1
|
Yan K, Xing J, Guo X, Yang C, Wang W, Wang D. Concurrent effects and dynamic wetting abilities of nanometals anchored redox-active Janus nanoarchitectures on cotton fabric for sustainable catalysis and disinfection. Int J Biol Macromol 2024:139243. [PMID: 39740708 DOI: 10.1016/j.ijbiomac.2024.139243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/24/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Designing an ideal catalyst with antifouling performance and enhanced conversion efficiency can prevent microbial or dye contamination and protect the active phase of the catalysts at the triple-phase interface during disinfection processes. Herein, we developed an Lous-leaf-inspired nanometal anchored redox-active Janus nanoarchitecture with dynamic wetting abilities and synergistic catalytic/antibacterial performances. Specifically, the redox-active hydrophilic polydopamine (PDA) was used to mediate the localized self-assembly and nucleation of Ag on a cotton fabric without using other reductants. This catalyst coating features a superficial Janus nanoarchitecture and context-dependent hydrophobic surface, resulting in a charge- and/or air bubble-involved spontaneous wetting phenomenon for contamination droplet during catalytic reactions. Their synergistically enhanced catalytic degradation of industrial dyes and free radical scavenging abilities were validated. The PDA@Ag modified fabric exhibited excellent washing resistance, achieving >99 % antibacterial performance against E. coli after being washed 20 times. The proof-of-concept for an optimal catalyst and protective coating has been demonstrated with multiple anti-fouling strategies such as a self-cleaning/anti-adhesion surface, enhanced photothermal effect and antibacterial properties. Eventually, this rationally designed Janus nanoarchitecture interface was supposed to address the trade-off issues commonly encountered at the droplet-based triple-phase interfacial reaction with a dynamic changed active phase and excellent catalytic/antibacterial performances.
Collapse
Affiliation(s)
- Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China.
| | - Jiaxin Xing
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Xiaoming Guo
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Chenguang Yang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Wenwen Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China.
| |
Collapse
|
2
|
Caniglia G, Valavanis D, Tezcan G, Magiera J, Barth H, Bansmann J, Kranz C, Unwin PR. Antimicrobial effects of silver nanoparticle-microspots on the mechanical properties of single bacteria. Analyst 2024; 149:2637-2646. [PMID: 38529543 DOI: 10.1039/d4an00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Silver nanoparticles (AgNPs) conjugated with polymers are well-known for their powerful and effective antimicrobial properties. In particular, the incorporation of AgNPs in biocompatible catecholamine-based polymers, such as polydopamine (PDA), has recently shown promising antimicrobial activity, due to the synergistic effects of the AgNPs, silver(I) ions released and PDA. In this study, we generated AgNPs-PDA-patterned surfaces by localised electrochemical depositions, using a double potentiostatic method via scanning electrochemical cell microscopy (SECCM). This technique enabled the assessment of a wide parameter space in a high-throughput manner. The optimised electrodeposition process resulted in stable and homogeneously distributed AgNP-microspots, and their antimicrobial activity against Escherichia coli was assessed using atomic force microscopy (AFM)-based force spectroscopy, in terms of bacterial adhesion and cell elasticity. We observed that the bacterial outer membrane underwent significant structural changes, when in close proximity to the AgNPs, namely increased hydrophilicity and stiffness loss. The spatially varied antimicrobial effect found experimentally was rationalised by numerical simulations of silver(I) concentration profiles.
Collapse
Affiliation(s)
- Giada Caniglia
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany.
| | | | - Gözde Tezcan
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Joshua Magiera
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, University of Ulm Medical Center, Albert-Einstein-Allee, 11 89081 Ulm, Germany
| | - Joachim Bansmann
- Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee, 11 89081 Ulm, Germany.
| | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
3
|
Noori A, Hasanuzzaman M, Roychowdhury R, Sarraf M, Afzal S, Das S, Rastogi A. Silver nanoparticles in plant health: Physiological response to phytotoxicity and oxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108538. [PMID: 38520964 DOI: 10.1016/j.plaphy.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Silver nanoparticles (AgNPs) have gained significant attention in various fields due to their unique properties, but their release into the environment has raised concerns about their environmental and biological impacts. Silver nanoparticles can enter plants following their exposure to roots or via stomata following foliar exposure. Upon penetrating the plant cells, AgNPs interact with cellular components and alter physiological and biochemical processes. One of the key concerns associated with plant exposure to AgNPs is the potential of these materials to induce oxidative stress. Silver nanoparticles can also suppress plant growth and development by disrupting essential plant physiological processes, such as photosynthesis, nutrient uptake, water transport, and hormonal regulation. In crop plants, these disruptions may, in turn, affect the productivity and quality of the harvested components and therefore represent a potential threat to agricultural productivity and ecosystem stability. Understanding the phytotoxic effects of AgNPs is crucial for assessing their environmental implications and guiding the development of safe nanomaterials. By delving into the phytotoxic effects of AgNPs, this review contributes to the existing knowledge regarding their environmental risks and promotes the advancement of sustainable nanotechnological practices.
Collapse
Affiliation(s)
- Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, 01845, USA
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Rajib Roychowdhury
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, 731235, West Bengal, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shadma Afzal
- Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| |
Collapse
|
4
|
Maity S, Gaur D, Mishra B, Dubey NC, Tripathi BP. Bactericidal and biocatalytic temperature responsive microgel based self-cleaning membranes for water purification. J Colloid Interface Sci 2023; 642:129-144. [PMID: 37003009 DOI: 10.1016/j.jcis.2023.03.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The present study focuses on creating an antimicrobial and biocatalytic smart gating membrane by synthesizing unique core-shell microgels. The core-shell microgels are synthesized by grafting short chains of poly(ethylenimine) (PEI) onto a poly((N-isopropyl acrylamide)-co-glycidyl methacrylate)) (P(NIPAm-co-GMA)) core. Subsequently, the produced microgels are utilized as a substrate for synthesizing and stabilizing silver nanoparticles (Ag NPs) through an in-situ approach. These Ag NPs immobilized microgels are then suction filtered over a polyethylene terephthalate (PET) track-etched support to create cross-linked composite microgel membranes (CMMs). After structural and permeation characterization of the prepared CMMs, the laccase enzyme is then covalently grafted to the surface of the membrane and tested for its effectiveness in degrading Reactive red-120 dye. The laccase immobilized biocatalytic CMMs show effective degradation of the Reactive red-120 by 71%, 48%, and 34% at pH 3, 4, and 5, respectively. Furthermore, the immobilized laccase enzyme showed better activity and stability in terms of thermal, pH, and storage compared to the free laccase, leading to increased reusability. The unique combination of Ag NPs and laccase on a thermoresponsive microgel support resulted in a responsive self-cleaning membrane with excellent antimicrobial and dye degradation capabilities for environmentally friendly separation technology.
Collapse
|
5
|
Ashraf I, Singh NB, Agarwal A. Iron-rich coal fly ash-polydopamine-silver nanocomposite (IRCFA-PDA-Ag NPs): tailored material for remediation of methylene blue dye from aqueous solution. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:322. [PMID: 36690821 DOI: 10.1007/s10661-023-10931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Water pollution has become one of the most acute environmental problems. One of the pollutants coming to water bodies from industries are dyes, which are harmful to human health, living organisms, and the esthetic appearance of water. Most dyes are toxic, carcinogenic, rarely biodegradable, and highly soluble in water. Therefore, industrial wastewater treatment has become important. Adsorption technique of removal of dyes from water is simple, efficient, and inexpensive as compared to other techniques. Adsorption efficiency depends on the type and surface area of adsorbents. Iron-rich coal fly ash (IRCFA)-Polydopamine (PDA)@ Silver (Ag) nanocomposite was prepared by separating the iron-rich part (IRCFA) from coal fly ash and coated with polydopamine. IRCFA was mixed with 10 mM tris buffer solution containing 1 g dopamine. The prepared IRCFA-PDA was added to an aqueous solution of silver nitrate, heated at 60 °C, and then 30 mL of flower waste extract was added to this solution. Solid IRCFA-PDA@Ag was obtained, and the prepared nanocomposite was used for the removal of methylene blue (MB) dye from water. The nanocomposite used was prepared by a cost-effective method and has high reusability, separability, and fast regeneration ability. The mechanism of removal of MB dye has been discussed in detail.
Collapse
Affiliation(s)
- Iqra Ashraf
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, UP, Greater Noida, 201310, India
| | - Nakshatra B Singh
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, UP, Greater Noida, 201310, India
| | - Anupam Agarwal
- Department of Chemistry & Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, UP, Greater Noida, 201310, India.
| |
Collapse
|
6
|
Jin B, Zhao D, Yu H, Liu W, Zhang C, Wu M. Rapid degradation of organic pollutants by Fe 3O 4@PDA/Ag catalyst in advanced oxidation process. CHEMOSPHERE 2022; 307:135791. [PMID: 35872061 DOI: 10.1016/j.chemosphere.2022.135791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Over the past decades, the development of novel catalysts on the degradation of organic pollutants has attracted increasing attention. In this work, we synthesized silver decorated magnetic nanoparticles (Fe3O4@PDA/Ag NPs) to activate H2O2 for organic pollutants removal via advanced oxidation processes (AOPs). The catalyst was prepared through in-situ reduction of AgNO3 by the polydopamine (PDA) layer on Fe3O4 NPs. Chemiluminescence results obtained from luminol/H2O2 system revealed that the catalyst exhibited excellent catalytic effect on the decomposition of H2O2 into reactive oxygen species (ROS) and superoxide radical (O2-) was mainly responsible for the oxidative degradation. Importantly, the fast evolution frequency of oxygen gas bubbles produced in the reaction of Ag NPs and H2O2 could generate vigorous fluid convection and autonomous motion of catalyst when H2O2 concentration reached 1%. Additionally, the catalyst can suspend in solution for several minutes. Therefore, by coupling the vigorous motion with slow sedimentation velocity, the catalyst can realize rapid degradation of organic pollutants without external mixing force. The Fe3O4@PDA/Ag NPs catalysts not only showed a high removal efficiency of malachite green, but also can be applied for the degradation of other dyes, making it to be a promise candidate for environmental remediation. With the merits of excellent catalytic effect, fast degradation speed, and simplicity of operation, the prepared catalysts exhibits great potential in the practical field.
Collapse
Affiliation(s)
- Bing Jin
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Daoyuan Zhao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Huihui Yu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weishuai Liu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Chunyong Zhang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Meisheng Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
7
|
Ecer Ü, Şahan T, Zengin A, Gubbuk İH. Decolorization of Rhodamine B by silver nanoparticle-loaded magnetic sporopollenin: characterization and process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:79375-79387. [PMID: 35710967 DOI: 10.1007/s11356-022-21416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Silver nanoparticles (Ag NPs) were reduced on the surface of magnetic sporopollenin (Fe3O4@SP) modified with poly-dopamine to enhance the degradation capability for Rhodamine B (RhB). The polydopamine-coated Fe3O4@SP (PDA@ Fe3O4@SP) acts as a self-reducing agent for Ag+ ions to Ag0. The structural properties of the synthesized nanocomposite were determined using Fourier transform infrared spectrometry (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), and vibrating sample magnetometer (VSM). The systematic study of the degradation process was performed using Response Surface Methodology (RSM) to determine the relationship between the four process variables, namely, initial RhB concentration, NaBH4 amount, catalyst amount, and time. Optimum points were determined for these four parameters using both matrix and numerical optimization methods. Under optimum conditions, RhB was decolorized with a yield of 98.11%. The apparent activation energy (Ea) and rate constant (k) for the degradation were 24.13 kJ/mol and 0.77 min-1, respectively. The reusability studies of the Ag@PDA@Fe3O4@SP exhibited more than 85% degradation ability of the dye even after five cycles. As a result, Ag@PDA@Fe3O4@SP possessed high catalytic activity, fast reduction rate, good reusability, easy separation, and simple preparation, endowing this catalyst to be used as a promising catalyst for the decolorization of dyes in aqueous solutions.
Collapse
Affiliation(s)
- Ümit Ecer
- Department of Chemical Engineering, Institute of Natural and Applied Sciences, Van Yuzuncu Yil University, Van, 65080, Turkey
| | - Tekin Şahan
- Faculty of Science, Department of Chemistry, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - Adem Zengin
- Faculty of Science, Department of Chemistry, Van Yuzuncu Yil University, 65080, Van, Turkey.
| | - İlkay Hilal Gubbuk
- Faculty of Science, Department of Chemistry, Selcuk University, 42075, Konya, Turkey
| |
Collapse
|
8
|
Green-Routed Carbon Dot-Adorned Silver Nanoparticles for the Catalytic Degradation of Organic Dyes. Catalysts 2022. [DOI: 10.3390/catal12090937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Herein, a simple, cost-effective, and in-situ environmentally friendly approach was adopted to synthesize carbon dot-adorned silver nanoparticles (CDs@AgNPs) from yellow myrobalan (Terminalia chebula) fruit using a hydrothermal treatment without any additional reducing and or stabilizing agents. The as-synthesized CDs@AgNP composite was systematically characterized using multiple analytical techniques: FESEM, TEM, XRD, Raman, ATR-FTIR, XPS, and UV-vis spectroscopy. All the results of the characterization techniques strongly support the idea that the CDs were successfully made to adorn the AgNPs. This effectively synthesized CDs@AgNP composite was applied as a catalyst for the degradation of organic dyes, including methylene blue (MB) and methyl orange (MO). The degradation results revealed that CDs@AgNPs exhibit a superior catalytic activity in the degradation of MB and MO in the presence of NaBH4 (SB) under ambient temperatures. In total, 99.5 and 99.0% rates of degradation of MB and MO were observed using CDs@AgNP composite with SB, respectively. A plausible mechanism for the reductive degradation of MB and MO is discussed in detail. Moreover, the CDs@AgNP composite has great potential for wastewater treatment applications.
Collapse
|
9
|
Kumar A, Kumar S, Tripathi BP. Polydopamine primed phosphorylated sepiolite-Polypropylene nanocomposite with enhanced thermal, rheological, and flame retardant properties. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Mishra B, Ghosh D, Tripathi BP. Finely dispersed AgPd bimetallic nanoparticles on a polydopamine modified metal organic framework for diverse catalytic applications. J Catal 2022. [DOI: 10.1016/j.jcat.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Bhat SA, Sher F, Hameed M, Bashir O, Kumar R, Vo DVN, Ahmad P, Lima EC. Sustainable nanotechnology based wastewater treatment strategies: achievements, challenges and future perspectives. CHEMOSPHERE 2022; 288:132606. [PMID: 34678350 DOI: 10.1016/j.chemosphere.2021.132606] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/27/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology is being an emerging science for wastewater treatment requires more research emphasis and depth knowledge. For wastewater treatment, different forms of nanomaterials are used based on the type of contaminants and treatment efficiency desired. With the development in the field of nanomaterials, novel and emerging nanomaterials are coming into existence. The nanomaterials used for wastewater treatment can be carbon, single-walled carbon nanotubes, multiple walled carbon nanotubes, covalent organic frameworks, metal and metal oxide- based nanoparticles. Graphene based nanoparticles, their oxides (GO) and reduced graphene oxide (rGO) find tremendous applicability to be used in wastewater treatment purposes. Due to the introduction of graphene oxide nanoparticles in the adsorbent materials, their adsorption capacities have get enhanced and such materials have also improved the mechanical stability of the adsorbent. Ferric oxide shows greater adsorption capacities for organic pollutants. Furthermore, magnetic nano-powder confers a low adsorption capacity for phenols. Pyrrolidone reduced graphene oxide (PVP-RGO) nanoparticles have been used as adsorbents for the elimination of inorganic target contaminant copper, with great adsorption (1698 mg/g). The present study comprehensively reviews nanotechnology as a wastewater treatment strategy besides enlightening its safety issues and efficiency. The novelty of this article is that it highlights the overview of recent applications of various types of nanomaterials and research works releated to it. Such an approach will be helpful to get insights into technological advances, applications and future challenges of nanotechnology implementation for wastewater treatment.
Collapse
Affiliation(s)
- Shakeel Ahmad Bhat
- College of Agricultural Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Srinagar,India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| | - Mariam Hameed
- School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan; International Society of Engineering Science and Technology, United Kingdom
| | - Omar Bashir
- Department of Food Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir,Shalimar Srinagar,India
| | - Rohitashw Kumar
- College of Agricultural Engineering, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar Srinagar,India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, P.O. Box 15003, ZIP, 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Calderón-Jiménez B, Montoro Bustos AR, Pereira Reyes R, Paniagua SA, Vega-Baudrit JR. Novel pathway for the sonochemical synthesis of silver nanoparticles with near-spherical shape and high stability in aqueous media. Sci Rep 2022; 12:882. [PMID: 35042912 PMCID: PMC8766478 DOI: 10.1038/s41598-022-04921-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/03/2022] [Indexed: 01/13/2023] Open
Abstract
The present study shows the development of a novel sonochemical synthesis pathway of sub-15 nm silver nanoparticles (AgNPs) with quasi-spherical shape and high stability in aqueous suspension. Different analytical techniques such as on-line UV-Vis spectroscopy, Atomic Force Microscopy (AFM), and Transmission Electron Microscopy (TEM) were complementarily used to characterize the evolution of the properties of AgNPs synthesized with this new route. Furthermore, different centrifugation conditions were studied to establish a practical, simple and straightforward purification method. Particle size was determined by TEM employing two different deposition methods, showing that purified AgNPs have a size of 8.1 nm ± 2.4 nm with a narrow dispersion of the size distribution (95% coverage interval from 3.4 to 13 nm). Critical information of the shape and crystalline structure of these sub-15 nm AgNPs, provided by shape descriptors (circularity and roundness) using TEM and high resolution (HR)-TEM measurements, confirmed the generation of AgNPs with quasi-spherical shapes with certain twin-fault particles promoted by the high energy of the ultrasonic treatment. Elemental analysis by TEM-EDS confirmed the high purity of the sub-15 nm AgNPs, consisting solely of Ag. At the optical level, these AgNPs showed a bandgap energy of (2.795 ± 0.002) eV. Finally, the evaluation of the effects of ultraviolet radiation (UVC: 254 nm and UVA: 365 nm) and storage temperature on the spectral stability revealed high stability of the optical properties and subsequently dimensional properties of sub-15 nm AgNPs in the short-term (600 min) and long-term (24 weeks).
Collapse
Affiliation(s)
- Bryan Calderón-Jiménez
- Chemical Metrology Division, National Metrology Laboratory of Costa Rica (LCM), San José, 11501-2060, Costa Rica.
- National Laboratory of Nanotechnology, National Center of High Technology, San José, 1174-1200, Costa Rica.
- Ph.D Program in Natural Science for Development (DOCINADE), Technological Institute of Costa Rica, National University, State Distance University, San José, 159-7050, Costa Rica.
| | - Antonio R Montoro Bustos
- Material Measurement Laboratory, Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA
| | - Reinaldo Pereira Reyes
- National Laboratory of Nanotechnology, National Center of High Technology, San José, 1174-1200, Costa Rica
| | - Sergio A Paniagua
- National Laboratory of Nanotechnology, National Center of High Technology, San José, 1174-1200, Costa Rica
| | - José R Vega-Baudrit
- National Laboratory of Nanotechnology, National Center of High Technology, San José, 1174-1200, Costa Rica
| |
Collapse
|
13
|
Alkhouzaam A, Qiblawey H, Khraisheh M. Polydopamine Functionalized Graphene Oxide as Membrane Nanofiller: Spectral and Structural Studies. MEMBRANES 2021; 11:86. [PMID: 33513669 PMCID: PMC7910935 DOI: 10.3390/membranes11020086] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/05/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022]
Abstract
High-degree functionalization of graphene oxide (GO) nanoparticles (NPs) using polydopamine (PDA) was conducted to produce polydopamine functionalized graphene oxide nanoparticles (GO-PDA NPs). Aiming to explore their potential use as nanofiller in membrane separation processes, the spectral and structural properties of GO-PDA NPs were comprehensively analyzed. GO NPs were first prepared by the oxidation of graphite via a modified Hummers method. The obtained GO NPs were then functionalized with PDA using a GO:PDA ratio of 1:2 to obtain highly aminated GO NPs. The structural change was evaluated using XRD, FTIR-UATR, Raman spectroscopy, SEM and TEM. Several bands have emerged in the FTIR spectra of GO-PDA attributed to the amine groups of PDA confirming the high functionalization degree of GO NPs. Raman spectra and XRD patterns showed different crystalline structures and defects and higher interlayer spacing of GO-PDA. The change in elemental compositions was confirmed by XPS and CHNSO elemental analysis and showed an emerging N 1s core-level in the GO-PDA survey spectra corresponding to the amine groups of PDA. GO-PDA NPs showed better dispersibility in polar and nonpolar solvents expanding their potential utilization for different purposes. Furthermore, GO and GO-PDA-coated membranes were prepared via pressure-assisted self-assembly technique (PAS) using low concentrations of NPs (1 wt. %). Contact angle measurements showed excellent hydrophilic properties of GO-PDA with an average contact angle of (27.8°).
Collapse
Affiliation(s)
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713 Doha, Qatar; (A.A.); (M.K.)
| | | |
Collapse
|
14
|
Manikandan S, Karmegam N, Subbaiya R, Karthiga Devi G, Arulvel R, Ravindran B, Kumar Awasthi M. Emerging nano-structured innovative materials as adsorbents in wastewater treatment. BIORESOURCE TECHNOLOGY 2021; 320:124394. [PMID: 33220545 DOI: 10.1016/j.biortech.2020.124394] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Water supply around the globe is struggling to meet the rapidly increasing demand by the population, drastic changes in climate and degrading water quality. Even though, many large-scale methods are employed for wastewater treatment they display several negative impacts owing to the presence of pollutants. Technological innovation is required for integrated water management with different groups of nanomaterials for the removal of toxic metal ions, microbial disease, organic and inorganic solutes. The method of manipulating atoms on a nanoscale is nanotechnology. Nanomembranes are used in nanotechnology to soften water and eliminate physical, chemical and biological pollutants. The present review concentrates on various nanotechnological approaches in wastewater remedy, mechanisms involved to promote implementation, benefits and limitations in comparison with current processes, properties, barriers and commercialization research needs. Also the review identifies opportunities for further exploiting the exclusive features for green water management by following the advances in nanotechnology.
Collapse
Affiliation(s)
- Sivasubramanian Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem 636 007, Tamil Nadu, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box 21692, Kitwe, Zambia
| | - Guruviah Karthiga Devi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Ramaswamy Arulvel
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602 105, Tamil Nadu, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Beta-Cyclodextrin-Assisted Synthesis of Silver Nanoparticle Network and Its Application in a Hydrogen Generation Reaction. Catalysts 2020. [DOI: 10.3390/catal10091014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The unsustainable nature of carbon-based fuels has prompted scientists and engineers to investigate alternative sources of energy. Silver nanoparticle networks (AgNPNs) were synthesized using beta-cyclodextrin for applications in hydrogen evolution reactions from sodium borohydride (NaBH4). The identities of the AgNPNs were confirmed using ultraviolet–visible spectroscopy, X-ray diffraction, and Transmission electron microscopy (TEM). The catalytic activity of the hydrogen evolution reactions was measured using a gravimetric water displacement system. The data collected show an increase in the efficiency of the hydrogen generation reaction with the addition of AgNPN. The silver nanoparticle network catalyst performed best at 22 °C with an increased concentration of NaBH4 producing hydrogen at a rate of 0.961 mL∙min−1∙mLcat−1. The activation energy was calculated to be 50.3 kJ/mol.
Collapse
|
16
|
Zhang L, Li Z, Wang DY. Polydopamine-assisted strategies for preparation of fire-safe polymeric materials: A review. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|