, AuNP-LomW or AuNP-EscC or a combination containing equivalent amounts of both candidates resulted in higher IgG titers in serum and secretory IgA titers in feces. The serum IgG titers correlated with a significant reduction in EHEC intestinal colonization after 3 days postinoculation. In addition, we showed that serum from antigen-coated AuNP-immunized mice resulted in a reduction of adherence to human intestinal epithelial cells for EHEC, as well as for two other E. coli pathotypes (enteropathogenic E. coli [EPEC], encoding EscC, and enteroaggregative E. coli [EAEC], encoding LomW). Further, the serum had antigen-specific bactericidal properties, engaging the classical complement pathway. Overall, our results demonstrate the immunogenicity and stability of a novel nanovaccine against EHEC. These results also strengthen the prospect of development of a synthetic nanoparticle vaccine conjugated to E. coli antigens as a promising platform against other enteric pathogens.
Collapse
|
30
|
Hess KL, Medintz IL, Jewell CM. Designing inorganic nanomaterials for vaccines and immunotherapies. NANO TODAY 2019; 27:73-98. [PMID: 32292488 PMCID: PMC7156029 DOI: 10.1016/j.nantod.2019.04.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Vaccines and immunotherapies have changed the face of health care. Biomaterials offer the ability to improve upon these medical technologies through increased control of the types and concentrations of immune signals delivered. Further, these carriers enable targeting, stability, and delivery of poorly soluble cargos. Inorganic nanomaterials possess unique optical, electric, and magnetic properties, as well as defined chemistry, high surface-to-volume- ratio, and high avidity display that make this class of materials particularly advantageous for vaccine design, cancer immunotherapy, and autoimmune treatments. In this review we focus on this understudied area by highlighting recent work with inorganic materials - including gold nanoparticles, carbon nanotubes, and quantum dots. We discuss the intrinsic features of these materials that impact the interactions with immune cells and tissue, as well as recent reports using inorganic materials across a range of emerging immunological applications.
Collapse
Affiliation(s)
- Krystina L. Hess
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC, 20375, USA
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, 8278 Paint Branch Drive, College Park, MD, 20742, USA
- Department of Microbiology and Immunology, University of Maryland Medical School, 685 West Baltimore Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, 22 South Greene St, Baltimore, MD, 21201 USA
- U.S. Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene St, Baltimore, MD, 21201, USA
| |
Collapse
|
31
|
Cloutier M, Muru K, Ravicoularamin G, Gauthier C. Polysaccharides from Burkholderia species as targets for vaccine development, immunomodulation and chemical synthesis. Nat Prod Rep 2019; 35:1251-1293. [PMID: 30023998 DOI: 10.1039/c8np00046h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2018 Burkholderia species are a vast group of human pathogenic, phytopathogenic, and plant- or environment-associated bacteria. B. pseudomallei, B. mallei, and B. cepacia complex are the causative agents of melioidosis, glanders, and cystic fibrosis-related infections, respectively, which are fatal diseases in humans and animals. Due to their high resistance to antibiotics, high mortality rates, and increased infectivity via the respiratory tract, B. pseudomallei and B. mallei have been listed as potential bioterrorism agents by the Centers for Disease Control and Prevention. Burkholderia species are able to produce a large network of surface-exposed polysaccharides, i.e., lipopolysaccharides, capsular polysaccharides, and exopolysaccharides, which are virulence factors, immunomodulators, major biofilm components, and protective antigens, and have crucial implications in the pathogenicity of Burkholderia-associated diseases. This review provides a comprehensive and up-to-date account regarding the structural elucidation and biological activities of surface polysaccharides produced by Burkholderia species. The chemical synthesis of oligosaccharides mimicking Burkholderia polysaccharides is described in detail. Emphasis is placed on the recent research efforts toward the development of glycoconjugate vaccines against melioidosis and glanders based on synthetic or native Burkholderia oligo/polysaccharides.
Collapse
Affiliation(s)
- Maude Cloutier
- INRS-Institut Armand-Frappier, Université du Québec, 531, boul. des Prairies, Laval, Québec H7V 1B7, Canada.
| | | | | | | |
Collapse
|
32
|
Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies. Clin Exp Immunol 2019; 196:189-204. [PMID: 30963549 PMCID: PMC6468175 DOI: 10.1111/cei.13287] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
It is easy to argue that vaccine development represents humankind's most important and successful endeavour, such is the impact that vaccination has had on human morbidity and mortality over the last 200 years. During this time the original method of Jenner and Pasteur, i.e. that of injecting live-attenuated or inactivated pathogens, has been developed and supplemented with a wide range of alternative approaches which are now in clinical use or under development. These next-generation technologies have been designed to produce a vaccine that has the effectiveness of the original live-attenuated and inactivated vaccines, but without the associated risks and limitations. Indeed, the method of development has undoubtedly moved away from Pasteur's three Is paradigm (isolate, inactivate, inject) towards an approach of rational design, made possible by improved knowledge of the pathogen-host interaction and the mechanisms of the immune system. These novel vaccines have explored methods for targeted delivery of antigenic material, as well as for the control of release profiles, so that dosing regimens can be matched to the time-lines of immune system stimulation and the realities of health-care delivery in dispersed populations. The methods by which vaccines are administered are also the subject of intense research in the hope that needle and syringe dosing, with all its associated issues regarding risk of injury, cross-infection and patient compliance, can be replaced. This review provides a detailed overview of new vaccine vectors as well as information pertaining to the novel delivery platforms under development.
Collapse
Affiliation(s)
- J. Wallis
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| | - D. P. Shenton
- Defence Science and Technology LaboratoryPorton DownUK
| | - R. C. Carlisle
- Institute of Biomedical EngineeringUniversity of OxfordOxfordUK
| |
Collapse
|
33
|
Lafontaine ER, Chen Z, Huertas-Diaz MC, Dyke JS, Jelesijevic TP, Michel F, Hogan RJ, He B. The autotransporter protein BatA is a protective antigen against lethal aerosol infection with Burkholderia mallei and Burkholderia pseudomallei. Vaccine X 2019; 1:100002. [PMID: 33826684 PMCID: PMC6668238 DOI: 10.1016/j.jvacx.2018.100002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Burkholderia mallei and Burkholderia pseudomallei are the causative agents of glanders and melioidosis, respectively. There is no vaccine to protect against these highly-pathogenic and intrinsically antibiotic-resistant bacteria, and there is concern regarding their use as biological warfare agents. For these reasons, B. mallei and B. pseudomallei are classified as Tier 1 organisms by the U.S. Federal Select Agent Program and the availability of effective countermeasures represents a critical unmet need. METHODS Vaccines (subunit and vectored) containing the surface-exposed passenger domain of the conserved Burkholderia autotransporter protein BatA were administered to BALB/c mice and the vaccinated animals were challenged with lethal doses of wild-type B. mallei and B. pseudomallei strains via the aerosol route. Mice were monitored for signs of illness for a period of up to 40 days post-challenge and tissues from surviving animals were analyzed for bacterial burden at study end-points. RESULTS A single dose of recombinant Parainfluenza Virus 5 (PIV5) expressing BatA provided 74% and 60% survival in mice infected with B. mallei and B. pseudomallei, respectively. Vaccination with PIV5-BatA also resulted in complete bacterial clearance from the lungs and spleen of 78% and 44% of animals surviving lethal challenge with B. pseudomallei, respectively. In contrast, all control animals vaccinated with a PIV5 construct expressing an irrelevant antigen and infected with B. pseudomallei were colonized in those tissues. CONCLUSION Our study indicates that the autotransporter BatA is a valuable target for developing countermeasures against B. mallei and B. pseudomallei and demonstrates the utility of the PIV5 viral vaccine delivery platform to elicit cross-protective immunity against the organisms.
Collapse
Affiliation(s)
- Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Zhenhai Chen
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Maria Cristina Huertas-Diaz
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Jeremy S. Dyke
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Tomislav P. Jelesijevic
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, USA
| |
Collapse
|
34
|
Piktel E, Wnorowska U, Cieśluk M, Deptula P, Pogoda K, Misztalewska-Turkowicz I, Paprocka P, Niemirowicz-Laskowska K, Wilczewska AZ, Janmey PA, Bucki R. Inhibition of inflammatory response in human keratinocytes by magnetic nanoparticles functionalized with PBP10 peptide derived from the PIP2-binding site of human plasma gelsolin. J Nanobiotechnology 2019; 17:22. [PMID: 30711007 PMCID: PMC6359803 DOI: 10.1186/s12951-019-0455-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Human plasma gelsolin (pGSN) is a multifunctional actin-binding protein involved in a variety of biological processes, including neutralization of pro-inflammatory molecules such as lipopolysaccharide (LPS) and lipoteichoic acid (LTA) and modulation of host inflammatory response. It was found that PBP10, a synthetic rhodamine B-conjugated peptide, based on the phosphoinositide-binding site of pGSN, exerts bactericidal activity against Gram-positive and Gram-negative bacteria, interacts specifically with LPS and LTA, and limits microbial-induced inflammatory effects. The therapeutic efficiency of PBP10 when immobilized on the surface of iron oxide-based magnetic nanoparticles was not evaluated, to date. RESULTS Using the human keratinocyte cell line HaCaT stimulated by bacterially-derived LPS and LTA as an in vitro model of bacterial infection, we examined the anti-inflammatory effects of nanosystems consisting of iron oxide-based magnetic nanoparticles with aminosilane (MNP@NH2) or gold shells (MNP@Au) functionalized by a set of peptides, derived from the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding site of the human plasma protein gelsolin, which also binds LPS and LTA. Our results indicate that these nanosystems can kill both Gram-positive and Gram-negative bacteria and limit the production of inflammatory mediators, including nitric oxide (NO), reactive oxygen species (ROS), and interleukin-8 (IL-8) in the response to heat-killed microbes or extracted bacterial cell wall components. The nanoparticles possess the potential to improve therapeutic efficacy and are characterized by lower toxicity and improved hemocompatibility when compared to free peptides. Atomic force microscopy (AFM) showed that these PBP10-based nanosystems prevented changes in nanomechanical properties of cells that were otherwise stimulated by LPS. CONCLUSIONS Neutralization of endotoxemia-mediated cellular effects by gelsolin-derived peptides and PBP10-containing nanosystems might be considered as potent therapeutic agents in the improved therapy of bacterial infections and microbial-induced inflammation.
Collapse
Affiliation(s)
- Ewelina Piktel
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Urszula Wnorowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Mateusz Cieśluk
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Piotr Deptula
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | - Katarzyna Pogoda
- IInstitute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | | | - Paulina Paprocka
- Department of Microbiology and Immunology, The Faculty of Medicine and Health Sciences of the Jan Kochanowski University in Kielce, Kielce, Poland
| | - Katarzyna Niemirowicz-Laskowska
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| | | | - Paul A. Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA USA
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland
| |
Collapse
|
35
|
Terán-Navarro H, Calderon-Gonzalez R, Salcines-Cuevas D, García I, Marradi M, Freire J, Salmon E, Portillo-Gonzalez M, Frande-Cabanes E, García-Castaño A, Martinez-Callejo V, Gomez-Roman J, Tobes R, Rivera F, Yañez-Diaz S, Álvarez-Domínguez C. Pre-clinical development of Listeria-based nanovaccines as immunotherapies for solid tumours: insights from melanoma. Oncoimmunology 2018; 8:e1541534. [PMID: 30713801 PMCID: PMC6343812 DOI: 10.1080/2162402x.2018.1541534] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023] Open
Abstract
Gold glyconanoparticles loaded with the listeriolysin O peptide 91-99 (GNP-LLO91-99), a bacterial peptide with anti-metastatic properties, are vaccine delivery platforms facilitating immune cell targeting and increasing antigen loading. Here, we present proof of concept analyses for the consideration of GNP-LLO91-99 nanovaccines as a novel immunotherapy for cutaneous melanoma. Studies using mouse models of subcutaneous melanoma indicated that GNP-LLO91-99 nanovaccines recruite and modulate dendritic cell (DC) function within the tumour, alter tumour immunotolerance inducing melanoma-specific cytotoxic T cells, cause complete remission and improve survival. GNP-LLO91-99 nanovaccines showed superior tumour regression and survival benefits, when combined with anti-PD-1 or anti-CTLA-4 checkpoint inhibitors, resulting in an improvement in the efficacy of these immunotherapies. Studies on monocyte-derived DCs from patients with stage IA, IB or IIIB melanoma confirmed the ability of GNP-LLO91-99 nanovaccines to complement the action of checkpoint inhibitors, by not only reducing the expression of cell-death markers on DCs, but also potentiating DC antigen-presentation. We propose that GNP-LLO91-99 nanovaccines function as immune stimulators and immune effectors and serve as safe cancer therapies, alone or in combination with other immunotherapies.
Collapse
Affiliation(s)
- Hector Terán-Navarro
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Ricardo Calderon-Gonzalez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - David Salcines-Cuevas
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Isabel García
- Bionanoplasmonics Laboratory, CIC biomaGUNE and Biomedical Research Networking Center in Bioengineering, Nanomaterials and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Marco Marradi
- Bionanoplasmonics Laboratory, CIC biomaGUNE and Biomedical Research Networking Center in Bioengineering, Nanomaterials and Nanomedicine (CIBER-BBN), Donostia-San Sebastián, Gipuzkoa, Spain
| | - Javier Freire
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Erwan Salmon
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Mar Portillo-Gonzalez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Elisabet Frande-Cabanes
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| | - Almudena García-Castaño
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Virginia Martinez-Callejo
- Servicio de Farmacia Hospitalaria, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Javier Gomez-Roman
- Servicio de Anatomía Patológica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Raquel Tobes
- Oh no Sequences! Research Group, Era7 Bioinformatics, Granada, Andalucia, Spain
| | - Fernando Rivera
- Servicio de Oncología Médica, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Sonsoles Yañez-Diaz
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
- Servicio de Dermatología, Hospital Universitario Marqués de Valdecilla, Santander, Cantabria, Spain
| | - Carmen Álvarez-Domínguez
- Group of Listeria based Nanovaccines and cellular vaccines and their applications in biomedicine, Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Cantabria, Spain
| |
Collapse
|
36
|
Quach QH, Ang SK, Chu JHJ, Kah JCY. Size-dependent neutralizing activity of gold nanoparticle-based subunit vaccine against dengue virus. Acta Biomater 2018; 78:224-235. [PMID: 30099200 DOI: 10.1016/j.actbio.2018.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022]
Abstract
Dengue results in substantial human morbidity and significant socio-economic impacts, but a specific dengue therapeutic is not available. The currently available dengue vaccine has low efficacy and high rate of adverse effects, necessitating different strategies for the development of a safer and more efficient vaccine against dengue virus. We describe here a hybrid combination of different-sized gold nanoparticles (AuNPs) and domain III of envelope glycoprotein derived from serotype 2 of dengue virus (EDIII) as dengue subunit vaccine. The efficacy of the EDIII-functionalized AuNPs (AuNP-E) to induce neutralizing antibody in BALB/c mice is evaluated. Obtained results show that AuNP-E induced a high level of antibody which mediates serotype-specific neutralization of dengue virus. More importantly, the level of antibody is dependent on both the size of AuNPs and the concentration of AuNP-E, implicating the possibility to modulate it through adjusting these parameters. These results represent an important step towards the development of tetravalent AuNP-based subunit dengue vaccine. STATEMENT OF SIGNIFICANCE This research presents a novel subunit vaccine against dengue virus using a hybrid comprising gold nanoparticles (AuNPs) and domain III of envelop protein (EDIII). We proved the neutralizing activity of anti-EDIII antibody induced in immunized mice on Dengue virus serotype 2 in an AuNP core size and concentration dependent manner. The hybrid concept behind this work could also be adopted for the development of a tetravalent vaccine against four serotypes of Dengue virus.
Collapse
|
37
|
Norris MH, Khan MSR, Chirakul S, Schweizer HP, Tuanyok A. Outer Membrane Vesicle Vaccines from Biosafe Surrogates Prevent Acute Lethal Glanders in Mice. Vaccines (Basel) 2018; 6:E5. [PMID: 29320408 PMCID: PMC5874646 DOI: 10.3390/vaccines6010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 01/13/2023] Open
Abstract
Burkholderia mallei is a host-adapted Gram-negative mammalian pathogen that causes the severe disease glanders. Glanders can manifest as a rapid acute progression or a chronic debilitating syndrome primarily affecting solipeds and humans in close association with infected animals. In USA, B. mallei is classified as one of the most important bacterial biothreat agents. Presently, there is no licensed glanders vaccine available for humans or animals. In this work, outer membrane vesicles (OMVs) were isolated from three attenuated biosafe bacterial strains, Burkholderia pseudomallei Bp82, B. thailandensis E555, and B. thailandensis TxDOH and used to vaccinate mice. B. thailandensis OMVs induced significantly higher antibody responses that were investigated. B. mallei specific serum antibody responses were of higher magnitude in mice vaccinated with B. thailandensis OMVs compared to levels in mice vaccinated with B. pseudomallei OMVs. OMVs derived from biosafe strains protected mice from acute lethal glanders with vesicles from the two B. thailandensis strains affording significant protection (>90%) up to 35 days post-infection with some up to 60 days. Organ loads from 35-day survivors indicated bacteria colonization of the lungs, liver, and spleen while those from 60 days had high CFUs in the spleens. The highest antibody producing vaccine (B. thailandensis E555 OMVs) also protected C57BL/6 mice from acute inhalational glanders with evidence of full protection.
Collapse
Affiliation(s)
- Michael H Norris
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine; University of Florida, Gainesville, FL 32608, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Mohammad S R Khan
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine; University of Florida, Gainesville, FL 32608, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Sunisa Chirakul
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine; University of Florida, Gainesville, FL 32608, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| | - Herbert P Schweizer
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32603, USA.
| | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine; University of Florida, Gainesville, FL 32608, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
38
|
Angsantikul P, Fang RH, Zhang L. Toxoid Vaccination against Bacterial Infection Using Cell Membrane-Coated Nanoparticles. Bioconjug Chem 2017; 29:604-612. [PMID: 29241006 DOI: 10.1021/acs.bioconjchem.7b00692] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As nanoparticles exhibit unique properties attractive for vaccine development, they have been progressively implemented as antigen delivery platforms and immune potentiators. Recently, cell membrane-coated nanoparticles have provided a novel approach for intercepting and neutralizing bacterial toxins by leveraging their natural affinity to cellular membranes. Such toxin-nanoparticle assemblies, termed nanotoxoids, allow rapid loading of different types of toxins and have been investigated for their ability to effectively confer protection against bacterial infection. This topical review will cover the current progress in antibacterial vaccine nanoformulations and highlight the nanotoxoid platform as a novel class of nanoparticulate vaccine. We aim to provide insights into the potential of nanotoxoids as a platform that is facile to implement and can be broadly applied to help address the rising threat of super pathogens.
Collapse
Affiliation(s)
- Pavimol Angsantikul
- Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
39
|
A Burkholderia pseudomallei Outer Membrane Vesicle Vaccine Provides Cross Protection against Inhalational Glanders in Mice and Non-Human Primates. Vaccines (Basel) 2017; 5:vaccines5040049. [PMID: 29232837 PMCID: PMC5748615 DOI: 10.3390/vaccines5040049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/28/2023] Open
Abstract
Burkholderia mallei is a Gram-negative, non-motile, facultative intracellular bacillus and the causative agent of glanders, a highly contagious zoonotic disease. B. mallei is naturally resistant to multiple antibiotics and there is concern for its potential use as a bioweapon, making the development of a vaccine against B. mallei of critical importance. We have previously demonstrated that immunization with multivalent outer membrane vesicles (OMV) derived from B. pseudomallei provide significant protection against pneumonic melioidosis. Given that many virulence determinants are highly conserved between the two species, we sought to determine if the B. pseudomallei OMV vaccine could cross-protect against B. mallei. We immunized C57Bl/6 mice and rhesus macaques with B. pseudomallei OMVs and subsequently challenged animals with aerosolized B. mallei. Immunization with B. pseudomallei OMVs significantly protected mice against B. mallei and the protection observed was comparable to that achieved with a live attenuated vaccine. OMV immunization induced the production of B.mallei-specific serum IgG and a mixed Th1/Th17 CD4 and CD8 T cell response in mice. Additionally, immunization of rhesus macaques with B. pseudomallei OMVs provided protection against glanders and induced B.mallei-specific serum IgG in non-human primates. These results demonstrate the ability of the multivalent OMV vaccine platform to elicit cross-protection against closely-related intracellular pathogens and to induce robust humoral and cellular immune responses against shared protective antigens.
Collapse
|
40
|
Andrade LM, Cox L, Versiani AF, da Fonseca FG. A growing world of small things: a brief review on the nanostructured vaccines. Future Virol 2017. [DOI: 10.2217/fvl-2017-0086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Vaccines are the most cost-effective intervention in the management of infectious disease. Much of what we perceive as quality of life is related to a good health status and disease absence, for which vaccines are substantially responsible. Nonetheless, there are many infectious diseases for which no vaccine solution is available. That could be due to limitations of the classic approaches to vaccine development, including inactivated, subunit and attenuated vaccines. Nanostructured immunogens belong to a class of nonclassic vaccines in which nanostructures are loaded with antigen-related molecules. Here, we briefly review important features of the nanostructured vaccines – mainly those based in carbon nanotubes and gold nanorods – and discuss their use to prevent infectious diseases, especially those caused by viruses.
Collapse
Affiliation(s)
- Lídia M Andrade
- Laboratório de Nanomateriais, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
- NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Laura Cox
- NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, CEP: 31270–901, Belo Horizonte, MG, Brasil
| | - Alice F Versiani
- NanoBioMedical Research Group, Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, CEP: 31270–901, Belo Horizonte, MG, Brasil
| | - Flávio G da Fonseca
- Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Campus Pampulha, CEP: 31270–901, Belo Horizonte, MG, Brasil
| |
Collapse
|
41
|
Climent N, García I, Marradi M, Chiodo F, Miralles L, Maleno MJ, Gatell JM, García F, Penadés S, Plana M. Loading dendritic cells with gold nanoparticles (GNPs) bearing HIV-peptides and mannosides enhance HIV-specific T cell responses. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:339-351. [PMID: 29157976 DOI: 10.1016/j.nano.2017.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/05/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023]
Abstract
Gold nanoparticles (GNPs) decorated with glycans ameliorate dendritic cells (DC) uptake, antigen-presentation and T-cells cross-talk, which are important aspects in vaccine design. GNPs allow for high antigen loading, DC targeting, lack of toxicity and are straightforward prepared and easy to handle. The present study aimed to assess the capacity of DC to process and present HIV-1-peptides loaded onto GNPs bearing high-mannoside-type oligosaccharides (P1@HM) to autologous T-cells from HIV-1 patients. The results showed that P1@HM increased HIV-specific CD4+ and CD8+ T-cell proliferation and induced highly functional cytokine secretion compared with HIV-peptides alone. P1@HM elicits a highly efficient secretion of pro-TH1 cytokines and chemokines, a moderate production of pro-TH2 and significant higher secretion of pro-inflammatory cytokines such as TNF-α and IL-1β. Thus, co-delivery of HIV-1 antigens and HM by GNPs is an excellent vaccine delivery system inducing HIV-specific cellular immune responses in HIV+ patients, being a promising approach to improve anti-HIV-1 vaccines.
Collapse
Affiliation(s)
- Núria Climent
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Isabel García
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Marco Marradi
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Fabrizio Chiodo
- CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain; Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, The Netherland
| | - Laia Miralles
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - María José Maleno
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - José María Gatell
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Service of Infectious Diseases & AIDS Unit, Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Felipe García
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Service of Infectious Diseases & AIDS Unit, Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Soledad Penadés
- Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, Donostia-San Sebastián, Spain; CIC biomaGUNE, Paseo de Miramón 182, Donostia-San Sebastián, Spain
| | - Montserrat Plana
- AIDS Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
42
|
Use of Reverse Vaccinology in the Design and Construction of Nanoglycoconjugate Vaccines against Burkholderia pseudomallei. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00206-17. [PMID: 28903988 DOI: 10.1128/cvi.00206-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/07/2017] [Indexed: 11/20/2022]
Abstract
Burkholderia pseudomallei is a Gram-negative, facultative intracellular pathogen that causes the disease melioidosis in humans and other mammals. Respiratory infection with B. pseudomallei leads to a fulminant and often fatal disease. It has previously been shown that glycoconjugate vaccines can provide significant protection against lethal challenge; however, the limited number of known Burkholderia antigens has slowed progress toward vaccine development. The objective of this study was to identify novel antigens and evaluate their protective capacity when incorporated into a nanoglycoconjugate vaccine platform. First, an in silico approach to identify antigens with strong predicted immunogenicity was developed. Protein candidates were screened and ranked according to predicted subcellular localization, transmembrane domains, adhesive properties, and ability to interact with major histocompatibility complex (MHC) class I and class II. From these in silico predictions, we identified seven "high priority" proteins that demonstrated seroreactivity with anti-B. pseudomallei murine sera and convalescent human melioidosis sera, providing validation of our methods. Two novel proteins, together with Hcp1, were linked to lipopolysaccharide (LPS) and incorporated with the surface of a gold nanoparticle (AuNP). Animals receiving AuNP glycoconjugate vaccines generated high protein- and polysaccharide-specific antibody titers. Importantly, immunized animals receiving the AuNP-FlgL-LPS alone or as a combination demonstrated up to 100% survival and reduced lung colonization following a lethal challenge with B. pseudomallei Together, this study provides a rational approach to vaccine design that can be adapted for other complex pathogens and provides a rationale for further preclinical testing of AuNP glycoconjugate in animal models of infection.
Collapse
|
43
|
Titball RW, Burtnick MN, Bancroft GJ, Brett P. Burkholderia pseudomallei and Burkholderia mallei vaccines: Are we close to clinical trials? Vaccine 2017; 35:5981-5989. [DOI: 10.1016/j.vaccine.2017.03.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
|
44
|
Tamigney Kenfack M, Mazur M, Nualnoi T, Shaffer TL, Ngassimou A, Blériot Y, Marrot J, Marchetti R, Sintiprungrat K, Chantratita N, Silipo A, Molinaro A, AuCoin DP, Burtnick MN, Brett PJ, Gauthier C. Deciphering minimal antigenic epitopes associated with Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharide O-antigens. Nat Commun 2017; 8:115. [PMID: 28740137 PMCID: PMC5524647 DOI: 10.1038/s41467-017-00173-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/06/2017] [Indexed: 01/09/2023] Open
Abstract
Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the etiologic agents of melioidosis and glanders, respectively, cause severe disease in both humans and animals. Studies have highlighted the importance of Bp and Bm lipopolysaccharides (LPS) as vaccine candidates. Here we describe the synthesis of seven oligosaccharides as the minimal structures featuring all of the reported acetylation/methylation patterns associated with Bp and Bm LPS O-antigens (OAgs). Our approach is based on the conversion of an L-rhamnose into a 6-deoxy-L-talose residue at a late stage of the synthetic sequence. Using biochemical and biophysical methods, we demonstrate the binding of several Bp and Bm LPS-specific monoclonal antibodies with terminal OAg residues. Mice immunized with terminal disaccharide-CRM197 constructs produced high-titer antibody responses that crossreacted with Bm-like OAgs. Collectively, these studies serve as foundation for the development of novel therapeutics, diagnostics, and vaccine candidates to combat diseases caused by Bp and Bm.Melioidosis and glanders are multifaceted infections caused by gram-negative bacteria. Here, the authors synthesize a series of oligosaccharides that mimic the lipopolysaccharides present on the pathogens' surface and use them to develop novel glycoconjugates for vaccine development.
Collapse
Affiliation(s)
- Marielle Tamigney Kenfack
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
| | - Marcelina Mazur
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25, Wroclaw, 50-375, Poland
| | - Teerapat Nualnoi
- Department of Microbiology and Immunology, University of Nevada School of Medicine, 1664, N. Virginia Street, Reno, Nevada, 89557, USA
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, 15, Kanjanavanit Road, 90112, Songkhla, Thailand
| | - Teresa L Shaffer
- Department of Microbiology and Immunology, University of South Alabama, 610, Clinic Drive, Mobile, Alabama, 36688, USA
| | - Abba Ngassimou
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
| | - Yves Blériot
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, CNRS-UMR 8180, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, 45, Avenue des États-Unis, Versailles, 78035, France
| | - Roberta Marchetti
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Naples, I-80126, Italy
| | - Kitisak Sintiprungrat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Alba Silipo
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Naples, I-80126, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Naples, I-80126, Italy
| | - David P AuCoin
- Department of Microbiology and Immunology, University of Nevada School of Medicine, 1664, N. Virginia Street, Reno, Nevada, 89557, USA
| | - Mary N Burtnick
- Department of Microbiology and Immunology, University of South Alabama, 610, Clinic Drive, Mobile, Alabama, 36688, USA
| | - Paul J Brett
- Department of Microbiology and Immunology, University of South Alabama, 610, Clinic Drive, Mobile, Alabama, 36688, USA.
| | - Charles Gauthier
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France.
- INRS-Institut Armand-Frappier, Université du Québec, 531, Boulevard des Prairies, Laval (Québec), Canada, H7V 1B7.
| |
Collapse
|
45
|
Antibodies against In Vivo-Expressed Antigens Are Sufficient To Protect against Lethal Aerosol Infection with Burkholderia mallei and Burkholderia pseudomallei. Infect Immun 2017; 85:IAI.00102-17. [PMID: 28507073 DOI: 10.1128/iai.00102-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Burkholderia mallei, a facultative intracellular bacterium and tier 1 biothreat, causes the fatal zoonotic disease glanders. The organism possesses multiple genes encoding autotransporter proteins, which represent important virulence factors and targets for developing countermeasures in pathogenic Gram-negative bacteria. In the present study, we investigated one of these autotransporters, BatA, and demonstrate that it displays lipolytic activity, aids in intracellular survival, is expressed in vivo, elicits production of antibodies during infection, and contributes to pathogenicity in a mouse aerosol challenge model. A mutation in the batA gene of wild-type strain ATCC 23344 was found to be particularly attenuating, as BALB/c mice infected with the equivalent of 80 median lethal doses cleared the organism. This finding prompted us to test the hypothesis that vaccination with the batA mutant strain elicits protective immunity against subsequent infection with wild-type bacteria. We discovered that not only does vaccination provide high levels of protection against lethal aerosol challenge with B. mallei ATCC 23344, it also protects against infection with multiple isolates of the closely related organism and causative agent of melioidosis, Burkholderia pseudomallei Passive-transfer experiments also revealed that the protective immunity afforded by vaccination with the batA mutant strain is predominantly mediated by IgG antibodies binding to antigens expressed exclusively in vivo Collectively, our data demonstrate that BatA is a target for developing medical countermeasures and that vaccination with a mutant lacking expression of the protein provides a platform to gain insights regarding mechanisms of protective immunity against B. mallei and B. pseudomallei, including antigen discovery.
Collapse
|
46
|
Abstract
Purpose of review Burkholderia pseudomallei's and Burkholderia mallei's high rate of infectivity, limited treatment options, and potential use as biological warfare agents underscore the need for development of effective vaccines against these bacteria. Research efforts focused on vaccines against these bacteria are in pre-clinical stages, with no approved formulations currently on the market. Recent findings Several live attenuated and subunit vaccine formulations have been evaluated in animal studies, with no reports of significant long term survival after lethal challenge. Summary This review encompasses the most current vaccine strategies to prevent B. pseudomallei and B. mallei infections while providing insight for successful vaccines moving forward.
Collapse
|
47
|
Carabineiro SAC. Applications of Gold Nanoparticles in Nanomedicine: Recent Advances in Vaccines. Molecules 2017; 22:E857. [PMID: 28531163 PMCID: PMC6154615 DOI: 10.3390/molecules22050857] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 11/20/2022] Open
Abstract
Nowadays, gold is used in (nano-)medicine, usually in the form of nanoparticles, due to the solid proofs given of its therapeutic effects on several diseases. Gold also plays an important role in the vaccine field as an adjuvant and a carrier, reducing toxicity, enhancing immunogenic activity, and providing stability in storage. An even brighter golden future is expected for gold applications in this area.
Collapse
Affiliation(s)
- Sónia Alexandra Correia Carabineiro
- Laboratório de Catálise e Materiais (LCM), Laboratório Associado LSRE-LCM, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
48
|
Marques Neto LM, Kipnis A, Junqueira-Kipnis AP. Role of Metallic Nanoparticles in Vaccinology: Implications for Infectious Disease Vaccine Development. Front Immunol 2017; 8:239. [PMID: 28337198 PMCID: PMC5340775 DOI: 10.3389/fimmu.2017.00239] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/20/2017] [Indexed: 02/04/2023] Open
Abstract
Subunit vaccines are safer but less immunogenic than live-attenuated vaccines or whole cell inactivated vaccines. Adjuvants are used to enhance and modulate antigen (Ag) immunogenicity, aiming to induce a protective and long-lasting immune response. Several molecules and formulations have been studied for their adjuvanticity, but only seven have been approved to formulate human vaccines. Metallic nanoparticles (MeNPs), particularly those containing gold and iron oxides, are widely used in medicine for diagnosis and therapy and have been used as carriers for drugs and vaccines. However, little is known about the immune response elicited by MeNPs or about their importance in the development of new vaccines. There is evidence that these particles display adjuvant characteristics, promoting cell recruitment, antigen-presenting cell activation, cytokine production, and inducing a humoral immune response. This review focuses on the characteristics of MeNPs that could facilitate the induction of a cellular immune response, particularly T-helper 1 and T-helper 17, and their potential functions as adjuvants for subunit vaccines.
Collapse
Affiliation(s)
- Lázaro Moreira Marques Neto
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia, Goiás , Brazil
| | - André Kipnis
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia, Goiás , Brazil
| | - Ana Paula Junqueira-Kipnis
- Department of Microbiology, Immunology, Pathology and Parasitology, Institute of Tropical Pathology and Public Health, Federal University of Goiás , Goiânia, Goiás , Brazil
| |
Collapse
|
49
|
Dykman LA, Khlebtsov NG. Immunological properties of gold nanoparticles. Chem Sci 2017; 8:1719-1735. [PMID: 28451297 PMCID: PMC5396510 DOI: 10.1039/c6sc03631g] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022] Open
Abstract
In the past decade, gold nanoparticles have attracted strong interest from the nanobiotechnological community owing to the significant progress made in robust and easy-to-make synthesis technologies, in surface functionalization, and in promising biomedical applications. These include bioimaging, gene diagnostics, analytical sensing, photothermal treatment of tumors, and targeted delivery of various biomolecular and chemical cargos. For the last-named application, gold nanoparticles should be properly fabricated to deliver the cargo into the targeted cells through effective endocytosis. In this review, we discuss recent progress in understanding the selective penetration of gold nanoparticles into immune cells. The interaction of gold nanoparticles with immune cell receptors is discussed. As distinct from other published reviews, we present a summary of the immunological properties of gold nanoparticles. This review also summarizes what is known about the application of gold nanoparticles as an antigen carrier and adjuvant in immunization for the preparation of antibodies in vivo. For each of the above topics, the basic principles, recent advances, and current challenges are discussed. Thus, this review presents a detailed analysis of data on interaction of gold nanoparticles with immune cells. Emphasis is placed on the systematization of data over production of antibodies by using gold nanoparticles and adjuvant properties of gold nanoparticles. Specifically, we start our discussion with current data on interaction of various gold nanoparticles with immune cells. The next section describes existing technologies to improve production of antibodies in vivo by using gold nanoparticles conjugated with specific ligands. Finally, we describe what is known about adjuvant properties of bare gold or functionalized nanoparticles. In the Conclusion section, we present a short summary of reported data and some challenges and perspectives.
Collapse
Affiliation(s)
- Lev A Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms , Russian Academy of Sciences , 13 Prospekt Entuziastov , Saratov 410049 , Russia . ;
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms , Russian Academy of Sciences , 13 Prospekt Entuziastov , Saratov 410049 , Russia . ;
- Saratov National Research State University , 83 Ulitsa Astrakhanskaya , Saratov 410012 , Russia
| |
Collapse
|
50
|
Surprises of electron microscopic imaging of proteins and polymers covering gold nanoparticles layer by layer. Colloids Surf B Biointerfaces 2017; 150:23-31. [DOI: 10.1016/j.colsurfb.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/22/2016] [Accepted: 11/03/2016] [Indexed: 11/21/2022]
|