1
|
Gomez-Pinilla F, Thapak P. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition. Free Radic Biol Med 2024; 220:43-55. [PMID: 38677488 PMCID: PMC11144461 DOI: 10.1016/j.freeradbiomed.2024.04.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exercise has the unique aptitude to benefit overall health of body and brain. Evidence indicates that the effects of exercise can be saved in the epigenome for considerable time to elevate the threshold for various diseases. The action of exercise on epigenetic regulation seems central to building an "epigenetic memory" to influence long-term brain function and behavior. As an intrinsic bioenergetic process, exercise engages the function of the mitochondria and redox pathways to impinge upon molecular mechanisms that regulate synaptic plasticity and learning and memory. We discuss how the action of exercise uses mechanisms of bioenergetics to support a "epigenetic memory" with long-term implications for neural and behavioral plasticity. This information is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
2
|
Charrier M, Lumineau S, George I, Meurisse M, Georgelin M, Palme R, Angelier F, Coustham V, Nicolle C, Bertin A, Darmaillacq AS, Dickel L, Guémené D, Calandreau L, Houdelier C. Maternal stress effects across generations in a precocial bird. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231826. [PMID: 39205998 PMCID: PMC11349446 DOI: 10.1098/rsos.231826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 09/04/2024]
Abstract
Prenatal maternal stress (PMS) is known to shape the phenotype of the first generation offspring (F1) but according to some studies, it could also shape the phenotype of the offspring of the following generations. We previously showed in the Japanese quail that PMS increased the emotional reactivity of F1 offspring in relation to (i) a variation in the levels of some histone post-translational modification (H3K27me3) in their brains and (ii) a modulation of the hormonal composition of the eggs from which they hatched. Here, we wondered whether PMS could also influence the behaviour of the second (F2) and third (F3) generation offspring due to the persistence of the specific marks we identified. Using a principal component analysis, we found that PMS influenced F2 and F3 quail profiles with subtle differences between generations. It increased F2 neophobia, F3 fearfulness and F3 neophobia but only in females. Interestingly, we did not find any variations in the level of histone post-translational modification in F3 brains and we observed inconsistent modulations of androstenedione levels in F1 and F2 eggs. Although they may vary over generations, our results demonstrate that PMS can have phenotypical effects into the third generation.
Collapse
Affiliation(s)
- Marion Charrier
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
- SYSAAF, Centre INRAE Val de Loire, 37380 Nouzilly, France
| | - Sophie Lumineau
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| | - Isabelle George
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| | - Maryse Meurisse
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Marion Georgelin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-LRU, UMR 7372, 79360 Villiers en Bois, France
| | - Vincent Coustham
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, NUMEA, 64310 Saint-Pée-sur-Nivelle, France
| | - Céline Nicolle
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| | - Aline Bertin
- CNRS, IFCE, INRAE, Université de Tours, PRC, 37380 Nouzilly, France
| | - Anne-Sophie Darmaillacq
- Normandie University, UNICAEN, University of Rennes, CNRS, EthoS (Éthologie animale et humaine), UMR 6552, 14000 Caen, France
| | - Ludovic Dickel
- Normandie University, UNICAEN, University of Rennes, CNRS, EthoS (Éthologie animale et humaine), UMR 6552, 14000 Caen, France
| | - Daniel Guémené
- SYSAAF, Centre INRAE Val de Loire, 37380 Nouzilly, France
- INRAE, Université de Tours, BOA, 37380 Nouzilly, France
| | | | - Cécilia Houdelier
- Univ Rennes, CNRS, Normandie Univ, EthoS (Éthologie animale et humaine), UMR 6552, Rennes, France
| |
Collapse
|
3
|
Raman S, Ikutame D, Okura K, Matsuka Y. Targeted Therapy for Orofacial Pain: A Novel Perspective for Precision Medicine. J Pers Med 2023; 13:jpm13030565. [PMID: 36983746 PMCID: PMC10057163 DOI: 10.3390/jpm13030565] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Orofacial pain (OFP) is a dental specialty that includes the diagnosis, management and treatment of disorders of the jaw, mouth, face, head and neck. Evidence-based understanding is critical in effectively treating OFPs as the pathophysiology of these conditions is multifactorial. Since OFP impacts the quality of life of the affected individuals, treating patients successfully is of the utmost significance. Despite the therapeutic choices available, treating OFP is still quite challenging, owing to inter-patient variations. The emerging trends in precision medicine could probably lead us to a paradigm shift in effectively managing the untreatable long-standing pain conditions. Precision medicine is designed based on the patient's genetic profile to meet their needs. Several significant relationships have been discovered based on the genetics and genomics of pain in the past, and some of the notable targets are discussed in this review. The scope of this review is to discuss preclinical and clinical trials that include approaches used in targeted therapy for orofacial pain. Future developments in pain medicine should benefit from current trends in research into novel therapeutic approaches.
Collapse
Affiliation(s)
- Swarnalakshmi Raman
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Daisuke Ikutame
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Kazuo Okura
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| | - Yoshizo Matsuka
- Department of Stomatognathic Function and Occlusal Reconstruction, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8504, Japan
| |
Collapse
|
4
|
Kefayati F, Karimi Babaahmadi A, Mousavi T, Hodjat M, Abdollahi M. Epigenotoxicity: a danger to the future life. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:382-411. [PMID: 36942370 DOI: 10.1080/10934529.2023.2190713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Environmental toxicants can regulate gene expression in the absence of DNA mutations via epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs' (ncRNAs). Here, all three epigenetic modifications for seven important categories of diseases and the impact of eleven main environmental factors on epigenetic modifications were discussed. Epigenetic-related mechanisms are among the factors that could explain the root cause of a wide range of common diseases. Its overall impression on the development of diseases can help us diagnose and treat diseases, and besides, predict transgenerational and intergenerational effects. This comprehensive article attempted to address the relationship between environmental factors and epigenetic modifications that cause diseases in different categories. The studies main gap is that the precise role of environmentally-induced epigenetic alterations in the etiology of the disorders is unknown; thus, still more well-designed researches need to be accomplished to fill this gap. The present review aimed to first summarize the adverse effect of certain chemicals on the epigenome that may involve in the onset of particular disease based on in vitro and in vivo models. Subsequently, the possible adverse epigenetic changes that can lead to many human diseases were discussed.
Collapse
Affiliation(s)
- Farzaneh Kefayati
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atoosa Karimi Babaahmadi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Taraneh Mousavi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hodjat
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Evaluation of Global DNA Methylation and Gene Expression of Izumo1 and Izumo1r in Gonads after High- and Low-Dose Radiation in Neonatal Mice. BIOLOGY 2021; 10:biology10121270. [PMID: 34943185 PMCID: PMC8698457 DOI: 10.3390/biology10121270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022]
Abstract
The intergenerational effects from chronic low-dose exposure are matters of concern. It is thus important to elucidate the radiation-induced effects of germ cell maturation, fertilization and embryonic development. It is well known that DNA methylation levels in CpG sites in gametes are reprogrammed in stages during their maturity. Furthermore, the binding of Izumo on the surface of sperm and Juno on the surface of oocytes is essential for fertilization. Thus, there is a possibility that these genes are useful indicators to evaluate fertility in mice after irradiation exposure. Therefore, in this study, we analyzed global DNA methylation patterns in the testes and gene expression of Izumo1 and Izumo1r (Juno) in the gonads of mice after neonatal acute high-dose ionizing radiation (HDR) and chronic low-dose ionizing radiation (LDR). One-week-old male and female mice were irradiated with a total dose of 4 Gy, with acute HDR at 7 days at a dose rate of 30 Gy/h and LDR continuously at a dose rate of 6 mGy/h from 7 to 35 days. Their gonads were subsequently analyzed. The results of global DNA methylation patterns in the testes showed that methylation level increased with age in the control group, the LDR group maintained its DNA methylation level, and the HDR group showed decreased DNA methylation levels with age. In the control group, the gene expression level of Izumo1 in the testis did not show age-related changes, although there was high expression at 100 days of age. However, in the LDR group, the expression level recovered after the end of irradiation, while it remained low regardless of age in the HDR group. Conversely, gene expression of Izumo1r (Izumo1 receptor) in the ovary decreased with age in the control group. Although the gene expression of Izumo1r decreased with age in the LDR group, it remained low in the HDR group. Our results indicate that LDR can induce different DNA methylation patterns, and both high- and low-dose radiation before sexual maturity might affect gametogenesis and fertility.
Collapse
|
6
|
Sari E, Moilanen M, Sommerseth HL. Transgenerational health effects of in utero exposure to economic hardship: Evidence from preindustrial Southern Norway. ECONOMICS AND HUMAN BIOLOGY 2021; 43:101060. [PMID: 34509788 DOI: 10.1016/j.ehb.2021.101060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
We studied whether in utero exposure to economic hardship during a grandmother's pregnancy has a transgenerational effect on her grandchildren's health condition. We used an individual-level three-generation data set covering people born between 1734 and 1840 in the municipality of Rendalen in Norway. We found a culling effect in which grandchildren whose grandmothers gave birth in years of economic hardship lived approximately ten years longer than grandchildren whose mothers were born in years of economic well-being. This impact was only observed among the grandmothers who belong to the lowest social classes. Our results also showed that in higher social classes, economic hardship during a grandmother's pregnancy deteriorated her grandchildren's health by "scarring" the mother's health.
Collapse
Affiliation(s)
- Emre Sari
- School of Business and Economics, Faculty of Biosciences Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Mikko Moilanen
- School of Business and Economics, Faculty of Biosciences Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.
| | - Hilde Leikny Sommerseth
- Department of Archaeology, History, Religious Studies and Theology, Faculty of Humanities Social Sciences and Education, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
7
|
Rowlands A, Juergensen EC, Prescivalli AP, Salvante KG, Nepomnaschy PA. Social and Biological Transgenerational Underpinnings of Adolescent Pregnancy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212152. [PMID: 34831907 PMCID: PMC8620033 DOI: 10.3390/ijerph182212152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/24/2022]
Abstract
Adolescent pregnancy (occurring < age 20) is considered a public health problem that creates and perpetuates inequities, affecting not only women, but societies as a whole globally. The efficacy of current approaches to reduce its prevalence is limited. Most existing interventions focus on outcomes without identifying or addressing upstream social and biological causes. Current rhetoric revolves around the need to change girls' individual behaviours during adolescence and puberty. Yet, emerging evidence suggests risk for adolescent pregnancy may be influenced by exposures taking place much earlier during development, starting as early as gametogenesis. Furthermore, pregnancy risks are determined by complex interactions between socio-structural and ecological factors including housing and food security, family structure, and gender-based power dynamics. To explore these interactions, we merge three complimentary theoretical frameworks: "Eco-Social", "Life History" and "Developmental Origins of Health and Disease". We use our new lens to discuss social and biological determinants of two key developmental milestones associated with age at first birth: age at girls' first menstrual bleed (menarche) and age at first sexual intercourse (coitarche). Our review of the literature suggests that promoting stable and safe environments starting at conception (including improving economic and social equity, in addition to gender-based power dynamics) is paramount to effectively curbing adolescent pregnancy rates. Adolescent pregnancy exacerbates and perpetuates social inequities within and across generations. As such, reducing it should be considered a key priority for public health and social change agenda.
Collapse
Affiliation(s)
- Amanda Rowlands
- Maternal and Child Health Laboratory and Crawford Laboratory of Evolutionary Studies, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Emma C Juergensen
- Maternal and Child Health Laboratory and Crawford Laboratory of Evolutionary Studies, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ana Paula Prescivalli
- Maternal and Child Health Laboratory and Crawford Laboratory of Evolutionary Studies, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Katrina G Salvante
- Maternal and Child Health Laboratory and Crawford Laboratory of Evolutionary Studies, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Pablo A Nepomnaschy
- Maternal and Child Health Laboratory and Crawford Laboratory of Evolutionary Studies, Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
8
|
Zaidan H, Galiani D, Gaisler-Salomon I. Pre-reproductive stress in adolescent female rats alters oocyte microRNA expression and offspring phenotypes: pharmacological interventions and putative mechanisms. Transl Psychiatry 2021; 11:113. [PMID: 33547270 PMCID: PMC7865076 DOI: 10.1038/s41398-021-01220-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/31/2022] Open
Abstract
Pre-reproductive stress (PRS) to adolescent female rats alters anxiogenic behavior in first (F1)- and second-generation (F2) offspring and increases mRNA expression of corticotropin-releasing factor receptor type 1 (Crhr1) in oocytes and in neonate offspring brain. Here, we ask whether the expression of Crhr1 and Crhr1-targeting microRNA is altered in brain, blood, and oocytes of exposed females and in the brain of their neonate and adult F1 and F2 offspring. In addition, we inquire whether maternal post-stress drug treatment reverses PRS-induced abnormalities in offspring. We find that PRS induces a selective increase in Crhr1-targeting mir-34a and mir-34c in blood and oocytes, while non-Crhr1 microRNA molecules remain unaltered. PRS induces similar microRNA changes in prefrontal cortex of F1 and F2 neonates. In adult animals, cortical Crhr1, but not mir-34, expression is affected by both maternal and direct stress exposure. Post-PRS fluoxetine (FLX) treatment increases pup mortality, and both FLX and the Crhr1 antagonist NBI 27914 reverse some of the effects of PRS and also have independent effects on F1 behavior and gene expression. PRS also alters behavior as well as gene and miRNA expression patterns in paternally derived F2 offspring, producing effects that are different from those previously found in maternally derived F2 offspring. These findings extend current knowledge on inter- and trans-generational transfer of stress effects, point to microRNA changes in stress-exposed oocytes as a potential mechanism, and highlight the consequences of post-stress pharmacological interventions in adolescence.
Collapse
Affiliation(s)
- Hiba Zaidan
- grid.18098.380000 0004 1937 0562School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Dalia Galiani
- grid.13992.300000 0004 0604 7563Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Gaisler-Salomon
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel.
| |
Collapse
|
9
|
Prakash J, Chatterjee K, Shankar S. Does application of complexity theory simplify concepts of psychiatry: Analogies and insights. Ind Psychiatry J 2021; 30:18-22. [PMID: 34483519 PMCID: PMC8395535 DOI: 10.4103/ipj.ipj_37_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
Scientific curiosity has not been able to explain the cause of psychiatric illness based on primarily biological or social paradigm. Available literatures were explored to understand causality of psychiatric illness from perspective of physics. Theory of complexity and other relevant theories were extrapolated to address these questions. Mental illness appeared to be a complex interplay of reductionism and emergentism, genetic and epigenetics, stress and the vulnerability or the core and the periphery. Mental illness displayed complex interaction between biological trait and environmental state.
Collapse
Affiliation(s)
- Jyoti Prakash
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - K Chatterjee
- Department of Psychiatry, Armed Forces Medical College, Pune, Maharashtra, India
| | - S Shankar
- Consultant Rheumatologist and Clinical Immunologist, O/o DGAFMS, New Delhi, India
| |
Collapse
|
10
|
Goli P, Yazdi M, Poursafa P, Kelishadi R. Intergenerational influence of paternal physical activity on the offspring's brain: A systematic review and meta-analysis. Int J Dev Neurosci 2020; 81:10-25. [PMID: 33252826 DOI: 10.1002/jdn.10081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND It is well established that parents can influence their offspring's neurodevelopment. It is shown that paternal environment and lifestyle is beneficial for the progeny's fitness and might affect their metabolic mechanisms; however, the effects of paternal exercise on brain in the offspring have not been explored in detail. OBJECTIVE This study aims to review the impact of paternal physical exercise on memory and learning, neuroplasticity, as well as DNA methylation levels in the offspring's hippocampus. STUDY DESIGN In this systematic review and meta-analysis, electronic literature search was conducted in databases including PubMed, Scopus, and Web of Science. Eligible studies were those with an experimental design, including an exercise intervention arm, with assessment of any type of memory function, learning ability, or any type of brain plasticity as the outcome measures. Standardized mean difference (SMD) and 95% confidence intervals (CI) were computed as effect size. RESULTS The systematic review revealed the important role of environmental enrichment in the behavioral development of next generation. Also, offspring of exercised fathers displayed higher levels of memory ability, and lower level of brain-derived neurotrophic factor. A significant effect of paternal exercise on the hippocampal volume was also reported in the few available studies. CONCLUSION These results suggest an intergenerational effect of paternal physical activity on cognitive benefit, which may be associated with hippocampal epigenetic programming in offspring. However, the biological mechanisms of this modulation remain to be determined.
Collapse
Affiliation(s)
- Parvin Goli
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Yazdi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parnian Poursafa
- Cellular and Molecular Biology Department, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Roya Kelishadi
- Pediatrics Department, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
Depeux C, Lemaître JF, Moreau J, Dechaume-Moncharmont FX, Laverre T, Pauhlac H, Gaillard JM, Beltran-Bech S. Reproductive senescence and parental effects in an indeterminate grower. J Evol Biol 2020; 33:1256-1264. [PMID: 32574391 DOI: 10.1111/jeb.13667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Reproductive senescence is the decrease of reproductive performance with increasing age and can potentially include trans-generational effects as the offspring produced by old parents might have a lower fitness than those produced by young parents. This negative effect may be caused either by the age of the father, mother or the interaction between the ages of both parents. Using the common woodlouse Armadillidium vulgare, an indeterminate grower, as a biological model, we tested for the existence of a deleterious effect of parental age on fitness components. Contrary to previous findings reported from vertebrate studies, old parents produced both a higher number and larger offspring than young parents. However, their offspring had lower fitness components (by surviving less, producing a smaller number of clutches or not reproducing at all) than offspring born to young parents. Our findings strongly support the existence of trans-generational senescence in woodlice and contradict the belief that old individuals in indeterminate growers contribute the most to recruitment and correspond thereby to the key life stage for population dynamics. Our work also provides rare evidence that the trans-generational effect of senescence can be stronger than direct reproductive senescence in indeterminate growers.
Collapse
Affiliation(s)
- Charlotte Depeux
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France.,Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Jean-François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Jérôme Moreau
- UMR CNRS 6282 Biogéosciences, Université Bourgogne Franche-Comté, Dijon, France.,Centre d'Études Biologiques de Chizé, UMR 7372, CNRS & La Rochelle Université, Villiers-en-bois, France
| | | | - Tiffany Laverre
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| | - Hélène Pauhlac
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 558, Université Lyon 1, Villeurbanne cedex, France
| | - Sophie Beltran-Bech
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers Cedex 9, France
| |
Collapse
|
12
|
Yazici H, Wu HC, Tigli H, Yilmaz EZ, Kebudi R, Santella RM. High levels of global genome methylation in patients with retinoblastoma. Oncol Lett 2020; 20:715-723. [PMID: 32565997 PMCID: PMC7286142 DOI: 10.3892/ol.2020.11613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoblastoma is a tumor of the embryonic neural retina in young children. The DNA methyltransferase 1 (DNMT1) gene has been demonstrated to be transcriptionally activated in cells lacking retinoblastoma 1 (RB1). Thus, there is a direct interaction between DNMT1 and RB1 in vivo. The present study hypothesized that uncontrolled DNMT1, DNMT2 and DNMT3 expression may lead to a high level of global genome methylation causing a second hit or where both alleles are altered, in RB1 and/or inactivation of other genes in retinal cells. To test this, the global genome methylation levels were analyzed in 69 patients with retinoblastoma, as well as 26 healthy siblings and 18 healthy unrelated children as the control groups. Peripheral blood and tumor tissue samples were obtained from 32 patients. The expression levels of DNMT genes were also determined in cell lines. Based on the median levels of global genome methylation in patients, higher genome-wide methylation levels in peripheral blood were associated with a 3.33-fold increased risk for retinoblastoma in patients compared with all healthy controls (95% confidence interval, 0.98–11.35; P<0.0001). The level of global genome methylation and the expression of DNMT genes were increased in the WERI-RB-1 cell line, which has a mutated RB1 gene, compared with a wild-type RB1-expressing cell line. These results supported the hypothesis that epigenetic alterations, as well as mutations in RB1, may be associated with the oncogenesis and inheritance of retinoblastoma. The repression of genes that interact with RB1, such as the DNMT gene family, may be important in patients with retinoblastoma with alterations in RB1, and may serve a role in the treatment and regression of retinoblastoma.
Collapse
Affiliation(s)
- Hülya Yazici
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA.,Department of Basic Oncology, Division of Cancer Genetics, Oncology Institute, Istanbul University, Fatih, Istanbul 34093, Turkey
| | - Hui-Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
| | - Hulya Tigli
- Department of Basic Oncology, Division of Cancer Genetics, Oncology Institute, Istanbul University, Fatih, Istanbul 34093, Turkey.,Department of Molecular Biology, Gelişim University, Avcilar, Istanbul 34315, Turkey
| | - Elif Z Yilmaz
- Department of Basic Oncology, Division of Cancer Genetics, Oncology Institute, Istanbul University, Fatih, Istanbul 34093, Turkey.,Faculty of Medicine, Medipol University, Beykoz, Istanbul 34810, Turkey
| | - Rejin Kebudi
- Division of Pediatric Hematology-Oncology, Cerrahpaşa Medical Faculty, Istanbul University, Fatih, İstanbul 34098, Turkey.,Division of Pediatric Hematology-Oncology, Oncology Institute, Istanbul University, Fatih, Istanbul 34093, Turkey
| | - Regina M Santella
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, New York, NY 10032, USA
| |
Collapse
|
13
|
Eisenberg DTA, Rej PH, Duazo P, Carba D, Hayes MG, Kuzawa CW. Testing for paternal influences on offspring telomere length in a human cohort in the Philippines. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 171:520-528. [PMID: 31845317 DOI: 10.1002/ajpa.23983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Telomeres, emerging biomarkers of aging, are comprised of DNA repeats located at chromosomal ends that shorten with cellular replication and age in most human tissues. In contrast, spermatocyte telomeres lengthen with age. These changes in telomere length (TL) appear to be heritable, as older paternal ages of conception (PAC) predict longer offspring TL. Mouse-model studies raise questions about the potential for effects of paternal experiences on human offspring TL, as they suggest that smoking, inflammation, DNA damage, and stressors all shorten sperm TL. Here, we examined whether factors from the paternal environment predict offspring TL as well as interact with PAC to predict offspring TL. MATERIALS AND METHODS Using data from the Philippines, we tested if smoking, psychosocial stressors, or shorter knee height (a measure of early life adversity) predict shorter offspring TL. We also tested if these interacted with PAC in predicting offspring TL. RESULTS While we did not find the predicted associations, we observed a trend toward fathers with shorter knee height having offspring with longer TL. In addition, we found that knee height interacted with PAC to predict offspring TL. Specifically, fathers with shorter knee heights showed a stronger positive effect of PAC on offspring TL. DISCUSSION While the reasons for these associations remain uncertain, shorter knee height is characteristic of earlier puberty. Since spermatocyte TL increases with the production of sperm, we speculate that individuals with earlier puberty, and its concomitant commencement of production of sperm, had more time to accumulate longer sperm telomeres.
Collapse
Affiliation(s)
- Dan T A Eisenberg
- Department of Anthropology, University of Washington, Seattle, Washington.,Center for Studies in Demography and Ecology, University of Washington, Seattle, Washington
| | - Peter H Rej
- Department of Anthropology, University of Washington, Seattle, Washington
| | - Paulita Duazo
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | - Delia Carba
- USC-Office of Population Studies Foundation, Inc., University of San Carlos, Cebu City, Philippines
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.,Department of Anthropology, Northwestern University, Chicago, IL
| | - Christopher W Kuzawa
- Department of Anthropology, Northwestern University, Chicago, IL.,Institute for Policy Research, Northwestern University, Chicago, IL
| |
Collapse
|
14
|
Lee MK, Blumberg B. Transgenerational effects of obesogens. Basic Clin Pharmacol Toxicol 2019; 125 Suppl 3:44-57. [PMID: 30801972 PMCID: PMC6708505 DOI: 10.1111/bcpt.13214] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 02/08/2019] [Indexed: 02/06/2023]
Abstract
Obesity and associated disorders are now a global pandemic. The prevailing clinical model for obesity is overconsumption of calorie-dense food and diminished physical activity (the calories in-calories out model). However, this explanation does not account for numerous recent research findings demonstrating that a variety of environmental factors can be superimposed on diet and exercise to influence the development of obesity. The environmental obesogen model proposes that exposure to chemical obesogens during in utero and/or early life can strongly influence later predisposition to obesity. Obesogens are chemicals that inappropriately stimulate adipogenesis and fat storage, in vivo either directly or indirectly. Numerous obesogens have been identified in recent years and some of these elicit transgenerational effects on obesity as well as a variety of health end-points after exposure of pregnant F0 females. Prenatal exposure to environmental obesogens can produce lasting effects on the exposed animals and their offspring to at least the F4 generation. Recent results show that some of these transgenerational effects of obesogen exposure can be carried across the generations via alterations in chromatin structure and accessibility. That some chemicals can have permanent effects on the offspring of exposed animals suggests increased caution in the debate about whether and to what extent exposure to endocrine-disrupting chemicals and obesogens should be regulated.
Collapse
Affiliation(s)
- Michelle Kira Lee
- Department of Developmental and Cell Biology, 2011 BioSci
3, University of California, Irvine, CA 926970-2300
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, 2011 BioSci
3, University of California, Irvine, CA 926970-2300
- Department of Pharmaceutical Sciences, University of
California, Irvine
- Dept of Biomedical Engineering, University of California,
Irvine
| |
Collapse
|
15
|
Danchin É, Pocheville A, Huneman P. Early in life effects and heredity: reconciling neo-Darwinism with neo-Lamarckism under the banner of the inclusive evolutionary synthesis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180113. [PMID: 30966884 PMCID: PMC6460090 DOI: 10.1098/rstb.2018.0113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/22/2022] Open
Abstract
Recent discoveries show that early in life effects often have long-lasting influences, sometimes even spanning several generations. Such intergenerational effects of early life events appear not easily reconcilable with strict genetic inheritance. However, an integrative evolutionary medicine of early life effects needs a sound view of inheritance in development and evolution. Here, we show how to articulate the gene-centred and non-gene-centred visions of inheritance. We first recall the coexistence of two gene concepts in scientific discussions, a statistical one (focused on patterns of parent-offspring resemblance, and implicitly including non-DNA-sequence-based resemblance), and a molecular one (based on the DNA sequence). We then show how all the different mechanisms of inheritance recently discovered can be integrated into an inclusive theory of evolution where different mechanisms would enable adaptation to changing environments at different timescales. One surprising consequence of this integrative vision of inheritance is that early in life effects start much earlier than fertilization. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Étienne Danchin
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
| | - Arnaud Pocheville
- Laboratoire Évolution and Diversité Biologique (EDB UMR 5174), Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, Bat 4R1, 31062 Toulouse cedex 9, France
- Department of Philosophy and Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Philippe Huneman
- Institut d'Histoire et de Philosophie des Sciences et des Techniques, CNRS/Université Paris I Panthéon-Sorbonne, Paris, France
| |
Collapse
|
16
|
Azadi M, Azizi H, Haghparast A. Paternal exposure to morphine during adolescence induces reward-resistant phenotype to morphine in male offspring. Brain Res Bull 2019; 147:124-132. [DOI: 10.1016/j.brainresbull.2019.02.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022]
|
17
|
Morgan CP, Chan JC, Bale TL. Driving the Next Generation: Paternal Lifetime Experiences Transmitted via Extracellular Vesicles and Their Small RNA Cargo. Biol Psychiatry 2019; 85:164-171. [PMID: 30580777 PMCID: PMC6309802 DOI: 10.1016/j.biopsych.2018.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
Epidemiological studies provide strong evidence for the impact of diverse paternal life experiences on offspring neurodevelopmental disease risk. While these associations are well established, the molecular mechanisms underlying these intergenerational transmissions remain elusive, though recent studies focusing on the influence of paternal experience before conception have implicated germ cell epigenetic programming. Any model accounting for the germline transfer of nongenetic information from sire to offspring must include certain components, such as 1) a vector to carry any signal from the paternal compartment to the maternal reproductive tract and future embryo; 2) a molecular signal, encoded by a paternal experience, to carry this memory and enact downstream responses; and 3) a target cell or tissue to receive the signal and convert it into an effect on embryonic development. We explore the current understanding of the potential processes and candidate factors that may serve as these components. We specifically discuss the growing appreciation for the importance of extracellular vesicles in these processes, beginning with their known role in delivering potential signals, including small RNAs, to sperm, the prototypical vector, during their posttesticular maturation. Finally, we explore the possibility that paternal extracellular vesicles could themselves serve as vectors, delivering signals not only to gametes or the zygote but also to tissues of the maternal reproductive tract to influence fetal development.
Collapse
Affiliation(s)
- Christopher P Morgan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jennifer C Chan
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tracy L Bale
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
18
|
Huang K, Hu Y, Sun Y, Yu Z, Liu W, Zhu P, Tao F. Elective caesarean delivery and offspring’s cognitive impairment: Implications of methylation alteration in hippocampus glucocorticoid signaling genes. Brain Res Bull 2019; 144:108-121. [DOI: 10.1016/j.brainresbull.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022]
|
19
|
Cutuli D, Berretta E, Laricchiuta D, Caporali P, Gelfo F, Petrosini L. Pre-reproductive Parental Enriching Experiences Influence Progeny's Developmental Trajectories. Front Behav Neurosci 2018; 12:254. [PMID: 30483072 PMCID: PMC6240645 DOI: 10.3389/fnbeh.2018.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023] Open
Abstract
While the positive effects of environmental enrichment (EE) applied after weaning, in adulthood, during aging, or even in the presence of brain damage have been widely described, the transgenerational effects of pre-reproductive EE have been less examined. And yet, this issue is remarkable given that parental environmental experience may imprint offspring’s phenotype over generations through many epigenetic processes. Interactions between individual and environment take place lifelong even before conception. In fact, the environment pre-reproductively experienced by the mother and/or the father exerts a substantial impact on neural development and motor and cognitive performances of the offspring, even if not directly exposed to social, cognitive, physical and/or motor enrichment. Furthermore, pre-reproductive parental enrichment exerts a transgenerational impact on coping response to stress as well as on the social behavior of the offspring. Among the effects of pre-reproductive parental EE, a potentiation of the maternal care and a decrease in global methylation levels in the frontal cortex and hippocampus of the progeny have been described. Finally, pre-reproductive EE modifies different pathways of neuromodulation in the brain of the offspring (involving brain-derived neurotrophic factor, oxytocin and glucocorticoid receptors). The present review highlights the importance of pre-reproductive parental enrichment in altering the performances not only of animals directly experiencing it, but also of their progeny, thus opening the way to new hypotheses on the inheritance mechanisms of behavioral traits.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Erica Berretta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Paola Caporali
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Francesca Gelfo
- Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Laura Petrosini
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
20
|
Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S. Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol Rev Camb Philos Soc 2018. [PMCID: PMC6378602 DOI: 10.1111/brv.12453] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
After decades of debate about the existence of non‐genetic inheritance, the focus is now slowly shifting towards dissecting its underlying mechanisms. Here, we propose a new mechanism that, by integrating non‐genetic and genetic inheritance, may help build the long‐sought inclusive vision of evolution. After briefly reviewing the wealth of evidence documenting the existence and ubiquity of non‐genetic inheritance in a table, we review the categories of mechanisms of parent–offspring resemblance that underlie inheritance. We then review several lines of argument for the existence of interactions between non‐genetic and genetic components of inheritance, leading to a discussion of the contrasting timescales of action of non‐genetic and genetic inheritance. This raises the question of how the fidelity of the inheritance system can match the rate of environmental variation. This question is central to understanding the role of different inheritance systems in evolution. We then review and interpret evidence indicating the existence of shifts from inheritance systems with low to higher transmission fidelity. Based on results from different research fields we propose a conceptual hypothesis linking genetic and non‐genetic inheritance systems. According to this hypothesis, over the course of generations, shifts among information systems allow gradual matching between the rate of environmental change and the inheritance fidelity of the corresponding response. A striking conclusion from our review is that documented shifts between types of inherited non‐genetic information converge towards epigenetics (i.e. inclusively heritable molecular variation in gene expression without change in DNA sequence). We then interpret the well‐documented mutagenicity of epigenetic marks as potentially generating a final shift from epigenetic to genetic encoding. This sequence of shifts suggests the existence of a relay in inheritance systems from relatively labile ones to gradually more persistent modes of inheritance, a relay that could constitute a new mechanistic basis for the long‐proposed, but still poorly documented, hypothesis of genetic assimilation. A profound difference between the genocentric and the inclusive vision of heredity revealed by the genetic assimilation relay proposed here lies in the fact that a given form of inheritance can affect the rate of change of other inheritance systems. To explore the consequences of such inter‐connection among inheritance systems, we briefly review published theoretical models to build a model of genetic assimilation focusing on the shift in the engraving of environmentally induced phenotypic variation into the DNA sequence. According to this hypothesis, when environmental change remains stable over a sufficient number of generations, the relay among inheritance systems has the potential to generate a form of genetic assimilation. In this hypothesis, epigenetics appears as a hub by which non‐genetically inherited environmentally induced variation in traits can become genetically encoded over generations, in a form of epigenetically facilitated mutational assimilation. Finally, we illustrate some of the major implications of our hypothetical framework, concerning mutation randomness, the central dogma of molecular biology, concepts of inheritance and the curing of inherited disorders, as well as for the emergence of the inclusive evolutionary synthesis.
Collapse
Affiliation(s)
- Etienne Danchin
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Arnaud Pocheville
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- Department of Philosophy and Charles Perkins Centre; University of Sydney; Sydney NSW 2006 Australia
| | - Olivier Rey
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
- Université de Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Université de Montpellier; F-66860 Perpignan France
| | - Benoit Pujol
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
| | - Simon Blanchet
- Laboratoire Évolution & Diversité Biologique (EDB UMR 5174); Université de Toulouse Midi-Pyrénées, CNRS, IRD, UPS. 118 route de Narbonne, Bat 4R1; 31062 Toulouse Cedex 9 France
- CNRS, Station d'Ecologie Théorique et Expérimentale (SETE), UMR5321; 09200 Moulis France
| |
Collapse
|
21
|
Abstract
Obesity is a worldwide pandemic in adults as well as children and adds greatly to health care costs through its association with type 2 diabetes, metabolic syndrome, cardiovascular disease, and cancers. The prevailing medical view of obesity is that it results from a simple imbalance between caloric intake and energy expenditure. However, numerous other factors are important in the etiology of obesity. The obesogen hypothesis proposes that environmental chemicals termed obesogens promote obesity by acting to increase adipocyte commitment, differentiation, and size by altering metabolic set points or altering the hormonal regulation of appetite and satiety. Many obesogens are endocrine disrupting chemicals that interfere with normal endocrine regulation. Endocrine disrupting obesogens are abundant in our environment, used in everyday products from food packaging to fungicides. In this review, we explore the evidence supporting the obesogen hypothesis, as well as the gaps in our knowledge that are currently preventing a complete understanding of the extent to which obesogens contribute to the obesity pandemic.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Program on Endocrine Disruption Strategies, Commonweal, Bolinas, California 94924, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, Department of Pharmaceutical Sciences, and Department of Biomedical Engineering, University of California, Irvine, California 92697, USA;
| |
Collapse
|
22
|
Ashabi G, Sadat-Shirazi MS, Akbarabadi A, Vousooghi N, Kheiri Z, Toolee H, Khalifeh S, Zarrindast MR. Is the Nociception Mechanism Altered in Offspring of Morphine-Abstinent Rats? THE JOURNAL OF PAIN 2018; 19:529-541. [PMID: 29355609 DOI: 10.1016/j.jpain.2017.12.268] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 12/09/2017] [Accepted: 12/20/2017] [Indexed: 10/18/2022]
Abstract
To investigate the effect of parental drug abuse on children, nociception, electrophysiological alteration, mRNA expression of opioid receptors, and expression of certain intracellular proteins in offspring of morphine-abstinent rats were studied. Adult male and female animals received water-soluble morphine for 21 days. Ten days after the last morphine administration, animals were placed for mating in 4 groups as follows: healthy (drug naive) female and male, morphine-abstinent female and healthy male, morphine-abstinent male and healthy female, morphine-abstinent male and morphine-abstinent female. Their adult male offspring were tested for nociception, neuronal discharge in nucleus accumbens (NAC) and prefrontal cortex (PFC). Our results showed that nociception in male offspring of all morphine-abstinent parent(s) groups was significantly reduced, compared with the control group. In the offspring of morphine-abstinent parent(s) groups, sensitivity to the antinociceptive effect of morphine was enhanced in chronic as well as in acute phases of the formalin test. Neuronal electrical activity reduced in the offspring of the morphine-exposed parent(s) in NAC as well as PFC regions. Moreover, our findings show that opioid receptors' expressions (µ, κ, and δ) increased in NAC of the litter of morphine-abstinent parent(s), compared with the control group. In addition, the expression of κ receptors was remarkably increased in the PFC in morphine-abstinent parent group, relative to the control group. The phosphorylated levels of extracellular regulated kinase 1/2 and cyclic adenosine monophosphate responsive element binding protein were significantly higher in the offspring of the morphine-abstinent parent(s) than the control group in the NAC. Our results indicated that endogenous opioid is altered in offspring of the morphine-exposed parent(s) and that heritage has a major role. PERSPECTIVE This study showed that nociception was reduced in offspring of morphine-abstinent rat(s) and also these litters had a low level of neuronal firing rate, and enhanced opioid receptors expression, especially in the NAC. Because these offspring are more sensitive to the analgesic effect of morphine, clinicians should consider this issue to manage the dosage of morphine for treating pain in children with an abstinent parent(s).
Collapse
Affiliation(s)
- Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Veterinary Medicine, Garmsar Branch, Islamic Azad University, Garmsar, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Kheiri
- Department of Biology, Islamic Azad University, Tehran North Branch, Tehran, Iran.
| | - Heidar Toolee
- Department of Anatomy, school of medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Zaidan H, Ramaswami G, Golumbic YN, Sher N, Malik A, Barak M, Galiani D, Dekel N, Li JB, Gaisler-Salomon I. A-to-I RNA editing in the rat brain is age-dependent, region-specific and sensitive to environmental stress across generations. BMC Genomics 2018; 19:28. [PMID: 29310578 PMCID: PMC5759210 DOI: 10.1186/s12864-017-4409-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Adenosine-to-inosine (A-to-I) RNA editing is an epigenetic modification catalyzed by adenosine deaminases acting on RNA (ADARs), and is especially prevalent in the brain. We used the highly accurate microfluidics-based multiplex PCR sequencing (mmPCR-seq) technique to assess the effects of development and environmental stress on A-to-I editing at 146 pre-selected, conserved sites in the rat prefrontal cortex and amygdala. Furthermore, we asked whether changes in editing can be observed in offspring of stress-exposed rats. In parallel, we assessed changes in ADARs expression levels. RESULTS In agreement with previous studies, we found editing to be generally higher in adult compared to neonatal rat brain. At birth, editing was generally lower in prefrontal cortex than in amygdala. Stress affected editing at the serotonin receptor 2c (Htr2c), and editing at this site was significantly altered in offspring of rats exposed to prereproductive stress across two generations. Stress-induced changes in Htr2c editing measured with mmPCR-seq were comparable to changes measured with Sanger and Illumina sequencing. Developmental and stress-induced changes in Adar and Adarb1 mRNA expression were observed but did not correlate with editing changes. CONCLUSIONS Our findings indicate that mmPCR-seq can accurately detect A-to-I RNA editing in rat brain samples, and confirm previous accounts of a developmental increase in RNA editing rates. Our findings also point to stress in adolescence as an environmental factor that alters RNA editing patterns several generations forward, joining a growing body of literature describing the transgenerational effects of stress.
Collapse
Affiliation(s)
- Hiba Zaidan
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Gokul Ramaswami
- Department of Genetics, Stanford University, Stanford, CA, USA.,Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, USA
| | - Yaela N Golumbic
- Faculty of Education in Technology and Science, Technion, Haifa, Israel.,Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Noa Sher
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel
| | - Assaf Malik
- Bioinformatics Core Unit, University of Haifa, Haifa, Israel.,Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Michal Barak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Dalia Galiani
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Nava Dekel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | - Jin B Li
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
24
|
Gupta T, Morgan HR, Andrews JC, Brewer ER, Certel SJ. Methyl-CpG binding domain proteins inhibit interspecies courtship and promote aggression in Drosophila. Sci Rep 2017; 7:5420. [PMID: 28710457 PMCID: PMC5511146 DOI: 10.1038/s41598-017-05844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/05/2017] [Indexed: 11/10/2022] Open
Abstract
Reproductive isolation and speciation are driven by the convergence of environmental and genetic variation. The integration of these variation sources is thought to occur through epigenetic marks including DNA methylation. Proteins containing a methyl-CpG-binding domain (MBD) bind methylated DNA and interpret epigenetic marks, providing a dynamic yet evolutionarily adapted cellular output. Here, we report the Drosophila MBD-containing proteins, dMBD-R2 and dMBD2/3, contribute to reproductive isolation and survival behavioral strategies. Drosophila melanogaster males with a reduction in dMBD-R2 specifically in octopamine (OA) neurons exhibit courtship toward divergent interspecies D. virilis and D. yakuba females and a decrease in conspecific mating success. Conspecific male-male courtship is increased between dMBD-R2-deficient males while aggression is reduced. These changes in adaptive behavior are separable as males with a hypermethylated OA neuronal genome exhibited a decrease in aggression without altering male-male courtship. These results suggest Drosophila MBD-containing proteins are required within the OA neural circuitry to inhibit interspecies and conspecific male-male courtship and indicate that the genetically hard-wired neural mechanisms enforcing behavioral reproductive isolation include the interpretation of the epigenome.
Collapse
Affiliation(s)
- Tarun Gupta
- Neuroscience Graduate Program, The University of Montana, Missoula, MT, United States
| | - Hannah R Morgan
- Division of Biological Sciences, The University of Montana, Missoula, MT, United States
| | - Jonathan C Andrews
- Division of Biological Sciences, The University of Montana, Missoula, MT, United States
| | - Edmond R Brewer
- Division of Biological Sciences, The University of Montana, Missoula, MT, United States
| | - Sarah J Certel
- Neuroscience Graduate Program, The University of Montana, Missoula, MT, United States. .,Division of Biological Sciences, The University of Montana, Missoula, MT, United States.
| |
Collapse
|
25
|
Fernandes J, Arida RM, Gomez-Pinilla F. Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev 2017; 80:443-456. [PMID: 28666827 DOI: 10.1016/j.neubiorev.2017.06.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/18/2017] [Accepted: 06/26/2017] [Indexed: 02/08/2023]
Abstract
A large amount of evidence has demonstrated the power of exercise to support cognitive function, the effects of which can last for considerable time. An emerging line of scientific evidence indicates that the effects of exercise are longer lasting than previously thought up to the point to affect future generations. The action of exercise on epigenetic regulation of gene expression seem central to building an "epigenetic memory" to influence long-term brain function and behavior. In this review article, we discuss new developments in the epigenetic field connecting exercise with changes in cognitive function, including DNA methylation, histone modifications and microRNAs (miRNAs). The understanding of how exercise promotes long-term cognitive effects is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Jansen Fernandes
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Physiology-Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ricardo Mario Arida
- Department of Physiology-Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
26
|
Cutuli D, Berretta E, Pasqualini G, De Bartolo P, Caporali P, Laricchiuta D, Sampedro-Piquero P, Gelfo F, Pesoli M, Foti F, Begega A, Petrosini L. Influence of Pre-reproductive Maternal Enrichment on Coping Response to Stress and Expression of c-Fos and Glucocorticoid Receptors in Adolescent Offspring. Front Behav Neurosci 2017; 11:73. [PMID: 28536510 PMCID: PMC5422443 DOI: 10.3389/fnbeh.2017.00073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
Environmental enrichment (EE) is an experimental setting broadly used for investigating the effects of complex social, cognitive, and sensorimotor stimulations on brain structure and function. Recent studies point out that parental EE experience, even occurring in the pre-reproductive phase, affects neural development and behavioral trajectories of the offspring. In the present study we investigated the influences of pre-reproductive EE of female rats on maternal behavior and adolescent male offspring's coping response to an inescapable stressful situation after chronic social isolation. For this purpose female Wistar rats were housed from weaning to breeding age in enriched or standard environments. Subsequently, all females were mated and housed in standard conditions until offspring weaning. On the first post partum day (ppd 1), mother-pup interactions in undisturbed conditions were recorded. Further, after weaning the male pups were reared for 2 weeks under social isolation or in standard conditions, and then submitted or not to a single-session Forced Swim Test (FST). Offspring's neuronal activation and plastic changes were identified by immunohistochemistry for c-Fos and glucocorticoid receptors (GRs), and assessed by using stereological analysis. The biochemical correlates were measured in the hippocampus, amygdala and cingulate cortex, structures involved in hypothalamic-pituitary-adrenocortical axis regulation. Enriched dams exhibited increased Crouching levels in comparison to standard reared dams. In the offspring of both kinds of dams, social isolation reduced body weight, decreased Immobility, and increased Swimming during FST. Moreover, isolated offspring of enriched dams exhibited higher levels of Climbing in comparison to controls. Interestingly, in the amygdala of both isolated and control offspring of enriched dams we found a lower number of c-Fos immunopositive cells in response to FST and a higher number of GRs in comparison to the offspring of standard dams. These results highlight the profound influence of a stressful condition, such as the social isolation, on the brain of adolescent rats, and underline intergenerational effects of maternal experiences in regulating the offspring response to stress.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of RomeRome, Italy.,Santa Lucia FoundationRome, Italy
| | - Erica Berretta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of RomeRome, Italy.,Santa Lucia FoundationRome, Italy
| | - Greta Pasqualini
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of RomeRome, Italy.,Santa Lucia FoundationRome, Italy
| | - Paola De Bartolo
- Santa Lucia FoundationRome, Italy.,Department of TeCoS, Marconi UniversityRome, Italy
| | - Paola Caporali
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of RomeRome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of RomeRome, Italy.,Santa Lucia FoundationRome, Italy
| | - Patricia Sampedro-Piquero
- Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of MadridMadrid, Spain
| | - Francesca Gelfo
- Santa Lucia FoundationRome, Italy.,Department of Systemic Medicine, University of Rome Tor VergataRome, Italy
| | - Matteo Pesoli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of RomeRome, Italy.,Santa Lucia FoundationRome, Italy
| | - Francesca Foti
- Santa Lucia FoundationRome, Italy.,Department of Medical and Surgical Sciences, Magna Graecia UniversityCatanzaro, Italy
| | - Azucena Begega
- Neuroscience Laboratory, Psychology Department, University of OviedoOviedo, Spain
| | - Laura Petrosini
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of RomeRome, Italy.,Santa Lucia FoundationRome, Italy
| |
Collapse
|
27
|
Pear VA, Petito LC, Abrams B. The Role of Maternal Adverse Childhood Experiences and Race in Intergenerational High-Risk Smoking Behaviors. Nicotine Tob Res 2017; 19:623-630. [PMID: 28403466 PMCID: PMC5939640 DOI: 10.1093/ntr/ntw295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION A history of adversity in childhood is associated with cigarette smoking in adulthood, but there is less evidence for prenatal and next-generation offspring smoking. We investigated the association between maternal history of childhood adversity, pregnancy smoking, and early initiation of smoking in offspring, overall and by maternal race/ethnicity. METHODS Data on maternal childhood exposure to physical abuse, household alcohol abuse, and household mental illness, prenatal smoking behaviors, and offspring age of smoking initiation were analyzed from the US National Longitudinal Survey of Youth 1979 (NLSY79, n = 2999 mothers) and the NLSY79 Children and Young Adults Survey (NLSYCYA, n = 6596 children). Adjusted risk ratios were estimated using log-linear regression models. We assessed multiplicative interaction by race/ethnicity for all associations and a three-way interaction by maternal exposure to adversity and race/ethnicity for the association between prenatal and child smoking. RESULTS Maternal exposure to childhood physical abuse was significantly associated with 39% and 20% increased risks of prenatal smoking and child smoking, respectively. Household alcohol abuse was associated with significantly increased risks of 20% for prenatal smoking and 17% for child smoking. The prenatal smoking-child smoking relationship was modified by maternal exposure to household alcohol abuse and race. There were increased risks for Hispanic and white/other mothers as compared to the lowest risk group: black mothers who did not experience childhood household alcohol abuse. CONCLUSIONS Mothers in this national sample who experienced adversity in childhood are more likely to smoke during pregnancy and their offspring are more likely to initiate smoking before age 18. Findings varied by type of adversity and race/ethnicity. IMPLICATIONS These findings support the importance of a life-course approach to understanding prenatal and intergenerational smoking, and suggest that maternal early-life history is a potentially important risk factor that could be targeted with screening and interventions to reduce smoking in pregnant women and their children.
Collapse
Affiliation(s)
- Veronica A Pear
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA
| | - Lucia C Petito
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA
| | - Barbara Abrams
- Division of Epidemiology, School of Public Health, University of California, Berkeley, CA
| |
Collapse
|
28
|
Vassoler FM, Oliver DJ, Wyse C, Blau A, Shtutman M, Turner JR, Byrnes EM. Transgenerational attenuation of opioid self-administration as a consequence of adolescent morphine exposure. Neuropharmacology 2017; 113:271-280. [PMID: 27729240 PMCID: PMC5248554 DOI: 10.1016/j.neuropharm.2016.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 01/13/2023]
Abstract
The United States is in the midst of an opiate epidemic, with abuse of prescription and illegal opioids increasing steadily over the past decade. While it is clear that there is a genetic component to opioid addiction, there is a significant portion of heritability that cannot be explained by genetics alone. The current study was designed to test the hypothesis that maternal exposure to opioids prior to pregnancy alters abuse liability in subsequent generations. Female adolescent Sprague Dawley rats were administered morphine at increasing doses (5-25 mg/kg, s.c.) or saline for 10 days (P30-39). During adulthood, animals were bred with drug-naïve colony males. Male and female adult offspring (F1 animals) were tested for morphine self-administration acquisition, progressive ratio, extinction, and reinstatement at three doses of morphine (0.25, 0.75, 1.25 mg/kg/infusion). Grandoffspring (F2 animals, from the maternal line) were also examined. Additionally, gene expression changes within the nucleus accumbens were examined with RNA deep sequencing (PacBio) and qPCR. There were dose- and sex-dependent effects on all phases of the self-administration paradigm that indicate decreased morphine reinforcement and attenuated relapse-like behavior. Additionally, genes related to synaptic plasticity, as well as myelin basic protein (MBP), were dysregulated. Some, but not all, effects persisted into the subsequent (F2) generation. The results demonstrate that even limited opioid exposure during adolescence can have lasting effects across multiple generations, which has implications for mechanisms of the transmission of drug abuse liability in humans.
Collapse
Affiliation(s)
- Fair M Vassoler
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA.
| | - David J Oliver
- University of South Carolina College of Pharmacy, 773 Sumter St, Columbia, SC 29208, USA
| | - Cristina Wyse
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Ashley Blau
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Michael Shtutman
- University of South Carolina College of Pharmacy, 773 Sumter St, Columbia, SC 29208, USA
| | - Jill R Turner
- University of South Carolina College of Pharmacy, 773 Sumter St, Columbia, SC 29208, USA
| | - Elizabeth M Byrnes
- Cummings School at Tufts University, 200 Westboro Road, North Grafton, MA 01536, USA
| |
Collapse
|
29
|
McCarty R. Cross-fostering: Elucidating the effects of gene×environment interactions on phenotypic development. Neurosci Biobehav Rev 2016; 73:219-254. [PMID: 28034661 DOI: 10.1016/j.neubiorev.2016.12.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 02/03/2023]
Abstract
Cross-fostering of litters from soon after birth until weaning is a valuable tool to study the ways in which gene×environment interactions program the development of neural, physiological and behavioral characteristics of mammalian species. In laboratory mice and rats, the primary focus of this review, cross-fostering of litters between mothers of different strains or treatment groups (intraspecific) or between mothers of different species (interspecific) has been conducted over the past 9 decades. Areas of particular interest have included maternal effects on emotionality, social preferences, responses to stressful stimulation, nutrition and growth, blood pressure regulation, and epigenetic effects on brain development and behavior. Results from these areas of research highlight the critical role of the postnatal maternal environment in programming the development of offspring phenotypic characteristics. In addition, experimental paradigms that have included cross-fostering have permitted investigators to tease apart prenatal versus postnatal effects of various treatments on offspring development and behavior.
Collapse
Affiliation(s)
- Richard McCarty
- Department of Psychology, Vanderbilt University, Nashville, TN 37240 USA.
| |
Collapse
|
30
|
Singh U, Malik MA, Goswami S, Shukla S, Kaur J. Epigenetic regulation of human retinoblastoma. Tumour Biol 2016; 37:14427-14441. [PMID: 27639385 DOI: 10.1007/s13277-016-5308-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/05/2016] [Indexed: 01/05/2023] Open
Abstract
Retinoblastoma is a rare type of eye cancer of the retina that commonly occurs in early childhood and mostly affects the children before the age of 5. It occurs due to the mutations in the retinoblastoma gene (RB1) which inactivates both alleles of the RB1. RB1 was first identified as a tumor suppressor gene, which regulates cell cycle components and associated with retinoblastoma. Previously, genetic alteration was known as the major cause of its occurrence, but later, it is revealed that besides genetic changes, epigenetic changes also play a significant role in the disease. Initiation and progression of retinoblastoma could be due to independent or combined genetic and epigenetic events. Remarkable work has been done in understanding retinoblastoma pathogenesis in terms of genetic alterations, but not much in the context of epigenetic modification. Epigenetic modifications that silence tumor suppressor genes and activate oncogenes include DNA methylation, chromatin remodeling, histone modification and noncoding RNA-mediated gene silencing. Epigenetic changes can lead to altered gene function and transform normal cell into tumor cells. This review focuses on important epigenetic alteration which occurs in retinoblastoma and its current state of knowledge. The critical role of epigenetic regulation in retinoblastoma is now an emerging area, and better understanding of epigenetic changes in retinoblastoma will open the door for future therapy and diagnosis.
Collapse
Affiliation(s)
- Usha Singh
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Manzoor Ahmad Malik
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Goswami
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Shukla
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Jasbir Kaur
- Department of Ocular Biochemistry, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
31
|
Freitas-Silva LR, Ortega F. Biological determination of mental disorders: a discussion based on recent hypotheses from neuroscience. CAD SAUDE PUBLICA 2016; 32:e00168115. [PMID: 27580236 DOI: 10.1590/0102-311x00168115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 05/19/2016] [Indexed: 01/12/2023] Open
Abstract
Understanding the processes involved in the development of mental disorders has proven challenging ever since psychiatry was founded as a field. Neuroscience has provided new expectations that an explanation will be found for the development of mental disorders based on biological functioning alone. However, such a goal has not been that easy to achieve, and new hypotheses have begun to appear in neuroscience research. In this article we identify epigenetics, neurodevelopment, and plasticity as the principal avenues for a new understanding of the biology of mental phenomena. Genetic complexity, the environment's formative role, and variations in vulnerability involve important changes in the principal hypotheses on biological determination of mental disorders, suggesting a reconfiguration of the limits between the "social" and the "biological" in neuroscience research.
Collapse
Affiliation(s)
| | - Francisco Ortega
- Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
32
|
Post RM. Epigenetic basis of sensitization to stress, affective episodes, and stimulants: implications for illness progression and prevention. Bipolar Disord 2016; 18:315-24. [PMID: 27346321 DOI: 10.1111/bdi.12401] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/14/2016] [Accepted: 04/22/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The process of sensitization (increased responsivity) to the recurrence of stressors, affective episodes, and bouts of substance abuse that can drive illness progression in the recurrent affective disorders requires a memory of and increased reactivity to the prior exposures. A wealth of studies now supports the postulate that epigenetic mechanisms underlie both normal and pathological memory processes. METHODS We selectively reviewed the literature pertinent to the role of epigenetics in behavioral sensitization phenomena and discuss its clinical implications. RESULTS Epigenetics means above genetics and refers to environmental effects on the chemistry of DNA, histones (around which DNA is wound), and microRNA that change how easily genes are turned on and off. The evidence supports that sensitization to repeated stressor, affective episodes, and substance is likely based on epigenetic mechanisms and that these environmentally based processes can then become targets for prevention, early intervention, and ongoing treatment. Sensitization processes are remediable or preventable risk factors for a poor illness outcome and deserve increased clinical, public health, and research attention in the hopes of making the recurrent unipolar and bipolar affective disorders less impairing, disabling, and lethal by suicide and increased medical mortality. CONCLUSIONS The findings that epigenetic chemical marks, which change in the most fundamental way how genes are regulated, mediate the long-term increased responsivity to recurrent stressors, mood episodes, and bouts of substance abuse should help change how the affective disorders are conceptualized and move treatment toward earlier, more comprehensive, and sustained pharmacoprophylaxis.
Collapse
Affiliation(s)
- Robert M Post
- George Washington University School of Medicine, Bipolar Collaborative Network, Bethesda, MD, USA
| |
Collapse
|
33
|
Caporali P, Cutuli D, Gelfo F, Laricchiuta D, Foti F, De Bartolo P, Angelucci F, Petrosini L. Interaction does Count: A Cross-Fostering Study on Transgenerational Effects of Pre-reproductive Maternal Enrichment. Front Behav Neurosci 2015; 9:320. [PMID: 26648854 PMCID: PMC4665747 DOI: 10.3389/fnbeh.2015.00320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
Pre-reproductive environmental enrichment of female rats influences sensorimotor development and spatial behavior of the offspring, possibly through the changed maternal nurturing. Nevertheless, maternal care could be not the solely responsible for changing offspring developmental trajectories. To disentangle the specific contribution to the transgenerational inheritance of pre- and post-natal factors, a cross-fostering study was performed. Female rats were reared in an enriched environment from weaning to sexual maturity, while control female rats were reared under standard conditions. Following mating with standard-reared males, all females were housed individually. Immediately after delivery, in- or cross-fostering manipulations were performed so that any foster dams received pups born to another dam of the same (in-fostering) or the opposite (cross-fostering) pre-reproductive rearing condition. In lactating dams maternal care and nesting activities were assessed, while in their male pups spatial abilities were assessed through Morris Water Maze (MWM) test at post-natal day 45. Moreover, the expression of Brain-Derived-Neurotrophic-Factor (BDNF) was evaluated in the hippocampus and frontal cortex of dams and pups at weaning. Pre-reproductive maternal environmental enrichment, followed by adoption procedures, loosened its potential in modifying maternal care and offspring developmental trajectories, as indicated by the lack of differences between in-fostered groups of dams and pups. In addition, enriched dams rearing standard pups showed the least complex maternal repertoire (the highest sniffing duration and the lowest nest quality), and their pups showed a reduced spatial learning in the MWM. Nevertheless, pre-reproductive maternal enrichment kept influencing neurotrophic pattern, with enriched dams expressing increased frontal BDNF levels (regardless of the kind of fostered pups), and their offspring expressing increased hippocampal BDNF levels. The present findings enlighten the crucial importance of the early mother-pups interactions in influencing maternal care and offspring phenotype, with the enriched dam-standard pups couple resulting in the most maladaptive encounter. Our study thus sustains that the bidirectional interactions between mother and pups are able to deeply shape offspring phenotype.
Collapse
Affiliation(s)
- Paola Caporali
- Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome Rome, Italy
| | - Debora Cutuli
- Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S., Santa Lucia Foundation Rome, Italy
| | - Francesca Gelfo
- I.R.C.C.S., Santa Lucia Foundation Rome, Italy ; Department of Systemic Medicine, University of Rome "Tor Vergata" Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S., Santa Lucia Foundation Rome, Italy
| | - Francesca Foti
- Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S., Santa Lucia Foundation Rome, Italy
| | - Paola De Bartolo
- I.R.C.C.S., Santa Lucia Foundation Rome, Italy ; Department of Sociological and Psychopedagogical Studies, University "Guglielmo Marconi" of Rome Rome, Italy
| | | | - Laura Petrosini
- Department of Psychology, Faculty of Medicine and Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S., Santa Lucia Foundation Rome, Italy
| |
Collapse
|
34
|
Prereproductive stress in adolescent female rats affects behavior and corticosterone levels in second-generation offspring. Psychoneuroendocrinology 2015; 58:120-9. [PMID: 25973567 DOI: 10.1016/j.psyneuen.2015.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/23/2022]
Abstract
Human and animal studies indicate that vulnerability to stress may be heritable. We have previously shown that chronic, mild prereproductive stress (PRS) in adolescent female rats affects behavior and corticotropin releasing factor 1 (CRF1) expression in the brain of first-generation (F1) offspring. Here, we investigated the effects of PRS on anxiogenic behavior and CRF1 expression in male and female second-generation (F2) offspring. Furthermore, we assessed levels of the stress hormone corticosterone (CORT), a direct marker of hypothalamic-pituitary-adrenal (HPA) axis function, in PRS females and their F1 and F2 progeny. F2 offspring demonstrated decreased CRF1 mRNA expression at birth, and alterations in anxiogenic behavior in adulthood. CORT levels were elevated in PRS females and in their F1 female, but not male, offspring. In F2, CORT levels in PRS offspring also varied in a sex-dependent manner. These findings indicate that PRS in adolescent females leads to behavioral alterations that extend to second-generation offspring, and has transgenerational effects on endocrine function. Together with our previous findings, these data indicate that PRS to adolescent females affects behavior and HPA axis function across three generations, and highlight the importance of examining the transgenerational effects of stress in both male and female offspring.
Collapse
|
35
|
A review of the potential effects of suspended sediment on fishes: potential dredging-related physiological, behavioral, and transgenerational implications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s10669-015-9557-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
36
|
Cutuli D, Caporali P, Gelfo F, Angelucci F, Laricchiuta D, Foti F, De Bartolo P, Bisicchia E, Molinari M, Farioli Vecchioli S, Petrosini L. Pre-reproductive maternal enrichment influences rat maternal care and offspring developmental trajectories: behavioral performances and neuroplasticity correlates. Front Behav Neurosci 2015; 9:66. [PMID: 25814946 PMCID: PMC4357301 DOI: 10.3389/fnbeh.2015.00066] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/25/2015] [Indexed: 12/22/2022] Open
Abstract
Environmental enrichment (EE) is a widely used paradigm for investigating the influence of complex stimulations on brain and behavior. Here we examined whether pre-reproductive exposure to EE of female rats may influence their maternal care and offspring cognitive performances. To this aim, from weaning to breeding age enriched females (EF) were reared in enriched environments. Females reared in standard conditions were used as controls. At 2.5 months of age all females were mated and reared in standard conditions with their offspring. Maternal care behaviors and nesting activity were assessed in lactating dams. Their male pups were also behaviorally evaluated at different post-natal days (pnd). Brain BDNF, reelin and adult hippocampal neurogenesis levels were measured as biochemical correlates of neuroplasticity. EF showed more complex maternal care than controls due to their higher levels of licking, crouching and nest building activities. Moreover, their offspring showed higher discriminative (maternal odor preference T-maze, pnd 10) and spatial (Morris Water Maze, pnd 45; Open Field with objects, pnd 55) performances, with no differences in social abilities (Sociability test, pnd 35), in comparison to controls. BDNF levels were increased in EF frontal cortex at pups' weaning and in their offspring hippocampus at pnd 21 and 55. No differences in offspring reelin and adult hippocampal neurogenesis levels were found. In conclusion, our study indicates that pre-reproductive maternal enrichment positively influences female rats' maternal care and cognitive development of their offspring, demonstrating thus a transgenerational transmission of EE benefits linked to enhanced BDNF-induced neuroplasticity.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; Santa Lucia Foundation Rome, Italy
| | - Paola Caporali
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; Santa Lucia Foundation Rome, Italy
| | - Francesca Gelfo
- Santa Lucia Foundation Rome, Italy ; Department of Systemic Medicine, University of Rome Tor Vergata Rome, Italy
| | | | - Daniela Laricchiuta
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; Santa Lucia Foundation Rome, Italy
| | - Francesca Foti
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; Santa Lucia Foundation Rome, Italy
| | - Paola De Bartolo
- Santa Lucia Foundation Rome, Italy ; Department of Sociological and Psychopedagogical Studies, University "Guglielmo Marconi" of Rome Rome, Italy
| | | | | | | | - Laura Petrosini
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; Santa Lucia Foundation Rome, Italy
| |
Collapse
|
37
|
Kläver R, Sánchez V, Damm OS, Redmann K, Lahrmann E, Sandhowe-Klaverkamp R, Rohde C, Wistuba J, Ehmcke J, Schlatt S, Gromoll J. Direct but no transgenerational effects of decitabine and vorinostat on male fertility. PLoS One 2015; 10:e0117839. [PMID: 25692788 PMCID: PMC4334483 DOI: 10.1371/journal.pone.0117839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/31/2014] [Indexed: 11/18/2022] Open
Abstract
Establishment and maintenance of the correct epigenetic code is essential for a plethora of physiological pathways and disturbed epigenetic patterns can provoke severe consequences, e.g. tumour formation. In recent years, epigenetic drugs altering the epigenome of tumours actively have been developed for anti-cancer therapies. However, such drugs could potentially also affect other physiological pathways and systems in which intact epigenetic patterns are essential. Amongst those, male fertility is one of the most prominent. Consequently, we addressed possible direct effects of two epigenetic drugs, decitabine and vorinostat, on both, the male germ line and fertility. In addition, we checked for putative transgenerational epigenetic effects on the germ line of subsequent generations (F1-F3). Parental adult male C57Bl/6 mice were treated with either decitabine or vorinostat and analysed as well as three subsequent untreated generations derived from these males. Treatment directly affected several reproductive parameters as testis (decitabine & vorinostat) and epididymis weight, size of accessory sex glands (vorinostat), the height of the seminiferous epithelium and sperm concentration and morphology (decitabine). Furthermore, after decitabine administration, DNA methylation of a number of loci was altered in sperm. However, when analysing fertility of treated mice (fertilisation, litter size and sex ratio), no major effect of the selected epigenetic drugs on male fertility was detected. In subsequent generations (F1-F3 generations) only subtle changes on reproductive organs, sperm parameters and DNA methylation but no overall effect on fertility was observed. Consequently, in mice, decitabine and vorinostat neither affected male fertility per se nor caused marked transgenerational effects. We therefore suggest that both drugs do not induce major adverse effects-in terms of male fertility and transgenerational epigenetic inheritance-when used in anti-cancer-therapies.
Collapse
Affiliation(s)
- Ruth Kläver
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Victoria Sánchez
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Oliver S Damm
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Klaus Redmann
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Elisabeth Lahrmann
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Reinhild Sandhowe-Klaverkamp
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Christian Rohde
- Department of Hematology and Oncology, University of Halle, Halle, Germany
| | - Joachim Wistuba
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jens Ehmcke
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany; Central Animal Facility of the Medical Faculty, University of Münster, Münster, Germany
| | - Stefan Schlatt
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| | - Jörg Gromoll
- Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, Münster, Germany
| |
Collapse
|
38
|
Abstract
The aging phenotype is the result of a complex interaction between genetic, epigenetic and environmental factors, and it is among the most complex phenotypes studied to date. Evidence suggests that epigenetic factors, including DNA methylation, histone modifications and microRNA expression, may affect the aging process and may be one of the central mechanisms by which aging predisposes to many age-related diseases. The total number of altered methylation sites increases with increasing age, such that they could serve as a biomarker for chronological age. This chapter summarizes the mechanisms by which these epigenetic factors contribute to aging and how they may affect the complex physiology of aging, lifespan and age-associated diseases.
Collapse
Affiliation(s)
- Dan Ben-Avraham
- Departments of Genetics and Medicine, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461, Bronx, NY, USA,
| |
Collapse
|
39
|
Reyes-Castro LA, Rodríguez-González GL, Chavira R, Ibáñez C, Lomas-Soria C, Rodriguez JS, Nathanielsz PW, Zambrano E. Paternal line multigenerational passage of altered risk assessment behavior in female but not male rat offspring of mothers fed a low protein diet. Physiol Behav 2014; 140:89-95. [PMID: 25496979 DOI: 10.1016/j.physbeh.2014.12.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/04/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022]
Abstract
Maternal low protein (MLP) diets in pregnancy and lactation impair offspring brain development and modify offspring behavior. We hypothesized multigenerational passage of altered behavioral outcomes as has been demonstrated following other developmental programming challenges. We investigated potential multigenerational effects of MLP in rat pregnancy and/or lactation on offspring risk assessment behavior. Founder generation mothers (F0) ate 20% casein (C) or restricted (R) 10% casein diet, providing four groups: CC, RR, CR, and RC (first letter pregnancy, second letter lactation diet) to evaluate offspring (F1) effects influenced by MLP in F0. On postnatal day (PND 250), F1 males were mated to non-colony siblings producing F2. On PND 90, F2 females (in diestrous) and F2 males were tested in the elevated plus maze (EPM) and open field. Corticosterone was measured at PND 110. Female but not male CR and RC F2 made more entries and spent more time in EPM open arms than CC females. Overall activity was unchanged as observed in male F1 fathers. There were no open field differences in F2 of either sex, indicating that multigenerational MLP effects are due to altered risk assessment, not locomotion. MLP in pregnancy reduced F1 male and F2 female corticosterone. We conclude that MLP in pregnancy and/or lactation increases the innate tendency to explore novel environments in F2 females via the paternal linage, suggesting lower levels of caution and/or higher impulsiveness to explore unknown spaces. Further studies will be necessary to identify the epigenetic modifications in the germ line through the paternal linage.
Collapse
Affiliation(s)
- L A Reyes-Castro
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - G L Rodríguez-González
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - R Chavira
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - C Ibáñez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - C Lomas-Soria
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - J S Rodriguez
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - P W Nathanielsz
- Center for Pregnancy and Newborn Research, Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - E Zambrano
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
40
|
Giuliani C, Bacalini MG, Sazzini M, Pirazzini C, Franceschi C, Garagnani P, Luiselli D. The epigenetic side of human adaptation: hypotheses, evidences and theories. Ann Hum Biol 2014; 42:1-9. [PMID: 25413580 DOI: 10.3109/03014460.2014.961960] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CONTEXT Epigenetics represents a still unexplored research field in the understanding of micro- and macro-evolutionary mechanisms, as epigenetic changes create phenotypic diversity within both individuals and populations. OBJECTIVE The purpose of this review is to dissect the landscape of studies focused on DNA methylation, one of the most described epigenetic mechanisms, emphasizing the aspects that could be relevant in human adaptations. METHODS Theories and results here considered were collected from the most recent papers published. RESULTS The matter of DNA methylation inheritance is here described as well as the recent evolutionary theories regarding the role of DNA methylation-and epigenetics in a broader sense-in human evolution. The complex relation between (1) DNA methylation and genetic variability and (2) DNA methylation and the environmental stimuli crucial in shaping genetic and phenotypic variability through the human lineage-such as diet, climate and pathogens exposure-are described. Papers about population epigenetics are also illustrated due to their high relevance in this context. CONCLUSION Genetic, epigenetic and phenotypic variations of the species, together with cultural ones, are considerably shaped by a vast range of environmental stimuli, thus representing the foundation of all human bio-cultural adaptations.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological and Environmental Sciences, Laboratory of Molecular Anthropology and Centre for Genome Biology
| | | | | | | | | | | | | |
Collapse
|
41
|
Caporali P, Cutuli D, Gelfo F, Laricchiuta D, Foti F, De Bartolo P, Mancini L, Angelucci F, Petrosini L. Pre-reproductive maternal enrichment influences offspring developmental trajectories: motor behavior and neurotrophin expression. Front Behav Neurosci 2014; 8:195. [PMID: 24910599 PMCID: PMC4038762 DOI: 10.3389/fnbeh.2014.00195] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/12/2014] [Indexed: 12/24/2022] Open
Abstract
Environmental enrichment is usually applied immediately after weaning or in adulthood, with strong effects on CNS anatomy and behavior. To examine the hypothesis that a pre-reproductive environmental enrichment of females could affect the motor development of their offspring, female rats were reared in an enriched environment from weaning to sexual maturity, while other female rats used as controls were reared under standard conditions. Following mating with standard-reared males, all females were housed individually. To evaluate the eventual transgenerational influence of positive pre-reproductive maternal experiences, postural and motor development of male pups was analyzed from birth to weaning. Moreover, expression of Brain Derived Neurotrophic Factor and Nerve Growth Factor in different brain regions was evaluated at birth and weaning. Pre-reproductive environmental enrichment of females affected the offspring motor development, as indicated by the earlier acquisition of complex motor abilities displayed by the pups of enriched females. The earlier acquisition of motor abilities was associated with enhanced neurotrophin levels in striatum and cerebellum. In conclusion, maternal positive experiences were transgenerationally transmitted, and influenced offspring phenotype at both behavioral and biochemical levels.
Collapse
Affiliation(s)
- Paola Caporali
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| | - Debora Cutuli
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| | - Francesca Gelfo
- I.R.C.C.S. Santa Lucia Foundation Rome, Italy ; Department of Systemic Medicine, University of Rome "Tor Vergata" Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| | - Francesca Foti
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| | - Paola De Bartolo
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| | - Laura Mancini
- Department of Psychology, University "Sapienza" of Rome Rome, Italy
| | | | - Laura Petrosini
- Department of Psychology, University "Sapienza" of Rome Rome, Italy ; I.R.C.C.S. Santa Lucia Foundation Rome, Italy
| |
Collapse
|
42
|
Roberts AL, Galea S, Austin SB, Corliss HL, Williams MA, Koenen KC. Women's experience of abuse in childhood and their children's smoking and overweight. Am J Prev Med 2014; 46:249-58. [PMID: 24512863 PMCID: PMC3962663 DOI: 10.1016/j.amepre.2013.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/28/2013] [Accepted: 11/01/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Smoking and overweight are principal determinants of poor health for which individual-level interventions are at best modestly effective. This limited effectiveness may be partly because these risk factors are patterned by parents' experiences preceding the individual's birth. PURPOSE To determine whether women's experience of abuse in childhood was associated with smoking and overweight in their children. METHODS In 2012, data were linked from two large longitudinal cohorts of women (Nurses' Health Study II [NHSII], n=12,666) and their children (Growing Up Today [GUTS] Study, n=16,774), 1989-2010. ORs of children following higher-risk smoking trajectories and risk ratios (RRs) of children's overweight and obesity by their mother's childhood experience of physical, emotional, and sexual abuse were calculated. The extent to which mother's smoking and overweight, socioeconomic indicators, family characteristics, and child's abuse exposure accounted for possible associations was ascertained. RESULTS Children of women who experienced severe childhood abuse had greater likelihood of higher-risk smoking trajectories (OR=1.40, 95% CI=1.21, 1.61), overweight (RR=1.21, 95% CI=1.11, 1.33), and obesity (RR=1.45, 95% CI=1.21, 1.74) across adolescence and early adulthood compared with children of women who reported no abuse. Mother's smoking and overweight and children's abuse exposure accounted for more than half of the elevated risk of following the highest-risk smoking trajectory and overweight in children of women abused. CONCLUSIONS These findings raise the possibility that childhood abuse may not only adversely affect the health of the direct victim but may also affect health risk factors in her children decades after the original traumatic events.
Collapse
Affiliation(s)
- Andrea L Roberts
- Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA.
| | - Sandro Galea
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - S Bryn Austin
- Department of Social and Behavioral Sciences, Harvard School of Public Health, Boston, MA; Division of Adolescent/Young Adult Medicine, Boston Children's Hospital, Boston
| | - Heather L Corliss
- Division of Adolescent/Young Adult Medicine, Boston Children's Hospital, Boston
| | - Michelle A Williams
- Harvard Medical School and Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Karestan C Koenen
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
43
|
Gapp K, von Ziegler L, Tweedie-Cullen RY, Mansuy IM. Early life epigenetic programming and transmission of stress-induced traits in mammals. Bioessays 2014; 36:491-502. [DOI: 10.1002/bies.201300116] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katharina Gapp
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| | - Lukas von Ziegler
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| | - Ry Yves Tweedie-Cullen
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| | - Isabelle M. Mansuy
- Brain Research Institute; Medical Faculty of the University Zürich and Department of Health Science and Technology of the ETH Zürich, Neuroscience Center Zürich; Switzerland
| |
Collapse
|
44
|
Lehrner A, Bierer LM, Passarelli V, Pratchett LC, Flory JD, Bader H, Harris IR, Bedi A, Daskalakis NP, Makotkine I, Yehuda R. Maternal PTSD associates with greater glucocorticoid sensitivity in offspring of Holocaust survivors. Psychoneuroendocrinology 2014; 40:213-20. [PMID: 24485493 PMCID: PMC3967845 DOI: 10.1016/j.psyneuen.2013.11.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/21/2013] [Accepted: 11/21/2013] [Indexed: 12/12/2022]
Abstract
Intergenerational effects of trauma have been observed clinically in a wide range of populations, and parental PTSD has been associated with an increased risk for psychopathology in offspring. In studies of Holocaust survivor offspring, parental PTSD, and particularly maternal PTSD, has been associated with increased risk for PTSD, low basal urinary cortisol excretion and enhanced cortisol suppression in response to dexamethasone. Such findings implicate maternally derived glucocorticoid programming in the intergenerational transmission of trauma-related consequences, potentially resulting from in utero influences or early life experiences. This study investigated the relative influence of Holocaust exposure and PTSD in mothers and fathers on glucocorticoid sensitivity in offspring. Eighty Holocaust offspring and 15 offspring of non-exposed Jewish parents completed evaluations and provided blood and urine samples. Glucocorticoid sensitivity was evaluated using the lysozyme suppression test (LST), an in vitro measure of glucocorticoid receptor sensitivity in a peripheral tissue, the dexamethasone suppression test (DST), and 24-h urinary cortisol excretion. Maternal PTSD was associated with greater glucocorticoid sensitivity in offspring across all three measures of glucocorticoid function. An interaction of maternal and paternal PTSD on the DST and 24-h urinary cortisol showed an effect of decreased glucocorticoid sensitivity in offspring with paternal, but not maternal, PTSD. Although indirect, these findings are consistent with the hypothesis that epigenetic programming may be involved in the intergenerational transmission of trauma-related effects on glucocorticoid regulation.
Collapse
Affiliation(s)
- Amy Lehrner
- James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States.
| | - Linda M. Bierer
- James J. Peters Veterans Affairs Medical Center, Bronx, New York,Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | | | - Laura C. Pratchett
- James J. Peters Veterans Affairs Medical Center, Bronx, New York,Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Janine D. Flory
- James J. Peters Veterans Affairs Medical Center, Bronx, New York,Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Heather Bader
- James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Iris R. Harris
- James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Aarti Bedi
- James J. Peters Veterans Affairs Medical Center, Bronx, New York
| | - Nikolaos P. Daskalakis
- James J. Peters Veterans Affairs Medical Center, Bronx, New York,Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Iouri Makotkine
- James J. Peters Veterans Affairs Medical Center, Bronx, New York,Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| | - Rachel Yehuda
- James J. Peters Veterans Affairs Medical Center, Bronx, New York,Traumatic Stress Studies Division, Department of Psychiatry, Icahn School of Medicine at Mount Sinai
| |
Collapse
|
45
|
Saab BJ, Mansuy IM. Neurobiological disease etiology and inheritance: an epigenetic perspective. J Exp Biol 2014; 217:94-101. [DOI: 10.1242/jeb.089995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic marks in mammals are essential to properly control the activity of the genome. They are dynamically regulated during development and adulthood, and can be modulated by environmental factors throughout life. Changes in the epigenetic profile of a cell can be positive and favor the expression of advantageous genes such as those linked to cell signaling and tumor suppression. However, they can also be detrimental and alter the functions of important genes, thereby leading to disease. Recent evidence has further highlighted that some epigenetic marks can be maintained across meiosis and be transmitted to the subsequent generation to reprogram developmental and cellular features. This short review describes current knowledge on the potential impact of epigenetic processes activated by environmental factors on the inheritance of neurobiological disease risk. In addition, the potential adaptive value of epigenetic inheritance, and relevant current and future questions are discussed.
Collapse
Affiliation(s)
- Bechara J. Saab
- Brain Research Institute, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Isabelle M. Mansuy
- Brain Research Institute, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
46
|
The intergenerational effects of early adversity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 128:177-98. [PMID: 25410545 DOI: 10.1016/b978-0-12-800977-2.00007-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Early insults during critical periods of brain development, both prenatal and postnatal, can result in epigenetic changes that may impact health and behavioral outcomes over the life span and into future generations. There is ample evidence that these early stages of brain development are sensitive to various environmental insults, including malnutrition, childhood trauma, and drug exposures. The notion that such changes, both physiological and behavioral, can also carry over into subsequent generations has long been recognized, especially in the context of experimental studies. However, epigenetic mechanisms capable of explaining such phenomena were not available until relatively recently, with most of this research published only within the last decade.
Collapse
|
47
|
Abstract
Although all neurons carry the same genetic information, they vary considerably in morphology and functions and respond differently to environmental conditions. Such variability results mostly from differences in gene expression. Among the processes that regulate gene activity, epigenetic mechanisms play a key role and provide an additional layer of complexity to the genome. They allow the dynamic modulation of gene expression in a locus- and cell-specific manner. These mechanisms primarily involve DNA methylation, posttranslational modifications (PTMs) of histones and noncoding RNAs that together remodel chromatin and facilitate or suppress gene expression. Through these mechanisms, the brain gains high plasticity in response to experience and can integrate and store new information to shape future neuronal and behavioral responses. Dynamic epigenetic footprints underlying the plasticity of brain cells and circuits contribute to the persistent impact of life experiences on an individual's behavior and physiology ranging from the formation of long-term memory to the sequelae of traumatic events or of drug addiction. They also contribute to the way lifestyle, life events, or exposure to environmental toxins can predispose an individual to disease. This chapter describes the most prominent examples of epigenetic marks associated with long-lasting changes in the brain induced by experience. It discusses the role of epigenetic processes in behavioral plasticity triggered by environmental experiences. A particular focus is placed on learning and memory where the importance of epigenetic modifications in brain circuits is best understood. The relevance of epigenetics in memory disorders such as dementia and Alzheimer's disease is also addressed, and promising perspectives for potential epigenetic drug treatment discussed.
Collapse
|
48
|
Bull L. Evolving Boolean regulatory networks with epigenetic control. Biosystems 2013; 116:36-42. [PMID: 24361581 DOI: 10.1016/j.biosystems.2013.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/15/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
Abstract
The significant role of epigenetic mechanisms within natural systems has become increasingly clear. This paper uses a recently presented abstract, tunable Boolean genetic regulatory network model to explore aspects of epigenetics. It is shown how dynamically controlling transcription via a DNA methylation-inspired mechanism can be selected for by simulated evolution under various single and multicellular scenarios. Further, it is shown that the effects of such control can be inherited without detriment to fitness.
Collapse
Affiliation(s)
- Larry Bull
- Department of Computer Science & Creative Technologies, University of the West of England, Bristol BS16 1QY, UK.
| |
Collapse
|
49
|
|
50
|
Xu Z, Nie Q, Zhang X. Overview of Genomic Insights into Chicken Growth Traits Based on Genome-Wide Association Study and microRNA Regulation. Curr Genomics 2013; 14:137-46. [PMID: 24082823 PMCID: PMC3637678 DOI: 10.2174/1389202911314020006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 01/09/2023] Open
Abstract
Over the two past decades, a significant number of studies have observed animal growth traits to examine animal genetic mechanisms due to their ease of measurement and high heritability. Chicken which has a significant impact on fundamental biology is a major source of protein worldwide, making it an ideal model for examining animal growth trait development. The genetic mechanisms of chicken growth traits have been studied using quantitative trait loci mapping through genome-scan and candidate gene approaches, genome-wide association studies (GWAS), comparative genomic strategies, microRNA (miRNA) regulation of growth development analysis, and epigenomic analysis. This review focuses on chicken GWAS and miRNA regulation of growth traits. Several recently published GWAS reports showed that most genome-wide significant single nucleotide polymorphisms are located on chromosomes 1 and 4 in chickens. Chicken growth, particularly skeletal muscle growth and development, is greatly regulated by miRNA. Using dwarf and normal chickens, let-7b was found to be involved in determining chicken dwarf phenotypes by regulating growth hormone receptor gene expression.
Collapse
Affiliation(s)
- Zhenqiang Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, Guang-dong, China
| | | | | |
Collapse
|