1
|
Białoń M, Wąsik A. Advantages and Limitations of Animal Schizophrenia Models. Int J Mol Sci 2022; 23:5968. [PMID: 35682647 PMCID: PMC9181262 DOI: 10.3390/ijms23115968] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Mental illness modeling is still a major challenge for scientists. Animal models of schizophrenia are essential to gain a better understanding of the disease etiopathology and mechanism of action of currently used antipsychotic drugs and help in the search for new and more effective therapies. We can distinguish among pharmacological, genetic, and neurodevelopmental models offering various neuroanatomical disorders and a different spectrum of symptoms of schizophrenia. Modeling schizophrenia is based on inducing damage or changes in the activity of relevant regions in the rodent brain (mainly the prefrontal cortex and hippocampus). Such artificially induced dysfunctions approximately correspond to the lesions found in patients with schizophrenia. However, notably, animal models of mental illness have numerous limitations and never fully reflect the disease state observed in humans.
Collapse
Affiliation(s)
| | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Cracow, Poland;
| |
Collapse
|
2
|
Piva A, Caffino L, Mottarlini F, Pintori N, Castillo Díaz F, Fumagalli F, Chiamulera C. Metaplastic Effects of Ketamine and MK-801 on Glutamate Receptors Expression in Rat Medial Prefrontal Cortex and Hippocampus. Mol Neurobiol 2021; 58:3443-3456. [PMID: 33723767 PMCID: PMC8257545 DOI: 10.1007/s12035-021-02352-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
Ketamine and MK-801 by blocking NMDA receptors may induce reinforcing effects as well as schizophrenia-like symptoms. Recent results showed that ketamine can also effectively reverse depressive signs in patients' refractory to standard therapies. This evidence clearly points to the need of characterization of effects of these NMDARs antagonists on relevant brain areas for mood disorders. The aim of the present study was to investigate the molecular changes occurring at glutamatergic synapses 24 h after ketamine or MK-801 treatment in the rat medial prefrontal cortex (mPFC) and hippocampus (Hipp). In particular, we analyzed the levels of the glutamate transporter-1 (GLT-1), NMDA receptors, AMPA receptors subunits, and related scaffolding proteins. In the homogenate, we found a general decrease of protein levels, whereas their changes in the post-synaptic density were more complex. In fact, ketamine in the mPFC decreased the level of GLT-1 and increased the level of GluN2B, GluA1, GluA2, and scaffolding proteins, likely indicating a pattern of enhanced excitability. On the other hand, MK-801 only induced sparse changes with apparently no correlation to functional modification. Differently from mPFC, in Hipp, both substances reduced or caused no changes of glutamate receptors and scaffolding proteins expression. Ketamine decreased NMDA receptors while increased AMPA receptors subunit ratios, an effect indicative of permissive metaplastic modulation; conversely, MK-801 only decreased the latter, possibly representing a blockade of further synaptic plasticity. Taken together, these findings indicate a fine tuning of glutamatergic synapses by ketamine compared to MK-801 both in the mPFC and Hipp.
Collapse
Affiliation(s)
- Alessandro Piva
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy.
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Nicholas Pintori
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy
| | - Fernando Castillo Díaz
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Cristiano Chiamulera
- Neuropsychopharmacology Lab, Section Pharmacology, Department Diagnostic & Public Health, University of Verona, Policlinico GB Rossi, P.le Scuro 10, 37134, Verona, Italy
| |
Collapse
|
3
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
4
|
Martin MV, Mirnics K, Nisenbaum LK, Vawter MP. Olanzapine Reversed Brain Gene Expression Changes Induced by Phencyclidine Treatment in Non-Human Primates. MOLECULAR NEUROPSYCHIATRY 2015; 1:82-93. [PMID: 26405684 DOI: 10.1159/000430786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The NMDA receptor antagonist phencyclidine (PCP) creates schizophrenia-like symptoms in normal controls. The effect of PCP on non-human primate brain gene expression was examined and compared to changes induced by olanzapine treatment. Experimental studies of PCP and antipsychotic drugs have direct relevance to understanding the patho-physiology and treatment of schizophrenia. Genome-wide changes in prefrontal cortex gene expression revealed alterations of 146 transcripts in the PCP treatment group compared to vehicle controls. Dysregulated genes were enriched in identified classes implicated in neurological and genetic disorders, including schizophrenia genes from the Psychiatric Genomics Consortium 108 loci as well as cell death in PCP-treated primates. Canonical pathway analysis revealed a significant overrepresentation of several groups including synaptic long-term potentiation and calcium signaling. Olanzapine coadministered with PCP normalized 34% of the 146 PCP-induced probe set expression changes, and a network of 17 olanzapine-normalized genes was identified enriched in schizophrenia candidate genes containing RGS4, SYN1 and AKT as nodes. The results of this study support the use of PCP administration in non-human primates as a glutamatergic model of schizophrenia and suggest that a large number of PCP-induced expression differences can be reversed by olanzapine. The results of this study may be informative for identification of potential candidates for pharmacogenetics and biomarker research related to the treatment of schizophrenia.
Collapse
Affiliation(s)
- Maureen V Martin
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, Calif
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, Tenn
| | - Laura K Nisenbaum
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Ind., USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, Calif
| |
Collapse
|
5
|
Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Nurnberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17:887-905. [PMID: 22584867 PMCID: PMC3427857 DOI: 10.1038/mp.2012.37] [Citation(s) in RCA: 305] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/28/2012] [Accepted: 03/05/2012] [Indexed: 02/07/2023]
Abstract
We have used a translational convergent functional genomics (CFG) approach to identify and prioritize genes involved in schizophrenia, by gene-level integration of genome-wide association study data with other genetic and gene expression studies in humans and animal models. Using this polyevidence scoring and pathway analyses, we identify top genes (DISC1, TCF4, MBP, MOBP, NCAM1, NRCAM, NDUFV2, RAB18, as well as ADCYAP1, BDNF, CNR1, COMT, DRD2, DTNBP1, GAD1, GRIA1, GRIN2B, HTR2A, NRG1, RELN, SNAP-25, TNIK), brain development, myelination, cell adhesion, glutamate receptor signaling, G-protein-coupled receptor signaling and cAMP-mediated signaling as key to pathophysiology and as targets for therapeutic intervention. Overall, the data are consistent with a model of disrupted connectivity in schizophrenia, resulting from the effects of neurodevelopmental environmental stress on a background of genetic vulnerability. In addition, we show how the top candidate genes identified by CFG can be used to generate a genetic risk prediction score (GRPS) to aid schizophrenia diagnostics, with predictive ability in independent cohorts. The GRPS also differentiates classic age of onset schizophrenia from early onset and late-onset disease. We also show, in three independent cohorts, two European American and one African American, increasing overlap, reproducibility and consistency of findings from single-nucleotide polymorphisms to genes, then genes prioritized by CFG, and ultimately at the level of biological pathways and mechanisms. Finally, we compared our top candidate genes for schizophrenia from this analysis with top candidate genes for bipolar disorder and anxiety disorders from previous CFG analyses conducted by us, as well as findings from the fields of autism and Alzheimer. Overall, our work maps the genomic and biological landscape for schizophrenia, providing leads towards a better understanding of illness, diagnostics and therapeutics. It also reveals the significant genetic overlap with other major psychiatric disorder domains, suggesting the need for improved nosology.
Collapse
Affiliation(s)
- M Ayalew
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| | - H Le-Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D F Levey
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - N Jain
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - B Changala
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S D Patel
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - E Winiger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Breier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Shekhar
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - R Amdur
- Washington DC VA Medical Center, Washington, DC, USA
| | - D Koller
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - J I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - A Corvin
- Department of Psychiatry, Trinity College, Dublin, Ireland
| | - M Geyer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - M T Tsuang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - D Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - N J Schork
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - A H Fanous
- Washington DC VA Medical Center, Washington, DC, USA
| | - M C O'Donovan
- Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK
| | - A B Niculescu
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
- Indianapolis VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
6
|
Savage S, Mattsson A, Olson L. Cholinergic denervation attenuates phencyclidine-induced c-fos responses in rat cortical neurons. Neuroscience 2012; 216:38-45. [PMID: 22561731 DOI: 10.1016/j.neuroscience.2012.04.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 04/25/2012] [Accepted: 04/26/2012] [Indexed: 12/15/2022]
Abstract
The cortical cholinergic innervation, which is important for memory and cognition, has been implicated in schizophrenia. To experimentally analyze such a possible role of the cholinergic system, we have used the dissociative drug phencyclidine (PCP), known to produce schizophrenia-like psychosis in humans, to model aspects of schizophrenia in rats. We previously showed that induced cortical cholinergic hypofunction leads to enhanced PCP-induced locomotor activity and attenuated social interaction. After PCP, rats lacking cortical cholinergic innervation also show impaired declarative memory. To directly study the role of the basalo-cortical cholinergic projections for PCP-induced neural activation in different cortical areas, we have now monitored the rapid (30 and 60 min) effects of low doses of PCP (2 and 3mg/kg) on neural activation as reflected by transcriptional activation of c-fos in cortical areas, using quantitative in situ hybridization. We find an almost pan-cortical neural induction of c-fos mRNA with doses of PCP low enough not to alter levels of either BDNF or Nogo receptor mRNA levels. Specific unilateral lesioning of the uncrossed cholinergic projections to the cortical mantle by 192-IgG-saporin immunotoxin delivery to nc basalis (NBM) caused a striking ipsilateral decrease of the PCP-induced cortical c-fos mRNA induction, restricted to areas which had become effectively denervated. Because PCP at low doses is unlikely to directly influence cortical neurons, we suggest that it acts by activation of the cholinergic input, which in turn leads to cortical c-fos mRNA increases. Our results are compatible with a role for the cholinergic system in symptoms of schizophrenia, by showing that the basalo-cortical cholinergic projections are needed in order for PCP to have full activating effects on cortical neurons.
Collapse
Affiliation(s)
- S Savage
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
7
|
Deng X, Takaki H, Wang L, Kuroki T, Nakahara T, Hashimoto K, Ninomiya H, Arinami T, Inada T, Ujike H, Itokawa M, Tochigi M, Watanabe Y, Someya T, Kunugi H, Iwata N, Ozaki N, Shibata H, Fukumaki Y. Positive association of phencyclidine-responsive genes, PDE4A and PLAT, with schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2011; 156B:850-8. [PMID: 21898905 DOI: 10.1002/ajmg.b.31233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 07/28/2011] [Indexed: 11/08/2022]
Abstract
As schizophrenia-like symptoms are produced by administration of phencyclidine (PCP), a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptors, PCP-responsive genes could be involved in the pathophysiology of schizophrenia. We injected PCP to Wistar rats and isolated five different parts of the brain in 1 and 4 hr after the injection. We analyzed the gene expression induced by the PCP treatment of these tissues using the AGILENT rat cDNA microarray system. We observed changes in expression level in 90 genes and 21 ESTs after the treatment. Out of the 10 genes showing >2-fold expressional change evaluated by qRT-PCR, we selected 7 genes as subjects for the locus-wide association study to identify susceptibility genes for schizophrenia in the Japanese population. In haplotype analysis, significant associations were detected in combinations of two SNPs of BTG2 (P = 1.4 × 10(-6) ), PDE4A (P = 1.4 × 10(-6) ), and PLAT (P = 1 × 10(-3) ), after false discovery rate (FDR) correction. Additionally, we not only successfully replicated the haplotype associations in PDE4A (P = 6.8 × 10(-12) ) and PLAT (P = 0.015), but also detected single-point associations of one SNP in PDE4A (P = 0.0068) and two SNPs in PLAT (P = 0.0260 and 0.0104) in another larger sample set consisting of 2,224 cases and 2,250 controls. These results indicate that PDE4A and PLAT may be susceptibility genes for schizophrenia in the Japanese population.
Collapse
Affiliation(s)
- Xiangdong Deng
- Division of Human Molecular Genetics, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Evidence for disease and antipsychotic medication effects in post-mortem brain from schizophrenia patients. Mol Psychiatry 2011; 16:1189-202. [PMID: 20921955 DOI: 10.1038/mp.2010.100] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extensive research has been conducted on post-mortem brain tissue in schizophrenia (SCZ), particularly the dorsolateral prefrontal cortex (DLPFC). However, to what extent the reported changes are due to the disorder itself, and which are the cumulative effects of lifetime medication remains to be determined. In this study, we employed label-free liquid chromatography-mass spectrometry-based proteomic and proton nuclear magnetic resonance-based metabonomic profiling approaches to investigate DLPFC tissue from two cohorts of SCZ patients grouped according to their lifetime antipsychotic dose, together with tissue from bipolar disorder (BPD) subjects, and normal controls (n=10 per group). Both techniques showed profound changes in tissue from low-cumulative-medication SCZ subjects, but few changes in tissue from medium-cumulative-medication subjects. Protein expression changes were validated by Western blot and investigated further in a third group of subjects who were subjected to high-cumulative-medication over the course of their lifetime. Furthermore, key protein expression and metabolite level changes correlated significantly with lifetime antipsychotic dose. This suggests that the detected changes are present before antipsychotic therapy and, moreover, may be normalized with treatment. Overall, our analyses revealed novel protein and metabolite changes in low-cumulative-medication subjects associated with synaptogenesis, neuritic dynamics, presynaptic vesicle cycling, amino acid and glutamine metabolism, and energy buffering systems. Most of these markers were altered specifically in SCZ as determined by analysis of the same brain region from BPD patients.
Collapse
|
9
|
Schijndel JEV, Martens GJM. Gene expression profiling in rodent models for schizophrenia. Curr Neuropharmacol 2011; 8:382-93. [PMID: 21629445 PMCID: PMC3080594 DOI: 10.2174/157015910793358132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 04/15/2010] [Accepted: 04/30/2010] [Indexed: 12/12/2022] Open
Abstract
The complex neurodevelopmental disorder schizophrenia is thought to be induced by an interaction between predisposing genes and environmental stressors. In order to get a better insight into the aetiology of this complex disorder, animal models have been developed. In this review, we summarize mRNA expression profiling studies on neurodevelopmental, pharmacological and genetic animal models for schizophrenia. We discuss parallels and contradictions among these studies, and propose strategies for future research.
Collapse
Affiliation(s)
- Jessica E Van Schijndel
- Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behaviour, Centre for Neuroscience & Nijmegen Centre for Molecular Life Sciences (NCMLS), Faculty of Science, Radboud University Nijmegen, 6525 GA, Nijmegen, The Netherlands
| | | |
Collapse
|
10
|
Takebayashi H, Yamamoto N, Umino A, Nishikawa T. Developmentally regulated and thalamus-selective induction of leiomodin2 gene by a schizophrenomimetic, phencyclidine, in the rat. Int J Neuropsychopharmacol 2009; 12:1111-26. [PMID: 19254430 DOI: 10.1017/s1461145709009997] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The onset of schizophrenia and the schizophrenomimetic effects of an N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine, rarely occur during infancy and childhood, suggesting that schizophrenia-related neuron circuits and molecules in the brain might show an age-related response to an NMDA receptor antagonist. By using a DNA microarray technique, we have identified the developmentally regulated PCP-inducible gene leiomodin2 (Lmod2) that encodes a tropomyosin-binding actin-capping protein enriched in the cardiac and skeletal muscles. PCP caused an increase in the thalamic amounts of Lmod2 transcripts at postnatal days (PD) 32 and 50 without affecting them at PD 8, 13, 20 and 24, while the NMDA antagonist failed to produce a significant change in the gene expression in the adult heart. In-situ hybridization analysis revealed that the basal and PCP-induced expression of the Lmod2 gene is almost confined to the lateral and anterior nuclei of the thalamus among the brain regions at PD 50. The PCP-induced up-regulation of Lmod2 mRNAs in the adult thalamus was mimicked totally (also up-regulated) by another NMDA antagonist, dizocilpine, and partly by the indirect dopamine agonist, methamphetamine. Moreover, pretreatment with a D(2)-preferring dopamine receptor antagonist, haloperidol, partially antagonizes the increasing effects of PCP on thalamic Lmod2 gene expression. These findings suggest that Lmod2 might be involved in the pathophysiology of the age-dependent onset of drug-induced schizophrenia-like psychosis and schizophrenia and that the limited thalamic nuclei expressing the Lmod2 gene could compose the neuron circuits that are specifically disturbed in these mental disorders.
Collapse
Affiliation(s)
- Hironao Takebayashi
- Section of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Royland JE, Kodavanti PRS. Response to comment on “Toxicogenomics in human health risk assessment”. Toxicol Appl Pharmacol 2009. [DOI: 10.1016/j.taap.2009.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Fattorini G, Melone M, Bragina L, Candiracci C, Cozzi A, Pellegrini Giampietro DE, Torres-Ramos M, Pérez-Samartín A, Matute C, Conti F. GLT-1 expression and Glu uptake in rat cerebral cortex are increased by phencyclidine. Glia 2008; 56:1320-7. [PMID: 18615569 DOI: 10.1002/glia.20700] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using western blottings, microdialysis, and functional assays we tested the hypothesis that phencyclidine (PCP) modifies the expression and function of glutamate (Glu) transporters in the rat frontal cortex. Western blotting studies revealed that administration of PCP (10 mg/kg/day; 7 days) increased significantly the expression of the astrocytic Glu transporter GLT-1/EAAT2. Functional studies showed that PCP increased significantly Na+-dependent Glu uptake in slices and in neuron/astrocyte co-cultures, and microdialysis studies evidenced that PCP treatment reduced basal Glu output. In our experimental conditions, PCP did not induce toxicity. These studies show that PCP increases the expression of GLT-1 in the cerebral cortex, thereby increasing Glu uptake and reducing extracellular [Glu].
Collapse
Affiliation(s)
- Giorgia Fattorini
- Dipartimento di Neuroscienze, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kehrer C, Maziashvili N, Dugladze T, Gloveli T. Altered Excitatory-Inhibitory Balance in the NMDA-Hypofunction Model of Schizophrenia. Front Mol Neurosci 2008; 1:6. [PMID: 18946539 PMCID: PMC2525998 DOI: 10.3389/neuro.02.006.2008] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 03/25/2008] [Indexed: 12/30/2022] Open
Abstract
Schizophrenia is a common psychiatric disorder of high incidence, affecting approximately 1% of the world population. The essential neurotransmitter pathology of schizophrenia remains poorly defined, despite huge advances over the past half-century in identifying neurochemical and pathological abnormalities in the disease. The dopamine/serotonin hypothesis has originally provided much of the momentum for neurochemical research in schizophrenia. In recent years, the attention has, however, shifted to the glutamate system, the major excitatory neurotransmitter in the CNS and towards a concept of functional imbalance between excitatory and inhibitory transmission at the network level in various brain regions in schizophrenia. The evidence indicating a central role for the NMDA-receptor subtype in the aetiology of schizophrenia has led to the NMDA-hypofunction model of this disease and the use of phencyclidines as a means to induce the NMDA-hypofunction state in animal models. The purpose of this review is to discuss recent findings highlighting the importance of the NMDA-hypofunction model of schizophrenia, both from a clinical perspective, as well as in opening a line of research, which enables electrophysiological studies at the cellular and network level in vitro. In particular, changes in excitation–inhibition (E/I) balance in the NMDA-hypofunction model of the disease and the resulting changes in network behaviours, particularly in gamma frequency oscillatory activity, will be discussed.
Collapse
Affiliation(s)
- Colin Kehrer
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin Germany
| | | | | | | |
Collapse
|
14
|
Kalinichev M, Robbins MJ, Hartfield EM, Maycox PR, Moore SH, Savage KM, Austin NE, Jones DNC. Comparison between intraperitoneal and subcutaneous phencyclidine administration in Sprague-Dawley rats: a locomotor activity and gene induction study. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:414-22. [PMID: 17945407 DOI: 10.1016/j.pnpbp.2007.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/07/2007] [Accepted: 09/11/2007] [Indexed: 11/27/2022]
Abstract
In a putative model of acute phencyclidine (PCP)-induced psychosis we evaluated effects of the drug on locomotor activity (LMA) and immediate early gene (IEG) induction in the rat using two routes of drug administration, intraperitoneal (i.p.) and subcutaneous (s.c.). Adult male rats received saline or PCP (1.0-5.0 mg/kg) either i.p or s.c. and were assessed for LMA for 60 min. At the end of the LMA testing animals were culled and blood and brain samples were collected for PCP concentration analysis. Separate cohorts of animals received 5.0 mg/kg PCP (i.p. or s.c.) and were used to investigate (1) the pharmacokinetics of PCP or (2) induction of IEG (Arc, c-fos, BDNF, junB, Krox-20, sgk-1, NURR1, fra-2, Krox-24, and egr-3) mRNA expression in the prefrontal cortex (PFC). Administration of PCP resulted in locomotor hyperactivity which was more robust and longer-lasting in animals dosed s.c. compared to i.p.-treated-animals. Differences in hyperlocomotion were paralleled by higher concentrations of PCP in the blood and in the brain of s.c.-treated animals compared to i.p.-treated animals. The differences in the concentration of PCP between the two routes of administration were detected 30 min after dosing and persisted for up to 4 h. Administration of PCP via the s.c. route resulted in induction of more IEGs and consistently larger magnitudes of induction than that via the i.p. route. Therefore, we have outlined the dosing conditions to induce rapid and robust effect of acute PCP on behaviour, gene induction, and pharmacokinetic profile, to allow investigation of this as a potential animal model of acute psychosis.
Collapse
Affiliation(s)
- Mikhail Kalinichev
- Biology Department, Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline plc, New Frontiers Science Park, Third Avenue, Harlow, Essex, CM19 5AW, UK.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Matsuoka T, Tsunoda M, Sumiyoshi T, Takasaki I, Tabuchi Y, Seo T, Tanaka K, Uehara T, Itoh H, Suzuki M, Kurachi M. Effect of MK-801 on gene expressions in the amygdala of rats. Synapse 2008; 62:1-7. [PMID: 17948890 DOI: 10.1002/syn.20455] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rodents treated with N-methyl-D-aspartate (NMDA) antagonists have been thought to be an animal model of schizophrenia. In this study, we examined gene expression in the amygdala of rats chronically treated with MK-801, as well as behavioral changes, such as social behavior, in these animals. The social interaction test, a measure of social behavior, and locomotor activity was performed in male Wistar rats injected with MK-801 (0.13 mg/kg i.p.) or saline for 14 days. Changes in mRNA levels were analyzed using a GeneChip microarray system. Real-time quantitative PCR (RT-qPCR) assay was subsequently conducted to confirm the results of the microarray analysis. MK-801 decreased social interaction and increased locomotor activity in rats, consistent with previous reports. We found 23 downregulated genes and 16 upregulated genes, with the gene encoding arginine-vasopressin (AVP) being most downregulated, and that for transthyretin (Ttr) most upregulated. mRNA levels, quantified by RT-qPCR assay, were altered for genes related to neuropeptides (AVP, Sstr2), the arachidonic cascade (Ptgds), myelination (Mobp, Enpp2), neurotrophic factors (Igfbp2), and hormonal milieu (Ttr). Downregulation of the AVP gene in the amygdala of MK-801-treated rats may provide a basis for the ability of AVP-analogues to ameliorate the behavioral disturbances caused by blockade of the NMDA receptor. The results of this study provide an insight into the neural substrates responsible for the generation of psychotic symptoms.
Collapse
Affiliation(s)
- Tadasu Matsuoka
- Department of Neuropsychiatry, University of Toyama, Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tejedor-Real P, Sahagún M, Biguet NF, Mallet J. Neonatal handling prevents the effects of phencyclidine in an animal model of negative symptoms of schizophrenia. Biol Psychiatry 2007; 61:865-72. [PMID: 17125743 DOI: 10.1016/j.biopsych.2006.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 06/23/2006] [Accepted: 08/10/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Environmental factors during the neonatal period have long-lasting effects on the brain. Neonatal handling, an early mild stress, enhances the ability to cope with stress in adult rats. In humans, inappropriate stress responses increase the risk of schizophrenia in genetically predisposed individuals. We studied the effect of neonatal handling on the phencyclidine (PCP)-induced immobility time of rats in the forced swimming test (FST, an animal model of negative symptoms of schizophrenia) and on plasma adrenocorticotropic hormone (ACTH) as a measure of hypothalamic-pituitary-adrenal axis (HPA) reactivity. METHODS Pups were removed from their mothers 15 min/21 days after birth. Postnatal day 65: animals were submitted to restraint stress. Postnatal day 75: after PCP treatment (5 mg/kg/5 days) animals were submitted to the FST. RESULTS Neonatal handling reduced HPA reactivity to passive stress (restraint) but not to active coping stress (forced swimming). Immobilization time was significantly lower in saline- and PCP-treated, handled animals than in non-handled ones. Handling prevented the ACTH increase induced by PCP that was observed in the non-handled rats after FST. CONCLUSIONS First, neonatal handling protects animals from acquiring the schizophrenic-like behavior provoked by sub-chronic PCP treatment, which was associated with a reduced HPA activity. Second, the beneficial properties of handling in stress responses seem to depend on the type of stress.
Collapse
|
17
|
Le-Niculescu H, Balaraman Y, Patel S, Tan J, Sidhu K, Jerome RE, Edenberg HJ, Kuczenski R, Geyer MA, Nurnberger JI, Faraone SV, Tsuang MT, Niculescu AB. Towards understanding the schizophrenia code: an expanded convergent functional genomics approach. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:129-58. [PMID: 17266109 DOI: 10.1002/ajmg.b.30481] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes for schizophrenia through classical genetic approaches has proven arduous. Here, we present a comprehensive convergent analysis that translationally integrates brain gene expression data from a relevant pharmacogenomic mouse model (involving treatments with a psychomimetic agent - phencyclidine (PCP), and an anti-psychotic - clozapine), with human genetic linkage data and human postmortem brain data, as a Bayesian strategy of cross validating findings. Topping the list of candidate genes, we have three genes involved in GABA neurotransmission (GABRA1, GABBR1, and GAD2), one gene involved in glutamate neurotransmission (GRIA2), one gene involved in neuropeptide signaling (TAC1), two genes involved in synaptic function (SYN2 and KCNJ4), six genes involved in myelin/glial function (CNP, MAL, MBP, PLP1, MOBP and GFAP), and one gene involved in lipid metabolism (LPL). These data suggest that schizophrenia is primarily a disorder of brain functional and structural connectivity, with GABA neurotransmission playing a prominent role. These findings may explain the EEG gamma band abnormalities detected in schizophrenia. The analysis also revealed other high probability candidates genes (neurotransmitter signaling, other structural proteins, ion channels, signal transduction, regulatory enzymes, neuronal migration/neurite outgrowth, clock genes, transcription factors, RNA regulatory genes), pathways and mechanisms of likely importance in pathophysiology. Some of the pathways identified suggest possible avenues for augmentation pharmacotherapy of schizophrenia with other existing agents, such as benzodiazepines, anticonvulsants and lipid modulating agents. Other pathways are new potential targets for drug development. Lastly, a comparison with our earlier work on bipolar disorder illuminates the significant molecular overlap between schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- H Le-Niculescu
- Laboratory of Neurophenomics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Krügel H, Becker A, Polten A, Grecksch G, Singh R, Berg A, Seidenbecher C, Saluz HP. Transcriptional response to the neuroleptic-like compound Ampullosporin A in the rat ketamine model. J Neurochem 2006; 97 Suppl 1:74-81. [PMID: 16635253 DOI: 10.1111/j.1471-4159.2005.03621.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Psychotic disorders affecting up to 1% of the human population represent pathological changes to the metabolic homeostasis of the brain. Increasing evidence in the literature suggests complex biochemical and/or transcriptional alterations accompanying schizophrenia-like phenomena. Sub-chronic treatment with sub-anaesthetic doses of ketamine induces schizophrenia-related psychotic alterations that can be used as an animal model in the study of this disorder. Ampullosporin A belongs to a specific group of pore-forming fungal peptides, peptaibols. We focused on the analysis of molecular events occurring in the brain of ketamine-pre-treated rats after administration of Ampullosporin A with neuroleptic-like activity. The complex experimental approach allowed us to correlate the use of low molecular weight substances with a transcriptome fingerprint in the prefrontal cortex. We found 63 genes to be up-regulated and 22 genes suppressed, with transthyretin, syndecan-1 and NeuroD1 showing the highest degree of up-regulation. Our results suggest the possibility that Ampullosporin A belongs to the group of neuroleptic-like compounds, inducing massive changes in neurotransmitter receptor composition, calcium signalling cascades and second messenger systems, and leading to the plastic reorganization of brain tissue, metabolic pathways and synapses.
Collapse
Affiliation(s)
- Hans Krügel
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shou J, Qian HR, Lin X, Stewart T, Onyia JE, Gelbert LM. Optimization and validation of small quantity RNA profiling for identifying TNF responses in cultured human vascular endothelial cells. J Pharmacol Toxicol Methods 2006; 53:152-9. [PMID: 15878830 DOI: 10.1016/j.vascn.2005.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 02/14/2005] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Affymetrix oligonucleotide microarrays are widely used in basic and applied research (Lander, E.S., (1999). Array of hope. Nature Genetics 21, 3-4; Lockhart, D.J. & Winzeler, E.A. (2000) Genomics, gene expression and DNA arrays. Nature 405, 827-836.) The need for a significant amount of starting RNA has limited its use in applications where the amount of RNA is limiting, such as with Laser Captured Microdissection (LCM), small biopsies, or peripheral blood in rodent models. To overcome this limitation, various RNA amplification and labeling methods have been described, however, further optimization and validation of these methods are needed. METHODS Here we reported using the Arcturus technology to optimize amplification and labeling of small amounts of RNA for Affymetrix microarray studies. We assessed the technical feasibility and variation introduced by differences in starting RNA quantity and differences in technical performance by microarray hybridization. RESULTS We demonstrated that the current approach is reliable to amplify as little as 40 ng total RNA, and it is suitable for Affymetrix studies yielding satisfactory quantitative chip performance. We also showed that differences in labeling methods contribute more to variation than the differences in starting RNA quantity per se. As a model, we studied the well-documented TNF-induced inflammatory responses in cultured human vascular endothelial cells. We were able to recapitulate the TNF-induced responses using small RNA sample profiling.
Collapse
Affiliation(s)
- Jianyong Shou
- Integrative Biology, Lilly Research Laboratories, Indianapolis, IN 46285, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Shou J, Dotson C, Qian HR, Tao W, Lin C, Lawrence F, N'Cho M, Kulkarni NH, Bull CM, Gelbert LM, Onyia JE. Optimized blood cell profiling method for genomic biomarker discovery using high-density microarray. Biomarkers 2005; 10:310-20. [PMID: 16191486 DOI: 10.1080/13547500500218583] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
High-quality biomarkers for disease progression, drug efficacy and toxicity liability are essential for improving the efficiency of drug discovery and development. The identification of drug-activity biomarkers is often limited by access to and the quantity of target tissue. Peripheral blood has increasingly become an attractive alternative to tissue samples from organs as source for biomarker discovery, especially during early clinical studies. However, given the heterogeneous blood cell population, possible artifacts from ex vivo activations, and technical difficulties associated with overall performance of the assay, it is challenging to profile peripheral blood cells directly for biomarker discovery. In the present study, Applied BioSystems' blood collection system was evaluated for its ability to isolate RNA suitable for use on the Affymetrix microarray platform. Blood was collected in a TEMPUS tube and RNA extracted using an ABI-6100 semi-automated workstation. Using human and rat whole blood samples, it was demonstrated that the RNA isolated using this approach was stable, of high quality and was suitable for Affymetrix microarray applications. The microarray data were statistically analysed and compared with other blood protocols. Minimal haemoglobin interference with RNA labelling efficiency and chip hybridization was found using the TEMPUS tube and extraction method. The RNA quality, stability and ease of handling requirement make the TEMPUS tube protocol an attractive approach for expression profiling of whole blood to support target and biomarker discovery.
Collapse
Affiliation(s)
- J Shou
- Integrative Biology, Lilly Research Laboratories, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|