1
|
Jung HY, Kwon HJ, Kim W, Yoo DY, Kang MS, Choi JH, Moon SM, Kim DW, Hwang IK. Extracts from Dendropanax morbifera leaves ameliorates cerebral ischemia-induced hippocampal damage by reducing oxidative damage in gerbil. J Stroke Cerebrovasc Dis 2024; 33:107483. [PMID: 37976794 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
AIM In this study, we investigated the effects of Dendropanax morbifera extract (DME) on neuroprotection against ischemic damage in gerbils. METHODS DME (100 or 300 mg/kg) was orally administered to gerbils for three weeks, and 2 h after the last DME treatment, transient forebrain ischemia in the common carotid arteries was induced for 5 min. The forebrain ischemia-related cognitive impairments were assessed by spontaneous motor activity and passive avoidance test one and four days after ischemia, respectively. In addition, surviving and degenerating neurons were morphologically confirmed by neuronal nuclei immunohistochemical staining and Fluoro-Jade C staining, respectively, four days after ischemia. Changes of glial morphology were visualized by immunohistochemical staining for each marker such as glial fibrillary acidic protein and ionized calcium-binding protein. Oxidative stress was determined by measurements of dihydroethidium, O2· (formation of formazan) and malondialdehyde two days after ischemia. In addition, glutathione redox system such as reduced glutathione, oxidized glutathione levels, glutathione peroxidase, and glutathione reductase activities were measured two days after ischemia. RESULTS Spontaneous motor activity monitoring and passive avoidance tests showed that treatment with 300 mg/kg DME, but not 100 mg/kg, significantly alleviated ischemia-induced memory impairments. In addition, approximately 67 % of mature neurons survived and 29.3 % neurons were degenerated in hippocampal CA1 region four days after ischemia, and ischemia-induced morphological changes in astrocytes and microglia were decreased in the CA1 region after 300 mg/kg DME treatment. Furthermore, treatment with 300 mg/kg DME significantly ameliorated ischemia-induced oxidative stress, such as superoxide formation and lipid peroxidation, two days after ischemia. In addition, ischemia-induced reduction of the glutathione redox system in the hippocampus, assessed two days after the ischemia, was ameliorated by treatment with 300 mg/kg DME. These suggest that DME can potentially reduce ischemia-induced neuronal damage through its antioxidant properties.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; Department of Biomedical Sciences, and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Anatomy, College of Veterinary Medicine, and Veterinary Science Research Institute, Konkuk University, Seoul 05030, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Anatomy & Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Min Soo Kang
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea; Research Institute for Complementary & Alternative Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea.
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Tian HY, Huang BY, Nie HF, Chen XY, Zhou Y, Yang T, Cheng SW, Mei ZG, Ge JW. The Interplay between Mitochondrial Dysfunction and Ferroptosis during Ischemia-Associated Central Nervous System Diseases. Brain Sci 2023; 13:1367. [PMID: 37891735 PMCID: PMC10605666 DOI: 10.3390/brainsci13101367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cerebral ischemia, a leading cause of disability and mortality worldwide, triggers a cascade of molecular and cellular pathologies linked to several central nervous system (CNS) disorders. These disorders primarily encompass ischemic stroke, Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, and other CNS conditions. Despite substantial progress in understanding and treating the underlying pathological processes in various neurological diseases, there is still a notable absence of effective therapeutic approaches aimed specifically at mitigating the damage caused by these illnesses. Remarkably, ischemia causes severe damage to cells in ischemia-associated CNS diseases. Cerebral ischemia initiates oxygen and glucose deprivation, which subsequently promotes mitochondrial dysfunction, including mitochondrial permeability transition pore (MPTP) opening, mitophagy dysfunction, and excessive mitochondrial fission, triggering various forms of cell death such as autophagy, apoptosis, as well as ferroptosis. Ferroptosis, a novel type of regulated cell death (RCD), is characterized by iron-dependent accumulation of lethal reactive oxygen species (ROS) and lipid peroxidation. Mitochondrial dysfunction and ferroptosis both play critical roles in the pathogenic progression of ischemia-associated CNS diseases. In recent years, growing evidence has indicated that mitochondrial dysfunction interplays with ferroptosis to aggravate cerebral ischemia injury. However, the potential connections between mitochondrial dysfunction and ferroptosis in cerebral ischemia have not yet been clarified. Thus, we analyzed the underlying mechanism between mitochondrial dysfunction and ferroptosis in ischemia-associated CNS diseases. We also discovered that GSH depletion and GPX4 inactivation cause lipoxygenase activation and calcium influx following cerebral ischemia injury, resulting in MPTP opening and mitochondrial dysfunction. Additionally, dysfunction in mitochondrial electron transport and an imbalanced fusion-to-fission ratio can lead to the accumulation of ROS and iron overload, which further contribute to the occurrence of ferroptosis. This creates a vicious cycle that continuously worsens cerebral ischemia injury. In this study, our focus is on exploring the interplay between mitochondrial dysfunction and ferroptosis, which may offer new insights into potential therapeutic approaches for the treatment of ischemia-associated CNS diseases.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Xili Lake, Nanshan District, Shenzhen 518000, China;
| | - Bo-Yang Huang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hui-Fang Nie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiang-Yu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China
- Hunan Academy of Traditional Chinese Medicine, Changsha 410208, China
| |
Collapse
|
3
|
Bui TA, Jickling GC, Winship IR. Neutrophil dynamics and inflammaging in acute ischemic stroke: A transcriptomic review. Front Aging Neurosci 2022; 14:1041333. [PMID: 36620775 PMCID: PMC9813499 DOI: 10.3389/fnagi.2022.1041333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Stroke is among the leading causes of death and disability worldwide. Restoring blood flow through recanalization is currently the only acute treatment for cerebral ischemia. Unfortunately, many patients that achieve a complete recanalization fail to regain functional independence. Recent studies indicate that activation of peripheral immune cells, particularly neutrophils, may contribute to microcirculatory failure and futile recanalization. Stroke primarily affects the elderly population, and mortality after endovascular therapies is associated with advanced age. Previous analyses of differential gene expression across injury status and age identify ischemic stroke as a complex age-related disease. It also suggests robust interactions between stroke injury, aging, and inflammation on a cellular and molecular level. Understanding such interactions is crucial in developing effective protective treatments. The global stroke burden will continue to increase with a rapidly aging human population. Unfortunately, the mechanisms of age-dependent vulnerability are poorly defined. In this review, we will discuss how neutrophil-specific gene expression patterns may contribute to poor treatment responses in stroke patients. We will also discuss age-related transcriptional changes that may contribute to poor clinical outcomes and greater susceptibility to cerebrovascular diseases.
Collapse
Affiliation(s)
- Truong An Bui
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Glen C. Jickling
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Neurology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ian R. Winship
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Abstract
Stroke remains a significant unmet clinical need with few treatment options that have a very narrow therapeutic window, thereby causing massive mortality and morbidity in the United States and around the world. Accordingly, finding safe and effective novel treatments with a wider therapeutic window stands as an urgent need in stroke. The progressive inflammation that occurs centrally and peripherally after stroke serves as a unique therapeutic target to retard and even halt the secondary cell death. Stem cell therapy represents a potent approach that can diminish inflammation in both the stroke brain and periphery (eg, spleen), advancing a paradigm shift from a traditionally brain-focused therapy to treating stroke as a neurological disorder with a significant peripheral pathology. The purpose of this review article is to highlight the inflammation-mediated secondary cell death that plagues both brain and spleen in stroke and to evaluate the therapeutic potential of stem cell therapy in dampening these inflammatory responses.
Collapse
Affiliation(s)
- Stefan Anthony
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| | - Dorothy Cabantan
- Michigan State University College of Osteopathic Medicine, 965 Wilson Rd, East Lansing, MI 48824, USA
| | - Molly Monsour
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cesario V. Borlongan
- Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Pacifici F, Rovella V, Pastore D, Bellia A, Abete P, Donadel G, Santini S, Beck H, Ricordi C, Daniele ND, Lauro D, Della-Morte D. Polyphenols and Ischemic Stroke: Insight into One of the Best Strategies for Prevention and Treatment. Nutrients 2021; 13:nu13061967. [PMID: 34201106 PMCID: PMC8229516 DOI: 10.3390/nu13061967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/18/2022] Open
Abstract
Ischemic stroke (IS) is still among the leading causes of death and disability worldwide. The pathogenic mechanisms beyond its development are several and are complex and this is the main reason why a functional therapy is still missed. The beneficial effects of natural compounds against cardiovascular diseases and IS have been investigated for a long time. In this article, we reviewed the association between the most studied polyphenols and stroke protection in terms of prevention, effect on acute phase, and rehabilitation. We described experimental and epidemiological studies reporting the role of flavonols, phenolic acid, and stilbens on ischemic mechanisms leading to stroke. We analyzed the principal animal models used to evaluate the impact of these micronutrients to cerebral blood flow and to molecular pathways involved in oxidative stress and inflammation modulation, such as sirtuins. We reported the most significant clinical trials demonstrated as the persistent use of polyphenols is clinically relevant in terms of the reduction of vascular risk factors for IS, such as Atrial Fibrillation. Interestingly, different kinds of polyphenols provide brain protection by activating different pathways and mechanisms, like inducing antithrombotic effect, such as Honokiol. For this reason, we discussed an appropriate integrative use of them as a possible therapeutic alternative against stroke.
Collapse
Affiliation(s)
- Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Pasquale Abete
- Department of Translational Medical Sciences, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Giulia Donadel
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Silvia Santini
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Heinz Beck
- Campus Principe di Napoli, Università Unipegaso, 80132 Napoli, Italy;
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, 00133 Rome, Italy;
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (F.P.); (V.R.); (D.P.); (A.B.); (N.D.D.); (D.L.)
- Department of Neurology and Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy
- Correspondence: ; Tel.: +1-305-243-4790
| |
Collapse
|
6
|
Roy-O’Reilly MA, Ahnstedt H, Spychala MS, Munshi Y, Aronowski J, Sansing LH, McCullough LD. Aging exacerbates neutrophil pathogenicity in ischemic stroke. Aging (Albany NY) 2020; 12:436-461. [PMID: 31927534 PMCID: PMC6977697 DOI: 10.18632/aging.102632] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 12/23/2019] [Indexed: 05/28/2023]
Abstract
Ischemic stroke is major cause of disability and mortality worldwide, and aging is strong risk factor for poor post-stroke outcome. Neutrophils traffic rapidly to the brain following ischemic stroke, and recent evidence has suggested that aging may alter neutrophil function after tissue injury. In this study, we hypothesize that aging enhances the pro-inflammatory function of neutrophils, directly contributing to the poorer outcomes seen in aging patients. We utilized demographic data and biological specimens from ischemic stroke patients and an experimental mouse model to determine the correlation between age, neutrophil function and stroke outcomes. In ischemic stroke patients, age was associated with increased mortality and morbidity and higher levels of neutrophil-activating cytokines. In mice, aged animals had higher stroke mortality and morbidity, higher levels of neutrophil-activating cytokines and enhanced generation of neutrophil reactive oxygen species compared to young mice. Finally, depletion of neutrophils via a specific monoclonal antibody after ischemic stroke led to long-term benefits in functional outcome in aged male and female animals, with no benefit observed in young. These results demonstrate that aging is associated with augmented neutrophil pathogenicity in ischemic stroke, and that neutrophil-targeted therapies may confer greater benefit in aged subjects.
Collapse
Affiliation(s)
| | - Hilda Ahnstedt
- Department of Neurology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Monica S. Spychala
- Department of Neurology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yashasvee Munshi
- Department of Neurology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jaroslaw Aronowski
- Department of Neurology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Lauren H. Sansing
- Department of Neurology and Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, New Haven, CT 06520, USA
| | - Louise D. McCullough
- Department of Neurology, University of Texas Health Science Center, Houston, TX 77030, USA
| |
Collapse
|
7
|
Akhoundzadeh K, Vakili A, Sameni HR. Bone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice. Basic Clin Neurosci 2019; 10:73-84. [PMID: 31031895 PMCID: PMC6484183 DOI: 10.32598/bcn.9.10.355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 01/25/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) with T3 and mild treadmill exercise can decrease stroke complications in middle-aged mice. Methods: Under laser Doppler flowmetry monitoring, transient focal cerebral ischemia was produced by right Middle Cerebral Artery Occlusion (MCAO) for 45 min followed by 7 days of reperfusion in middle-aged mice. BMSCs (1×105) were injected into the right cerebral ventricle 24 h after MCAO, followed by daily injection of triiodothyronine (T3) (20 μg/100 g/d SC) and 6 days of running on a treadmill. Infarct size, neurological function, apoptotic cells and expression levels of Glial Fibrillary Acidic Protein (GFAP) were evaluated 1 week after stroke. Results: Post-ischemic treatment with BMSCs or with T3 and or mild treadmill exercise alone or in combination did not significantly change neurological function, infarct size, and apoptotic cells 7 days after ischemia in middle-aged mice (P>0.05). However, the expression of GFAP significantly reduced after treatment with BMSCs and or T3 (P<0.01). Conclusion: Our findings indicate that post-stroke treatment BMSCs with exercise and thyroid hormone cannot reverse neuronal damage 7 days after ischemia in middle-aged mice. These findings further support that age is an important variable in stroke treatment
Collapse
Affiliation(s)
- Kobra Akhoundzadeh
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Nursing, School of Nursing & Midwifery, Qom University of Medical Sciences, Qom, Iran
| | - Abedin Vakili
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Reza Sameni
- Nervous System Stems Cells Research Center, Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
8
|
Shi L, Rocha M, Leak RK, Zhao J, Bhatia TN, Mu H, Wei Z, Yu F, Weiner SL, Ma F, Jovin TG, Chen J. A new era for stroke therapy: Integrating neurovascular protection with optimal reperfusion. J Cereb Blood Flow Metab 2018; 38:2073-2091. [PMID: 30191760 PMCID: PMC6282224 DOI: 10.1177/0271678x18798162] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in stroke reperfusion therapies have led to remarkable improvement in clinical outcomes, but many patients remain severely disabled, due in part to the lack of effective neuroprotective strategies. In this review, we show that 95% of published preclinical studies on "neuroprotectants" (1990-2018) reported positive outcomes in animal models of ischemic stroke, while none translated to successful Phase III trials. There are many complex reasons for this failure in translational research, including that the majority of clinical trials did not test early delivery of neuroprotectants in combination with successful reperfusion. In contrast to the clinical trials, >80% of recent preclinical studies examined the neuroprotectant in animal models of transient ischemia with complete reperfusion. Furthermore, only a small fraction of preclinical studies included long-term functional assessments, aged animals of both genders, and models with stroke comorbidities. Recent clinical trials demonstrate that 70%-80% of patients treated with endovascular thrombectomy achieve successful reperfusion. These successes revive the opportunity to retest previously failed approaches, including cocktail drugs that target multiple injury phases and different cell types. It is our hope that neurovascular protectants can be retested in future stroke research studies with specific criteria outlined in this review to increase translational successes.
Collapse
Affiliation(s)
- Ligen Shi
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,2 Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Marcelo Rocha
- 3 Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rehana K Leak
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Jingyan Zhao
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tarun N Bhatia
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Hongfeng Mu
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zhishuo Wei
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fang Yu
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Susan L Weiner
- 4 Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Feifei Ma
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tudor G Jovin
- 3 Department of Neurology, UPMC Stroke Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- 1 Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,5 Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Yang W, Paschen W. Is age a key factor contributing to the disparity between success of neuroprotective strategies in young animals and limited success in elderly stroke patients? Focus on protein homeostasis. J Cereb Blood Flow Metab 2017; 37:3318-3324. [PMID: 28752781 PMCID: PMC5624400 DOI: 10.1177/0271678x17723783] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuroprotection strategies to improve stroke outcome have been successful in the laboratory but not in clinical stroke trials, and thus have come under scrutiny by the medical community. Experimental stroke investigators are therefore under increased pressure to resolve this problem. Acute ischemic stroke represents a severe form of metabolic stress that activates many pathological processes and thereby impairs cellular functions. Traditionally, neuroprotection strategies were designed to improve stroke outcome by interfering with pathological processes triggered by ischemia. However, stroke outcome is also dependent on the brain's capacity to restore cellular functions impaired by ischemia, and this capacity declines with age. It is, therefore, conceivable that this age-dependent decline in the brain's self-healing capacity contributes to the disparity between the success of neuroprotective strategies in young animals, and limited success in elderly stroke patients. Here, prosurvival pathways that restore protein homeostasis impaired by ischemic stress should be considered, because their capacity decreases with increasing age, and maintenance of proteome fidelity is pivotal for cell survival. Boosting such prosurvival pathways pharmacologically to restore protein homeostasis and, thereby, cellular functions impaired by ischemic stress is expected to counterbalance the compromised self-healing capacity of aged brains and thereby help to improve stroke outcome.
Collapse
Affiliation(s)
- Wei Yang
- 1 Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Wulf Paschen
- 1 Laboratory of Molecular Neurobiology, Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,2 Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
10
|
Jiang M, Yu S, Yu Z, Sheng H, Li Y, Liu S, Warner DS, Paschen W, Yang W. XBP1 (X-Box-Binding Protein-1)-Dependent O-GlcNAcylation Is Neuroprotective in Ischemic Stroke in Young Mice and Its Impairment in Aged Mice Is Rescued by Thiamet-G. Stroke 2017; 48:1646-1654. [PMID: 28487326 DOI: 10.1161/strokeaha.117.016579] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/09/2017] [Accepted: 03/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Impaired protein homeostasis induced by endoplasmic reticulum dysfunction is a key feature of a variety of age-related brain diseases including stroke. To restore endoplasmic reticulum function impaired by stress, the unfolded protein response is activated. A key unfolded protein response prosurvival pathway is controlled by the endoplasmic reticulum stress sensor (inositol-requiring enzyme-1), XBP1 (downstream X-box-binding protein-1), and O-GlcNAc (O-linked β-N-acetylglucosamine) modification of proteins (O-GlcNAcylation). Stroke impairs endoplasmic reticulum function, which activates unfolded protein response. The rationale of this study was to explore the potentials of the IRE1/XBP1/O-GlcNAc axis as a target for neuroprotection in ischemic stroke. METHODS Mice with Xbp1 loss and gain of function in neurons were generated. Stroke was induced by transient or permanent occlusion of the middle cerebral artery in young and aged mice. Thiamet-G was used to increase O-GlcNAcylation. RESULTS Deletion of Xbp1 worsened outcome after transient and permanent middle cerebral artery occlusion. After stroke, O-GlcNAcylation was activated in neurons of the stroke penumbra in young mice, which was largely Xbp1 dependent. This activation of O-GlcNAcylation was impaired in aged mice. Pharmacological increase of O-GlcNAcylation before or after stroke improved outcome in both young and aged mice. CONCLUSIONS Our study indicates a critical role for the IRE1/XBP1 unfolded protein response branch in stroke outcome. O-GlcNAcylation is a prosurvival pathway that is activated in the stroke penumbra in young mice but impaired in aged mice. Boosting prosurvival pathways to counterbalance the age-related decline in the brain's self-healing capacity could be a promising strategy to improve ischemic stroke outcome in aged brains.
Collapse
Affiliation(s)
- Meng Jiang
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Shu Yu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Zhui Yu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Huaxin Sheng
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Ying Li
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Shuai Liu
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - David S Warner
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.)
| | - Wulf Paschen
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.).
| | - Wei Yang
- From the Multidisciplinary Neuroprotection Laboratories, Department of Anesthesiology, Duke University Medical Center, Durham, NC (M.J., S.Y., Z.Y., H.S., Y.L., S.L., D.S.W., W.P., W.Y.); Department of Anesthesiology (M.J.) and Department of Critical Care Medicine (Z.Y.), Renmin Hospital of Wuhan University, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Collaborative Innovation Center of Neuroregeneration, Nantong University, China (S.Y.); and Department of Cardiology, The Fifth Central Hospital of Tianjin, China (Y.L.).
| |
Collapse
|
11
|
Li W, Yang S. Targeting oxidative stress for the treatment of ischemic stroke: Upstream and downstream therapeutic strategies. Brain Circ 2016; 2:153-163. [PMID: 30276293 PMCID: PMC6126224 DOI: 10.4103/2394-8108.195279] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/04/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
Excessive oxygen and its chemical derivatives, namely reactive oxygen species (ROS), produce oxidative stress that has been known to lead to cell injury in ischemic stroke. ROS can damage macromolecules such as proteins and lipids and leads to cell autophagy, apoptosis, and necrosis to the cells. This review describes studies on the generation of ROS, its role in the pathogenesis of ischemic stroke, and recent development in therapeutic strategies in reducing oxidative stress after ischemic stroke.
Collapse
Affiliation(s)
- Wenjun Li
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Shaohua Yang
- Center for Neuroscience Discovery, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
12
|
Scheib JL, Höke A. An attenuated immune response by Schwann cells and macrophages inhibits nerve regeneration in aged rats. Neurobiol Aging 2016; 45:1-9. [PMID: 27459920 DOI: 10.1016/j.neurobiolaging.2016.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
Abstract
Although peripheral nerves are capable of regeneration, advanced age decreases the potential for functional recovery after injury. The cellular mechanisms for this are not currently understood. Here, we performed sciatic nerve grafting with young (2 months old) and aged (18 months old) Brown-Norway male rats, in which 1 cm nerve grafts from young or aged rats were sutured into nerves of young or aged rats. Axons were allowed to regenerate until the nerve grafts and distal nerves were harvested at 1, 3, and 7 days and 2 and 6 weeks. At 6 weeks, our data suggested that young nerve grafts supported regeneration better than aged nerve grafts. In addition, myelin debris clearance was inhibited in young nerves when grafted into aged rats, but clearance was faster when aged nerves were grafted into young rats. Further analysis revealed that aged macrophages have delayed migration into injured nerve, and macrophages and Schwann cells from aged rats were less phagocytic for myelin debris in vitro. To understand these impairments, expression levels of pro- and anti-inflammatory cytokines were analyzed at 1 day after injury. Based on these levels, there was not a clear polarization to either an M1 or M2 phenotype; however, expression levels of IL-6, IL-10, CCL2 (MCP1), and Arg-1 were decreased in aged nerves. Taken together, both macrophages and Schwann cells had attenuated responses to nerve injury in aged rats, leading to inefficient clearance of debris and impaired axonal regeneration.
Collapse
Affiliation(s)
- Jami L Scheib
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ahmet Höke
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
Abstract
Danger molecules are the first signals released from dying tissue after stroke. These danger signals bind to receptors on immune cells that will result in their activation and the release of inflammatory and neurotoxic mediators, resulting in amplification of the immune response and subsequent enlargement of the damaged brain volume. The release of danger signals is a central event that leads to a multitude of signals and cascades in the affected and neighbouring tissue, therefore providing a potential target for therapy.
Collapse
|
14
|
Moon GJ, Kim SJ, Cho YH, Ryoo S, Bang OY. Antioxidant effects of statins in patients with atherosclerotic cerebrovascular disease. J Clin Neurol 2014; 10:140-7. [PMID: 24829600 PMCID: PMC4017017 DOI: 10.3988/jcn.2014.10.2.140] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress is involved in the pathophysiological mechanisms of stroke (e.g., atherosclerosis) and brain injury after ischemic stroke. Statins, which inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, have both pleiotropic and low-density lipoprotein (LDL)-lowering properties. Recent trials have shown that high-dose statins reduce the risk of cerebrovascular events. However, there is a paucity of data regarding the changes in the oxidative stress markers in patients with atherosclerotic stroke after statin use. This study evaluated changes in oxidative stress markers after short-term use of a high-dose statin in patients with atherosclerotic stroke. METHODS Rosuvastatin was administered at a dose of 20 mg/day to 99 patients who had suffered an atherosclerotic stroke and no prior statin use. Blood samples were collected before and 1 month after dosing, and the serum levels of four oxidative stress markers-malondialdehyde (MDA), oxidized LDL (oxLDL), protein carbonyl content (PCO), and 8-hydroxy-2'-deoxyguanosine (8-OHdG)-were evaluated to determine the oxidation of MDA and lipids, proteins, and DNA, respectively, at both of those time points. RESULTS The baseline levels and the degrees of reduction after statin use differed among the oxidative stress markers measured. MDA and PCO levels were associated with infarct volumes on diffusion-weighted imaging (r=0.551, p<0.05, and r=0.444, p=0.05, respectively). Statin use decreased MDA and oxLDL levels (both p<0.05) but not the PCO or 8-OHdG level. While the reduction in MDA levels after statin use was not associated with changes in cholesterol, that in oxLDL levels was proportional to the reductions in cholesterol (r=0.479, p<0.01), LDL (r=0.459, p<0.01), and apolipoprotein B (r=0.444, p<0.05). CONCLUSIONS The impact of individual oxidative stress markers differs with time after ischemic stroke, suggesting that different oxidative markers reflect different aspects of oxidative stress. In addition, short-term use of a statin exerts antioxidant effects against lipid peroxidation via lipid-lowering-dependent and -independent mechanisms, but not against protein or DNA oxidation in atherosclerotic stroke patients.
Collapse
Affiliation(s)
- Gyeong Joon Moon
- Medical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea. ; Clinical Research Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - Suk Jae Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yeon Hee Cho
- Clinical Research Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - Sookyung Ryoo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea. ; Samsung Advanced Institute for Health Sciences and Technology, Seoul, Korea
| |
Collapse
|
15
|
Wu XJ, Luo GX, Zeng X, Lan LL, Ning Q, Xu YJ, Zhao JP, Xie JG. Genotoxicity and reduced heat shock protein 70 in human airway smooth muscle cells exposed to cigarette smoke extract. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2013; 33:827-833. [PMID: 24337843 DOI: 10.1007/s11596-013-1206-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 10/25/2013] [Indexed: 10/25/2022]
Abstract
Cigarette smoke is associated with the development of several diseases, such as chronic obstructive pulmonary disease (COPD). The purpose of this study was to investigate genotoxicity and heat shock protein 70 (Hsp70) in human airway smooth muscle cells (HASMCs) exposed to cigarette smoke extract (CSE). HASMCs was exposed to CSE with different doses for 24 h. The level of 8-hydroxydeoxyguanosine (8-OHdG) was determined by using HPLC-ECD, the DNA damage was analyzed by using comet assay, and apoptosis was examined by using Annexin-FITC/PI staining. The production of Hsp70 after CSE stimulation was tested. Results indicated that CSE significantly increased the level of 8-OHdG, DNA damage and cell apoptosis, and reduced the production of Hsp70. In particular, levels of Hsp70 were inversely correlated with 8-OHdG, DNA damage and cell apoptosis. It was concluded that cigarette smoke induced genotoxicity and decreased the production of cell protective protein Hsp70, which may contribute to the development of some airway diseases.
Collapse
Affiliation(s)
- Xiao-Jie Wu
- Department of Respiratory Medicine and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guo-Xiong Luo
- Department of Respiratory Medicine and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xue Zeng
- Department of Respiratory Medicine and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li-Li Lan
- Department of Respiratory Medicine and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qin Ning
- Department of Infectious Disease, Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yong-Jian Xu
- Department of Respiratory Medicine and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Ping Zhao
- Department of Respiratory Medicine and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun-Gang Xie
- Department of Respiratory Medicine and Critical Care Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
16
|
Wagner DC, Bojko M, Peters M, Lorenz M, Voigt C, Kaminski A, Hasenclever D, Scholz M, Kranz A, Weise G, Boltze J. Impact of age on the efficacy of bone marrow mononuclear cell transplantation in experimental stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2012; 4:17. [PMID: 22920434 PMCID: PMC3527344 DOI: 10.1186/2040-7378-4-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 08/21/2012] [Indexed: 12/15/2022]
Abstract
Bone marrow-derived mononuclear cells (BM MNC) have been effectively used to treat experimental stroke. Most of the preclinical trials have been performed in young and healthy laboratory animals, even though age and hypertension are major risk factors for stroke. To determine the influence of age on the properties of BM MNCs after cerebral ischemia, we compared the efficacy of aged and young BM MNC in an in vitro model of cerebral hypoxia and in an adapted in vivo model of stroke. Human BM MNCs were obtained from healthy young or aged donors and either co-cultured with rat hippocampal slices exposed to oxygen glucose deprivation (OGD), or transplanted intravenously 24 h after permanent middle cerebral artery occlusion in aged (18 months) spontaneously hypertensive rats (SHR). Efficacy was examined by quantification of hippocampal cell death, or respectively, by neurofunctional tests and MR investigations. Co-cultivation with young, but not with aged BM MNCs significantly reduced the hippocampal cell death after OGD. Transplantation of both young and old BM MNCs did not reduce functional deficits or ischemic lesion volume after stroke in aged SHR. These results suggest a significant impact of age on the therapeutic efficacy of BM MNCs after cerebral ischemia.
Collapse
|
17
|
Moore TL, Killiany RJ, Pessina MA, Moss MB, Finklestein SP, Rosene DL. Recovery from ischemia in the middle-aged brain: a nonhuman primate model. Neurobiol Aging 2012; 33:619.e9-619.e24. [PMID: 21458887 PMCID: PMC3145025 DOI: 10.1016/j.neurobiolaging.2011.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/30/2011] [Accepted: 02/06/2011] [Indexed: 02/08/2023]
Abstract
Studies of recovery from stroke mainly utilize rodent models and focus primarily on young subjects despite the increased prevalence of stroke with age and the fact that recovery of function is more limited in the aged brain. In the present study, a nonhuman primate model of cortical ischemia was developed to allow the comparison of impairments in young and middle-aged monkeys. Animals were pretrained on a fine motor task of the hand and digits and then underwent a surgical procedure to map and lesion the hand-digit representation in the dominant motor cortex. Animals were retested until performance returned to preoperative levels. To assess the recovery of grasp patterns, performance was videotaped and rated using a scale adapted from human occupational therapy. Results demonstrated that the impaired hand recovers to baseline in young animals in 65-80 days and in middle-aged animals in 130-150 days. However, analysis of grasp patterns revealed that neither group recover preoperative finger thumb grasp patterns, rather they develop compensatory movements.
Collapse
Affiliation(s)
- Tara L Moore
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Kruyt ND, Biessels GJ, DeVries JH, Luitse MJA, Vermeulen M, Rinkel GJE, Vandertop WP, Roos YB. Hyperglycemia in aneurysmal subarachnoid hemorrhage: a potentially modifiable risk factor for poor outcome. J Cereb Blood Flow Metab 2010; 30:1577-87. [PMID: 20628402 PMCID: PMC2949259 DOI: 10.1038/jcbfm.2010.102] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/02/2010] [Accepted: 06/13/2010] [Indexed: 01/04/2023]
Abstract
Hyperglycemia after aneurysmal subarachnoid hemorrhage (aSAH) occurs frequently and is associated with delayed cerebral ischemia (DCI) and poor clinical outcome. In this review, we highlight the mechanisms that cause hyperglycemia after aSAH, and we discuss how hyperglycemia may contribute to poor clinical outcome in these patients. As hyperglycemia is potentially modifiable with intensive insulin therapy (IIT), we systematically reviewed the literature on IIT in aSAH patients. In these patients, IIT seems to be difficult to achieve in terms of lowering blood glucose levels substantially without an increased risk of (serious) hypoglycemia. Therefore, before initiating a large-scale randomized trial to investigate the clinical benefit of IIT, phase II studies, possibly with the help of cerebral blood glucose monitoring by microdialysis, will first have to improve this therapy in terms of both safety and adequacy.
Collapse
Affiliation(s)
- Nyika D Kruyt
- Department of Neurology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Kim SY, Jones TA. Lesion size-dependent synaptic and astrocytic responses in cortex contralateral to infarcts in middle-aged rats. Synapse 2010; 64:659-71. [PMID: 20336630 PMCID: PMC2904857 DOI: 10.1002/syn.20777] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In young adult rats, unilateral lesions of the sensorimotor cortex lead to neuronal structural plasticity and synaptogenesis in the contralateral motor cortex, which is connected to the lesion site by transcallosal fibers. The contralesional neural plasticity varies with lesion size and results from the convergence of denervation-induced reactive plasticity and behavioral asymmetries. It was unknown whether similar effects occur in older animals. Furthermore, the coordination of synaptic responses with that of perisynaptic astrocytes had not been investigated. In this study, middle-aged rats (14-16 months old) were given sham-operations or unilateral ischemic lesions of the sensorimotor cortex. Fifty days later, numerical densities of neurons and synapses and morphological characteristics of astrocytic processes in layer V of the contralesional motor cortex were measured using stereological light and electron microscopy methods. Lesions resulted in behavioral asymmetries, but no significant synapse addition in the contralesional motor cortex. Synapse number per neuron was negatively correlated with lesion size and reduced opposite larger lesions compared with smaller ones. Astrocytic changes were also lesion size-dependent. Astrocytic hypertrophy was observed only after smaller lesions and was associated with greater coverage and greater numbers of synapses. These findings are consistent with those in younger rats indicating an inverse relationship between lesion size and adaptive neuronal restructuring in denervated cortex. However, they indicate that the synaptogenic reaction to this lesion is relatively limited in older animals. Finally, the results indicate that structural plasticity of perisynaptic astrocytes parallels, and could play a role in shaping, synaptic responses to postischemic denervation.
Collapse
Affiliation(s)
- Soo Young Kim
- Institute for Neuroscience, University of Texas at Austin, TX, USA
| | - Theresa A. Jones
- Institute for Neuroscience, University of Texas at Austin, TX, USA
- Department of Psychology, University of Texas at Austin, TX, USA
| |
Collapse
|
20
|
Gillani RL, Tsai SY, Wallace DG, O'Brien TE, Arhebamen E, Tole M, Schwab ME, Kartje GL. Cognitive recovery in the aged rat after stroke and anti-Nogo-A immunotherapy. Behav Brain Res 2010; 208:415-24. [PMID: 20035795 PMCID: PMC2831114 DOI: 10.1016/j.bbr.2009.12.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/08/2009] [Accepted: 12/12/2009] [Indexed: 01/09/2023]
Abstract
We have previously shown that immunotherapy directed against the protein Nogo-A leads to recovery on a skilled forelimb reaching task in rats after sensorimotor cortex stroke, which correlated with axonal and dendritic plasticity. Here we investigated anti-Nogo-A immunotherapy as an intervention to improve performance on a spatial memory task in aged rats after stroke, and whether cognitive recovery was correlated with structural plasticity. Aged rats underwent a unilateral distal permanent middle cerebral artery occlusion and one week later were treated with an anti-Nogo-A or control antibody. Nine weeks post-stroke, treated rats and normal aged rats were tested on the Morris water maze task. Following testing rats were sacrificed and brains processed for the Golgi-Cox method. Hippocampal CA3 and CA1 pyramidal and dentate gyrus granule cells were examined for dendritic length and number of branch segments, and CA3 and CA1 pyramidal cells were examined for spine density and morphology. Anti-Nogo-A immunotherapy given one week following stroke in aged rats improved performance on the reference memory portion of the Morris water maze task. However, this improved performance was not correlated with structural changes in the hippocampal neurons examined. Our finding of improved performance on the Morris water maze in aged rats after stroke and treatment with anti-Nogo-A immunotherapy demonstrates the promising therapeutic potential for anti-Nogo-A immunotherapy to treat cognitive deficits after stroke. The identification of sites of axonal and dendritic plasticity in the aged brain after stroke and treatment with anti-Nogo-A immunotherapy is still under investigation.
Collapse
Affiliation(s)
- Rebecca L Gillani
- Neuroscience Program, Loyola University Chicago, Maywood, IL 60153, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Patients with acute ischemic stroke frequently test positive for hyperglycemia, which is associated with a poor clinical outcome. This association between poor glycemic control and an unfavorable prognosis is particularly evident in patients with persistent hyperglycemia, patients without a known history of diabetes mellitus, and patients with cortical infarction. To date, however, only one large clinical trial has specifically investigated the effect of glycemic control on stroke outcome. This trial failed to show a clinical benefit, but had several limitations. Despite a lack of clinical evidence supporting the use of glycemic control in the treatment of patients with stroke, international guidelines recommend treating this subset of critically ill patients for hyperglycemia in the hospital setting. This treatment regime is, however, particularly challenging in patients with stroke, and is associated with an increased risk of the patient developing hypoglycemia. Here we review the available evidence linking hyperglycemia to a poor clinical outcome in patients with ischemic stroke. We highlight the pathophysiological mechanisms that might underlie the deleterious effects of hyperglycemia on acute stroke prognosis and systematically review the literature concerning tight glycemic control after stroke. Finally, we provide directions on the use of insulin treatment strategies to control hyperglycemia in this patient group.
Collapse
|
22
|
Hou Y, Wei H, Luo Y, Liu G. Modulating expression of brain heat shock proteins by estrogen in ovariectomized mice model of aging. Exp Gerontol 2009; 45:323-30. [PMID: 19836443 DOI: 10.1016/j.exger.2009.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 09/25/2009] [Accepted: 10/09/2009] [Indexed: 11/26/2022]
Abstract
Heat shock proteins (HSPs) serve as molecular chaperones and endogenous cytoprotective factors. Two of the well-studied HSPs, HSP70, and HSP27 can be significantly induced in many areas of brain by a variety of stressors. A decrease in expression of brain HSPs has been documented in aged brain. Estrogen is well known as a neuroprotective hormone, and it has been reported that estrogen can regulate HSP70 and HSP27 expression in neuronal cells. In this study, the relationship between estrogen and heat stress-induced brain HSPs expression in young and aged ovariectomized (OVX) mice was investigated. Our results show that heat stress-induced levels of HSP70 proteins and mRNA transcripts was significantly lower in brain of aged (12 month) OVX mice, compared with young (2 month) OVX mice group. Estrogen supplementation (17beta-estradiol 0.5mg/kg for 7 days) restored heat stress-induced brain HSP70 expression and attenuated heat stress-induced brain DNA fragmentation, caspase 3 activation and mitochondrial leakage of cytochrome c and AIF in OVX mice. These results suggest that estrogen deficiency during aging down-regulates heat stress-induced brain HSP70 expression, which reveals a previously unknown link between estrogen deficiency and stress response elements.
Collapse
Affiliation(s)
- Yan Hou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
23
|
Cloete T, Thantsha M, Maluleke M, Kirkpatrick R. The antimicrobial mechanism of electrochemically activated water againstPseudomonas aeruginosaandEscherichia colias determined by SDS-PAGE analysis. J Appl Microbiol 2009; 107:379-84. [DOI: 10.1111/j.1365-2672.2009.04233.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Wang F, Feng M, Xu P, Xiao H, Niu P, Yang X, Bai Y, Peng Y, Yao P, Tan H, Tanguay RM, Wu T. The level of Hsp27 in lymphocytes is negatively associated with a higher risk of lung cancer. Cell Stress Chaperones 2009; 14:245-51. [PMID: 18800238 PMCID: PMC2728259 DOI: 10.1007/s12192-008-0078-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/28/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022] Open
Abstract
Heat shock proteins (Hsps) can protect cells, organs, and whole organisms against damage caused by abnormal environmental hazards. Some studies have reported that lymphocyte Hsps may serve as biomarkers for evaluating disease status and exposure to environmental stresses; however, few epidemiologic studies have examined the associations between lymphocyte Hsps levels and lung cancer risk. We examined lymphocyte levels of Hsp27 and Hsp70 in 263 lung cancer cases and age- and gender-matched cancer-free controls by flow cytometry. Multivariate logistic regression models were used to estimate the association between lymphocyte Hsps levels and lung cancer risk. Our results showed that Hsp27 levels were significantly lower in lung cancer cases than in controls (16.5 vs 17.8 mean fluorescence intensity, P < 0.001). This was not observed for Hsp70 levels. Further stratification analysis revealed that lymphocyte Hsp27 levels were negatively associated with lung cancer risk especially in males and heavy smokers. There was a statistical trend of low odd ratios (95% confidence intervals) and upper tertile levels of Hsp27 [1.000, 0.904 (0.566-1.444) and 0.382 (0.221-0.658, P (trend) = 0.001) in males and 1.000, 0.9207 (0.465-1.822) and 0.419 (0.195-0.897, P (trend) = 0.036) in heavy smokers] after adjustment for confounding factors. These results suggest that lower lymphocyte Hsp27 levels might be associated with an increased risk of lung cancer. Our findings need to be validated in a large prospective study.
Collapse
Affiliation(s)
- Feng Wang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, 2nd Building, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 People’s Republic of China
| | - Maohui Feng
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, 2nd Building, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 People’s Republic of China
- Department of Oncology, Zhongnan Hospital of Wuhan University, 169 Donghu Rd, Wuhan, 430071 China
| | - Ping Xu
- Department of Oncology, Wugang Staff-Worker Hospital, 32 Qinghua Rd, Wuhan, 430085 China
| | - Han Xiao
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, 2nd Building, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 People’s Republic of China
| | - Piye Niu
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, 2nd Building, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 People’s Republic of China
| | - Xiaobo Yang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, 2nd Building, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 People’s Republic of China
| | - Yun Bai
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, 2nd Building, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 People’s Republic of China
| | - Ying Peng
- Department of Oncology, Wugang Staff-Worker Hospital, 32 Qinghua Rd, Wuhan, 430085 China
| | - Pinfang Yao
- Cancer Institute, Hubei Cancer Hospital, 116 Zhuodaoquan Rd., Wuhan, 430030 China
| | - Hao Tan
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, 2nd Building, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 People’s Republic of China
| | - Robert M. Tanguay
- Laboratory of Cellular and Developmental Genetics, Department of Medicine, Faculty of Medicine, and PROTEO, Pavillon C.E. Marchand, Université Laval, Québec, Canada G1V 0A6
| | - Tangchun Wu
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, 2nd Building, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, Hubei 430030 People’s Republic of China
| |
Collapse
|
25
|
Dobkin BH. Curiosity and cure: translational research strategies for neural repair-mediated rehabilitation. Dev Neurobiol 2007; 67:1133-47. [PMID: 17514711 PMCID: PMC4099053 DOI: 10.1002/dneu.20514] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clinicians who seek interventions for neural repair in patients with paralysis and other impairments may extrapolate the results of cell culture and rodent experiments into the framework of a preclinical study. These experiments, however, must be interpreted within the context of the model and the highly constrained hypothesis and manipulation being tested. Rodent models of repair for stroke and spinal cord injury offer examples of potential pitfalls in the interpretation of results from developmental gene activation, transgenic mice, endogeneous neurogenesis, cellular transplantation, axon regeneration and remyelination, dendritic proliferation, activity-dependent adaptations, skills learning, and behavioral testing. Preclinical experiments that inform the design of human trials ideally include a lesion of etiology, volume and location that reflects the human disease; examine changes induced by injury and by repair procedures both near and remote from the lesion; distinguish between reactive molecular and histologic changes versus changes critical to repair cascades; employ explicit training paradigms for the reacquisition of testable skills; correlate morphologic and physiologic measures of repair with behavioral measures of task reacquisition; reproduce key results in more than one laboratory, in different strains or species of rodent, and in a larger mammal; and generalize the results across several disease models, such as axonal regeneration in a stroke and spinal cord injury platform. Collaborations between basic and clinical scientists in the development of translational animal models of injury and repair can propel experiments for ethical bench-to-bedside therapies to augment the rehabilitation of disabled patients.
Collapse
Affiliation(s)
- Bruce H Dobkin
- Department of Neurology, Reed Neurologic Research Center, University of California Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
26
|
Han HS, Yenari MA. Effect on gene expression of therapeutic hypothermia in cerebral ischemia. FUTURE NEUROLOGY 2007. [DOI: 10.2217/14796708.2.4.435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Therapeutic hypothermia has gained considerable interest, given that it appears to improve neurological outcomes in patients who have suffered cardiac arrest. In spite of its remarkable beneficial effect, the mechanism of protection by brain cooling is still unclear. Hypothermia is known to alter gene expression; thus, gene profiling may help to identify relevant mechanisms of neuroprotection. Recent studies have demonstrated that brain ischemia-induced gene expression is modulated by hypothermia, but the mechanism of hypothermic gene regulation is quite diverse. Hypothermia can alter transcription factors, leading to changes in gene and protein expression. Enhanced or reduced mRNA stability can also influence gene transcription. This review will summarize reports of altered gene expression following hypothermic treatment in brain ischemia.
Collapse
Affiliation(s)
- Hyung Soo Han
- Assistant Professor Kyungpook National University School of Medicine, Department of Physiology, 101 Dongin 2 Ga, Jung Gu, Daegu, 700–422, Korea
| | - Midori A Yenari
- Associate Professor University of California, San Francisco, Department of Neurology, Neurology (127) VAMC 4150 Clement St, San Francisco, CA 94121, USA
| |
Collapse
|
27
|
Rumora L, Lovrić J, Sairam MR, Maysinger D. Impairments of heat shock protein expression and MAPK translocation in the central nervous system of follitropin receptor knockout mice. Exp Gerontol 2007; 42:619-28. [PMID: 17470386 DOI: 10.1016/j.exger.2007.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 02/20/2007] [Accepted: 03/06/2007] [Indexed: 11/16/2022]
Abstract
The central nervous system is exposed to the chronic oxidative stress during aging when the endogenous defence weakens and the load of reactive oxygen species enhances. Sex hormones and heat shock proteins (Hsps) participate in these responses to stress. Their regulation is disturbed in aging. We assessed the expression of Hsps in hippocampus and cortex of follitropin receptor knockout (FORKO) mice, known to exhibit gender and age-dependent imbalance in sex steroids and gonadotropins. These imbalances could contribute to an impaired regulation of Hsps thereby increasing the risk of developing neurodegenerative disorders. Our study shows that, in the hippocampus the expression of Hsp70 and Hsp25 was reduced in 20-month-old FORKO mice. However, in the cortex both Hsps were significantly down regulated only in elderly females. There is a well-established co-regulation between Hsps and mitogen-activated protein kinases (MAPKs). Significant, gender-specific impairments in the translocation of phosphorylated ERK and JNK were found in the CNS structures in aged FORKO mice. Our results suggest that hormonal imbalances lead to a disturbed subcellular distribution of activated MAPKs which contribute to the impairments of signal transduction networks maintaining normal physiological functions in the cortex and hippocampus that are associated with neurodegenerative changes in aging.
Collapse
Affiliation(s)
- Lada Rumora
- Department of Medical Biochemistry and Haematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Domagojeva 2, Zagreb, Croatia
| | | | | | | |
Collapse
|
28
|
Li S, Carmichael ST. Growth-associated gene and protein expression in the region of axonal sprouting in the aged brain after stroke. Neurobiol Dis 2006; 23:362-73. [PMID: 16782355 DOI: 10.1016/j.nbd.2006.03.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2005] [Revised: 02/27/2006] [Accepted: 03/31/2006] [Indexed: 01/30/2023] Open
Abstract
Aged individuals exhibit reduced functional recovery after stroke. We examined the expression profile in aged animals of a recently identified group of growth-associated genes that underlies post-stroke axonal sprouting in the young adult. Basal levels of most growth-promoting genes are higher in aged cortex compared with young adult, and are further induced after stroke. Compared with the young adult, these genes are induced at later time points after stroke. For growth-inhibitory molecules, myelin-associated glycoprotein and ephrin A5 are uniquely induced in the aged brain; chondroitin sulfate proteoglycans and oligodendrocyte myelin glycoprotein are induced at earlier time points; and Nogo-A, semaphorin IIIa and NG2 decline in aged vs. young adult after stroke. The aged brain does not simply have a reduction in growth-associated molecules after stroke, but a completely unique molecular profile of post-stroke axonal sprouting.
Collapse
Affiliation(s)
- Songlin Li
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
29
|
Visnyei K, Tatsukawa KJ, Erickson RI, Simonian S, Oknaian N, Carmichael ST, Kornblum HI. Neural progenitor implantation restores metabolic deficits in the brain following striatal quinolinic acid lesion. Exp Neurol 2006; 197:465-74. [PMID: 16310773 DOI: 10.1016/j.expneurol.2005.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/10/2005] [Accepted: 10/13/2005] [Indexed: 01/10/2023]
Abstract
Neural progenitor transplantation is a potential treatment for neurodegenerative diseases, including Huntington's disease (HD). In the current study, we tested the potential of rat embryonic neural progenitors expanded in vitro as therapy in the rat quinolinic acid-lesioned striatum, a model that demonstrates some of the pathological features of HD. We used positron emission tomography (PET) to demonstrate that the intrastriatal injection of cultured rat neural progenitors results in improved metabolic function in the striatum and overlying cortex when compared to media-injected controls. Transplanted progenitors were capable of surviving, migrating long distances and differentiating into neurons and glia. The cortices of transplanted animals contained greater numbers of neurons in regions that had shown metabolic improvement. However, histological analysis revealed that only a small fraction of these increased neurons could be accounted for by engrafted cells, indicating that the metabolic sparing was likely the result of a trophic action of the transplanted cells on the host. Behavioral testing of the implanted animals did not reveal improvement in apomorphine-induced rotation. These data demonstrate that progenitor cell implantation results in enhanced metabolic function and sparing of neuron number, but that these functions do not necessarily result in the restoration of complex circuitry.
Collapse
Affiliation(s)
- Koppany Visnyei
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, Liu X, Wu H, Carmichael ST. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 2006; 26:1269-74. [PMID: 16436614 PMCID: PMC6674578 DOI: 10.1523/jneurosci.4480-05.2006] [Citation(s) in RCA: 305] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 12/09/2005] [Accepted: 12/14/2005] [Indexed: 11/21/2022] Open
Abstract
Erythropoietin (EPO) is the principal growth factor regulating the production of red blood cells. Recent studies demonstrated that exogenous EPO acts as a neuroprotectant and regulates neurogenesis. Using a genetic approach, we evaluate the roles of endogenous EPO and its classical receptor (EPOR) in mammalian neurogenesis. We demonstrate severe and identical embryonic neurogenesis defects in animals null for either the Epo or EpoR gene, suggesting that the classical EPOR is essential for EPO action during embryonic neurogenesis. Furthermore, by generating conditional EpoR knock-down animals, we demonstrate that brain-specific deletion of EpoR leads to significantly reduced cell proliferation in the subventricular zone and impaired post-stroke neurogenesis. EpoR conditional knockdown leads to a specific deficit in post-stroke neurogenesis through impaired migration of neuroblasts to the peri-infarct cortex. Our results suggest that both EPO and EPOR are essential for early embryonic neural development and that the classical EPOR is important for adult neurogenesis and for migration of regenerating neurons during post-injury recovery.
Collapse
|
31
|
Abstract
Rodent stroke models provide the experimental backbone for the in vivo determination of the mechanisms of cell death and neural repair, and for the initial testing of neuroprotective compounds. Less than 10 rodent models of focal stroke are routinely used in experimental study. These vary widely in their ability to model the human disease, and in their application to the study of cell death or neural repair. Many rodent focal stroke models produce large infarcts that more closely resemble malignant and fatal human infarction than the average sized human stroke. This review focuses on the mechanisms of ischemic damage in rat and mouse stroke models, the relative size of stroke generated in each model, and the purpose with which focal stroke models are applied to the study of ischemic cell death and to neural repair after stroke.
Collapse
Affiliation(s)
- S Thomas Carmichael
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| |
Collapse
|
32
|
Guzhova I, Margulis B. Hsp70 Chaperone as a Survival Factor in Cell Pathology. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 254:101-49. [PMID: 17147998 DOI: 10.1016/s0074-7696(06)54003-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heat shock protein Hsp70 is implicated in the mechanism of cell reaction to a variety of cytotoxic factors. The protective function of Hsp70 is related to its ability to promote folding of nascent polypeptides and to remove denatured proteins. Many types of cancer cells contain high amounts of Hsp70, whose protective capacity may pose a problem for therapy in oncology. Hsp70 was shown to be expressed on the surface of cancer cells and to participate in the presentation of tumor antigens to immune cells. Therefore, the chaperone activity of Hsp70 is an important factor that should be taken into consideration in cancer therapy. The protective role of Hsp70 is also evident in neuropathology. Many neurodegenerative processes are associated with the accumulation of insoluble aggregates of misfolded proteins in neural cells. These aggregates hamper intracellular transport, inhibit metabolism, and activate apoptosis through diverse pathways. The increase of Hsp70 content results in the reduction of aggregate size and number and ultimately enhances cell viability.
Collapse
Affiliation(s)
- Irina Guzhova
- Laboratory of Cell Protection Mechanisms, Institute of Cytology, Russian Academy of Science, St Petersburg, Russia
| | | |
Collapse
|