1
|
Saleh A, Stengel D, Truszkowska M, Blanco Massani M, Kali G, Bernkop-Schnürch A. Nanostructured lipid carriers decorated with polyphosphate coated linear and loop cell-penetrating peptides. Int J Pharm 2024:124844. [PMID: 39461677 DOI: 10.1016/j.ijpharm.2024.124844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
AIM This study aimed to evaluate the cellular uptake of nanostructured lipid carriers (NLCs) decorated with polyphosphate coated linear and loop cell-penetrating peptides (CPPs). METHODS Linear-CPPs and loop-CPPs were synthesized via ring-opening polymerization and anchored on the surface NLCs, followed by coating with polyphosphate (PP). These nanocarriers (NCs) were characterized in terms of particle size, polydispersity index (PDI), and zeta potential. Cell viability and hemolysis, as well as enzyme-induced charge conversion via phosphate cleavage by free and membrane-bound intestinal alkaline phosphatase (IAP) were investigated. Cellular uptake studies by Caco-2 and HEK cells were quantitatively analyzed by flow cytometry and visualized by confocal microscopy. RESULTS A shift in charge from positive to negative was obtained for both linear- and loop-CPPs-NLCs by coating with PP. PP-linear-CPPs-NLCs and PP-loop-CPPs-NLCs exhibited a particle size < 270 nm and a PDI of approximately 0.3. They had a minor effect on cell viability and caused in a concentration of 0.1 % (m/v) around 10 % hemolysis within 24 h. IAP triggered the cleavage and release of monophosphate from the surface of NLCs causing charge conversion from -22.2 mV to + 5.3 mV (Δ27.5 mV) for PP-linear-CPPs-NLCs and from -19.2 mV to + 11.9 mV (Δ31.1 mV) for PP-loop-CPPs-NLCs. Inhibition of alkaline phosphatase activity on Caco-2 and HEK cells confirmed the involvement of this enzyme in charge conversion. PP-linear-CPPs-NLCs showed on Caco-2 cells a higher uptake than PP-loop-CPPs-NLCs, whereas on HEK cells uptake of both types of NLCs was on the same level. The results of cellular uptake were confirmed visually by confocal microscopy. CONCLUSION CPPs-NLCs coated with polyphosphate are a promising approach to overcome the polycationic dilemma and to enhance cellular uptake.
Collapse
Affiliation(s)
- Ahmad Saleh
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria; Department of Pharmacy, Universitas Mandala Waluya, A.H.Nasution, Kendari 93231, Southeast Sulawesi, Indonesia
| | - Daniel Stengel
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria
| | - Martyna Truszkowska
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria
| | - Mariana Blanco Massani
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria
| | - Gergely Kali
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82 6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Liu Y, Yang Z, Feng L, Xia Y, Wei G, Lu W. Advance in Nanomedicine for Improving Mucosal Penetration and Effective Therapy of Cervical Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303772. [PMID: 37340569 DOI: 10.1002/smll.202303772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 06/22/2023]
Abstract
Insufficient intratumor drug distribution and serious adverse effects are often associated with systemic chemotherapy for cervical cancer. Considering the location of cervical cancer, access to the cervix through the vagina may provide an alternative administration route for high drug amounts at the tumor site, minimal systemic exposure as well as convenience of non-invasive self-medication. Enormous progress has been made in nanomedicine to improve mucosal penetration and enhance the effectiveness of therapy for cervical cancer. This review article first introduce the physiological state of cervicovaginal cavity and the characteristics of intravaginal environment in cervical cancers. Based on introduction to the physiological state of cervicovaginal cavity and the characteristics of intravaginal environment in cervical cancers, both "first mucus-adhering then mucosal penetration" and "first mucus-penetrating then mucosal penetration" strategies are discussed with respect to mechanism, application condition, and examples. Finally, existing challenges and future directions are envisioned in the rational design, facile synthesis, and comprehensive utilization of nanomedicine for local therapy of cervical cancer. This review is expected to provide useful reference information for future research on nanomedicine for intravaginally administered formulations for topical treatment of cervical cancer.
Collapse
Affiliation(s)
- Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Ziyi Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Linglin Feng
- Shanghai Institute of Planned Parenthood Research, Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai, 200032, China
| | - Yu Xia
- Yangtze River Pharmaceutical Group Co., Ltd., Taizhou, Jiangsu, 225300, China
| | - Gang Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University and Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, 201203, China
| |
Collapse
|
3
|
Zhang LZ, Du RJ, Wang D, Qin J, Yu C, Zhang L, Zhu HD. Enteral Route Nanomedicine for Cancer Therapy. Int J Nanomedicine 2024; 19:9889-9919. [PMID: 39351000 PMCID: PMC11439897 DOI: 10.2147/ijn.s482329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
With the in-depth knowledge of the pathological and physiological characteristics of the intestinal barrier-portal vein/intestinal lymphatic vessels-systemic circulation axis, oral targeted drug delivery is frequently being renewed. With many advantages, such as high safety, convenient administration, and good patient compliance, many researchers have begun to explore targeted drug delivery from intravenous injections to oral administration. Over the past few decades, the fields of materials science and nanomedicine have produced various drug delivery platforms that hold great potential in overcoming the multiple barriers associated with oral drug delivery. However, the oral transport of particles into the systemic circulation is extremely difficult due to immune rejection and biochemical invasion in the intestine, which limits absorption and entry into the bloodstream. The feasibility of the oral delivery of targeted drugs to sites outside the gastrointestinal tract (GIT) is unknown. This article reviews the biological barriers to drug absorption, the in vivo fate and transport mechanisms of drug carriers, the theoretical basis for oral administration, and the impact of carrier structural evolution on oral administration to achieve this goal. Finally, this article reviews the characteristics of different nano-delivery systems that can enhance the bioavailability of oral therapeutics and highlights their applications in the efficient creation of oral anticancer nanomedicines.
Collapse
Affiliation(s)
- Lin-Zhu Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Rui-Jie Du
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Duo Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Juan Qin
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Chao Yu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Lei Zhang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| | - Hai-Dong Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Medical School, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Pinto SFT, Santos HA, Sarmento BFCC. New insights into nanomedicines for oral delivery of glucagon-like peptide-1 analogs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1952. [PMID: 38500351 DOI: 10.1002/wnan.1952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises when the body cannot respond fully to insulin, leading to impaired glucose tolerance. Currently, the treatment embraces non-pharmacological actions (e.g., diet and exercise) co-associated with the administration of antidiabetic drugs. Metformin is the first-line treatment for T2DM; nevertheless, alternative therapeutic strategies involving glucagon-like peptide-1 (GLP-1) analogs have been explored for managing the disease. GLP-1 analogs trigger insulin secretion and suppress glucagon release in a glucose-dependent manner thereby, reducing the risk of hyperglycemia. Additionally, GLP-1 analogs have an extended plasma half-life compared to the endogenous peptide due to their high resistance to degradation by dipeptidyl peptidase-4. However, GLP-1 analogs are mainly administered via subcutaneous route, which can be inconvenient for the patients. Even considering an oral delivery approach, GLP-1 analogs are exposed to the harsh conditions of the gastrointestinal tract (GIT) and the intestinal barriers (mucus and epithelium). Hereupon, there is an unmet need to develop non-invasive oral transmucosal drug delivery strategies, such as the incorporation of GLP-1 analogs into nanoplatforms, to overcome the GIT barriers. Nanotechnology has the potential to shield antidiabetic peptides against the acidic pH and enzymatic activity of the stomach. In addition, the nanoparticles can be coated and/or surface-conjugated with mucodiffusive polymers and target intestinal ligands to improve their transport through the intestinal mucus and epithelium. This review focuses on the main hurdles associated with the oral administration of GLP-1 and GLP-1 analogs, and the nanosystems developed to improve the oral bioavailability of the antidiabetic peptides. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soraia Filipa Tavares Pinto
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Hélder Almeida Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bruno Filipe Carmelino Cardoso Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde (IUCS-CESPU), Gandra, Portugal
| |
Collapse
|
5
|
Kotadiya DD, Patel P, Patel HD. Cell-Penetrating Peptides: A Powerful Tool for Targeted Drug Delivery. Curr Drug Deliv 2024; 21:368-388. [PMID: 37026498 DOI: 10.2174/1567201820666230407092924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 04/08/2023]
Abstract
The cellular membrane hinders the effective delivery of therapeutics to targeted sites. Cellpenetrating peptide (CPP) is one of the best options for rapidly internalizing across the cellular membrane. CPPs have recently attracted lots of attention because of their excellent transduction efficiency and low cytotoxicity. The CPP-cargo complex is an effective and efficient method of delivering several chemotherapeutic agents used to treat various diseases. Additionally, CPP has become another strategy to overcome some of the current therapeutic agents' limitations. However, no CPP complex is approved by the US FDA because of its limitations and issues. In this review, we mainly discuss the cellpenetrating peptide as the delivery vehicle, the cellular uptake mechanism of CPPs, their design, and some strategies to synthesize the CPP complex via some linkers such as disulfide bond, oxime, etc. Here, we also discuss the recent status of CPPs in the market.
Collapse
Affiliation(s)
- Dushyant D Kotadiya
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Piyushkumar Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Hitesh D Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
6
|
Sahandi Zangabad P, Abousalman Rezvani Z, Tong Z, Esser L, Vasani RB, Voelcker NH. Recent Advances in Formulations for Long-Acting Delivery of Therapeutic Peptides. ACS APPLIED BIO MATERIALS 2023; 6:3532-3554. [PMID: 37294445 DOI: 10.1021/acsabm.3c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent preclinical and clinical studies have focused on the active area of therapeutic peptides due to their high potency, selectivity, and specificity in treating a broad range of diseases. However, therapeutic peptides suffer from multiple disadvantages, such as limited oral bioavailability, short half-life, rapid clearance from the body, and susceptibility to physiological conditions (e.g., acidic pH and enzymolysis). Therefore, high peptide dosages and dose frequencies are required for effective patient treatment. Recent innovations in pharmaceutical formulations have substantially improved therapeutic peptide administration by providing the following advantages: long-acting delivery, precise dose administration, retention of biological activity, and improvement of patient compliance. This review discusses therapeutic peptides and challenges in their delivery and explores recent peptide delivery formulations, including micro/nanoparticles (based on lipids, polymers, porous silicon, silica, and stimuli-responsive materials), (stimuli-responsive) hydrogels, particle/hydrogel composites, and (natural or synthetic) scaffolds. This review further covers the applications of these formulations for prolonged delivery and sustained release of therapeutic peptides and their impact on peptide bioactivity, loading efficiency, and (in vitro/in vivo) release parameters.
Collapse
Affiliation(s)
- Parham Sahandi Zangabad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Zahra Abousalman Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Roshan B Vasani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Pratap-Singh A, Guo Y, Baldelli A, Singh A. Concept for a Unidirectional Release Mucoadhesive Buccal Tablet for Oral Delivery of Antidiabetic Peptide Drugs Such as Insulin, Glucagon-like Peptide 1 (GLP-1), and their Analogs. Pharmaceutics 2023; 15:2265. [PMID: 37765234 PMCID: PMC10534625 DOI: 10.3390/pharmaceutics15092265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Injectable peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists are being increasingly used for the treatment of diabetes. Currently, the most common route of administration is injection, which is linked to patient discomfort as well as being subjected to refrigerated storage and the requirement for efficient supply chain logistics. Buccal and sublingual routes are recognized as valid alternatives due to their high accessibility and easy administration. However, there can be several challenges, such as peptide selection, drug encapsulation, and delivery system design, which are linked to the enhancement of drug efficacy and efficiency. By using hydrophobic polymers that do not dissolve in saliva, and by using neutral or positively charged nanoparticles that show better adhesion to the negative charges generated by the sialic acid in the mucus, researchers have attempted to improve drug efficiency and efficacy in buccal delivery. Furthermore, unidirectional films and tablets seem to show the highest bioavailability as compared to sprays and other buccal delivery vehicles. This advantageous attribute can be attributed to their capability to mitigate the impact of saliva and inadvertent gastrointestinal enzymatic digestion, thereby minimizing drug loss. This is especially pertinent as these formulations ensure a more directed drug delivery trajectory, leading to heightened therapeutic outcomes. This communication describes the current state of the art with respect to the creation of nanoparticles containing peptides such as insulin, glucagon-like peptide 1 (GLP-1), and their agonists, and theorizes the production of mucoadhesive unidirectional release buccal tablets or films. Such an approach is more patient-friendly and can improve the lives of millions of diabetics around the world; in addition, these shelf-stable formulations ena a more environmentally friendly and sustainable supply chain network.
Collapse
Affiliation(s)
- Anubhav Pratap-Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Yigong Guo
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| | - Alberto Baldelli
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Anika Singh
- Food, Nutrition, and Health Program, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC V6T 1Z4, Canada
- Natural Health and Food Products Research Group, Centre for Applied Research & Innovation (CARI), British Columbia Institute of Technology, Burnaby, BC V5G 3H2, Canada
| |
Collapse
|
8
|
Vasquez-Martínez N, Guillen D, Moreno-Mendieta SA, Sanchez S, Rodríguez-Sanoja R. The Role of Mucoadhesion and Mucopenetration in the Immune Response Induced by Polymer-Based Mucosal Adjuvants. Polymers (Basel) 2023; 15:1615. [PMID: 37050229 PMCID: PMC10097111 DOI: 10.3390/polym15071615] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Mucus is a viscoelastic gel that acts as a protective barrier for epithelial surfaces. The mucosal vehicles and adjuvants need to pass through the mucus layer to make drugs and vaccine delivery by mucosal routes possible. The mucoadhesion of polymer particle adjuvants significantly increases the contact time between vaccine formulations and the mucosa; then, the particles can penetrate the mucus layer and epithelium to reach mucosa-associated lymphoid tissues. This review presents the key findings that have aided in understanding mucoadhesion and mucopenetration while exploring the influence of physicochemical characteristics on mucus-polymer interactions. We describe polymer-based particles designed with mucoadhesive or mucopenetrating properties and discuss the impact of mucoadhesive polymers on local and systemic immune responses after mucosal immunization. In future research, more attention paid to the design and development of mucosal adjuvants could lead to more effective vaccines.
Collapse
Affiliation(s)
- Nathaly Vasquez-Martínez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
| | - Daniel Guillen
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Silvia Andrea Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
- Programa de Doctorado en Ciencia Bioquímicas, Universidad Nacional Autónoma de México, Circuito de Posgrado, C.U., Coyoacán, Mexico City 04510, Mexico
- Consejo Nacional de Ciencia y Tecnología, Benito Juárez, Mexico City 03940, Mexico
| | - Sergio Sanchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito, Mario de La Cueva s/n, C.U., Coyoacán, Mexico City 04510, Mexico; (N.V.-M.)
| |
Collapse
|
9
|
Wang L, Geng J, Chen L, Guo X, Wang T, Fang Y, Belingon B, Wu J, Li M, Zhan Y, Shang W, Wan Y, Feng X, Li X, Wang H. Improved transfer efficiency of supercharged 36 + GFP protein mediate nucleic acid delivery. Drug Deliv 2022; 29:386-398. [PMID: 35075948 PMCID: PMC8794074 DOI: 10.1080/10717544.2022.2030430] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 12/28/2022] Open
Abstract
The potential of nucleic acid therapeutics to treat diseases by targeting specific cells has resulted in its increasing number of uses in clinical settings. However, the major challenge is to deliver bio-macromolecules into target cells and/or subcellular locations of interest ahead in the development of delivery systems. Although, supercharged residues replaced protein 36 + GFP can facilitate itself and cargoes delivery, its efficiency is still limited. Therefore, we combined our recent progress to further improve 36 + GFP based delivery efficiency. We found that the penetration efficacy of 36 + GFP protein was significantly improved by fusion with CPP-Dot1l or treatment with penetration enhancer dimethyl sulfoxide (DMSO) in vitro. After safely packaged with plasmid DNA, we found that the efficacy of in vitro and in vivo transfection mediated by 36 + GFP-Dot1l fusion protein is also significantly improved than 36 + GFP itself. Our findings illustrated that fusion with CPP-Dot1l or incubation with DMSO is an alternative way to synergically promote 36 + GFP mediated plasmid DNA delivery in vitro and in vivo.
Collapse
Affiliation(s)
- Lidan Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Jingping Geng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Linlin Chen
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Xiangli Guo
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Tao Wang
- The First Clinical Medical College of China Three Gorges University, Yichang, China
| | - Yanfen Fang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Hubei, China
| | - Bonn Belingon
- School of Medicine, Institute of Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiao Wu
- Affiliated Ren He Hospital of China Three Gorges University, Yichang, China
| | - Manman Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Ying Zhan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Wendou Shang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Yingying Wan
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Xuemei Feng
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Xianghui Li
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Hu Wang
- Department of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang, China
| |
Collapse
|
10
|
Bottens RA, Yamada T. Cell-Penetrating Peptides (CPPs) as Therapeutic and Diagnostic Agents for Cancer. Cancers (Basel) 2022; 14:cancers14225546. [PMID: 36428639 PMCID: PMC9688740 DOI: 10.3390/cancers14225546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cell-Penetrating Peptides (CPPs) are short peptides consisting of <30 amino acids. Their ability to translocate through the cell membrane while carrying large cargo biomolecules has been the topic of pre-clinical and clinical trials. The ability to deliver cargo complexes through membranes yields potential for therapeutics and diagnostics for diseases such as cancer. Upon cellular entry, some CPPs have the ability to target specific organelles. CPP-based intracellular targeting strategies hold tremendous potential as they can improve efficacy and reduce toxicities and side effects. Further, recent clinical trials show a significant potential for future CPP-based cancer treatment. In this review, we summarize recent advances in CPPs based on systematic searches in PubMed, Embase, Web of Science, and Scopus databases until 30 September 2022. We highlight targeted delivery and explore the potential uses for CPPs as diagnostics, drug delivery, and intrinsic anti-cancer agents.
Collapse
Affiliation(s)
- Ryan A. Bottens
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
- Richard & Loan Hill Department of Biomedical Engineering, College of Medicine and Engineering, University of Illinois, Chicago, IL 60607, USA
- Correspondence:
| |
Collapse
|
11
|
Core-shell lipid-polymeric nanoparticles for enhanced oral bioavailability and antihypertensive efficacy of KY5 peptide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Jerath G, Darvin P, Christian Y, Trivedi V, Kumar TRS, Ramakrishnan V. Delivery of Small Molecules by Syndiotactic Peptides for Breast Cancer Therapy. Mol Pharm 2022; 19:2877-2887. [PMID: 35839086 DOI: 10.1021/acs.molpharmaceut.2c00238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The utilization of peptide-based drug delivery systems has been suboptimal due to their poor proteolytic susceptibility, poor cell permeability, and limited tumor homing capabilities. Earlier attempts in using d-enantiomers in peptide sequences increased proteolytic stability but have compromised the overall penetration capability. We designed a series of peptides (STRAPs) with a syndiotactic polypeptide backbone that can potentially form a spatial array of cationic groups, an important feature that facilitates cellular uptake. The peptides penetrate cell membranes through a combination of active and passive modes. Furthermore, the cellular uptake of the peptides was unaffected by the presence of or treatment with bovine serum and human plasma. The designed peptides successfully delivered methotrexate, an anticancer drug, to the in vitro and in vivo models of breast cancer, with the best performing peptide STRAP-4-MTX conjugate having an EC50 value of 1.34 μM. Peptide drug delivery in mouse xenograft models showed a greater reduction of primary tumor and metastasis of breast cancer, in comparison to methotrexate of the same dose. The in vivo biodistribution assay of the STRAP-4 peptide suggests that the peptide accumulates at the tumor site after 2 h of treatment, and in the absence of tumors, the peptide gets metabolized and excreted from the system.
Collapse
Affiliation(s)
- Gaurav Jerath
- Molecular Informatics and Design Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Pramod Darvin
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| | - Yvonne Christian
- Molecular Informatics and Design Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Vishal Trivedi
- Malaria Research Group, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - T R Santhosh Kumar
- Cancer Research Program-1, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| | - Vibin Ramakrishnan
- Molecular Informatics and Design Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
13
|
Bendicho-Lavilla C, Seoane-Viaño I, Otero-Espinar FJ, Luzardo-Álvarez A. Fighting type 2 diabetes: Formulation strategies for peptide-based therapeutics. Acta Pharm Sin B 2022; 12:621-636. [PMID: 35256935 PMCID: PMC8897023 DOI: 10.1016/j.apsb.2021.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/27/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a major health problem with increasing prevalence at a global level. The discovery of insulin in the early 1900s represented a major breakthrough in diabetes management, with further milestones being subsequently achieved with the identification of glucagon-like peptide-1 (GLP-1) and the introduction of GLP-1 receptor agonists (GLP-1 RAs) in clinical practice. Moreover, the subcutaneous delivery of biotherapeutics is a well-established route of administration generally preferred over the intravenous route due to better patient compliance and prolonged drug absorption. However, current subcutaneous formulations of GLP-1 RAs present pharmacokinetic problems that lead to adverse reactions and treatment discontinuation. In this review, we discuss the current challenges of subcutaneous administration of peptide-based therapeutics and provide an overview of the formulations available for the different routes of administration with improved bioavailability and reduced frequency of administration.
Collapse
Affiliation(s)
- Carlos Bendicho-Lavilla
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
| | - Asteria Luzardo-Álvarez
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15706, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, Lugo 27002, Spain
| |
Collapse
|
14
|
The application progress of peptides in drug delivery systems in the past decade. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Parodi A, Buzaeva P, Nigovora D, Baldin A, Kostyushev D, Chulanov V, Savvateeva LV, Zamyatnin AA. Nanomedicine for increasing the oral bioavailability of cancer treatments. J Nanobiotechnology 2021; 19:354. [PMID: 34717658 PMCID: PMC8557561 DOI: 10.1186/s12951-021-01100-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022] Open
Abstract
Abstract Oral administration is an appealing route of delivering cancer treatments. However, the gastrointestinal tract is characterized by specific and efficient physical, chemical, and biological barriers that decrease the bioavailability of medications, including chemotherapeutics. In recent decades, the fields of material science and nanomedicine have generated several delivery platforms with high potential for overcoming multiple barriers associated to oral administration. This review describes the properties of several nanodelivery systems that improve the bioavailability of orally administered therapeutics, highlighting their advantages and disadvantages in generating successful anticancer oral nanomedicines. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia. .,Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.
| | - Polina Buzaeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Daria Nigovora
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Alexey Baldin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Dmitry Kostyushev
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.,National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994, Moscow, Russia
| | - Vladimir Chulanov
- Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia.,National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, 127994, Moscow, Russia.,Department of Infectious Diseases, Sechenov University, 119991, Moscow, Russia
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991, Moscow, Russia. .,Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992, Moscow, Russia. .,Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7X, UK.
| |
Collapse
|
16
|
de Souza ML, de Albuquerque Wanderley Sales V, Alves L, Santos WM, Ferraz LR, Lima G, Mendes L, Rolim LA, Neto PJR. A systematic review of functionalized polymeric nanoparticles to improve intestinal permeability of drugs and biological products. Curr Pharm Des 2021; 28:410-426. [PMID: 34348618 DOI: 10.2174/1381612827666210804104205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The oral route is the most frequently used and the most convenient route of drug administration, since it has several advantages, such as ease of use, patient compliance and better cost-effectiveness. However, physicochemical and biopharmaceutical limitations of various active pharmaceutical ingredients (API) hinder suitability for this route, including degradation in the gastrointestinal tract, low intestinal permeability and low bioavailability. To overcome these problems, while maintaining therapeutic efficacy, polymeric nanoparticles have attracted considerable attention for their ability to increase drug solubility, promote controlled release, and improve stability. In addition, the functionalization of nanocarriers can increase uptake and accumulation at the target site of action, and intestinal absorption, making it possible to obtain more viable, safe and efficient treatments for oral administration. <P> Objective: This systematic review aimed to seek recent advances in the literature on the use of polymeric nanoparticles functionalization to increase intestinal permeability of APIs that are intended for oral administration. <P> Method: Two bibliographic databases were consulted (PubMed and ScienceDirect). The selected publications and the writing of this systematic review were based on the guidelines mentioned in the PRISMA statement. <P> Results: Out of a total of 3036 studies, 22 studies were included in this article based on our eligibility criteria. The results were consistent for the application of nanoparticle functionalization to increase intestinal permeability. <P> Conclusion: The functionalized polymeric nanoparticles can be considered as carrier systems that improve the intestinal permeability and bioavailability of APIs, with the potential to result, in the future, in the development of oral medicines.
Collapse
Affiliation(s)
- Myla Lôbo de Souza
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | | | - Larissa Alves
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Widson Michael Santos
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Leslie Raphael Ferraz
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Gustavo Lima
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Larissa Mendes
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| | - Larissa Araújo Rolim
- Central de Análise de Fármacos, Medicamentos e Alimentos. Federal University of Vale do São Francisco (UNIVASF), Petrolina-PE. Brazil
| | - Pedro José Rolim Neto
- Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Pernambuco. Brazil
| |
Collapse
|
17
|
Sajid MI, Moazzam M, Stueber R, Park SE, Cho Y, Malik NUA, Tiwari RK. Applications of amphipathic and cationic cyclic cell-penetrating peptides: Significant therapeutic delivery tool. Peptides 2021; 141:170542. [PMID: 33794283 DOI: 10.1016/j.peptides.2021.170542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
A new class of peptides, cyclic cell-penetrating peptides (CPPs), has great potential for delivering a vast variety of therapeutics intracellularly for treating diverse ailments. CPPs have been used previously; however, their further use is limited due to instability, toxicity, endosomal degradation, and insufficient cellular penetration. Cyclic CPPs are being investigated in delivering therapeutics to treat various ailments, including multi-drug resistant microbial infections, HIV, and cancer. They can act as a carrier for a variety of cargos and target intracellularly. Approximately 40 cyclic peptides-based therapeutics are available in the market, and annually one cyclic peptide-based drug enters the market. Numerous research and review articles have been published in the last decade about linear and cyclic peptides separately. This review is the first to provide a comprehensive deliberation about cationic and amphipathic cyclic CPPs. Herein, we highlights their structures, significant advantages, translocation mechanisms, and delivery application in the area of biomedical sciences.
Collapse
Affiliation(s)
- Muhammad Imran Sajid
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA; Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Muhammad Moazzam
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Ryan Stueber
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Yeseom Cho
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA
| | - Noor Ul Ain Malik
- Faculty of Pharmacy, University of Central Punjab, Lahore, 54000, Pakistan
| | - Rakesh K Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA, 92618, USA.
| |
Collapse
|
18
|
Cun D, Zhang C, Bera H, Yang M. Particle engineering principles and technologies for pharmaceutical biologics. Adv Drug Deliv Rev 2021; 174:140-167. [PMID: 33845039 DOI: 10.1016/j.addr.2021.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022]
Abstract
The global market of pharmaceutical biologics has expanded significantly during the last few decades. Currently, pharmaceutical biologic products constitute an indispensable part of the modern medicines. Most pharmaceutical biologic products are injections either in the forms of solutions or lyophilized powders because of their low oral bioavailability. There are certain pharmaceutical biologic entities formulated into particulate delivery systems for the administration via non-invasive routes or to achieve prolonged pharmaceutical actions to reduce the frequency of injections. It has been well documented that the design of nano- and microparticles via various particle engineering technologies could render pharmaceutical biologics with certain benefits including improved stability, enhanced intracellular uptake, prolonged pharmacological effect, enhanced bioavailability, reduced side effects, and improved patient compliance. Herein, we review the principles of the particle engineering technologies based on bottom-up approach and present the important formulation and process parameters that influence the critical quality attributes with some mathematical models. Subsequently, various nano- and microparticle engineering technologies used to formulate or process pharmaceutical biologic entities are reviewed. Lastly, an array of commercialized products of pharmaceutical biologics accomplished based on various particle engineering technologies are presented and the challenges in the development of particulate delivery systems for pharmaceutical biologics are discussed.
Collapse
Affiliation(s)
- Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Chengqian Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 110016 Shenyang, China; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
19
|
Tran PHL, Tran TTD. Mucoadhesive Formulation Designs for Oral Controlled Drug Release at the Colon. Curr Pharm Des 2021; 27:540-547. [PMID: 32940169 DOI: 10.2174/1381612826666200917143816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/17/2020] [Indexed: 11/22/2022]
Abstract
Mucoadhesive formulations have been demonstrated to result in efficient drug delivery systems with advantages over existing systems such as increased local retention and sustained drug release via adhesiveness to mucosal tissues. The controlled release of colon-targeted, orally administered drugs has recently attracted a number of studies investigating mucoadhesive systems. Consequently, substantial designs, from mucoadhesive cores to shells of particles, have been studied with promising applications. This review will provide an overview of specific strategies for developing mucoadhesive systems for colon-targeted oral delivery with controlled drug release, including mucoadhesive matrices, cross-linked mucoadhesive microparticles, coatings and mucoadhesive nanoparticles. The understanding of the basic principle of these designs and advanced formulations throughout will lead to the development of products with efficient drug delivery at the colon for therapies for different diseases.
Collapse
Affiliation(s)
- Phuong H L Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Australia
| | - Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
20
|
Torres-Vanegas JD, Cruz JC, Reyes LH. Delivery Systems for Nucleic Acids and Proteins: Barriers, Cell Capture Pathways and Nanocarriers. Pharmaceutics 2021; 13:428. [PMID: 33809969 PMCID: PMC8004853 DOI: 10.3390/pharmaceutics13030428] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022] Open
Abstract
Gene therapy has been used as a potential approach to address the diagnosis and treatment of genetic diseases and inherited disorders. In this line, non-viral systems have been exploited as promising alternatives for delivering therapeutic transgenes and proteins. In this review, we explored how biological barriers are effectively overcome by non-viral systems, usually nanoparticles, to reach an efficient delivery of cargoes. Furthermore, this review contributes to the understanding of several mechanisms of cellular internalization taken by nanoparticles. Because a critical factor for nanoparticles to do this relies on the ability to escape endosomes, researchers have dedicated much effort to address this issue using different nanocarriers. Here, we present an overview of the diversity of nanovehicles explored to reach an efficient and effective delivery of both nucleic acids and proteins. Finally, we introduced recent advances in the development of successful strategies to deliver cargoes.
Collapse
Affiliation(s)
- Julian D. Torres-Vanegas
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luis H. Reyes
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá 111711, Colombia
| |
Collapse
|
21
|
Poudwal S, Misra A, Shende P. Role of lipid nanocarriers for enhancing oral absorption and bioavailability of insulin and GLP-1 receptor agonists. J Drug Target 2021; 29:834-847. [PMID: 33620269 DOI: 10.1080/1061186x.2021.1894434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Growing demand for insulin and glucagon-like peptide-1 receptor agonists (GLP-1 RA) is observed, considering the progressive nature of diabetes and the potential therapeutic role of peptides in its treatment. However, chronic parenteral administration is responsible for pain and rashes at the site of injection. Oral delivery of insulin and GLP-1 RA promises better patient compliance owing to their ease of administration and reduction in chances of peripheral hypoglycaemia and weight gain. The review article discusses the potential of lipid carriers in combination with different strategies such as absorption enhancers, PEGylation, lipidisation, etc. The lipid nanocarriers improve the membrane permeability and oral bioavailability of high molecular weight peptides. Additionally, the clinical status of different nanocarriers for anti-diabetic peptides is discussed. Previous research on nanocarriers showed significant hypoglycaemic activity and safety in animal studies; however, extrapolation of the same in human subjects is not validated. With the rising global burden of diabetes, the lipid nanocarriers show the potential to revolutionise treatment with oral delivery of insulin and GLP-1 RA.
Collapse
Affiliation(s)
- Swapna Poudwal
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| | - Ambikanandan Misra
- School of Pharmacy and Technology Management, SVKM'S NMIMS, Dhule, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
22
|
Eissa NG, Elsabahy M, Allam A. Engineering of smart nanoconstructs for delivery of glucagon-like peptide-1 analogs. Int J Pharm 2021; 597:120317. [PMID: 33540005 DOI: 10.1016/j.ijpharm.2021.120317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are being increasingly exploited in clinical practice for management of type 2 diabetes mellitus due to their ability to lower blood glucose levels and reduce off-target effects of current therapeutics. Nanomaterials had viewed myriad breakthroughs in protecting peptides against degradation and carrying therapeutics to targeted sites for maximizing their pharmacological activity and overcoming limitations associated with their application. This review highlights the latest advances in designing smart multifunctional nanoconstructs and engineering targeted and stimuli-responsive nanoassemblies for delivery of GLP-1 receptor agonists. Furthermore, advanced nanoconstructs of sophisticated supramolecular assembly yet efficient delivery of GLP-1/GLP-1 analogs, nanodevices that mediate intrinsic GLP-1 secretion per se, and nanomaterials with capabilities to load additional moieties for synergistic antidiabetic effects, are demonstrated.
Collapse
Affiliation(s)
- Noura G Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Elsabahy
- Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Misr University for Science and Technology, 6th of October City 12566, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt.
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 10, Egypt
| |
Collapse
|
23
|
Uhl P, Sauter M, Hertlein T, Witzigmann D, Laffleur F, Hofhaus G, Fidelj V, Tursch A, Özbek S, Hopke E, Haberkorn U, Bernkop‐Schnürch A, Ohlsen K, Fricker G, Mier W. Overcoming the Mucosal Barrier: Tetraether Lipid‐Stabilized Liposomal Nanocarriers Decorated with Cell‐Penetrating Peptides Enable Oral Delivery of Vancomycin. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp Uhl
- Department of Nuclear Medicine Heidelberg University Hospital Heidelberg 69120 Germany
| | - Max Sauter
- Department of Nuclear Medicine Heidelberg University Hospital Heidelberg 69120 Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology Heidelberg University Hospital Heidelberg 69120 Germany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology University of Würzburg Würzburg 97080 Germany
| | - Dominik Witzigmann
- Department of Biochemistry and Molecular Biology University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| | - Flavia Laffleur
- Department of Pharmaceutical Technology Institute of Pharmacy Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck 6020 Austria
| | - Götz Hofhaus
- Bioquant, CellNetWorks University of Heidelberg Heidelberg 69120 Germany
| | - Veronika Fidelj
- Institute of Pharmacy and Molecular Biotechnology Department of Pharmaceutical Technology and Biopharmacy Ruprecht‐Karls University Heidelberg 69120 Germany
| | - Anja Tursch
- Centre for Organismal Studies Department of Molecular Evolution and Genomics University of Heidelberg Heidelberg 69120 Germany
| | - Suat Özbek
- Centre for Organismal Studies Department of Molecular Evolution and Genomics University of Heidelberg Heidelberg 69120 Germany
| | - Elisa Hopke
- Institute for Molecular Infection Biology University of Würzburg Würzburg 97080 Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine Heidelberg University Hospital Heidelberg 69120 Germany
| | - Andreas Bernkop‐Schnürch
- Department of Pharmaceutical Technology Institute of Pharmacy Center for Molecular Biosciences Innsbruck University of Innsbruck Innsbruck 6020 Austria
| | - Knut Ohlsen
- Institute for Molecular Infection Biology University of Würzburg Würzburg 97080 Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology Department of Pharmaceutical Technology and Biopharmacy Ruprecht‐Karls University Heidelberg 69120 Germany
| | - Walter Mier
- Department of Nuclear Medicine Heidelberg University Hospital Heidelberg 69120 Germany
| |
Collapse
|
24
|
Oral peptide delivery: challenges and the way ahead. Drug Discov Today 2021; 26:931-950. [PMID: 33444788 DOI: 10.1016/j.drudis.2021.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/16/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.
Collapse
|
25
|
Khan MM, Filipczak N, Torchilin VP. Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer. J Control Release 2020; 330:1220-1228. [PMID: 33248708 DOI: 10.1016/j.jconrel.2020.11.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022]
Abstract
Biological barriers hamper the efficient delivery of drugs and genes to targeted sites. Cell penetrating peptides (CPP) have the ability to rapidly internalize across biological membranes. CPP have been effective for delivery of various chemotherapeutic agents used to combat cancer. CPP can enhance delivery of drugs to a targeted site when combined with tumor targeting peptides. CPP can be linked with various cargos like nanoparticles, micelles and liposomes to deliver drugs and genes to the cancer cell. Here, we focus on CPP mediated delivery of drugs to the tumor sites, delivery of genes (siRNA,pDNA) and co-delivery of drugs and genes to combat drug resistance.
Collapse
Affiliation(s)
- Muhammad Muzamil Khan
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Department of Pharmacy, The Islamia University of Bahawalpur, Pakistan.
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Departments of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicines, Northeastern University, Boston, MA 02115, USA; Department of Oncology, Radiotherapy and Plastic Surgery I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
26
|
Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother 2020; 131:110708. [DOI: 10.1016/j.biopha.2020.110708] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
|
27
|
Tian Y, Zhou S. Advances in cell penetrating peptides and their functionalization of polymeric nanoplatforms for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1668. [PMID: 32929866 DOI: 10.1002/wnan.1668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Cell penetrating peptides (CPPs), known as protein translocation domains, have emerged as efficient molecular transporters to overcome biological barriers and deliver cell-impermeable cargoes into cells. The conjugation of CPPs to polymeric nanoplatforms enhances the drug delivery efficiency thus increasing their therapeutic efficacy. However, conventional CPPs are generally lack of cell specificity and could be easily degraded in vivo. These limitations lead to the development of new CPPs with superior properties. To address the issue of cell specificity, activatable CPPs have been designed to be activated at desired site through different stimuli. On the other hand, macrocyclization has been used to constrain linear CPPs into their cyclic forms. This chemical optimization of peptides endows CPPs with enhanced stability and cell permeability. This brief review will cover recent advances in terms of different types of CPPs for enhanced cell penetration. In addition, the modification chemistry used to functionalize polymeric nanoplatforms with CPPs and their recent applications for drug delivery will also be discussed. This article is categorized under: Nanotechnology Approaches to Biology > Cells at the Nanoscale Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Yuan Tian
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Umstätter F, Domhan C, Hertlein T, Ohlsen K, Mühlberg E, Kleist C, Zimmermann S, Beijer B, Klika KD, Haberkorn U, Mier W, Uhl P. Vancomycin Resistance Is Overcome by Conjugation of Polycationic Peptides. Angew Chem Int Ed Engl 2020; 59:8823-8827. [PMID: 32190958 PMCID: PMC7323874 DOI: 10.1002/anie.202002727] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 01/09/2023]
Abstract
Multidrug-resistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By site-specific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000-fold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using d-Ala-d-Ala revealed a mode of action beyond inhibition of cell-wall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an in vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics.
Collapse
Affiliation(s)
- Florian Umstätter
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Cornelius Domhan
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityGermany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology (IMIB)University of WürzburgGermany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB)University of WürzburgGermany
| | - Eric Mühlberg
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Christian Kleist
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Stefan Zimmermann
- Medical Microbiology and HygieneHeidelberg University HospitalGermany
| | - Barbro Beijer
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Karel D. Klika
- German Cancer Research Center (DKFZ)NMR Spectroscopy Analysis UnitGermany
| | - Uwe Haberkorn
- Department of Nuclear MedicineHeidelberg University HospitalGermany
- Clinical Cooperation Unit Nuclear MedicineGerman Cancer Research Center (DKFZ)Germany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)Germany
| | - Walter Mier
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Philipp Uhl
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| |
Collapse
|
29
|
Umstätter F, Domhan C, Hertlein T, Ohlsen K, Mühlberg E, Kleist C, Zimmermann S, Beijer B, Klika KD, Haberkorn U, Mier W, Uhl P. Überwindung von Vancomycinresistenzen durch Modifikation mit polykationischen Peptiden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Umstätter
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Cornelius Domhan
- Institut für Pharmazie und Molekulare Biotechnologie Universität Heidelberg Deutschland
| | - Tobias Hertlein
- Institut für Molekulare Infektionsbiologie Universität Würzburg Deutschland
| | - Knut Ohlsen
- Institut für Molekulare Infektionsbiologie Universität Würzburg Deutschland
| | - Eric Mühlberg
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Christian Kleist
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Stefan Zimmermann
- Zentrum für Infektiologie Universitätsklinikum Heidelberg Deutschland
| | - Barbro Beijer
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Karel D. Klika
- Deutsches Krebsforschungszentrum (DKFZ) NMR-Analytik Deutschland
| | - Uwe Haberkorn
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Deutschland
- Klinische Kooperationseinheit Nuklearmedizin Deutsches Krebsforschungszentrum Deutschland
- Translational Lung Research Center Heidelberg (TLRC) Deutsches Zentrum für Lungenforschung (DZL) Deutschland
| | - Walter Mier
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Philipp Uhl
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| |
Collapse
|
30
|
Brayden D, Hill T, Fairlie D, Maher S, Mrsny R. Systemic delivery of peptides by the oral route: Formulation and medicinal chemistry approaches. Adv Drug Deliv Rev 2020; 157:2-36. [PMID: 32479930 DOI: 10.1016/j.addr.2020.05.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
In its 33 years, ADDR has published regularly on the po5tential of oral delivery of biologics especially peptides and proteins. In the intervening period, analysis of the preclinical and clinical trial failures of many purported platform technologies has led to reflection on the true status of the field and reigning in of expectations. Oral formulations of semaglutide, octreotide, and salmon calcitonin have completed Phase III trials, with oral semaglutide being approved by the FDA in 2019. The progress made with oral peptide formulations based on traditional permeation enhancers is against a background of low and variable oral bioavailability values of ~1%, leading to a current perception that only potent peptides with a viable cost of synthesis can be realistically considered. Desirable features of candidates should include a large therapeutic index, some stability in the GI tract, a long elimination half-life, and a relatively low clearance rate. Administration in nanoparticle formats have largely disappointed, with few prototypes reaching clinical trials: insufficient particle loading, lack of controlled release, low epithelial particle uptake, and lack of scalable synthesis being the main reasons for discontinuation. Disruptive technologies based on engineered devices promise improvements, but scale-up and toxicology aspects are issues to address. In parallel, medicinal chemists are synthesizing stable hydrophobic macrocyclic candidate peptides of lower molecular weight and with potential for greater oral bioavailability than linear peptides, but perhaps without the same requirement for elaborate drug delivery systems. In summary, while there have been advances in understanding the limitations of peptides for oral delivery, low membrane permeability, metabolism, and high clearance rates continue to hamper progress.
Collapse
|
31
|
Yin M, Song Y, Guo S, Zhang X, Sun K, Li Y, Shi Y. Intelligent Escape System for the Oral Delivery of Liraglutide: A Perfect Match for Gastrointestinal Barriers. Mol Pharm 2020; 17:1899-1909. [PMID: 32267705 DOI: 10.1021/acs.molpharmaceut.9b01307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epithelial cells are known to impede the oral delivery of polypeptides, and the accumulation of mucus and regular dynamic renewal also significantly impede drug absorption. In this work, we prepared a core-shell (COS) nanosystem using poly-N-(2-hydroxypropyl)methacrylamide (pHPMA)/chitosan (CTS). Liraglutide (NN2211) was isolated from the gastrointestinal environment and smoothly passes through the mucous layer. CSKSSDYQC (CSK) peptide and hemagglutinin-2 (HA2) were introduced into the COS nanosystem to establish a complete path from the oral cavity to the epithelial basal side. The fate of nanocapsules in vivo was studied by fluorescence detection. The results showed that the nanocapsules escaped smoothly from the mucus. Taking into account the characteristics of CSK targeting goblet cells, we conducted cell-level studies, and the results showed that after the modification of CSK and pHPMA, more nanocapsules entered the cells. In vitro and in vivo evaluation results showed that the system successfully established a complete path from mucus to epithelial cells by responding to the gastrointestinal environment multiple times.
Collapse
Affiliation(s)
- Miaomiao Yin
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P. R. China
| | - Yina Song
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P. R. China
| | - Shiqi Guo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P. R. China
| | - Xuemei Zhang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P. R. China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P. R. China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P. R. China
| | - Youxin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, P. R. China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Luye Pharmaceutical Co., Ltd., Yantai 264003, P. R. China
| | - Yanan Shi
- School of Life Science, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|