1
|
Wang X, Zhou X, Kang L, Lai Y, Ye H. Engineering natural molecule-triggered genetic control systems for tunable gene- and cell-based therapies. Synth Syst Biotechnol 2023; 8:416-426. [PMID: 37384125 PMCID: PMC10293594 DOI: 10.1016/j.synbio.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023] Open
Abstract
The ability to precisely control activities of engineered designer cells provides a novel strategy for modern precision medicine. Dynamically adjustable gene- and cell-based precision therapies are recognized as next generation medicines. However, the translation of these controllable therapeutics into clinical practice is severely hampered by the lack of safe and highly specific genetic switches controlled by triggers that are nontoxic and side-effect free. Recently, natural products derived from plants have been extensively explored as trigger molecules to control genetic switches and synthetic gene networks for multiple applications. These controlled genetic switches could be further introduced into mammalian cells to obtain synthetic designer cells for adjustable and fine tunable cell-based precision therapy. In this review, we introduce various available natural molecules that were engineered to control genetic switches for controllable transgene expression, complex logic computation, and therapeutic drug delivery to achieve precision therapy. We also discuss current challenges and prospects in translating these natural molecule-controlled genetic switches developed for biomedical applications from the laboratory to the clinic.
Collapse
|
2
|
Kudo M, Wupuer S, Fujiwara M, Saito Y, Kubota S, Inoue KI, Takada M, Seki K. Specific gene expression in unmyelinated dorsal root ganglion neurons in nonhuman primates by intra-nerve injection of AAV 6 vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 23:11-22. [PMID: 34552999 PMCID: PMC8426475 DOI: 10.1016/j.omtm.2021.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/27/2021] [Indexed: 01/14/2023]
Abstract
Adeno-associated virus 6 (AAV6) has been proposed as a potential vector candidate for specific gene expression in pain-related dorsal root ganglion (DRG) neurons, but this has not been confirmed in nonhuman primates. The aim of our study was to analyze the transduction efficiency and target specificity of this viral vector in the common marmoset by comparing it with those in the rat. When green fluorescent protein-expressing serotype-6 vector was injected into the sciatic nerve, the efficiency of gene expression in DRG neurons was comparable in both species. We found that the serotype-6 vector was largely specific to the pain-related ganglion neurons in the marmoset, as well as in the rat, whereas the serotype-9 vector resulted in contrasting effects in the two species. Neither AAV6 nor AAV9 resulted in DRG toxicity when administered via the sciatic nerve, suggesting this as a safer route of sensory nerve transduction than the currently used intrathecal or intravenous administrative routes. Furthermore, the AAV6 vector could be an optimal serotype for gene therapy for human chronic pain that has a minimal effect on other somatosensory functions of DRG neurons.
Collapse
Affiliation(s)
- Moeko Kudo
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Sidikejiang Wupuer
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Maki Fujiwara
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Shinji Kubota
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Ken-Ichi Inoue
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Department of Neuroscience, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Kazuhiko Seki
- Department of Neurophysiology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
3
|
Bidve P, Prajapati N, Kalia K, Tekade R, Tiwari V. Emerging role of nanomedicine in the treatment of neuropathic pain. J Drug Target 2019; 28:11-22. [PMID: 30798636 DOI: 10.1080/1061186x.2019.1587444] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuropathic pain (NeP) is a complex chronic pain condition associated with nerve injury. Approximately, 7-10% of the general population across the globe is suffering from this traumatic condition, but the existing treatment strategies are inadequate to deliver pain relief and are associated with severe adverse effects. To overcome these limitations, lot of research is focussed on developing new molecules with high potency and fewer side effects, novel cell and gene-based therapies and modification of the previously approved drugs by different formulation aspects. Nanomedicine has attracted a lot of attention in the treatment of many diverse pathological conditions because of their unique physiochemical and biological properties. In this manuscript, we highlighted the emerging role of nanomedicine in different therapies (drug, cell and gene), also we emphasised on the challenges associated with nanomedicine such as development of well-characterised nanoformulation, scaling of batches with reproducible results and toxicity along with this we discussed about the future of nanomedicine in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Pankaj Bidve
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Namrata Prajapati
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Rakesh Tekade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Vinod Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| |
Collapse
|
4
|
Dilute lidocaine suppresses ectopic neuropathic discharge in dorsal root ganglia without blocking axonal propagation: a new approach to selective pain control. Pain 2018. [DOI: 10.1097/j.pain.0000000000001205] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Wang H, Xie M, Charpin-El Hamri G, Ye H, Fussenegger M. Treatment of chronic pain by designer cells controlled by spearmint aromatherapy. Nat Biomed Eng 2018; 2:114-123. [PMID: 31015627 DOI: 10.1038/s41551-018-0192-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Current treatment options for chronic pain are often associated with dose-limiting toxicities, or lead to drug tolerance or addiction. Here, we describe a pain management strategy, based on cell-engineering principles and inspired by synthetic biology, consisting of microencapsulated human designer cells that produce huwentoxin-IV (a safe and potent analgesic peptide that selectively inhibits the pain-triggering voltage-gated sodium channel NaV1.7) in response to volatile spearmint aroma and in a dose-dependent manner. Spearmint sensitivity was achieved by ectopic expression of the R-carvone-responsive olfactory receptor OR1A1 rewired via an artificial G-protein deflector to induce the expression of a secretion-engineered and stabilized huwentoxin-IV variant. In a model of chronic inflammatory and neuropathic pain, mice bearing the designer cells showed reduced pain-associated behaviour on oral intake or inhalation-based intake of spearmint essential oil, and absence of cardiovascular, immunogenic and behavioural side effects. Our proof-of-principle findings indicate that therapies based on engineered cells can achieve robust, tunable and on-demand analgesia for the long-term management of chronic pain.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Mingqi Xie
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland. .,Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Hu C, Lu Y, Cheng X, Cui Y, Wu Z, Zhang Q. Gene therapy for neuropathic pain induced by spared nerve injury with naked plasmid encoding hepatocyte growth factor. J Gene Med 2017; 19. [DOI: 10.1002/jgm.2994] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/22/2017] [Accepted: 10/07/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chunsheng Hu
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
- International Academy of Targeted Therapeutics and Innovation; Chongqing University of Arts and Sciences; Chongqing China
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - Yuxin Lu
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
| | - Xiaochen Cheng
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
| | - Yufang Cui
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
| | - Zuze Wu
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing China
| | - Qinglin Zhang
- Department of Experimental Hematology; Beijing Institute of Radiation Medicine; Beijing China
| |
Collapse
|
7
|
Abstract
Virus-mediated gene delivery shows promise for the treatment of chronic pain. However, viral vectors have cytotoxicity. To avoid toxicities and limitations of virus-mediated gene delivery, we developed a novel nonviral hybrid vector: HIV-1 Tat peptide sequence modified with histidine and cysteine residues combined with a cationic lipid. The vector has high transfection efficiency with little cytotoxicity in cancer cell lines including HSC-3 (human tongue squamous cell carcinoma) and exhibits differential expression in HSC-3 (∼45-fold) relative to HGF-1 (human gingival fibroblasts) cells. We used the nonviral vector to transfect cancer with OPRM1, the μ-opioid receptor gene, as a novel method for treating cancer-induced pain. After HSC-3 cells were transfected with OPRM1, a cancer mouse model was created by inoculating the transfected HSC-3 cells into the hind paw or tongue of athymic mice to determine the analgesic potential of OPRM1 transfection. Mice with HSC-3 tumors expressing OPRM1 demonstrated significant antinociception compared with control mice. The effect was reversible with local naloxone administration. We quantified β-endorphin secretion from HSC-3 cells and showed that HSC-3 cells transfected with OPRM1 secreted significantly more β-endorphin than control HSC-3 cells. These findings indicate that nonviral delivery of the OPRM1 gene targeted to the cancer microenvironment has an analgesic effect in a preclinical cancer model, and nonviral gene delivery is a potential treatment for cancer pain.
Collapse
|
8
|
Schutzer-Weissmann J, Farquhar-Smith P. Post-herpetic neuralgia - a review of current management and future directions. Expert Opin Pharmacother 2017; 18:1739-1750. [PMID: 29025327 DOI: 10.1080/14656566.2017.1392508] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Post-herpetic neuralgia (PHN) is common and treatment is often suboptimal with less than half of patients achieving adequate 50% pain relief. As an area of unmet clinical need and as an archetype of neuropathic pain, it deserves the attention of clinicians and researchers. Areas covered: This review summarises the epidemiology, pathophysiology, risk factors and clinical features of varicella infection. It describes the current and possible future management strategies for preventing varicella infection and reactivation and for treating PHN. Expert opinion: A highly successful Varicella Zoster (VZV) vaccine has not been universally adopted due to fears that it may increase Herpes Zoster (HZ) incidence - and thus PHN - in older, unvaccinated generations. This is a controversial theory but advances in the efficacy of vaccines against HZ may allay these fears and encourage more widespread adoption of the VZV vaccine. Treatment of PHN, as for any neuropathic pain, must be multidisciplinary and multimodal. Advances in sensory phenotyping technology and genomics may allow more individualised treatment. Traditional research methodologies are ill-suited to assess the kind of complex interventions that are necessary to achieve better clinical outcomes in this challenging field.
Collapse
Affiliation(s)
- John Schutzer-Weissmann
- a Department of Anaesthesia , Critical Care and Pain Medicine, The Royal Marsden Hospital , London , UK
| | - Paul Farquhar-Smith
- a Department of Anaesthesia , Critical Care and Pain Medicine, The Royal Marsden Hospital , London , UK
| |
Collapse
|
9
|
Barczewska M, Juranek J, Wojtkiewicz J. Origins and Neurochemical Characteristics of Porcine Intervertebral Disc Sympathetic Innervation: a Preliminary Report. J Mol Neurosci 2017; 63:50-57. [PMID: 28762133 PMCID: PMC5581820 DOI: 10.1007/s12031-017-0956-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 07/21/2017] [Indexed: 11/28/2022]
Abstract
Intervertebral disc diseases (IVDDs) form a group of a vertebral column disorders affecting a large number of people worldwide. It is estimated that approximately 30% of individuals at the age of 35 and approximately 90% of individuals at the age of 60 and above will have some form of disc-affecting pathological changes leading to disc herniation, prolapse and degeneration as well as discogenic pain. Here, we aimed to establish the origins and neurochemical characteristics of porcine intervertebral disc sympathetic innervation involved in pain signalling in IVDD patients. Pigs were given an injection of the Ominipaque contrast agent and Fast Blue (FB) retrograde tracer into the L4-L5 intervertebral disc and euthanized at 2, 1, and 3 months post injection. Following euthanasia, bilateral sympathetic chain ganglia (SChG) Th13 to C1 were collected. The presence, distribution and neurochemical characteristics of retrogradely labelled SChG neurons were examined. The majority (88.8%) of all FB+ cells were found in the L3-L5 SChG. Most FB+ neurons stained for dopamine beta hydroxylase (DBH); one-third to one-quarter stained for somatostatin (SOM), neuropeptide Y (NPY) or leu-enkephalin (LENK); and only a few stained for galanin (GAL). Compared with the control, the greatest decline in neurochemical immunostaining was observed 2 weeks post injection, and the lowest decline was noticed 1 month post injection. Our study, for the first time, provides insight into the complex patterns of intervertebral disc sympathetic innervation and suggests that the best time for neurochemical balance restoration therapy would be 1 month post-injury, when the neuronal concentration of all studied substances is close to the initial physiological level, thus providing favourable conditions for successful recovery.
Collapse
Affiliation(s)
- Monika Barczewska
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Judyta Juranek
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Ul. Warszawska 30, 10-082, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury in Olsztyn, Ul. Warszawska 30, 10-082, Olsztyn, Poland. .,Laboratory for Regenerative Medicine, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland. .,Foundation for the Nerve Cells Regeneration, Olsztyn, Poland.
| |
Collapse
|
10
|
Wilkin T, Baoutina A, Hamilton N. Equine performance genes and the future of doping in horseracing. Drug Test Anal 2017; 9:1456-1471. [DOI: 10.1002/dta.2198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 01/20/2023]
Affiliation(s)
- Tessa Wilkin
- Vet Faculty; University of Sydney; Gunn Building, Sydney University, Camperdown NSW Australia
- Bioanalysis; The National Measurement Institute; 36 Bradfield Rd, Lindfield Sydney New South Wales Australia
| | - Anna Baoutina
- School of Life and Environmental Sciences, Faculty of Science; The University of Sydney; Bradfield Rd West Lindfield New South Wales Australia
| | - Natasha Hamilton
- Faculty of Veterinary Science; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
11
|
James S. The Genetics of Pain. CURRENT ANESTHESIOLOGY REPORTS 2016. [DOI: 10.1007/s40140-016-0185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Abstract
Transferring genetic molecules into the peripheral sensory nervous system to manipulate nociceptive pathophysiology is a powerful approach for experimental modulation of sensory signaling and potentially for translation into therapy for chronic pain. This can be efficiently achieved by the use of recombinant adeno-associated virus (rAAV) in conjunction with nociceptor-specific regulatory transgene cassettes. Among different routes of delivery, direct injection into the dorsal root ganglia (DRGs) offers the most efficient AAV-mediated gene transfer selectively into the peripheral sensory nervous system. Here, we briefly discuss the advantages and applications of intraganglionic microinjection, and then provide a detailed approach for DRG injection, including a list of the necessary materials and description of a method for performing DRG microinjection experiments. We also discuss our experience with several adeno-associated virus (AAV) options for in vivo transgene expression in DRG neurons.
Collapse
|
13
|
Hu C, Cai Z, Lu Y, Cheng X, Guo Q, Wu Z, Zhang Q. Nonviral vector plasmid DNA encoding human proenkephalin gene attenuates inflammatory and neuropathic pain-related behaviors in mice. Neurosci Lett 2016; 634:87-93. [PMID: 27693568 DOI: 10.1016/j.neulet.2016.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/17/2016] [Accepted: 09/22/2016] [Indexed: 12/21/2022]
Abstract
Inflammatory pain and neuropathic pain are major clinical health issues that represent considerable social and economic burden worldwide. In the present study, we investigated the anti-nociceptive efficacy of delivery of human proenkephalin gene by a plasmid DNA vector (pVAX1-PENK) on complete Freund's adjuvant (CFA) induced inflammatory pain and spared nerve injury (SNI) induced neuropathic pain in mice. Mice were intramuscularly or intrathecally administered pVAX1 or pVAX1-PENK, respectively. Pain thresholds in the pVAX1-PENK treated mice were significantly higher at day 3, then reached a peak at day 7 and lasted until day 28 after gene transfer, and the analgesic effect of pVAX1-PENK was blocked with naloxone hydrochloride. In contrast, pVAX1 treated mice did not significantly improve pain thresholds. These results indicate that peripheral or spinal delivery of a plasmid encoding human proenkephalin gene provides a potential therapeutic strategy for inflammatory pain and neuropathic pain.
Collapse
Affiliation(s)
- Chunsheng Hu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China; College of Life Science and Bioengineering, Beijing University of Technology, Beijing 10024, People's Republic of China
| | - Zhenzhen Cai
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Yuxin Lu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Xiaochen Cheng
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Qi Guo
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China
| | - Zuze Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China; College of Life Science and Bioengineering, Beijing University of Technology, Beijing 10024, People's Republic of China
| | - Qinglin Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850, People's Republic of China.
| |
Collapse
|
14
|
Fiore NT, Austin PJ. Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav Immun 2016; 56:397-411. [PMID: 27118632 DOI: 10.1016/j.bbi.2016.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 12/28/2022] Open
Abstract
Neuro-immune interactions contribute to the pathogenesis of neuropathic pain due to peripheral nerve injury. A large body of preclinical evidence supports the idea that the immune system acts to modulate the sensory symptoms of neuropathy at both peripheral and central nervous system sites. The potential involvement of neuro-immune interactions in the highly debilitating affective disturbances of neuropathic pain, such as depression, anhedonia, impaired cognition and reduced motivation has received little attention. This is surprising given the widely accepted view that sickness behaviour, depression, cognitive impairment and other neuropsychiatric conditions can arise from inflammatory mechanisms. Moreover, there is a set of well-described immune-to-brain transmission mechanisms that explain how peripheral inflammation can lead to supraspinal neuroinflammation. In the last 5years increasing evidence has emerged that peripheral nerve injury induces supraspinal changes in cytokine or chemokine expression and alters glial cell activity. In this systematic review, based on strong preclinical evidence, we advance the argument that the emergence of affective disturbances in neuropathic pain states are contingent on pro-inflammatory mediators in the interconnected hippocampal-medial prefrontal circuitry that subserve affective behaviours. We explore how dysregulation of inflammatory mediators in these networks may result in affective disturbances through a wide variety of neuromodulatory mechanisms. There are also promising results from clinical trials showing that anti-inflammatory agents have efficacy in the treatment of a variety of neuropsychiatric conditions including depression and appear suited to sub-groups of patients with elevated pro-inflammatory profiles. Thus, although further research is required, aggressively targeting supraspinal pro-inflammatory mediators at critical time-points in appropriate clinical populations is likely to be a novel avenue to treat debilitating affective disturbances in neuropathic conditions.
Collapse
Affiliation(s)
- Nathan T Fiore
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul J Austin
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
15
|
Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, Liu W, Wang W, Xia QJ, Shang FF, Luo CZ, Zhou X, Liu S, McDonald J, Liu J, Zuo YX, Liu F, Wang TH. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep 2016; 6:27512. [PMID: 27282805 PMCID: PMC4901320 DOI: 10.1038/srep27512] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 05/10/2016] [Indexed: 02/05/2023] Open
Abstract
Patients with tumors that metastasize to bone frequently suffer from debilitating pain, and effective therapies for treating bone cancer are lacking. This study employed a novel strategy in which herpes simplex virus (HSV) carrying a small interfering RNA (siRNA) targeting platelet-derived growth factor (PDGF) was used to alleviate bone cancer pain. HSV carrying PDGF siRNA was established and intrathecally injected into the cavum subarachnoidale of animals suffering from bone cancer pain and animals in the negative group. Sensory function was assessed by measuring thermal and mechanical hyperalgesia. The mechanism by which PDGF regulates pain was also investigated by comparing the differential expression of pPDGFRα/β and phosphorylated ERK and AKT. Thermal and mechanical hyperalgesia developed in the rats with bone cancer pain, and these effects were accompanied by bone destruction in the tibia. Intrathecal injection of PDGF siRNA and morphine reversed thermal and mechanical hyperalgesia in rats with bone cancer pain. In addition, we observed attenuated astrocyte hypertrophy, down-regulated pPDGFRα/β levels, reduced levels of the neurochemical SP, a reduction in CGRP fibers and changes in pERK/ERK and pAKT/AKT ratios. These results demonstrate that PDGF siRNA can effectively treat pain induced by bone cancer by blocking the AKT-ERK signaling pathway.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jia Liu
- Institute of Neuroscience, Kunming Medical University, Kunming 650031, PR China
| | - Mu He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ran Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Visar Belegu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA, International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD, USA
| | - Ping Dai
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wei Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Wei Wang
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qing-Jie Xia
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Fei-Fei Shang
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chao-Zhi Luo
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xue Zhou
- Department of Histology, Embryology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Su Liu
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA, International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD, USA
| | - JohnW. McDonald
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA, International Center for Spinal Cord Injury, Hugo W. Moser Research Institute at Kennedy Krieger Inc., Baltimore, MD, USA
| | - Jin Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Yun-Xia Zuo
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Fei Liu
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology and Translation Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, PR China
- Institute of Neuroscience, Kunming Medical University, Kunming 650031, PR China
| |
Collapse
|
16
|
Pleticha J, Maus TP, Beutler AS. Future Directions in Pain Management: Integrating Anatomically Selective Delivery Techniques With Novel Molecularly Selective Agents. Mayo Clin Proc 2016; 91:522-33. [PMID: 27046525 DOI: 10.1016/j.mayocp.2016.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/12/2023]
Abstract
Treatment for chronic, locoregional pain ranks among the most prevalent unmet medical needs. The failure of systemic analgesic drugs, such as opioids, is often due to their off-target toxicity, development of tolerance, and abuse potential. Interventional pain procedures provide target specificity but lack pharmacologically selective agents with long-term efficacy. Gene therapy vectors are a new tool for the development of molecularly selective pain therapies, which have already been proved to provide durable analgesia in preclinical models. Taken together, advances in image-guided delivery and gene therapy may lead to a new class of dual selective analgesic treatments integrating the molecular selectivity of analgesic genes with the anatomic selectivity of interventional delivery techniques.
Collapse
Affiliation(s)
- Josef Pleticha
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| | | | - Andreas S Beutler
- Department of Anesthesiology and Oncology, Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Ma F, Wang C, Yoder WE, Westlund KN, Carlson CR, Miller CS, Danaher RJ. Efficacy of Herpes Simplex Virus Vector Encoding the Human Preproenkephalin Gene for Treatment of Facial Pain in Mice. J Oral Facial Pain Headache 2016; 30:42-50. [PMID: 26817032 DOI: 10.11607/ofph.1512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS To determine whether herpes simplex virus-based vectors can efficiently transduce mouse trigeminal ganglion (TG) neurons and attenuate preexisting nerve injury-induced whisker pad mechanical hypersensitivity in a trigeminal inflammatory compression (TIC) neuropathic pain model. METHODS Tissue transduction efficiencies of replication-conditional and replication-defective vectors to mouse whisker pads after topical administration and subcutaneous injection were assessed using quantitative real-time PCR (qPCR). Tissue tropism and transgene expression were assessed using qPCR and reverse-transcriptase qPCR following topical application of the vectors. Whisker pad mechanical sensitivities of TIC-injured mice were determined using graduated von Frey fibers before and after application of human preproenkephalin expressing replication-conditional vector (KHPE). Data were analyzed using one-way analysis of variance (ANOVA) and post hoc tests. RESULTS Transduction of target TGs was 8- to 50-fold greater after topical application than subcutaneous injection and ≥ 100-fold greater for replication-conditional than replication-defective vectors. Mean KHPE loads remained constant in TGs (4.5-9.8 × 10(4) copies/TG) over 3 weeks but were below quantifiable levels (10 copies/tissue) within 2 weeks of application in other nontarget cephalic tissues examined. Transgene expression in TGs was maximal during 2 weeks after topical application (100-200 cDNA copies/mL) and was below quantifiable levels (1 cDNA copy/mL) in all nontarget tissues. Topical KHPE administration reduced TIC-related mechanical hypersensitivity on whisker pads 4-fold (P < .05) for at least 1 week. CONCLUSION Topically administered KHPE produced a significant antinociceptive effect in the TIC mouse model of chronic facial neuropathic pain. This is the first report in which a gene therapeutic approach reduced trigeminal pain-related behaviors in an established pain state in mice.
Collapse
|
18
|
Xu K, Pan SY, Song JX, Liu XN, An N, Zheng X. Establishment of a novel therapeutic vector targeting the trigeminal ganglion in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:585-92. [PMID: 26893545 PMCID: PMC4745838 DOI: 10.2147/dddt.s96730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background In the pathogenesis of herpes simplex keratitis, herpes simplex virus type 1 (HSV-1) infection begins in corneal epithelium cells and then progresses through the sensory nerve endings and finally travels up forward to the trigeminal ganglion (TG), where it remains as latent virus. The available anti-HSV therapies do not completely suppress the recurrence of active HSV-1 infection. The aim of this study was to establish a novel replication-defective (rd) HSV-1 (rdHSV) vector (rdHSV-interferon gamma [IFNγ]) that could effectively target the TG. Methods Recombinant HSV-1 virus was inserted into a shuttle plasmid carrying IFNγ to establish the rdHSV-IFNγ vector. Safety was evaluated in vitro by 50% cellular cytotoxicity in transfected SH-SY5Y neuroblastoma cells and in vivo by Kaplan–Meier survival estimate and infection rate. Wistar rats were immunized with rdHSV-IFNγ to evaluate the TG targeting efficiency. Real-time polymerase chain reaction and Western blot assays were used to evaluate IFNγ mRNA and protein expression and rdHSV-IFNγ localization. Results The rdHSV-IFNγ vector was successfully constructed and showed high in vitro safety and overall survival and a corneal infection rate similar to that of control rats immunized with saline (control group; P>0.05). Real-time polymerase chain reaction and immunohistochemistry assays confirmed IFNγ expression and effective TG targeting on days 14 and 21, which increased with postimmunization time. Moreover, IFNγ was expressed sufficiently in the TG tissues. Conclusion The rdHSV-IFNγ can act as an effective gene transporting vector that carries the therapeutic genes to the TG and triggers its expression.
Collapse
Affiliation(s)
- Kun Xu
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China; Shaanxi Provincial Key Laboratory of Ophthalmology, Ophthalmological Institute of Shaanxi Province, Xi'an, Shaanxi Province, People's Republic of China
| | - Shi-Yin Pan
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China; Shaanxi Provincial Key Laboratory of Ophthalmology, Ophthalmological Institute of Shaanxi Province, Xi'an, Shaanxi Province, People's Republic of China
| | - Jin-Xin Song
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China
| | - Xian-Ning Liu
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China; Shaanxi Provincial Key Laboratory of Ophthalmology, Ophthalmological Institute of Shaanxi Province, Xi'an, Shaanxi Province, People's Republic of China
| | - Na An
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China; Shaanxi Provincial Key Laboratory of Ophthalmology, Ophthalmological Institute of Shaanxi Province, Xi'an, Shaanxi Province, People's Republic of China
| | - Xuan Zheng
- Department of Ophthalmology, The No 1 Hospital of Xi'an, Xi'an, Shaanxi Province, People's Republic of China; Shaanxi Provincial Key Laboratory of Ophthalmology, Ophthalmological Institute of Shaanxi Province, Xi'an, Shaanxi Province, People's Republic of China
| |
Collapse
|
19
|
Kibaly C, Loh H, Law PY. A Mechanistic Approach to the Development of Gene Therapy for Chronic Pain. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:89-161. [DOI: 10.1016/bs.ircmb.2016.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Guedon JMG, Wu S, Zheng X, Churchill CC, Glorioso JC, Liu CH, Liu S, Vulchanova L, Bekker A, Tao YX, Kinchington PR, Goins WF, Fairbanks CA, Hao S. Current gene therapy using viral vectors for chronic pain. Mol Pain 2015; 11:27. [PMID: 25962909 PMCID: PMC4446851 DOI: 10.1186/s12990-015-0018-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023] Open
Abstract
The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins and Kinchington group describes a strategy to use the replication defective HSV vector to deliver two different gene products (enkephalin and TNF soluble receptor) for the treatment of post-herpetic neuralgia. Dr. Hao group addresses the observation that the pro-inflammatory cytokines are an important shared mechanism underlying both neuropathic pain and the development of opioid analgesic tolerance and withdrawal. The use of gene therapy strategies to enhance expression of the anti-pro-inflammatory cytokines is summarized. Development of multiple gene therapy strategies may have the benefit of targeting specific pathologies associated with distinct chronic pain conditions (by Guest Editors, Drs. C. Fairbanks and S. Hao).
Collapse
Affiliation(s)
- Jean-Marc G Guedon
- Graduate Program in Molecular Virology and Microbiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Room 1020 EEI, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA.
| | - Xuexing Zheng
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | | | - Joseph C Glorioso
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Ching-Hang Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Shue Liu
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA.
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, State University of New Jersey, 185 S. Orange Ave., MSB, F-548, Newark, NJ, 07103, USA. .,Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA. .,Department of Neurology & Neuroscience, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA. .,Department of Physiology & Pharmacology, New Jersey Medical School, Rutgers, State University of New Jersey, Newark, NJ, 07103, USA.
| | - Paul R Kinchington
- Graduate Program in Molecular Virology and Microbiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, 15213, USA. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Room 1020 EEI, 203 Lothrop Street, Pittsburgh, PA, 15213, USA.
| | - William F Goins
- Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 424 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Carolyn A Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA. .,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA. .,Department of Pharmacology, University of Minnesota, 9-177 Weaver Densford Hall, 308 Harvard Street, Minneapolis, MN, 55455, USA.
| | - Shuanglin Hao
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
21
|
Snowball A, Schorge S. Changing channels in pain and epilepsy: Exploiting ion channel gene therapy for disorders of neuronal hyperexcitability. FEBS Lett 2015; 589:1620-34. [PMID: 25979170 DOI: 10.1016/j.febslet.2015.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/29/2015] [Accepted: 05/02/2015] [Indexed: 11/25/2022]
Abstract
Chronic pain and epilepsy together affect hundreds of millions of people worldwide. While traditional pharmacotherapy provides essential relief to the majority of patients, a large proportion remains resistant, and surgical intervention is only possible for a select few. As both disorders are characterised by neuronal hyperexcitability, manipulating the expression of the most direct modulators of excitability - ion channels - represents an attractive common treatment strategy. A number of viral gene therapy approaches have been explored to achieve this. These range from the up- or down-regulation of channels that control excitability endogenously, to the delivery of exogenous channels that permit manipulation of excitability via optical or chemical means. In this review we highlight the key experimental successes of each approach and discuss the challenges facing their clinical translation.
Collapse
Affiliation(s)
- Albert Snowball
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
22
|
Gene delivery to the spinal cord using MRI-guided focused ultrasound. Gene Ther 2015; 22:568-77. [PMID: 25781651 PMCID: PMC4490035 DOI: 10.1038/gt.2015.25] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/26/2015] [Accepted: 03/05/2015] [Indexed: 12/18/2022]
Abstract
Non-invasive gene delivery across the blood-spinal cord barrier (BSCB) remains a challenge for treatment of spinal cord injury and disease. Here, we demonstrate the use of magnetic resonance image-guided focused ultrasound (MRIgFUS) to mediate non-surgical gene delivery to the spinal cord using self-complementary adeno-associated virus serotype 9 (scAAV9). scAAV9 encoding green fluorescent protein (GFP) was injected intravenously in rats at three dosages: 4 × 10(8), 2 × 10(9) and 7 × 10(9) vector genomes per gram (VG g(-1)). MRIgFUS allowed for transient, targeted permeabilization of the BSCB through the interaction of focused ultrasound (FUS) with systemically injected Definity lipid-shelled microbubbles. Viral delivery at 2 × 10(9) and 7 × 10(9) VG g(-1) leads to robust GFP expression in FUS-targeted regions of the spinal cord. At a dose of 2 × 10(9) VG g(-1), GFP expression was found in 36% of oligodendrocytes, and in 87% of neurons in FUS-treated areas. FUS applications to the spinal cord could address a long-term goal of gene therapy: delivering vectors from the circulation to diseased areas in a non-invasive manner.
Collapse
|
23
|
Bjurstrom MF, Giron SE, Griffis CA. Cerebrospinal Fluid Cytokines and Neurotrophic Factors in Human Chronic Pain Populations: A Comprehensive Review. Pain Pract 2014; 16:183-203. [PMID: 25353056 DOI: 10.1111/papr.12252] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022]
Abstract
Chronic pain is a prevalent and debilitating condition, conveying immense human burden. Suffering is caused not only by painful symptoms, but also through psychopathological and detrimental physical consequences, generating enormous societal costs. The current treatment armamentarium often fails to achieve satisfying pain relief; thus, research directed toward elucidating the complex pathophysiological mechanisms underlying chronic pain syndromes is imperative. Central neuroimmune activation and neuroinflammation have emerged as driving forces in the transition from acute to chronic pain, leading to central sensitization and decreased opioid efficacy, through processes in which glia have been highlighted as key contributors. Under normal conditions, glia exert a protective role, but in different pathological states, a deleterious role is evident--directly and indirectly modulating and enhancing pain transmission properties of neurons, and shaping synaptic plasticity in a dysfunctional manner. Cytokines and neurotrophic factors have been identified as pivotal mediators involved in neuroimmune activation pathways and cascades in various preclinical chronic pain models. Research confirming these findings in humans has so far been scarce, but this comprehensive review provides coherent data supporting the clear association of a mechanistic role of altered central cytokines and neurotrophic factors in a number of chronic pain states despite varying etiologies. Given the importance of these factors in neuropathic and inflammatory chronic pain states, prospective therapeutic strategies, and directions for future research in this emerging field, are outlined.
Collapse
Affiliation(s)
- Martin F Bjurstrom
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles (UCLA), Los Angeles, California, U.S.A.,Department of Anesthesiology, University of California, Los Angeles (UCLA), Los Angeles, California, U.S.A
| | - Sarah E Giron
- Department of Anesthesiology, University of Southern California (USC), Los Angeles, California, U.S.A
| | - Charles A Griffis
- Department of Anesthesiology, University of California, Los Angeles (UCLA), Los Angeles, California, U.S.A
| |
Collapse
|
24
|
Cai M, Zhang Z, Su X, Dong H, Zhong Z, Zhuo R. Guanidinated multi-arm star polyornithines with a polyethylenimine core for gene delivery. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
In vitro Inactivation of Latent HSV by Targeted Mutagenesis Using an HSV-specific Homing Endonuclease. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e146. [PMID: 24496438 PMCID: PMC3951911 DOI: 10.1038/mtna.2013.75] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/26/2013] [Indexed: 12/21/2022]
Abstract
Following acute infection, herpes simplex virus (HSV) establishes latency in sensory neurons, from which it can reactivate and cause recurrent disease. Available antiviral therapies do not affect latent viral genomes; therefore, they do not prevent reactivation following therapy cessation. One possible curative approach involves the introduction of DNA double strand breaks in latent HSV genomes by rare-cutting endonucleases, leading to mutagenesis of essential viral genes. We tested this approach in an in vitro HSV latency model using the engineered homing endonuclease (HE) HSV1m5, which recognizes a sequence in the HSV-1 gene UL19, encoding the virion protein VP5. Coexpression of the 3'-exonuclease Trex2 with HEs increased HE-mediated mutagenesis frequencies up to sixfold. Following HSV1m5/Trex2 delivery with adeno-associated viral (AAV) vectors, the target site was mutated in latent HSV genomes with no detectable cell toxicity. Importantly, HSV production by latently infected cells after reactivation was decreased after HSV1m5/Trex2 exposure. Exposure to histone deacetylase inhibitors prior to HSV1m5/Trex2 treatment increased mutagenesis frequencies of latent HSV genomes another two- to fivefold, suggesting that chromatin modification may be a useful adjunct to gene-targeting approaches. These results support the continuing development of HEs and other nucleases (ZFNs, TALENs, CRISPRs) for cure of chronic viral infections.Molecular Therapy-Nucleic Acids (2014) 3, e1; doi:10.1038/mtna.2013.75; published online 4 February 2014.
Collapse
|
26
|
Sobczak M, Sałaga M, Storr MA, Fichna J. Physiology, signaling, and pharmacology of opioid receptors and their ligands in the gastrointestinal tract: current concepts and future perspectives. J Gastroenterol 2014; 49:24-45. [PMID: 23397116 PMCID: PMC3895212 DOI: 10.1007/s00535-013-0753-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/10/2013] [Indexed: 02/04/2023]
Abstract
Opioid receptors are widely distributed in the human body and are crucially involved in numerous physiological processes. These include pain signaling in the central and the peripheral nervous system, reproduction, growth, respiration, and immunological response. Opioid receptors additionally play a major role in the gastrointestinal (GI) tract in physiological and pathophysiological conditions. This review discusses the physiology and pharmacology of the opioid system in the GI tract. We additionally focus on GI disorders and malfunctions, where pathophysiology involves the endogenous opioid system, such as opioid-induced bowel dysfunction, opioid-induced constipation or abdominal pain. Based on recent reports in the field of pharmacology and medicinal chemistry, we will also discuss the opportunities of targeting the opioid system, suggesting future treatment options for functional disorders and inflammatory states of the GI tract.
Collapse
Affiliation(s)
- Marta Sobczak
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Maciej Sałaga
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| | - Martin A. Storr
- Division of Gastroenterology, Department of Medicine, Ludwig Maximilians University of Munich, Munich, Germany
| | - Jakub Fichna
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland
| |
Collapse
|
27
|
Kantor B, Bailey RM, Wimberly K, Kalburgi SN, Gray SJ. Methods for gene transfer to the central nervous system. ADVANCES IN GENETICS 2014; 87:125-97. [PMID: 25311922 DOI: 10.1016/b978-0-12-800149-3.00003-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Rachel M Bailey
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keon Wimberly
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sahana N Kalburgi
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Xu K, Liu XN, Zhang HB, An N, Wang Y, Zhang ZC, Wang YN. Replication-defective HSV-1 effectively targets trigeminal ganglion and inhibits viral pathopoiesis by mediating interferon gamma expression in SH-SY5Y cells. J Mol Neurosci 2013; 53:78-86. [PMID: 24347277 DOI: 10.1007/s12031-013-0199-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/28/2013] [Indexed: 11/26/2022]
Abstract
It has been widely believed that recurrence of herpes simplex keratitis (HSK) is due to the reactivation of herpes simplex virus type 1 (HSV-1) from latent sites in trigeminal ganglion (TG). However, there are also not effective vectors which could target TG for therapy. Replication-defective HSV-1 vector (rdHSV-IFNγ) was established by calcium phosphate co-transfection of complementing cells. We firstly infected rdHSV-IFNγ to SH-SY5Y, and detected IFNγ expression by western blot, evaluated 50 % cellular cytotoxicity (CC(50)) by ELISA. Antiviral activity of rdHSV-IFNγ was examined by immunofluorescence and antiviral concentration of 50 % effectiveness (EC(50)) assay. The rdHSV-IFNγ vector was immunized to Wistar rats to observe targeting function to TG. Kaplan-Meier survival analysis was utilized to assess security of rdHSV-IFNγ. RT-PCR and immunohistochemistry assay were employed to detect rdHSV-IFNγ localization in TG. Western blot was employed to detect IFNγ expression. rdHSV-IFNγ was successfully established, and performed an effective antiviral activity and higher security in SH-SY5Y. There were no significant differences of survival and corneal infection rate of rdHSV-IFNγ immunized rats among groups (P > 0.05). RT-PCR and immunohistochemistry indicated that expression of glycoprotein D (gD) in TG could target TG and decreased following with times post immunization. Furthermore, IFNγ was expressed effectively in TG tissues. Our findings indicated that established rdHSV-IFNγ vector effectively transported therapeutic gene into TG tissues. The administration of replication-defective vector carrying therapeutic genes may become a promising tool in inhibition or reoccurrence of HSK in clinical.
Collapse
Affiliation(s)
- Kun Xu
- Department of Ophthalmology, No. 1 Hospital of Xi'an, Xi'an, 710002, China,
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang H, Heijnen CJ, van Velthoven CTJ, Willemen HLDM, Ishikawa Y, Zhang X, Sood AK, Vroon A, Eijkelkamp N, Kavelaars A. Balancing GRK2 and EPAC1 levels prevents and relieves chronic pain. J Clin Invest 2013; 123:5023-34. [PMID: 24231349 DOI: 10.1172/jci66241] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/12/2013] [Indexed: 01/12/2023] Open
Abstract
Chronic pain is a major clinical problem, yet the mechanisms underlying the transition from acute to chronic pain remain poorly understood. In mice, reduced expression of GPCR kinase 2 (GRK2) in nociceptors promotes cAMP signaling to the guanine nucleotide exchange factor EPAC1 and prolongs the PGE2-induced increase in pain sensitivity (hyperalgesia). Here we hypothesized that reduction of GRK2 or increased EPAC1 in dorsal root ganglion (DRG) neurons would promote the transition to chronic pain. We used 2 mouse models of hyperalgesic priming in which the transition from acute to chronic PGE2-induced hyperalgesia occurs. Hyperalgesic priming with carrageenan induced a sustained decrease in nociceptor GRK2, whereas priming with the PKCε agonist ΨεRACK increased DRG EPAC1. When either GRK2 was increased in vivo by viral-based gene transfer or EPAC1 was decreased in vivo, as was the case for mice heterozygous for Epac1 or mice treated with Epac1 antisense oligodeoxynucleotides, chronic PGE2-induced hyperalgesia development was prevented in the 2 priming models. Using the CFA model of chronic inflammatory pain, we found that increasing GRK2 or decreasing EPAC1 inhibited chronic hyperalgesia. Our data suggest that therapies targeted at balancing nociceptor GRK2 and EPAC1 levels have promise for the prevention and treatment of chronic pain.
Collapse
|
30
|
Hukkanen V, Nygårdas M. The virtues and vices of harnessing HSV vectors for CNS autoimmunity modulation. Immunotherapy 2013; 5:911-3. [PMID: 23998724 DOI: 10.2217/imt.13.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
31
|
Abstract
A number of agents from diverse pharmacological classes are used to treat neuropathic pain associated with diabetic peripheral neuropathy. Only three of these have regulatory approval for this indication in the U.S. In this focused article, I will discuss selected drugs, newly approved or in development, to treat neuropathic pain in patients with diabetic neuropathy. These will include agonists and antagonists of the transient receptor potential channels, a family of receptor proteins that play a role in the transduction of physical stress; sodium channel isoform specific antagonists; a recently approved dual-action opioid receptor agonist-norepinephrine reuptake inhibitor; gene therapy for neuropathic pain; and anti-nerve growth factor molecules. Mechanisms of action, preclinical supporting data, clinical trial evidence, and adverse effects will be reviewed.
Collapse
Affiliation(s)
- Roy Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
32
|
Nockemann D, Rouault M, Labuz D, Hublitz P, McKnelly K, Reis FC, Stein C, Heppenstall PA. The K(+) channel GIRK2 is both necessary and sufficient for peripheral opioid-mediated analgesia. EMBO Mol Med 2013; 5:1263-77. [PMID: 23818182 PMCID: PMC3944465 DOI: 10.1002/emmm.201201980] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 01/25/2023] Open
Abstract
The use of opioid agonists acting outside the central nervous system (CNS) is a promising therapeutic strategy for pain control that avoids deleterious central side effects such as apnea and addiction. In human clinical trials and rat models of inflammatory pain, peripherally restricted opioids have repeatedly shown powerful analgesic effects; in some mouse models however, their actions remain unclear. Here, we investigated opioid receptor coupling to K+ channels as a mechanism to explain such discrepancies. We found that GIRK channels, major effectors for opioid signalling in the CNS, are absent from mouse peripheral sensory neurons but present in human and rat. In vivo transgenic expression of GIRK channels in mouse nociceptors established peripheral opioid signalling and local analgesia. We further identified a regulatory element in the rat GIRK2 gene that accounts for differential expression in rodents. Thus, GIRK channels are indispensable for peripheral opioid analgesia, and their absence in mice has profound consequences for GPCR signalling in peripheral sensory neurons. GIRK channels are indispensable for peripheral opioid analgesia. The absence of GIRK channels from mouse dorsal root ganglion neurons questions the predictive validity of mice as a model organism for investigating peripheral GPCRmediated analgesia.
Collapse
Affiliation(s)
- Dinah Nockemann
- Klinik für Anaesthesiologie und Operative Intensivmedizin, Freie Universität Berlin, Charité Campus Benjamin Franklin, Hindenburgdamm 30, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Camporesi S, McNamee MJ. Gene Transfer for Pain: A tool to cope with the intractable, or an unethical endurance-enhancing technology? Genom Soc Policy 2012; 8:20-31. [PMID: 27974906 PMCID: PMC5152710 DOI: 10.1186/1746-5354-8-1-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- S Camporesi
- Centre for the Humanities and Health, King's College, London & Department of Anthropology, History and Social Medicine at University of California, San Francisco
| | - M J McNamee
- College of Human and Health Sciences, Swansea University
| |
Collapse
|