1
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
2
|
Ma LH, Li S, Jiao XH, Li ZY, Zhou Y, Zhou CR, Zhou CH, Zheng H, Wu YQ. BLA-involved circuits in neuropsychiatric disorders. Ageing Res Rev 2024; 99:102363. [PMID: 38838785 DOI: 10.1016/j.arr.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
3
|
Hijazi S, Smit AB, van Kesteren RE. Fast-spiking parvalbumin-positive interneurons in brain physiology and Alzheimer's disease. Mol Psychiatry 2023; 28:4954-4967. [PMID: 37419975 PMCID: PMC11041664 DOI: 10.1038/s41380-023-02168-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Fast-spiking parvalbumin (PV) interneurons are inhibitory interneurons with unique morphological and functional properties that allow them to precisely control local circuitry, brain networks and memory processing. Since the discovery in 1987 that PV is expressed in a subset of fast-spiking GABAergic inhibitory neurons, our knowledge of the complex molecular and physiological properties of these cells has been expanding. In this review, we highlight the specific properties of PV neurons that allow them to fire at high frequency and with high reliability, enabling them to control network oscillations and shape the encoding, consolidation and retrieval of memories. We next discuss multiple studies reporting PV neuron impairment as a critical step in neuronal network dysfunction and cognitive decline in mouse models of Alzheimer's disease (AD). Finally, we propose potential mechanisms underlying PV neuron dysfunction in AD and we argue that early changes in PV neuron activity could be a causal step in AD-associated network and memory impairment and a significant contributor to disease pathogenesis.
Collapse
Affiliation(s)
- Sara Hijazi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
4
|
Hernández-Frausto M, Bilash OM, Masurkar AV, Basu J. Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease. Front Neural Circuits 2023; 17:1223891. [PMID: 37841892 PMCID: PMC10570439 DOI: 10.3389/fncir.2023.1223891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Olesia M. Bilash
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Arjun V. Masurkar
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
5
|
Wander CM, Li YD, Bao H, Asrican B, Luo YJ, Sullivan HA, Chao THH, Zhang WT, Chéry SL, Tart DS, Chen ZK, Shih YYI, Wickersham IR, Cohen TJ, Song J. Compensatory remodeling of a septo-hippocampal GABAergic network in the triple transgenic Alzheimer's mouse model. J Transl Med 2023; 21:258. [PMID: 37061718 PMCID: PMC10105965 DOI: 10.1186/s12967-023-04078-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/25/2023] [Indexed: 04/17/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a progressive loss of memory that cannot be efficiently managed by currently available AD therapeutics. So far, most treatments for AD that have the potential to improve memory target neural circuits to protect their integrity. However, the vulnerable neural circuits and their dynamic remodeling during AD progression remain largely undefined. METHODS Circuit-based approaches, including anterograde and retrograde tracing, slice electrophysiology, and fiber photometry, were used to investigate the dynamic structural and functional remodeling of a GABAergic circuit projected from the medial septum (MS) to the dentate gyrus (DG) in 3xTg-AD mice during AD progression. RESULTS We identified a long-distance GABAergic circuit that couples highly connected MS and DG GABAergic neurons during spatial memory encoding. Furthermore, we found hyperactivity of DG interneurons during early AD, which persisted into late AD stages. Interestingly, MS GABAergic projections developed a series of adaptive strategies to combat DG interneuron hyperactivity. During early-stage AD, MS-DG GABAergic projections exhibit increased inhibitory synaptic strength onto DG interneurons to inhibit their activities. During late-stage AD, MS-DG GABAergic projections form higher anatomical connectivity with DG interneurons and exhibit aberrant outgrowth to increase the inhibition onto DG interneurons. CONCLUSION We report the structural and functional remodeling of the MS-DG GABAergic circuit during disease progression in 3xTg-AD mice. Dynamic MS-DG GABAergic circuit remodeling represents a compensatory mechanism to combat DG interneuron hyperactivity induced by reduced GABA transmission.
Collapse
Affiliation(s)
- Connor M Wander
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ya-Dong Li
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Songjiang Research Institute, Songjiang hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201699, China.
| | - Hechen Bao
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Brent Asrican
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yan-Jia Luo
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Anaesthesiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201699, China
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tzu-Hao Harry Chao
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Wei-Ting Zhang
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Samantha L Chéry
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Dalton S Tart
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ze-Ka Chen
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Todd J Cohen
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Neurology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Tang Y, Yan Y, Mao J, Ni J, Qing H. The hippocampus associated GABAergic neural network impairment in early-stage of Alzheimer's disease. Ageing Res Rev 2023; 86:101865. [PMID: 36716975 DOI: 10.1016/j.arr.2023.101865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is the commonest neurodegenerative disease with slow progression. Pieces of evidence suggest that the GABAergic system is impaired in the early stage of AD, leading to hippocampal neuron over-activity and further leading to memory and cognitive impairment in patients with AD. However, the precise impairment mechanism of the GABAergic system on the pathogenesis of AD is still unclear. The impairment of neural networks associated with the GABAergic system is tightly associated with AD. Therefore, we describe the roles played by hippocampus-related GABAergic circuits and their impairments in AD neuropathology. In addition, we give our understand on the process from GABAergic circuit impairment to cognitive and memory impairment, since recent studies on astrocyte in AD plays an important role behind cognition dysfunction caused by GABAergic circuit impairment, which helps better understand the GABAergic system and could open up innovative AD therapy.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Mao
- Zhengzhou Tobacco Institute of China National Tobacco Company, Zhengzhou 450001, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
7
|
Chen D, Zhang Y, Qiao R, Kong X, Zhong H, Wang X, Zhu J, Li B. Integrated bioinformatics-based identification of diagnostic markers in Alzheimer disease. Front Aging Neurosci 2022; 14:988143. [PMID: 36437991 PMCID: PMC9686423 DOI: 10.3389/fnagi.2022.988143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/28/2022] [Indexed: 08/09/2023] Open
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disease resulting from the accumulation of extracellular amyloid beta (Aβ) and intracellular neurofibrillary tangles. There are currently no objective diagnostic measures for AD. The aim of this study was to identify potential diagnostic markers for AD and evaluate the role of immune cell infiltration in disease pathogenesis. AD expression profiling data for human hippocampus tissue (GSE48350 and GSE5281) were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using R software and the Human Protein Atlas database was used to screen AD-related DEGs. We performed functional enrichment analysis and established a protein-protein interaction (PPI) network to identify disease-related hub DEGs. The fraction of infiltrating immune cells in samples was determined with the Microenvironment Cell Populations-counter method. The random forest algorithm was used to develop a prediction model and receiver operating characteristic (ROC) curve analysis was performed to validate the diagnostic utility of the candidate AD markers. The correlation between expression of the diagnostic markers and immune cell infiltration was also analyzed. A total of 107 AD-related DEGs were screened in this study, including 28 that were upregulated and 79 that were downregulated. The DEGs were enriched in the Gene Ontology terms GABAergic synapse, Morphine addiction, Nicotine addiction, Phagosome, and Synaptic vesicle cycle. We identified 10 disease-related hub genes and 20 candidate diagnostic genes. Synaptophysin (SYP) and regulator of G protein signaling 4 (RGS4) (area under the ROC curve = 0.909) were verified as potential diagnostic markers for AD in the GSE28146 validation dataset. Natural killer cells, B lineage cells, monocytic lineage cells, endothelial cells, and fibroblasts were found to be involved in AD; additionally, the expression levels of both SYP and RGS4 were negatively correlated with the infiltration of these immune cell types. These results suggest that SYP and RGS4 are potential diagnostic markers for AD and that immune cell infiltration plays an important role in AD development and progression.
Collapse
Affiliation(s)
- Danmei Chen
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
- Department of Integrative Medicine, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yunpeng Zhang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Rui Qiao
- College of Acupuncture-Massage and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Xiangyu Kong
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Hequan Zhong
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaokun Wang
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Rehabilitation, Jinshan Hospital, Fudan University, Shanghai, China
| | - Bing Li
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
8
|
Griguoli M, Pimpinella D. Medial septum: relevance for social memory. Front Neural Circuits 2022; 16:965172. [PMID: 36082110 PMCID: PMC9445153 DOI: 10.3389/fncir.2022.965172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Animal species are named social when they develop the capability of complex behaviors based on interactions with conspecifics that include communication, aggression, mating and parental behavior, crucial for well-being and survival. The underpinning of such complex behaviors is social memory, namely the capacity to discriminate between familiar and novel individuals. The Medial Septum (MS), a region localized in the basal forebrain, is part of the brain network involved in social memory formation. MS receives several cortical and subcortical synaptic and neuromodulatory inputs that make it an important hub in processing social information relevant for social memory. Particular attention is paid to synaptic inputs that control both the MS and the CA2 region of the hippocampus, one of the major MS output, that has been causally linked to social memory. In this review article, we will provide an overview of local and long range connectivity that allows MS to integrate and process social information. Furthermore, we will summarize previous strategies used to determine how MS controls social memory in different animal species. Finally, we will discuss the impact of an altered MS signaling on social memory in animal models and patients affected by neurodevelopmental and neurodegenerative disorders, including autism and Alzheimer’s Disease.
Collapse
Affiliation(s)
- Marilena Griguoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
- Institute of Molecular Biology and Pathology of the National Council of Research (IBPM-CNR), Rome, Italy
- *Correspondence: Marilena Griguoli
| | - Domenico Pimpinella
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Rome, Italy
| |
Collapse
|
9
|
Li H, Zhao J, Lai L, Xia Y, Wan C, Wei S, Liang J, Chen Y, Xu N. Loss of SST and PV Positive Interneurons in the Ventral Hippocampus Results in Anxiety-like Behavior in 5xFAD Mice. Neurobiol Aging 2022; 117:165-178. [DOI: 10.1016/j.neurobiolaging.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
|
10
|
Bie B, Wu J, Lin F, Naguib M, Xu J. Suppression of hippocampal GABAergic transmission impairs memory in rodent models of Alzheimer's disease. Eur J Pharmacol 2022; 917:174771. [PMID: 35041847 DOI: 10.1016/j.ejphar.2022.174771] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
Emerging evidence demonstrates the potential involvement of hippocampal GABAergic transmission in the process of memory acquisition and consolidation, while no consistent report is available to address the adaptation of hippocampal GABAergic transmission and its contribution to memory deficiency in the setting of Alzheimer's disease (AD). Brain-derived neurotrophic factor (BDNF) is a key molecule that regulates GABAergic transmission. In the brain, mature BDNF is generated from the proteolytic cleavage of proBDNF, while BDNF and proBDNF have differential effects on central GABAergic transmission. First, the present study reports a remarkable increase of proBDNF/BNDF ratio in the hippocampal CA1 area in rodent models of AD, indicating a potential impaired process of BDNF maturation from proBDNF cleavage. We report a suppressed hippocampal GABAergic strength, potentially resulting from the reduced expression of anion chloride co-transporter KCC2 and subsequent positive shift of GABAergic Cl-equilibrium potential (ECl-), which is attenuated by microinjection of BDNF with proBDNF inhibitor TAT-Pep5. We also show that normalization of proBDNF/BDNF signaling or GABAergic ECl-by intracerebroventricular (i.c.v.) administration of bumetanide remarkably improves the cognitive performance in Morris water maze test and fear conditioning test in rodent models of AD. These results demonstrate a critical role of hippocampal proBDNF/BDNF in regulating GABAergic transmission and contributing to memory dysfunction in rodent models of AD.
Collapse
Affiliation(s)
- Bihua Bie
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jiang Wu
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Feng Lin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Mohamed Naguib
- Department of General Anesthesiology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jijun Xu
- Department of Pain Management, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, 44195, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
11
|
Raven F, Aton SJ. The Engram's Dark Horse: How Interneurons Regulate State-Dependent Memory Processing and Plasticity. Front Neural Circuits 2021; 15:750541. [PMID: 34588960 PMCID: PMC8473837 DOI: 10.3389/fncir.2021.750541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022] Open
Abstract
Brain states such as arousal and sleep play critical roles in memory encoding, storage, and recall. Recent studies have highlighted the role of engram neurons-populations of neurons activated during learning-in subsequent memory consolidation and recall. These engram populations are generally assumed to be glutamatergic, and the vast majority of data regarding the function of engram neurons have focused on glutamatergic pyramidal or granule cell populations in either the hippocampus, amygdala, or neocortex. Recent data suggest that sleep and wake states differentially regulate the activity and temporal dynamics of engram neurons. Two potential mechanisms for this regulation are either via direct regulation of glutamatergic engram neuron excitability and firing, or via state-dependent effects on interneuron populations-which in turn modulate the activity of glutamatergic engram neurons. Here, we will discuss recent findings related to the roles of interneurons in state-regulated memory processes and synaptic plasticity, and the potential therapeutic implications of understanding these mechanisms.
Collapse
Affiliation(s)
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Ying Y, Wang JZ. Illuminating Neural Circuits in Alzheimer's Disease. Neurosci Bull 2021; 37:1203-1217. [PMID: 34089505 PMCID: PMC8353043 DOI: 10.1007/s12264-021-00716-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/06/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder and there is currently no cure. Neural circuit dysfunction is the fundamental mechanism underlying the learning and memory deficits in patients with AD. Therefore, it is important to understand the structural features and mechanisms underlying the deregulated circuits during AD progression, by which new tools for intervention can be developed. Here, we briefly summarize the most recently established cutting-edge experimental approaches and key techniques that enable neural circuit tracing and manipulation of their activity. We also discuss the advantages and limitations of these approaches. Finally, we review the applications of these techniques in the discovery of circuit mechanisms underlying β-amyloid and tau pathologies during AD progression, and as well as the strategies for targeted AD treatments.
Collapse
Affiliation(s)
- Yang Ying
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Ministry of Education Key Laboratory for Neurological Disorders, Hubei Key Laboratory for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Reid HMO, Chen-Mack N, Snowden T, Christie BR. Understanding Changes in Hippocampal Interneurons Subtypes in the Pathogenesis of Alzheimer's Disease: A Systematic Review. Brain Connect 2021; 11:159-179. [PMID: 33559520 DOI: 10.1089/brain.2020.0879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: It is becoming increasingly recognized that there is significant interneuron degeneration in Alzheimer's disease. As the hippocampus is integral for learning and memory, we performed a systematic review of primary literature focused on the relationship between Alzheimer's and hippocampal interneurons. In this study, we summarize the experimental work performed to date and identify opportunities for future experiments. Objectives: This PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-style systematic review seeks to summarize the findings of all accessible research focused on cholecystokinin (CCK), neuropeptide Y (NPY), parvalbumin (PV), and somatostatin (SOM) interneurons in the hippocampal formation. Results: One thousand five hundred ninety-three articles were pulled from PubMed, PsycInfo, and Web of Science, based on three blocks of search terms. There were 45 articles that met all the predetermined inclusion/exclusion criteria. There is strong evidence that PV interneurons are affected early in the disease by toxic amyloid beta (Aβ) fragments; SOM interneurons are affected indirectly while the SOM neuropeptide may act to slowly worsen toxic Aβ fragment accumulation, whereas NPY- and CCK-positive interneurons are affected later in the progression of the disease. Conclusions: Fewer studies have been performed on NPY and CCK interneurons, and there is room for further investigations regarding the role of PV interneurons in Alzheimer's to help resolve contradictory findings. This review found that PV interneurons are affected early in the disease, but only in Alzheimer's precursor protein but not tau models. NPY and CCK interneurons were found to be affected later in the disease, and SOM interneurons vary greatly. Future studies may consider reporting immunohistochemical studies inclusive of either cell location or morphology-as well as marker to give a more robust picture of the disease.
Collapse
Affiliation(s)
- Hannah M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Nathan Chen-Mack
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| | - Taylor Snowden
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Island Medical Program and Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| |
Collapse
|
14
|
Ahmed T, Van der Jeugd A, Caillierez R, Buée L, Blum D, D'Hooge R, Balschun D. Chronic Sodium Selenate Treatment Restores Deficits in Cognition and Synaptic Plasticity in a Murine Model of Tauopathy. Front Mol Neurosci 2020; 13:570223. [PMID: 33132838 PMCID: PMC7578417 DOI: 10.3389/fnmol.2020.570223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/26/2020] [Indexed: 12/18/2022] Open
Abstract
A major goal in diseases is identifying a potential therapeutic agent that is cost-effective and can remedy some, if not all, disease symptoms. In Alzheimer’s disease (AD), aggregation of hyperphosphorylated tau protein is one of the neuropathological hallmarks, and Tau pathology correlates better with cognitive impairments in AD patients than amyloid-β load, supporting a key role of tau-related mechanisms. Selenium is a non-metallic trace element that is incorporated in the brain into selenoproteins. Chronic treatment with sodium selenate, a non-toxic selenium compound, was recently reported to rescue behavioral phenotypes in tau mouse models. Here, we focused on the effects of chronic selenate application on synaptic transmission and synaptic plasticity in THY-Tau22 mice, a transgenic animal model of tauopathies. Three months with a supplement of sodium selenate in the drinking water (12 μg/ml) restored not only impaired neurocognitive functions but also rescued long-term depression (LTD), a major form of synaptic plasticity. Furthermore, selenate reduced the inactive demethylated catalytic subunit of protein phosphatase 2A (PP2A) in THY-Tau22 without affecting total PP2A.Our study provides evidence that chronic dietary selenate rescues functional synaptic deficits of tauopathy and identifies activation of PP2A as the putative mechanism.
Collapse
Affiliation(s)
- Tariq Ahmed
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| | - Ann Van der Jeugd
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Raphaëlle Caillierez
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience and Cognition, Lille, France.,Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Rudi D'Hooge
- Leuven Brain Institute, Leuven, Belgium.,Laboratory of Biological Psychology, Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Detlef Balschun
- Brain and Cognition, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
15
|
Cisternas P, Taylor X, Perkins A, Maldonado O, Allman E, Cordova R, Marambio Y, Munoz B, Pennington T, Xiang S, Zhang J, Vidal R, Atwood B, Lasagna‐Reeves CA. Vascular amyloid accumulation alters the gabaergic synapse and induces hyperactivity in a model of cerebral amyloid angiopathy. Aging Cell 2020; 19:e13233. [PMID: 32914559 PMCID: PMC7576303 DOI: 10.1111/acel.13233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 07/26/2020] [Indexed: 12/19/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is typified by the cerebrovascular deposition of amyloid. The mechanisms underlying the contribution of CAA to neurodegeneration are not currently understood. Although CAA is highly associated with the accumulation of β‐amyloid (Aβ), other amyloids are known to associate with the vasculature. Alzheimer's disease (AD) is characterized by parenchymal Aβ deposition and intracellular accumulation of tau as neurofibrillary tangles (NFTs), affecting synapses directly, leading to behavioral and physical impairment. CAA increases with age and is present in 70%–97% of individuals with AD. Studies have overwhelmingly focused on the connection between parenchymal amyloid accumulation and synaptotoxicity; thus, the contribution of vascular amyloid is mostly understudied. Here, synaptic alterations induced by vascular amyloid accumulation and their behavioral consequences were characterized using a mouse model of Familial Danish dementia (FDD), a neurodegenerative disease characterized by the accumulation of Danish amyloid (ADan) in the vasculature. The mouse model (Tg‐FDD) displays a hyperactive phenotype that potentially arises from impairment in the GABAergic synapses, as determined by electrophysiological analysis. We demonstrated that the disruption of GABAergic synapse organization causes this impairment and provided evidence that GABAergic synapses are impaired in patients with CAA pathology. Understanding the mechanism that CAA contributes to synaptic dysfunction in AD‐related dementias is of critical importance for developing future therapeutic interventions.
Collapse
Affiliation(s)
- Pablo Cisternas
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Xavier Taylor
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Abigail Perkins
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Orlando Maldonado
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Elysabeth Allman
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Ricardo Cordova
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Yamil Marambio
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| | - Braulio Munoz
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Taylor Pennington
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Shunian Xiang
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics Indiana University School of Medicine Indianapolis IN USA
| | - Ruben Vidal
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pathology and Laboratory Medicine Indiana University School of Medicine Indianapolis IN USA
| | - Brady Atwood
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Pharmacology & Toxicology Indiana University School of Medicine Indianapolis IN USA
| | - Cristian A. Lasagna‐Reeves
- Stark Neurosciences Research Institute Indiana University School of Medicine Indianapolis IN USA
- Department of Anatomy, Cell Biology & Physiology Indiana University School of Medicine Indianapolis IN USA
| |
Collapse
|
16
|
Xu Y, Zhang S, Sun Q, Wang XQ, Chai YN, Mishra C, Chandra SR, Ai J. Cholinergic Dysfunction Involvement in Chronic Cerebral Hypoperfusion-Induced Impairment of Medial Septum-dCA1 Neurocircuit in Rats. Front Cell Neurosci 2020; 14:586591. [PMID: 33132852 PMCID: PMC7550820 DOI: 10.3389/fncel.2020.586591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 08/31/2020] [Indexed: 11/13/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is considered a preclinical condition of mild cognitive impairment and thought to precede dementia. However, as the principal cholinergic source of hippocampus, whether the septo-hippocampal neurocircuit was impaired after CCH is still unknown. In this study, we established the CCH rat model by bilateral common carotid artery occlusion (2VO). Under anesthesia, the medial septum (MS) of rats was stimulated to evoke the field excitatory post-synaptic potential (fEPSP) in the pyramidal cell layer of dCA1. Consequently, we observed decreased amplitude of fEPSP and increased paired-pulse ratio (PPR) after 8-week CCH. After tail pinch, we also found decreased peak frequency and shortened duration of hippocampal theta rhythm in 2VO rats, indicating the dysfunction of septo-hippocampal neurocircuit. Besides, by intracerebroventricularly injecting GABAergic inhibitor (bicuculline) and cholinergic inhibitors (scopolamine and mecamylamine), we found that CCH impaired both the pre-synaptic cholinergic release and the post-synaptic nAChR function in MS-dCA1 circuits. These results gave an insight into the role of CCH in the impairment of cholinergic MS-dCA1 neurocircuits. These findings may provide a new idea about the CCH-induced neurodegenerative changes.
Collapse
Affiliation(s)
- Yi Xu
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shuai Zhang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Qiang Sun
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Xu-Qiao Wang
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Ya-Ni Chai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Chandan Mishra
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Shah Ram Chandra
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| | - Jing Ai
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Pizzo P, Basso E, Filadi R, Greotti E, Leparulo A, Pendin D, Redolfi N, Rossini M, Vajente N, Pozzan T, Fasolato C. Presenilin-2 and Calcium Handling: Molecules, Organelles, Cells and Brain Networks. Cells 2020; 9:E2166. [PMID: 32992716 PMCID: PMC7601421 DOI: 10.3390/cells9102166] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Presenilin-2 (PS2) is one of the three proteins that are dominantly mutated in familial Alzheimer's disease (FAD). It forms the catalytic core of the γ-secretase complex-a function shared with its homolog presenilin-1 (PS1)-the enzyme ultimately responsible of amyloid-β (Aβ) formation. Besides its enzymatic activity, PS2 is a multifunctional protein, being specifically involved, independently of γ-secretase activity, in the modulation of several cellular processes, such as Ca2+ signalling, mitochondrial function, inter-organelle communication, and autophagy. As for the former, evidence has accumulated that supports the involvement of PS2 at different levels, ranging from organelle Ca2+ handling to Ca2+ entry through plasma membrane channels. Thus FAD-linked PS2 mutations impact on multiple aspects of cell and tissue physiology, including bioenergetics and brain network excitability. In this contribution, we summarize the main findings on PS2, primarily as a modulator of Ca2+ homeostasis, with particular emphasis on the role of its mutations in the pathogenesis of FAD. Identification of cell pathways and molecules that are specifically targeted by PS2 mutants, as well as of common targets shared with PS1 mutants, will be fundamental to disentangle the complexity of memory loss and brain degeneration that occurs in Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Emy Basso
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Alessandro Leparulo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| | - Diana Pendin
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Nelly Redolfi
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| | - Michela Rossini
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| | - Nicola Vajente
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
- Neuroscience Institute, Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2B, 35131 Padua, Italy
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.B.); (R.F.); (E.G.); (A.L.); (D.P.); (N.R.); (M.R.); (N.V.); (T.P.)
| |
Collapse
|
18
|
Chi H, Sun L, Shiu RH, Han R, Hsieh CP, Wei TM, Lo CC, Chang HY, Sang TK. Cleavage of human tau at Asp421 inhibits hyperphosphorylated tau induced pathology in a Drosophila model. Sci Rep 2020; 10:13482. [PMID: 32778728 PMCID: PMC7417559 DOI: 10.1038/s41598-020-70423-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 07/29/2020] [Indexed: 11/09/2022] Open
Abstract
Hyperphosphorylated and truncated tau variants are enriched in neuropathological aggregates in diseases known as tauopathies. However, whether the interaction of these posttranslational modifications affects tau toxicity as a whole remains unresolved. By expressing human tau with disease-related Ser/Thr residues to simulate hyperphosphorylation, we show that despite severe neurodegeneration in full-length tau, with the truncation at Asp421, the toxicity is ameliorated. Cytological and biochemical analyses reveal that hyperphosphorylated full-length tau distributes in the soma, the axon, and the axonal terminal without evident distinction, whereas the Asp421-truncated version is mostly restricted from the axonal terminal. This discrepancy is correlated with the fact that fly expressing hyperphosphorylated full-length tau, but not Asp421-cleaved one, develops axonopathy lesions, including axonal spheroids and aberrant actin accumulations. The reduced presence of hyperphosphorylated tau in the axonal terminal is corroborated with the observation that flies expressing Asp421-truncated variants showed less motor deficit, suggesting synaptic function is preserved. The Asp421 cleavage of tau is a proteolytic product commonly found in the neurofibrillary tangles. Our finding suggests the coordination of different posttranslational modifications on tau may have an unexpected impact on the protein subcellular localization and cytotoxicity, which may be valuable when considering tau for therapeutic purposes.
Collapse
Affiliation(s)
- Hao Chi
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Lee Sun
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ren-Huei Shiu
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Rui Han
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chien-Ping Hsieh
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Min Wei
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chung-Chuan Lo
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hui-Yun Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, 30013, Taiwan.,Department of Medical Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Kang Sang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Brain Research Center, National Tsing Hua University, Hsinchu, 30013, Taiwan. .,Department of Life Science, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
19
|
Xu Y, Zhao M, Han Y, Zhang H. GABAergic Inhibitory Interneuron Deficits in Alzheimer's Disease: Implications for Treatment. Front Neurosci 2020; 14:660. [PMID: 32714136 PMCID: PMC7344222 DOI: 10.3389/fnins.2020.00660] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/28/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized clinically by severe cognitive deficits and pathologically by amyloid plaques, neuronal loss, and neurofibrillary tangles. Abnormal amyloid β-protein (Aβ) deposition in the brain is often thought of as a major initiating factor in AD neuropathology. However, gamma-aminobutyric acid (GABA) inhibitory interneurons are resistant to Aβ deposition, and Aβ decreases synaptic glutamatergic transmission to decrease neural network activity. Furthermore, there is now evidence suggesting that neural network activity is aberrantly increased in AD patients and animal models due to functional deficits in and decreased activity of GABA inhibitory interneurons, contributing to cognitive deficits. Here we describe the roles played by excitatory neurons and GABA inhibitory interneurons in Aβ-induced cognitive deficits and how altered GABA interneurons regulate AD neuropathology. We also comprehensively review recent studies on how GABA interneurons and GABA receptors can be exploited for therapeutic benefit. GABA interneurons are an emerging therapeutic target in AD, with further clinical trials urgently warranted.
Collapse
Affiliation(s)
- Yilan Xu
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Manna Zhao
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yuying Han
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Heng Zhang
- Neurodegeneration and Neuroregeneration Laboratory, Department of Basic Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
20
|
Jafari Z, Kolb BE, Mohajerani MH. Prepulse inhibition of the acoustic startle reflex and P50 gating in aging and alzheimer's disease. Ageing Res Rev 2020; 59:101028. [PMID: 32092463 DOI: 10.1016/j.arr.2020.101028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Inhibition plays a crucial role in many functional domains, such as cognition, emotion, and actions. Studies on cognitive aging demonstrate changes in inhibitory mechanisms are age- and pathology-related. Prepulse inhibition (PPI) is the suppression of an acoustic startle reflex (ASR) to an intense stimulus when a weak prepulse stimulus precedes the startle stimulus. A reduction of PPI is thought to reflect dysfunction of sensorimotor gating which normally suppresses excessive behavioral responses to disruptive stimuli. Both human and rodent studies show age-dependent alterations of PPI of the ASR that are further compromised in Alzheimer's disease (AD). The auditory P50 gating, an index of repetition suppression, also is characterized as a putative electrophysiological biomarker of prodromal AD. This review provides the latest evidence of age- and AD-associated impairment of sensorimotor gating based upon both human and rodent studies, as well as the AD-related disruption of P50 gating in humans. It begins with a concise review of neural networks underlying PPI regulation. Then, evidence of age- and AD-related dysfunction of both PPI and P50 gating is discussed. The attentional/ emotional aspects of sensorimotor gating and the neurotransmitter mechanisms underpinning PPI and P50 gating are also reviewed. The review ends with conclusions and research directions.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada; Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, T1K 3M4 AB, Canada.
| |
Collapse
|
21
|
Early restoration of parvalbumin interneuron activity prevents memory loss and network hyperexcitability in a mouse model of Alzheimer's disease. Mol Psychiatry 2020; 25:3380-3398. [PMID: 31431685 PMCID: PMC7714697 DOI: 10.1038/s41380-019-0483-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 05/09/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Neuronal network dysfunction is increasingly recognized as an early symptom in Alzheimer's disease (AD) and may provide new entry points for diagnosis and intervention. Here, we show that amyloid-beta-induced hyperexcitability of hippocampal inhibitory parvalbumin (PV) interneurons importantly contributes to neuronal network dysfunction and memory impairment in APP/PS1 mice, a mouse model of increased amyloidosis. We demonstrate that hippocampal PV interneurons become hyperexcitable at ~16 weeks of age, when no changes are observed yet in the intrinsic properties of pyramidal cells. This hyperexcitable state of PV interneurons coincides with increased inhibitory transmission onto hippocampal pyramidal neurons and deficits in spatial learning and memory. We show that treatment aimed at preventing PV interneurons from becoming hyperexcitable is sufficient to restore PV interneuron properties to wild-type levels, reduce inhibitory input onto pyramidal cells, and rescue memory deficits in APP/PS1 mice. Importantly, we demonstrate that early intervention aimed at restoring PV interneuron activity has long-term beneficial effects on memory and hippocampal network activity, and reduces amyloid plaque deposition, a hallmark of AD pathology. Taken together, these findings suggest that early treatment of PV interneuron hyperactivity might be clinically relevant in preventing memory decline and delaying AD progression.
Collapse
|
22
|
Fertan E, Stover KR, Brant MG, Stafford PM, Kelly B, Diez-Cecilia E, Wong AA, Weaver DF, Brown RE. Effects of the Novel IDO Inhibitor DWG-1036 on the Behavior of Male and Female 3xTg-AD Mice. Front Pharmacol 2019; 10:1044. [PMID: 31607909 PMCID: PMC6773979 DOI: 10.3389/fphar.2019.01044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
The kynurenine pathway metabolizes tryptophan into nicotinamide adenine dinucleotide, producing a number of intermediary metabolites, including 3-hydroxy kynurenine and quinolinic acid, which are involved in the neurodegenerative mechanisms that underlie Alzheimer's disease (AD). Indolamine 2,3-dioxygenase (IDO), the first and rate-limiting enzyme of this pathway, is increased in AD, and it has been hypothesized that blocking this enzyme may slow the progression of AD. In this study, we treated male and female 3xTg-AD and wild-type mice with the novel IDO inhibitor DWG-1036 (80 mg/kg) or vehicle (distilled water) from 2 to 6 months of age and then tested them in a battery of behavioral tests that measured spatial learning and memory (Barnes maze), working memory (trace fear conditioning), motor coordination and learning (rotarod), anxiety (elevated plus maze), and depression (tail suspension test). The 3xTg-AD mice treated with DWG-1036 showed better memory in the trace fear conditioning task and significant improvements in learning but poorer spatial memory in the Barnes maze. DWG-1036 treatment also ameliorated the behaviors associated with increased anxiety in the elevated plus maze and depression-like behaviors in the tail suspension test in 3xTg-AD mice. However, the effects of DWG-1036 treatment on the behavioral tasks were variable, and sex differences were apparent. In addition, high doses of DWG-1036 resulted in reduced body weight, particularly in females. Taken together, our results suggest that the kynurenine pathway is a promising target for treating AD, but more work is needed to determine the effective compounds, examine sex differences, and understand the side effects of the compounds.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Kurt R.J. Stover
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Michael G. Brant
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Paul M. Stafford
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Brendan Kelly
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Elena Diez-Cecilia
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Aimée A. Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| | - Donald F. Weaver
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Richard E. Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
23
|
Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J, Gundlach AL. Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat 2019; 13:30. [PMID: 30906254 PMCID: PMC6419585 DOI: 10.3389/fnana.2019.00030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Relaxin-3 is a highly conserved neuropeptide abundantly expressed in neurons of the nucleus incertus (NI), which project to nodes of the septohippocampal system (SHS) including the medial septum/diagonal band of Broca (MS/DB) and dorsal hippocampus, as well as to limbic circuits. High densities of the Gi/o-protein-coupled receptor for relaxin-3, known as relaxin-family peptide-3 receptor (RXFP3) are expressed throughout the SHS, further suggesting a role for relaxin-3/RXFP3 signaling in modulating learning and memory processes that occur within these networks. Therefore, this study sought to gain further anatomical and functional insights into relaxin-3/RXFP3 signaling in the mouse MS/DB. Using Cre/LoxP recombination methods, we assessed locomotion, exploratory behavior, and spatial learning and long-term reference memory in adult C57BL/6J Rxfp3 loxP/loxP mice with targeted depletion of Rxfp3 in the MS/DB. Following prior injection of an AAV(1/2)-Cre-IRES-eGFP vector into the MS/DB to delete/deplete Rxfp3 mRNA/RXFP3 protein, mice tested in a Morris water maze (MWM) displayed an impairment in allocentric spatial learning during acquisition, as well as an impairment in long-term reference memory on probe day. However, RXFP3-depleted and control mice displayed similar motor activity in a locomotor cell and exploratory behavior in a large open-field (LOF) test. A quantitative characterization using multiplex, fluorescent in situ hybridization (ISH) identified a high level of co-localization of Rxfp3 mRNA and vesicular GABA transporter (vGAT) mRNA in MS and DB neurons (~87% and ~95% co-expression, respectively). Rxfp3 mRNA was also detected, to a correspondingly lesser extent, in vesicular glutamate transporter 2 (vGlut2) mRNA-containing neurons in MS and DB (~13% and ~5% co-expression, respectively). Similarly, a qualitative assessment of the MS/DB region, identified Rxfp3 mRNA in neurons that expressed parvalbumin (PV) mRNA (reflecting hippocampally-projecting GABA neurons), whereas choline acetyltransferase mRNA-positive (acetylcholine) neurons lacked Rxfp3 mRNA. These data are consistent with a qualitative immunohistochemical analysis that revealed relaxin-3-immunoreactive nerve fibers in close apposition with PV-immunoreactive neurons in the MS/DB. Together these studies suggest relaxin-3/RXFP3 signaling in the MS/DB plays a role in modulating specific learning and long-term memory associated behaviors in adult mice via effects on GABAergic neuron populations known for their involvement in modulating hippocampal theta rhythm and associated cognitive processes.
Collapse
Affiliation(s)
- Mouna Haidar
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Kimberly Tin
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Cary Zhang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Mohsen Nategh
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - João Covita
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alexander D. Wykes
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jake Rogers
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew L. Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Jiang S, Wen N, Li Z, Dube U, Del Aguila J, Budde J, Martinez R, Hsu S, Fernandez MV, Cairns NJ, Harari O, Cruchaga C, Karch CM. Integrative system biology analyses of CRISPR-edited iPSC-derived neurons and human brains reveal deficiencies of presynaptic signaling in FTLD and PSP. Transl Psychiatry 2018; 8:265. [PMID: 30546007 PMCID: PMC6293323 DOI: 10.1038/s41398-018-0319-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/13/2018] [Indexed: 01/12/2023] Open
Abstract
Mutations in the microtubule-associated protein tau (MAPT) gene cause autosomal dominant frontotemporal lobar degeneration with tau inclusions (FTLD-tau). MAPT p.R406W carriers present clinically with progressive memory loss and neuropathologically with neuronal and glial tauopathy. However, the pathogenic events triggered by the expression of the mutant tau protein remain poorly understood. To identify the genes and pathways that are dysregulated in FTLD-tau, we performed transcriptomic analyses in induced pluripotent stem cell (iPSC)-derived neurons carrying MAPT p.R406W and CRISPR/Cas9-corrected isogenic controls. We found that the expression of the MAPT p.R406W mutation was sufficient to create a significantly different transcriptomic profile compared with that of the isogeneic controls and to cause the differential expression of 328 genes. Sixty-one of these genes were also differentially expressed in the same direction between MAPT p.R406W carriers and pathology-free human control brains. We found that genes differentially expressed in the stem cell models and human brains were enriched for pathways involving gamma-aminobutyric acid (GABA) receptors and pre-synaptic function. The expression of GABA receptor genes, including GABRB2 and GABRG2, were consistently reduced in iPSC-derived neurons and brains from MAPT p.R406W carriers. Interestingly, we found that GABA receptor genes, including GABRB2 and GABRG2, are significantly lower in symptomatic mouse models of tauopathy, as well as in brains with progressive supranuclear palsy. Genome wide association analyses reveal that common variants within GABRB2 are associated with increased risk for frontotemporal dementia (P < 1 × 10-3). Thus, our systems biology approach, which leverages molecular data from stem cells, animal models, and human brain tissue can reveal novel disease mechanisms. Here, we demonstrate that MAPT p.R406W is sufficient to induce changes in GABA-mediated signaling and synaptic function, which may contribute to the pathogenesis of FTLD-tau and other primary tauopathies.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Natalie Wen
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Zeran Li
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Umber Dube
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Jorge Del Aguila
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Rita Martinez
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Simon Hsu
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Maria V Fernandez
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, 660S. Euclid Ave, Campus Box 8118, Saint Louis, MO, 63110, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA.
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA.
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8134, St. Louis, MO, 63110, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, 660S. Euclid Ave. Campus Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
25
|
Hypermetabolism in the hippocampal formation of cognitively impaired patients indicates detrimental maladaptation. Neurobiol Aging 2018; 65:41-50. [DOI: 10.1016/j.neurobiolaging.2018.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/27/2017] [Accepted: 01/07/2018] [Indexed: 11/22/2022]
|
26
|
Bao H, Asrican B, Li W, Gu B, Wen Z, Lim SA, Haniff I, Ramakrishnan C, Deisseroth K, Philpot B, Song J. Long-Range GABAergic Inputs Regulate Neural Stem Cell Quiescence and Control Adult Hippocampal Neurogenesis. Cell Stem Cell 2017; 21:604-617.e5. [PMID: 29100013 PMCID: PMC5689456 DOI: 10.1016/j.stem.2017.10.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/28/2017] [Accepted: 10/12/2017] [Indexed: 12/22/2022]
Abstract
The quiescence of adult neural stem cells (NSCs) is regulated by local parvalbumin (PV) interneurons within the dentate gyrus (DG). Little is known about how local PV interneurons communicate with distal brain regions to regulate NSCs and hippocampal neurogenesis. Here, we identify GABAergic projection neurons from the medial septum (MS) as the major afferents to dentate PV interneurons. Surprisingly, dentate PV interneurons are depolarized by GABA signaling, which is in sharp contrast to most mature neurons hyperpolarized by GABA. Functionally, these long-range GABAergic inputs are necessary and sufficient to maintain adult NSC quiescence and ablating them leads to NSC activation and subsequent depletion of the NSC pool. Taken together, these findings delineate a GABAergic network involving long-range GABAergic projection neurons and local PV interneurons that couples dynamic brain activity to the neurogenic niche in controlling NSC quiescence and hippocampal neurogenesis.
Collapse
Affiliation(s)
- Hechen Bao
- Bio-X Institutes, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brent Asrican
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Weidong Li
- Bio-X Institutes, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Gu
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Science, Emory University, Atlanta, GA 30322, USA
| | - Szu-Aun Lim
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Isaac Haniff
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charu Ramakrishnan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Philpot
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Neural mechanisms underlying GABAergic regulation of adult hippocampal neurogenesis. Cell Tissue Res 2017; 371:33-46. [PMID: 28948349 DOI: 10.1007/s00441-017-2668-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 07/01/2017] [Indexed: 12/25/2022]
Abstract
Within the dentate gyrus of the adult hippocampus is the subgranular zone, which contains a neurogenic niche for radial-glia like cells, the most primitive neural stem cells in the adult brain. The quiescence of neural stem cells is maintained by tonic gamma-aminobutyric acid (GABA) released from local interneurons. Once these cells differentiate into neural progenitor cells, GABA continues to regulate their development into mature granule cells, the principal cell type of the dentate gyrus. Here, we review the role of GABA circuits, signaling, and receptors in regulating development of adult-born cells, as well as the molecular players that modulate GABA signaling. Furthermore, we review recent findings linking dysregulation of adult hippocampal neurogenesis to the altered GABAergic circuitry and signaling under various pathological conditions.
Collapse
|
28
|
Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18081813. [PMID: 28825683 PMCID: PMC5578199 DOI: 10.3390/ijms18081813] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate brain. In the past, there has been a major research drive focused on the dysfunction of the glutamatergic and cholinergic neurotransmitter systems in Alzheimer’s disease (AD). However, there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in the processes of learning and memory, such changes in GABAergic function could be an important factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in AD could open up innovative and novel therapeutic opportunities.
Collapse
|
29
|
Rozycka A, Liguz-Lecznar M. The space where aging acts: focus on the GABAergic synapse. Aging Cell 2017; 16:634-643. [PMID: 28497576 PMCID: PMC5506442 DOI: 10.1111/acel.12605] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2017] [Indexed: 12/19/2022] Open
Abstract
As it was established that aging is not associated with massive neuronal loss, as was believed in the mid‐20th Century, scientific interest has addressed the influence of aging on particular neuronal subpopulations and their synaptic contacts, which constitute the substrate for neural plasticity. Inhibitory neurons represent the most complex and diverse group of neurons, showing distinct molecular and physiological characteristics and possessing a compelling ability to control the physiology of neural circuits. This review focuses on the aging of GABAergic neurons and synapses. Understanding how aging affects synapses of particular neuronal subpopulations may help explain the heterogeneity of aging‐related effects. We reviewed the literature concerning the effects of aging on the numbers of GABAergic neurons and synapses as well as aging‐related alterations in their presynaptic and postsynaptic components. Finally, we discussed the influence of those changes on the plasticity of the GABAergic system, highlighting our results concerning aging in mouse somatosensory cortex and linking them to plasticity impairments and brain disorders. We posit that aging‐induced impairments of the GABAergic system lead to an inhibitory/excitatory imbalance, thereby decreasing neuron's ability to respond with plastic changes to environmental and cellular challenges, leaving the brain more vulnerable to cognitive decline and damage by synaptopathic diseases.
Collapse
Affiliation(s)
- Aleksandra Rozycka
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| | - Monika Liguz-Lecznar
- Department of Molecular and Cellular Neurobiology; Nencki Institute of Experimental Biology; Polish Academy of Sciences; 3 Pasteur Street Warsaw 02-093 Poland
| |
Collapse
|
30
|
Soler H, Dorca-Arévalo J, González M, Rubio SE, Ávila J, Soriano E, Pascual M. The GABAergic septohippocampal connection is impaired in a mouse model of tauopathy. Neurobiol Aging 2016; 49:40-51. [PMID: 27743524 DOI: 10.1016/j.neurobiolaging.2016.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD), the most common cause of dementia nowadays, has been linked to alterations in the septohippocampal pathway (SHP), among other circuits in the brain. In fact, the GABAergic component of the SHP, which controls hippocampal rhythmic activity crucial for learning and memory, is altered in the J20 mouse model of AD-a model that mimics the amyloid pathology of this disease. However, AD is characterized by another pathophysiological hallmark: the hyperphosphorylation and aggregation of the microtubule-associated protein Tau. To evaluate whether tauopathies alter the GABAergic SHP, we analyzed transgenic mice expressing human mutated Tau (mutations G272V, P301L, and R406W, VLW transgenic strain). We show that pyramidal neurons, mossy cells, and some parvalbumin (PARV)-positive hippocampal interneurons in 2- and 8-month-old (mo) VLW mice accumulate phosphorylated forms of Tau (P-Tau). By tract-tracing studies of the GABAergic SHP, we describe early-onset deterioration of GABAergic septohippocampal (SH) innervation on PARV-positive interneurons in 2-mo VLW mice. In 8-mo animals, this alteration was more severe and affected mainly P-Tau-accumulating PARV-positive interneurons. No major loss of GABAergic SHP neurons or PARV-positive hippocampal interneurons was observed, thereby indicating that this decline is not caused by neuronal loss but by the reduced number and complexity of GABAergic SHP axon terminals. The decrease in GABAergic SHP described in this study, targeted onto the PARV-positive/P-Tau-accumulating inhibitory neurons in the hippocampus, establishes a cellular correlation with the dysfunctions in rhythmic neuronal activity and excitation levels in the hippocampus. These dysfunctions are associated with the VLW transgenic strain in particular and with AD human pathology in general. These data, together with our previous results in the J20 mouse model, indicate that the GABAergic SHP is impaired in response to both amyloid-β and P-Tau accumulation. We propose that alterations in the GABAergic SHP, together with a dysfunction of P-Tau-accumulating PARV-positive neurons, contribute to the cognitive deficits and altered patterns of hippocampal activity present in tauopathies, including AD.
Collapse
Affiliation(s)
- Helena Soler
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain
| | - Jonatan Dorca-Arévalo
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain
| | - Marta González
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain
| | - Sara Esmeralda Rubio
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain
| | - Jesús Ávila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain; Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Neurobiology Laboratory, Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats Academia, Barcelona, Spain
| | - Marta Pascual
- Department of Cell Biology, Parc Científic de Barcelona and Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII), Madrid, Spain; Institut de Recerca de l'Hospital Universitari de la Vall d'Hebron (VHIR), Barcelona, Spain.
| |
Collapse
|
31
|
Huh S, Baek SJ, Lee KH, Whitcomb DJ, Jo J, Choi SM, Kim DH, Park MS, Lee KH, Kim BC. The reemergence of long-term potentiation in aged Alzheimer's disease mouse model. Sci Rep 2016; 6:29152. [PMID: 27377368 PMCID: PMC4932605 DOI: 10.1038/srep29152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
Mouse models of Alzheimer’s disease (AD) have been developed to study the pathophysiology of amyloid β protein (Aβ) toxicity, which is thought to cause severe clinical symptoms such as memory impairment in AD patients. However, inconsistencies exist between studies using these animal models, specifically in terms of the effects on synaptic plasticity, a major cellular model of learning and memory. Whereas some studies find impairments in plasticity in these models, others do not. We show that long-term potentiation (LTP), in the CA1 region of hippocampal slices from this mouse, is impared at Tg2576 adult 6–7 months old. However, LTP is inducible again in slices taken from Tg2576 aged 14–19 months old. In the aged Tg2576, we found that the percentage of parvalbumin (PV)-expressing interneurons in hippocampal CA1-3 region is significantly decreased, and LTP inhibition or reversal mediated by NRG1/ErbB signaling, which requires ErbB4 receptors in PV interneurons, is impaired. Inhibition of ErbB receptor kinase in adult Tg2576 restores LTP but impairs depotentiation as shown in aged Tg2576. Our study suggests that hippocampal LTP reemerges in aged Tg2576. However, this reemerged LTP is an insuppressible form due to impaired NRG1/ErbB signaling, possibly through the loss of PV interneurons.
Collapse
Affiliation(s)
- Seonghoo Huh
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Soo-Ji Baek
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Daniel J Whitcomb
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Health Sciences, University of Bristol, Whitson Street, Bristol BS1 3NY, UK
| | - Jihoon Jo
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.,Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Seong-Min Choi
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Dong Hyun Kim
- Department of Medicinal Biotechnology, College of Health Sciences and Dong-A Anti-aging Research Center, Dong-A University, Busan 49315, Republic of Korea
| | - Man-Seok Park
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kun Ho Lee
- National Research Center for Dementia, Gwangju 61452, Republic of Korea
| | - Byeong C Kim
- Chonnam-Bristol Frontier Laboratory, Biomedical Research Institute, Chonnam National University Hospital, Gwangju 61469, Republic of Korea.,Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.,Department of Neurology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea.,National Research Center for Dementia, Gwangju 61452, Republic of Korea
| |
Collapse
|
32
|
Dulla CG, Coulter DA, Ziburkus J. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer's Disease. Neuroscientist 2016; 22:295-312. [PMID: 25948650 PMCID: PMC4641826 DOI: 10.1177/1073858415585108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Douglas A Coulter
- Department of Pediatrics and Neuroscience, University of Pennsylvania Perleman School of Medicine, Philadelphia, PA, USA Division of Neurology and the Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jokubas Ziburkus
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
33
|
Hsu PJ, Shou H, Benzinger T, Marcus D, Durbin T, Morris JC, Sheline YI. Amyloid burden in cognitively normal elderly is associated with preferential hippocampal subfield volume loss. J Alzheimers Dis 2016; 45:27-33. [PMID: 25428255 DOI: 10.3233/jad-141743] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The earliest sites of brain atrophy in Alzheimer's disease are in the medial temporal lobe, following widespread cerebral cortical amyloid deposition. We assessed 74 cognitively normal participants with clinical measurements, amyloid-β-PET imaging, MRI, and a newly developed technique for MRI-based hippocampal subfield segmentation to determine the differential association of amyloid deposition and hippocampal subfield volume. Compared to amyloid-negative participants, amyloid-positive participants had significantly smaller hippocampal tail, presubiculum, subiculum, and total hippocampal gray matter volumes. We conclude that, prior to the development of cognitive impairment, atrophy in particular hippocampal subfields occurs preferentially with amyloid-β accumulation.
Collapse
Affiliation(s)
- Phillip J Hsu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Haochang Shou
- Departments of Biostatistics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Tammie Benzinger
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Marcus
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tony Durbin
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yvette I Sheline
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA Departments of Radiology, Neurology, and Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
34
|
McGinley LM, Sims E, Lunn JS, Kashlan ON, Chen KS, Bruno ES, Pacut CM, Hazel T, Johe K, Sakowski SA, Feldman EL. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease. Stem Cells Transl Med 2016; 5:379-91. [PMID: 26744412 PMCID: PMC4807660 DOI: 10.5966/sctm.2015-0103] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD.
Collapse
Affiliation(s)
- Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Erika Sims
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama N Kashlan
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth S Bruno
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Crystal M Pacut
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tom Hazel
- Neuralstem, Inc., Germantown, Maryland, USA
| | - Karl Johe
- Neuralstem, Inc., Germantown, Maryland, USA
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
35
|
Prager EM, Bergstrom HC, Wynn GH, Braga MFM. The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 2015; 94:548-67. [PMID: 26586374 DOI: 10.1002/jnr.23690] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 01/13/2023]
Abstract
The brain comprises an excitatory/inhibitory neuronal network that maintains a finely tuned balance of activity critical for normal functioning. Excitatory activity in the basolateral amygdala (BLA), a brain region that plays a central role in emotion and motivational processing, is tightly regulated by a relatively small population of γ-aminobutyric acid (GABA) inhibitory neurons. Disruption in GABAergic inhibition in the BLA can occur when there is a loss of local GABAergic interneurons, an alteration in GABAA receptor activation, or a dysregulation of mechanisms that modulate BLA GABAergic inhibition. Disruptions in GABAergic control of the BLA emerge during development, in aging populations, or after trauma, ultimately resulting in hyperexcitability. BLA hyperexcitability manifests behaviorally as an increase in anxiety, emotional dysregulation, or development of seizure activity. This Review discusses the anatomy, development, and physiology of the GABAergic system in the BLA and circuits that modulate GABAergic inhibition, including the dopaminergic, serotonergic, noradrenergic, and cholinergic systems. We highlight how alterations in various neurotransmitter receptors, including the acid-sensing ion channel 1a, cannabinoid receptor 1, and glutamate receptor subtypes, expressed on BLA interneurons, modulate GABAergic transmission and how defects of these systems affect inhibitory tonus within the BLA. Finally, we discuss alterations in the BLA GABAergic system in neurodevelopmental (autism/fragile X syndrome) and neurodegenerative (Alzheimer's disease) diseases and after the development of epilepsy, anxiety, and traumatic brain injury. A more complete understanding of the intrinsic excitatory/inhibitory circuit balance of the amygdala and how imbalances in inhibitory control contribute to excessive BLA excitability will guide the development of novel therapeutic approaches in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Eric M Prager
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland
| | | | - Gary H Wynn
- Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland.,Center for the Study of Traumatic Stress, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland.,Program in Neuroscience, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| |
Collapse
|
36
|
Lai S, Zhang M, Xu D, Zhang Y, Qiu L, Tian C, Zheng JC. Direct reprogramming of induced neural progenitors: a new promising strategy for AD treatment. Transl Neurodegener 2015; 4:7. [PMID: 25949812 PMCID: PMC4422611 DOI: 10.1186/s40035-015-0028-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 04/03/2015] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) is a prominent form of dementia, characterized by aggregation of the amyloid β-peptide (Aβ) plaques and neurofibrillary tangles, loss of synapses and neurons, and degeneration of cognitive functions. Currently, although a variety of medications can relieve some of the symptoms, there is no cure for AD. Recent breakthroughs in the stem cell field provide promising strategies for AD treatment. Stem cells including embryonic stem cells (ESCs), neural stem cells (NSCs), mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs) are potentials for AD treatment. However, the limitation of cell sources, safety issues, and ethical issues restrict their applications in AD. Recently, the direct reprogramming of induced neural progenitor cells (iNPCs) has shed light on the treatment of AD. In this review, we will discuss the latest progress, challenges, and potential applications of direct reprogramming in AD treatment.
Collapse
Affiliation(s)
- Siqiang Lai
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Min Zhang
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Dongsheng Xu
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- />University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Yiying Zhang
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Lisha Qiu
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Changhai Tian
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- />University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Jialin Charlie Zheng
- />Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- />University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| |
Collapse
|
37
|
α-Melanocyte stimulating hormone prevents GABAergic neuronal loss and improves cognitive function in Alzheimer's disease. J Neurosci 2014; 34:6736-45. [PMID: 24828629 DOI: 10.1523/jneurosci.5075-13.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Alzheimer's disease (AD), appropriate excitatory-inhibitory balance required for memory formation is impaired. Our objective was to elucidate deficits in the inhibitory GABAergic system in the TgCRND8 mouse model of AD to establish a link between GABAergic dysfunction and cognitive function. We sought to determine whether the neuroprotective peptide α-melanocyte stimulating hormone (α-MSH) attenuates GABAergic loss and thus improves cognition. TgCRND8 mice with established β-amyloid peptide pathology and nontransgenic littermates were treated with either α-MSH or vehicle via daily intraperitoneal injections for 28 d. TgCRND8 mice exhibited spatial memory deficits and altered anxiety that were rescued after α-MSH treatment. The expression of GABAergic marker glutamic acid decarboxylase 67 (GAD67) and the number of GABAergic GAD67+ interneurons expressing neuropeptide Y and somatostatin are reduced in the hippocampus in vehicle-treated TgCRND8 mice. In the septohippocampal pathway, GABAergic deficits are observed before cholinergic deficits, suggesting that GABAergic loss may underlie behavior deficits in vehicle-treated TgCRND8 mice. α-MSH preserves GAD67 expression and prevents loss of the somatostatin-expressing subtype of GABAergic GAD67+ inhibitory interneurons. Without decreasing β-amyloid peptide load in the brain, α-MSH improves spatial memory in TgCRND8 mice and prevents alterations in anxiety. α-MSH modulated the excitatory-inhibitory balance in the brain by restoring GABAergic inhibition and, as a result, improved cognition in TgCRND8 mice.
Collapse
|
38
|
Nava-Mesa MO, Jiménez-Díaz L, Yajeya J, Navarro-Lopez JD. GABAergic neurotransmission and new strategies of neuromodulation to compensate synaptic dysfunction in early stages of Alzheimer's disease. Front Cell Neurosci 2014; 8:167. [PMID: 24987334 PMCID: PMC4070063 DOI: 10.3389/fncel.2014.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/02/2014] [Indexed: 01/06/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by cognitive decline, brain atrophy due to neuronal and synapse loss, and formation of two pathological lesions: extracellular amyloid plaques, composed largely of amyloid-beta peptide (Aβ), and neurofibrillary tangles formed by intracellular aggregates of hyperphosphorylated tau protein. Lesions mainly accumulate in brain regions that modulate cognitive functions such as the hippocampus, septum or amygdala. These brain structures have dense reciprocal glutamatergic, cholinergic, and GABAergic connections and their relationships directly affect learning and memory processes, so they have been proposed as highly susceptible regions to suffer damage by Aβ during AD course. Last findings support the emerging concept that soluble Aβ peptides, inducing an initial stage of synaptic dysfunction which probably starts 20–30 years before the clinical onset of AD, can perturb the excitatory–inhibitory balance of neural circuitries. In turn, neurotransmission imbalance will result in altered network activity that might be responsible of cognitive deficits in AD. Therefore, Aβ interactions on neurotransmission systems in memory-related brain regions such as amygdaloid complex, medial septum or hippocampus are critical in cognitive functions and appear as a pivotal target for drug design to improve learning and dysfunctions that manifest with age. Since treatments based on glutamatergic and cholinergic pharmacology in AD have shown limited success, therapies combining modulators of different neurotransmission systems including recent findings regarding the GABAergic system, emerge as a more useful tool for the treatment, and overall prevention, of this dementia. In this review, focused on inhibitory systems, we will analyze pharmacological strategies to compensate neurotransmission imbalance that might be considered as potential therapeutic interventions in AD.
Collapse
Affiliation(s)
| | - Lydia Jiménez-Díaz
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| | - Javier Yajeya
- Department of Physiology and Pharmacology, University of Salamanca Salamanca, Spain
| | - Juan D Navarro-Lopez
- Neurophysiology and Behavior Lab, Centro Regional de Investigaciones Biomédicas, School of Medicine of Ciudad Real, University of Castilla-La Mancha Ciudad Real, Spain
| |
Collapse
|
39
|
Genetic suppression of transgenic APP rescues Hypersynchronous network activity in a mouse model of Alzeimer's disease. J Neurosci 2014; 34:3826-40. [PMID: 24623762 DOI: 10.1523/jneurosci.5171-13.2014] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is associated with an elevated risk for seizures that may be fundamentally connected to cognitive dysfunction. Supporting this link, many mouse models for AD exhibit abnormal electroencephalogram (EEG) activity in addition to the expected neuropathology and cognitive deficits. Here, we used a controllable transgenic system to investigate how network changes develop and are maintained in a model characterized by amyloid β (Aβ) overproduction and progressive amyloid pathology. EEG recordings in tet-off mice overexpressing amyloid precursor protein (APP) from birth display frequent sharp wave discharges (SWDs). Unexpectedly, we found that withholding APP overexpression until adulthood substantially delayed the appearance of epileptiform activity. Together, these findings suggest that juvenile APP overexpression altered cortical development to favor synchronized firing. Regardless of the age at which EEG abnormalities appeared, the phenotype was dependent on continued APP overexpression and abated over several weeks once transgene expression was suppressed. Abnormal EEG discharges were independent of plaque load and could be extinguished without altering deposited amyloid. Selective reduction of Aβ with a γ-secretase inhibitor has no effect on the frequency of SWDs, indicating that another APP fragment or the full-length protein was likely responsible for maintaining EEG abnormalities. Moreover, transgene suppression normalized the ratio of excitatory to inhibitory innervation in the cortex, whereas secretase inhibition did not. Our results suggest that APP overexpression, and not Aβ overproduction, is responsible for EEG abnormalities in our transgenic mice and can be rescued independently of pathology.
Collapse
|
40
|
Davis KE, Fox S, Gigg J. Increased hippocampal excitability in the 3xTgAD mouse model for Alzheimer's disease in vivo. PLoS One 2014; 9:e91203. [PMID: 24621690 PMCID: PMC3951322 DOI: 10.1371/journal.pone.0091203] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 02/11/2014] [Indexed: 01/24/2023] Open
Abstract
Mouse Alzheimer's disease (AD) models develop age- and region-specific pathology throughout the hippocampal formation. One recently established pathological correlate is an increase in hippocampal excitability in vivo. Hippocampal pathology also produces episodic memory decline in human AD and we have shown a similar episodic deficit in 3xTg AD model mice aged 3–6 months. Here, we tested whether hippocampal synaptic dysfunction accompanies this cognitive deficit by probing dorsal CA1 and DG synaptic responses in anaesthetized, 4–6 month-old 3xTgAD mice. As our previous reports highlighted a decline in episodic performance in aged control mice, we included aged cohorts for comparison. CA1 and DG responses to low-frequency perforant path stimulation were comparable between 3xTgAD and controls at both age ranges. As expected, DG recordings in controls showed paired-pulse depression; however, paired-pulse facilitation was observed in DG and CA1 of young and old 3xTgAD mice. During stimulus trains both short-latency (presumably monosynaptic: ‘direct’) and long-latency (presumably polysynaptic: ‘re-entrant’) responses were observed. Facilitation of direct responses was modest in 3xTgAD animals. However, re-entrant responses in DG and CA1 of young 3xTgAD mice developed earlier in the stimulus train and with larger amplitude when compared to controls. Old mice showed less DG paired-pulse depression and no evidence for re-entrance. In summary, DG and CA1 responses to low-frequency stimulation in all groups were comparable, suggesting no loss of synaptic connectivity in 3xTgAD mice. However, higher-frequency activation revealed complex change in synaptic excitability in DG and CA1 of 3xTgAD mice. In particular, short-term plasticity in DG and CA1 was facilitated in 3xTgAD mice, most evidently in younger animals. In addition, re-entrance was facilitated in young 3xTgAD mice. Overall, these data suggest that the episodic-like memory deficit in 3xTgAD mice could be due to the development of an abnormal hyper-excitable state in the hippocampal formation.
Collapse
Affiliation(s)
- Katherine E. Davis
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sarah Fox
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - John Gigg
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
41
|
Abadesco AD, Cilluffo M, Yvone GM, Carpenter EM, Howell BW, Phelps PE. Novel Disabled-1-expressing neurons identified in adult brain and spinal cord. Eur J Neurosci 2014; 39:579-92. [PMID: 24251407 DOI: 10.1111/ejn.12416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 09/19/2013] [Accepted: 10/08/2013] [Indexed: 12/12/2022]
Abstract
Components of the Reelin-signaling pathway are highly expressed in embryos and regulate neuronal positioning, whereas these molecules are expressed at low levels in adults and modulate synaptic plasticity. Reelin binds to Apolipoprotein E receptor 2 and Very-low-density lipoprotein receptors, triggers the phosphorylation of Disabled-1 (Dab1), and initiates downstream signaling. The expression of Dab1 marks neurons that potentially respond to Reelin, yet phosphorylated Dab1 is difficult to detect due to its rapid ubiquitination and degradation. Here we used adult mice with a lacZ gene inserted into the dab1 locus to first verify the coexpression of β-galactosidase (β-gal) in established Dab1-immunoreactive neurons and then identify novel Dab1-expressing neurons. Both cerebellar Purkinje cells and spinal sympathetic preganglionic neurons have coincident Dab1 protein and β-gal expression in dab1(lacZ/+) mice. Adult pyramidal neurons in cortical layers II-III and V are labeled with Dab1 and/or β-gal and are inverted in the dab1(lacZ/lacZ) neocortex, but not in the somatosensory barrel fields. Novel Dab1 expression was identified in GABAergic medial septum/diagonal band projection neurons, cerebellar Golgi interneurons, and small neurons in the deep cerebellar nuclei. Adult somatic motor neurons also express Dab1 and show ventromedial positioning errors in dab1-null mice. These findings suggest that: (i) Reelin regulates the somatosensory barrel cortex differently than other neocortical areas, (ii) most Dab1 medial septum/diagonal band neurons are probably GABAergic projection neurons, and (iii) positioning errors in adult mutant Dab1-labeled neurons vary from subtle to extensive.
Collapse
Affiliation(s)
- Autumn D Abadesco
- Department of Integrative Biology and Physiology, UCLA, Terasaki Life Science Building, 610 Charles Young Dr. E, Los Angeles, CA, 90095-7239, USA
| | | | | | | | | | | |
Collapse
|
42
|
Härtig W, Saul A, Kacza J, Grosche J, Goldhammer S, Michalski D, Wirths O. Immunolesion-induced loss of cholinergic projection neurones promotes β-amyloidosis and tau hyperphosphorylation in the hippocampus of triple-transgenic mice. Neuropathol Appl Neurobiol 2014; 40:106-20. [DOI: 10.1111/nan.12050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/28/2013] [Indexed: 01/13/2023]
Affiliation(s)
- W. Härtig
- Paul Flechsig Institute for Brain Research; University of Leipzig; Leipzig Germany
| | - A. Saul
- Division of Molecular Psychiatry; Department of Psychiatry; University of Göttingen; Göttingen Germany
| | - J. Kacza
- Institute of Anatomy, Histology and Embryology; Faculty of Veterinary Medicine; University of Leipzig; Leipzig Germany
| | - J. Grosche
- Paul Flechsig Institute for Brain Research; University of Leipzig; Leipzig Germany
| | - S. Goldhammer
- Paul Flechsig Institute for Brain Research; University of Leipzig; Leipzig Germany
| | - D. Michalski
- Department of Neurology; University of Leipzig; Leipzig Germany
| | - O. Wirths
- Division of Molecular Psychiatry; Department of Psychiatry; University of Göttingen; Göttingen Germany
| |
Collapse
|
43
|
Levenga J, Krishnamurthy P, Rajamohamedsait H, Wong H, Franke TF, Cain P, Sigurdsson EM, Hoeffer CA. Tau pathology induces loss of GABAergic interneurons leading to altered synaptic plasticity and behavioral impairments. Acta Neuropathol Commun 2013; 1:34. [PMID: 24252661 PMCID: PMC3893396 DOI: 10.1186/2051-5960-1-34] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Tau is a microtubule stabilizing protein and is mainly expressed in neurons. Tau aggregation into oligomers and tangles is considered an important pathological event in tauopathies, such as frontotemporal dementia (FTD) and Alzheimer's disease (AD). Tauopathies are also associated with deficits in synaptic plasticity such as long-term potentiation (LTP), but the specific role of tau in the manifestation of these deficiencies is not well-understood. We examined long lasting forms of synaptic plasticity in JNPL3 (BL6) mice expressing mutant tau that is identified in some inherited FTDs. RESULTS We found that aged (>12 months) JNPL3 (BL6) mice exhibit enhanced hippocampal late-phase (L-LTP), while young JNPL3 (BL6) mice (age 6 months) displayed normal L-LTP. This enhanced L-LTP in aged JNPL3 (BL6) mice was rescued with the GABAAR agonist, zolpidem, suggesting a loss of GABAergic function. Indeed, we found that mutant mice displayed a reduction in hippocampal GABAergic interneurons. Finally, we also found that expression of mutant tau led to severe sensorimotor-gating and hippocampus-dependent memory deficits in the aged JNPL3 (BL6) mice. CONCLUSIONS We show for the first time that hippocampal GABAergic function is impaired by pathological tau protein, leading to altered synaptic plasticity and severe memory deficits. Increased understanding of the molecular mechanisms underlying the synaptic failure in AD and FTD is critical to identifying targets for therapies to restore cognitive deficiencies associated with tauopathies.
Collapse
|