1
|
Leak RK, Clark RN, Abbas M, Xu F, Brodsky JL, Chen J, Hu X, Luk KC. Current insights and assumptions on α-synuclein in Lewy body disease. Acta Neuropathol 2024; 148:18. [PMID: 39141121 PMCID: PMC11324801 DOI: 10.1007/s00401-024-02781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Lewy body disorders are heterogeneous neurological conditions defined by intracellular inclusions composed of misshapen α-synuclein protein aggregates. Although α-synuclein aggregates are only one component of inclusions and not strictly coupled to neurodegeneration, evidence suggests they seed the propagation of Lewy pathology within and across cells. Genetic mutations, genomic multiplications, and sequence polymorphisms of the gene encoding α-synuclein are also causally linked to Lewy body disease. In nonfamilial cases of Lewy body disease, the disease trigger remains unidentified but may range from industrial/agricultural toxicants and natural sources of poisons to microbial pathogens. Perhaps due to these peripheral exposures, Lewy inclusions appear at early disease stages in brain regions connected with cranial nerves I and X, which interface with inhaled and ingested environmental elements in the nasal or gastrointestinal cavities. Irrespective of its identity, a stealthy disease trigger most likely shifts soluble α-synuclein (directly or indirectly) into insoluble, cross-β-sheet aggregates. Indeed, β-sheet-rich self-replicating α-synuclein multimers reside in patient plasma, cerebrospinal fluid, and other tissues, and can be subjected to α-synuclein seed amplification assays. Thus, clinicians should be able to capitalize on α-synuclein seed amplification assays to stratify patients into potential responders versus non-responders in future clinical trials of α-synuclein targeted therapies. Here, we briefly review the current understanding of α-synuclein in Lewy body disease and speculate on pathophysiological processes underlying the potential transmission of α-synucleinopathy across the neuraxis.
Collapse
Affiliation(s)
- Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA.
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Muslim Abbas
- Graduate School of Pharmaceutical Sciences, Duquesne University, 418C Mellon Hall, 913 Bluff Street, Pittsburgh, PA, 15219, USA
| | - Fei Xu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Pennsylvania, PA, USA
| |
Collapse
|
2
|
Yu H, Feng R, Chen F, Wu Z, Li D, Qiu X. Rapid FRET Assay for the Early Detection of Alpha-Synuclein Aggregation in Parkinson's Disease. ACS Chem Neurosci 2024; 15:1378-1387. [PMID: 38506367 DOI: 10.1021/acschemneuro.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Alpha-synuclein (α-Syn) is a key protein of Parkinson's disease (PD). Oligomers formed by misfolding and aggregation of α-Syn can cause many pathological phenomena and aggravate the development of PD. Therefore, sensitive and accurate detection of oligomers is essential to understanding the pathology of PD and beneficial to screening and developing new drugs against PD. Here, we demonstrated a simple and sensitive method to detect the early aggregation of α-Syn via Förster resonance energy transfer (FRET) technology. We performed systematic investigations of the FRET sensitizations, efficiencies, and donor-to-acceptor distances during α-Syn aggregation, which was proved to be more sensitive to reflect small distance changes in the early stage of α-Syn aggregation, especially for α-Syn oligomers. The FRET assays were also applied to study the influence of Ser129 phosphorylation (pS129) on the aggregation rate of α-Syn. Our results showed that pS129 modification promotes α-Syn aggregation and enhances the ability of preformed fibrils to induce monomer aggregation. pS129 also increased the cytotoxicity of α-Syn. These results are of great significance for a better understanding of the pathological mechanisms of PD and future PD drug development.
Collapse
Affiliation(s)
- Hang Yu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Rui Feng
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Fenglin Chen
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zuodong Wu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Dehai Li
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xue Qiu
- Key Laboratory of Marine Drug, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
3
|
Parra-Rivas LA, Madhivanan K, Aulston BD, Wang L, Prakashchand DD, Boyer NP, Saia-Cereda VM, Branes-Guerrero K, Pizzo DP, Bagchi P, Sundar VS, Tang Y, Das U, Scott DA, Rangamani P, Ogawa Y, Subhojit Roy. Serine-129 phosphorylation of α-synuclein is an activity-dependent trigger for physiologic protein-protein interactions and synaptic function. Neuron 2023; 111:4006-4023.e10. [PMID: 38128479 PMCID: PMC10766085 DOI: 10.1016/j.neuron.2023.11.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/08/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023]
Abstract
Phosphorylation of α-synuclein at the serine-129 site (α-syn Ser129P) is an established pathologic hallmark of synucleinopathies and a therapeutic target. In physiologic states, only a fraction of α-syn is phosphorylated at this site, and most studies have focused on the pathologic roles of this post-translational modification. We found that unlike wild-type (WT) α-syn, which is widely expressed throughout the brain, the overall pattern of α-syn Ser129P is restricted, suggesting intrinsic regulation. Surprisingly, preventing Ser129P blocked activity-dependent synaptic attenuation by α-syn-thought to reflect its normal function. Exploring mechanisms, we found that neuronal activity augments Ser129P, which is a trigger for protein-protein interactions that are necessary for mediating α-syn function at the synapse. AlphaFold2-driven modeling and membrane-binding simulations suggest a scenario where Ser129P induces conformational changes that facilitate interactions with binding partners. Our experiments offer a new conceptual platform for investigating the role of Ser129 in synucleinopathies, with implications for drug development.
Collapse
Affiliation(s)
- Leonardo A Parra-Rivas
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Kayalvizhi Madhivanan
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Brent D Aulston
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Lina Wang
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Dube Dheeraj Prakashchand
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Nicholas P Boyer
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Veronica M Saia-Cereda
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Kristen Branes-Guerrero
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Donald P Pizzo
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, USA
| | - V S Sundar
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Yong Tang
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Utpal Das
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA; Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - David A Scott
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Yuki Ogawa
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Subhojit Roy
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA.
| |
Collapse
|
4
|
Chaturvedi M, Raj R, Yadav SK, Srivastava T, Devi S, Dharmadana D, Valéry C, Sharma SK, Kumar D, Priya S. Implications of In Vitro Multi-Serine Phosphorylation of Alpha-Synuclein in Aggregation and Cytotoxicity. ACS Chem Neurosci 2023; 14:3103-3112. [PMID: 37562012 DOI: 10.1021/acschemneuro.3c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Post-translational modifications guide the functional diversity and identity of proteins. Phosphorylation is one such post-translational modification that has been reported in pathological proteins related to various neurodegenerative disorders such as α-synuclein (α-syn) phosphorylation in Parkinson's disease and other synucleinopathies. In α-syn, the phosphorylation has mostly been observed at S129; however, the occurrence of other serine modifications at S9, S42, and S87 is partially explored. In pathogenic conditions, where α-syn is phosphorylated by complex kinase pathways, multi-site modifications may happen and alter the mechanism of α-syn aggregation. Here, using Polo-like kinase 2 and G-protein coupled receptor kinase 4, the in vitro phosphorylation of α-syn was performed, which revealed multi-serine phosphorylation. Mass spectrometry with customized proteolytic digestion showed prominent phosphorylation at S129 and modifications at S87 and S42 with PLK2 and S87 with GRK4. The phosphorylation at the identified serine residues was further validated with NMR and western blotting. Multi-serine phosphorylation aggravates the aggregation potential of monomeric α-syn, seeding capacity, and cytotoxicity in the SH-SY5Y cell line. This study proposes evidence for in vitro multi-site phosphorylation and its significance in α-syn aggregation, toxicity, and related pathogenesis.
Collapse
Affiliation(s)
- Minal Chaturvedi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- School of Health and Biomedical Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Ritu Raj
- Centre of BioMedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sanjeev Kumar Yadav
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tulika Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shweta Devi
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Durga Dharmadana
- School of Health and Biomedical Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Céline Valéry
- School of Health and Biomedical Science, RMIT University, Bundoora, Victoria 3083, Australia
| | - Sandeep K Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of BioMedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Smriti Priya
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan 31, MG Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Lateralized deficits after unilateral AAV-vector based overexpression of alpha-synuclein in the midbrain of rats on drug-free behavioural tests. Behav Brain Res 2022; 429:113887. [DOI: 10.1016/j.bbr.2022.113887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023]
|
6
|
Lima VDA, Esquinelato R, Carmo-Gonçalves P, Nascimento LAD, Lee H, Eliezer D, Romão L, Follmer C. The dopamine receptor agonist apomorphine stabilizes neurotoxic α-synuclein oligomers. FEBS Lett 2022; 596:309-322. [PMID: 34928512 PMCID: PMC8972942 DOI: 10.1002/1873-3468.14263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023]
Abstract
The misfolding and aggregation of the protein α-synuclein (aSyn) into potentially neurotoxic oligomers is believed to play a pivotal role in the neuropathogenesis of Parkinson's disease (PD). Herein, we explore how apomorphine (Apo), a nonselective dopamine D1 and D2 receptor agonist utilized in the therapy for PD, affects the aggregation and toxicity of aSyn in vitro. Our data indicated that Apo inhibits aSyn fibrillation leading to the formation of large oligomeric species (Apo-aSyn-O), which exhibit remarkable toxicity in mesencephalic dopaminergic neurons in primary cultures. Interestingly, purified Apo-aSyn-O, even at very low concentrations, seems to be capable of converting unmodified aSyn monomer into neurotoxic species. Collectively, our findings warn for a possible dangerous effect of Apo on aSyn misfolding/aggregation pathway.
Collapse
Affiliation(s)
- Vanderlei de Araujo Lima
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Esquinelato
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Phelippe Carmo-Gonçalves
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Hudson Lee
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Luciana Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristian Follmer
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Van Den Berge N, Ulusoy A. Animal models of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 163:105599. [DOI: 10.1016/j.nbd.2021.105599] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
|
8
|
Negrini M, Tomasello G, Davidsson M, Fenyi A, Adant C, Hauser S, Espa E, Gubinelli F, Manfredsson FP, Melki R, Heuer A. Sequential or Simultaneous Injection of Preformed Fibrils and AAV Overexpression of Alpha-Synuclein Are Equipotent in Producing Relevant Pathology and Behavioral Deficits. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1133-1153. [PMID: 35213388 PMCID: PMC9198765 DOI: 10.3233/jpd-212555] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Preclinical rodent models for Parkinson's disease (PD) based on viral human alpha-synuclein (h-αSyn) overexpression recapitulate some of the pathological hallmarks as it presents in humans, such as progressive cell loss and additional synucleinopathy in cortical and subcortical structures. Recent studies have combined viral vector-based overexpression of human wild-type αSyn with the sequential or simultaneous inoculation of preformed fibrils (PFFs) derived from human αSyn. OBJECTIVE The goal of the study was to investigate whether sequential or combined delivery of the AAV vector and the PFFs are equipotent in inducing stable neurodegeneration and behavioral deficits. METHODS Here we compare between four experimental paradigms (PFFs only, AAV-h-αSyn only, AAV-h-αSyn with simultaneous PFFs, and AAV-h-αSyn with sequential PFFs) and their respective GFP control groups. RESULTS We observed reduction of TH expression and loss of neurons in the midbrain in all AAV (h-αSyn or GFP) injected groups, with or without additional PFFs inoculation. The overexpression of either h-αSyn or GFP alone induced motor deficits and dysfunctional dopamine release/reuptake in electrochemical recordings in the ipsilateral striatum. However, we observed a substantial formation of insoluble h-αSyn aggregates and inflammatory response only when h-αSyn and PFFs were combined. Moreover, the presence of h-αSyn induced higher axonal pathology compared to control groups. CONCLUSION Simultaneous AAV and PFFs injections are equipotent in the presented experimental setup in inducing histopathological and behavioral changes. This model provides new and interesting possibilities for characterizing PD pathology in preclinical models and means to assess future therapeutic interventions.
Collapse
Affiliation(s)
- Matilde Negrini
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Giuseppe Tomasello
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Marcus Davidsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
- Molecular Neuromodulation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Alexis Fenyi
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Cécile Adant
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Swantje Hauser
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elena Espa
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Francesco Gubinelli
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Fredric P. Manfredsson
- Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRS, Fontenay-aux-Roses, France
| | - Andreas Heuer
- Behavioural Neuroscience Laboratory, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Werner MH, Olanow CW. Parkinson's Disease Modification through Abl Kinase Inhibition: An Opportunity. Mov Disord 2021; 37:6-15. [PMID: 34816484 PMCID: PMC8770606 DOI: 10.1002/mds.28858] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease of the central nervous system, with an estimated 5 000 000 cases worldwide. Historically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta, PD pathology is now known to be widespread and to affect serotonin, cholinergic and norepinephrine neurons as well as nerve cells in the olfactory system, cerebral hemisphere, brain stem, spinal cord, and peripheral autonomic nervous system. PD pathology is characterized by the accumulation of misfolded α-synuclein, which is thought to play a critical role in the etiopathogenesis of the disease. Animal models of PD suggest that activation of the Abelson tyrosine kinase (c-Abl) plays an essential role in the initiation and progression of α-synuclein pathology and neurodegeneration. These studies demonstrate that internalization of misfolded α-synuclein activates c-Abl, which phosphorylates α-synuclein and promotes α-synuclein pathology within the affected neurons. Additionally, c-Abl inactivates parkin, disrupting mitochondrial quality control and biogenesis, promoting neurodegeneration. Post-mortem studies of PD patients demonstrate increased levels of tyrosine phosphorylated α-synuclein, consistent with the activation of c-Abl in human disease. Although the c-Abl inhibitor nilotinib failed to demonstrate clinical benefit in two double-blind trials, novel c-Abl inhibitors have been developed that accumulate in the brain and may inhibit c-Abl at saturating levels. These novel inhibitors have demonstrated benefits in animal models of PD and have now entered clinical development. Here, we review the role of c-Abl in the neurodegenerative disease process and consider the translational potential of c-Abl inhibitors from model studies to disease-modifying therapies for Parkinson's disease. © 2021 Inhibikase Therapeutics, Inc. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
| | - C Warren Olanow
- Department of Neurology and Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, USA.,Clintrex Research Corporation, Sarasota, Florida, USA
| |
Collapse
|
10
|
Alpha-Synuclein and Cognitive Decline in Parkinson Disease. Life (Basel) 2021; 11:life11111239. [PMID: 34833115 PMCID: PMC8625417 DOI: 10.3390/life11111239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disorder in elderly people. It is characterized by the aggregation of misfolded alpha-synuclein throughout the nervous system. Aside from cardinal motor symptoms, cognitive impairment is one of the most disabling non-motor symptoms that occurs during the progression of the disease. The accumulation and spreading of alpha-synuclein pathology from the brainstem to limbic and neocortical structures is correlated with emerging cognitive decline in PD. This review summarizes the genetic and pathophysiologic relationship between alpha-synuclein and cognitive impairment in PD, together with potential areas of biomarker advancement.
Collapse
|
11
|
Elfarrash S, Jensen NM, Ferreira N, Schmidt SI, Gregersen E, Vestergaard MV, Nabavi S, Meyer M, Jensen PH. Polo-like kinase 2 inhibition reduces serine-129 phosphorylation of physiological nuclear alpha-synuclein but not of the aggregated alpha-synuclein. PLoS One 2021; 16:e0252635. [PMID: 34613964 PMCID: PMC8494365 DOI: 10.1371/journal.pone.0252635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/19/2021] [Indexed: 11/18/2022] Open
Abstract
Accumulation of aggregated alpha-synuclein (α-syn) is believed to play a pivotal role in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies. As a key constituent of Lewy pathology, more than 90% of α-syn in Lewy bodies is phosphorylated at serine-129 (pS129) and hence, it is used extensively as a marker for α-syn pathology. However, the exact role of pS129 remains controversial and the kinase(s) responsible for the phosphorylation have yet to be determined. In this study, we investigated the effect of Polo-like kinase 2 (PLK2) inhibition on formation of pS129 using an ex vivo organotypic brain slice model of synucleinopathy. Our data demonstrated that PLK2 inhibition has no effect on α-syn aggregation, pS129 or inter-neuronal spreading of the aggregated α-syn seen in the organotypic slices. Instead, PLK2 inhibition reduced the soluble pS129 level in the nuclei. The same finding was replicated in an in vivo mouse model of templated α-syn aggregation and in human dopaminergic neurons, suggesting that PLK2 is more likely to be involved in S129-phosphorylation of the soluble physiological fraction of α-syn. We also demonstrated that reduction of nuclear pS129 following PLK2 inhibition for a short time before sample collection improves the signal-to-noise ratio when quantifying pS129 aggregate pathology.
Collapse
Affiliation(s)
- Sara Elfarrash
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- MERC–Medical Experimental Research Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- * E-mail: (SE); (PHJ)
| | - Nanna Møller Jensen
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Nelson Ferreira
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sissel Ida Schmidt
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Emil Gregersen
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marie Vibeke Vestergaard
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sadegh Nabavi
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, BRIDGE–Brain Research Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience–DANDRITE, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- * E-mail: (SE); (PHJ)
| |
Collapse
|
12
|
Huntington TE, Srinivasan R. Adeno-Associated Virus Expression of α-Synuclein as a Tool to Model Parkinson's Disease: Current Understanding and Knowledge Gaps. Aging Dis 2021; 12:1120-1137. [PMID: 34221553 PMCID: PMC8219504 DOI: 10.14336/ad.2021.0517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder in the aging population and is characterized by a constellation of motor and non-motor symptoms. The abnormal aggregation and spread of alpha-synuclein (α-syn) is thought to underlie the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc), leading to the development of PD. It is in this context that the use of adeno-associated viruses (AAVs) to express a-syn in the rodent midbrain has become a popular tool to model SNc DA neuron loss during PD. In this review, we summarize results from two decades of experiments using AAV-mediated a-syn expression in rodents to model PD. Specifically, we outline aspects of AAV vectors that are particularly relevant to modeling a-syn dysfunction in rodent models of PD such as changes in striatal neurochemistry, a-syn biochemistry, and PD-related behaviors resulting from AAV-mediated a-syn expression in the midbrain. Finally, we discuss the emerging role of astrocytes in propagating a-syn pathology, and point to future directions for employing AAVs as a tool to better understand how astrocytes contribute to a-syn pathology during the development of PD. We envision that lessons learned from two decades of utilizing AAVs to express a-syn in the rodent brain will enable us to develop an optimized set of parameters for gaining a better understanding of how a-syn leads to the development of PD.
Collapse
Affiliation(s)
- Taylor E Huntington
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX 77807, USA.
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX 77843, USA
| | - Rahul Srinivasan
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX 77807, USA.
- Texas A&M Institute for Neuroscience (TAMIN), College Station, TX 77843, USA
| |
Collapse
|
13
|
Weston LJ, Cook ZT, Stackhouse TL, Sal MK, Schultz BI, Tobias ZJC, Osterberg VR, Brockway NL, Pizano S, Glover G, Weissman TA, Unni VK. In vivo aggregation of presynaptic alpha-synuclein is not influenced by its phosphorylation at serine-129. Neurobiol Dis 2021; 152:105291. [PMID: 33556542 PMCID: PMC10405908 DOI: 10.1016/j.nbd.2021.105291] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/30/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Abnormal aggregation of the α-synuclein protein is a key molecular feature of Parkinson's disease and other neurodegenerative diseases. The precise mechanisms that trigger α-synuclein aggregation are unclear, and it is not known what role aggregation plays in disease pathogenesis. Here we use an in vivo zebrafish model to express several different forms of human α-synuclein and measure its aggregation in presynaptic terminals. We show that human α-synuclein tagged with GFP can be expressed in zebrafish neurons, localizing normally to presynaptic terminals and undergoing phosphorylation at serine-129, as in mammalian neurons. The visual advantages of the zebrafish system allow for dynamic in vivo imaging to study α-synuclein, including the use of fluorescence recovery after photobleaching (FRAP) techniques to probe protein mobility. These experiments reveal three distinct terminal pools of α-synuclein with varying mobility, likely representing different subpopulations of aggregated and non-aggregated protein. Human α-synuclein is phosphorylated by an endogenous zebrafish Polo-like kinase activity, and there is a heterogeneous population of neurons containing either very little or extensive phosphorylation throughout the axonal arbor. Both pharmacological and genetic manipulations of serine-129 show that phosphorylation of α-synuclein at this site does not significantly affect its mobility. This suggests that serine-129 phosphorylation alone does not promote α-synuclein aggregation. Together our results show that human α-synuclein can be expressed and measured quantitatively in zebrafish, and that disease-relevant post-translational modifications occur within neurons. The zebrafish model provides a powerful in vivo system for measuring and manipulating α-synuclein function and aggregation, and for developing new treatments for neurodegenerative disease.
Collapse
Affiliation(s)
- Leah J Weston
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | - Zoe T Cook
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | | | - Mehtab K Sal
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | | | | | - Valerie R Osterberg
- Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
| | | | - Saheli Pizano
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | - Greta Glover
- Lewis & Clark College, Biology Department, Portland, OR 97219, USA
| | | | - Vivek K Unni
- Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
14
|
Weston LJ, Stackhouse TL, Spinelli KJ, Boutros SW, Rose EP, Osterberg VR, Luk KC, Raber J, Weissman TA, Unni VK. Genetic deletion of Polo-like kinase 2 reduces alpha-synuclein serine-129 phosphorylation in presynaptic terminals but not Lewy bodies. J Biol Chem 2021; 296:100273. [PMID: 33428941 PMCID: PMC7948797 DOI: 10.1016/j.jbc.2021.100273] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
Phosphorylation of alpha-synuclein at serine-129 is an important marker of pathologically relevant, aggregated forms of the protein in several important human diseases, including Parkinson's disease, Dementia with Lewy bodies, and Multiple system atrophy. Although several kinases have been shown to be capable of phosphorylating alpha-synuclein in various model systems, the identity of the kinase that phosphorylates alpha-synuclein in the Lewy body remains unknown. One member of the Polo-like kinase family, PLK2, is a strong candidate for being the Lewy body kinase. To examine this possibility, we have used a combination of approaches, including biochemical, immunohistochemical, and in vivo multiphoton imaging techniques to study the consequences of PLK2 genetic deletion on alpha-synuclein phosphorylation in both the presynaptic terminal and preformed fibril-induced Lewy body pathology in mouse cortex. We find that PLK2 deletion reduces presynaptic terminal alpha-synuclein serine-129 phosphorylation, but has no effect on Lewy body phosphorylation levels. Serine-129 mutation to the phosphomimetic alanine or the unphosphorylatable analog aspartate does not change the rate of cell death of Lewy inclusion-bearing neurons in our in vivo multiphoton imaging paradigm, but PLK2 deletion does slow the rate of neuronal death. Our data indicate that inhibition of PLK2 represents a promising avenue for developing new therapeutics, but that the mechanism of neuroprotection by PLK2 inhibition is not likely due to reducing alpha-synuclein serine-129 phosphorylation and that the true Lewy body kinase still awaits discovery.
Collapse
Affiliation(s)
- Leah J Weston
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Teresa L Stackhouse
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Kateri J Spinelli
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Sydney W Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA
| | - Elizabeth P Rose
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA; Neuroscience Graduate Program, Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Valerie R Osterberg
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacob Raber
- Departments of Behavioral Neuroscience, Neurology, and Radiation Medicine and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Vivek K Unni
- Department of Neurology & Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, Oregon, USA; OHSU Parkinson Center, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
15
|
Airavaara M, Parkkinen I, Konovalova J, Albert K, Chmielarz P, Domanskyi A. Back and to the Future: From Neurotoxin-Induced to Human Parkinson's Disease Models. ACTA ACUST UNITED AC 2020; 91:e88. [PMID: 32049438 DOI: 10.1002/cpns.88] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disorder characterized by motor symptoms such as tremor, slowness of movement, rigidity, and postural instability, as well as non-motor features like sleep disturbances, loss of ability to smell, depression, constipation, and pain. Motor symptoms are caused by depletion of dopamine in the striatum due to the progressive loss of dopamine neurons in the substantia nigra pars compacta. Approximately 10% of PD cases are familial arising from genetic mutations in α-synuclein, LRRK2, DJ-1, PINK1, parkin, and several other proteins. The majority of PD cases are, however, idiopathic, i.e., having no clear etiology. PD is characterized by progressive accumulation of insoluble inclusions, known as Lewy bodies, mostly composed of α-synuclein and membrane components. The cause of PD is currently attributed to cellular proteostasis deregulation and mitochondrial dysfunction, which are likely interdependent. In addition, neuroinflammation is present in brains of PD patients, but whether it is the cause or consequence of neurodegeneration remains to be studied. Rodents do not develop PD or PD-like motor symptoms spontaneously; however, neurotoxins, genetic mutations, viral vector-mediated transgene expression and, recently, injections of misfolded α-synuclein have been successfully utilized to model certain aspects of the disease. Here, we critically review the advantages and drawbacks of rodent PD models and discuss approaches to advance pre-clinical PD research towards successful disease-modifying therapy. © 2020 The Authors.
Collapse
Affiliation(s)
- Mikko Airavaara
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilmari Parkkinen
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Julia Konovalova
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Katrina Albert
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Elfarrash S, Jensen NM, Ferreira N, Betzer C, Thevathasan JV, Diekmann R, Adel M, Omar NM, Boraie MZ, Gad S, Ries J, Kirik D, Nabavi S, Jensen PH. Organotypic slice culture model demonstrates inter-neuronal spreading of alpha-synuclein aggregates. Acta Neuropathol Commun 2019; 7:213. [PMID: 31856920 PMCID: PMC6924077 DOI: 10.1186/s40478-019-0865-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/08/2019] [Indexed: 02/07/2023] Open
Abstract
Here we describe the use of an organotypic hippocampal slice model for studying α-synuclein aggregation and inter-neuronal spreading initiated by microinjection of pre-formed α-synuclein fibrils (PFFs). PFF injection at dentate gyrus (DG) templates the formation of endogenous α-synuclein aggregates in axons and cell bodies of this region that spread to CA3 and CA1 regions. Aggregates are insoluble and phosphorylated at serine-129, recapitulating Lewy pathology features found in Parkinson’s disease and other synucleinopathies. The model was found to favor anterograde spreading of the aggregates. Furthermore, it allowed development of slices expressing only serine-129 phosphorylation-deficient human α-synuclein (S129G) using an adeno-associated viral (AAV) vector in α-synuclein knockout slices. The processes of aggregation and spreading of α-synuclein were thereby shown to be independent of phosphorylation at serine-129. We provide methods and highlight crucial steps for PFF microinjection and characterization of aggregate formation and spreading. Slices derived from genetically engineered mice or manipulated using viral vectors allow testing of hypotheses on mechanisms involved in the formation of α-synuclein aggregates and their prion-like spreading.
Collapse
|
17
|
Ryan P, Xu M, Davey AK, Danon JJ, Mellick GD, Kassiou M, Rudrawar S. O-GlcNAc Modification Protects against Protein Misfolding and Aggregation in Neurodegenerative Disease. ACS Chem Neurosci 2019; 10:2209-2221. [PMID: 30985105 DOI: 10.1021/acschemneuro.9b00143] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications (PTMs) of proteins are becoming the focus of intense research due to their implications in a broad spectrum of neurodegenerative diseases. Various PTMs have been identified to alter the toxic profiles of proteins which play critical roles in disease etiology. In Alzheimer's disease (AD), dysregulated phosphorylation is reported to promote pathogenic processing of the microtubule-associated tau protein. Among the PTMs, the enzymatic addition of N-acetyl-d-glucosamine (GlcNAc) residues to Ser/Thr residues is reported to deliver protective effects against the pathogenic processing of both amyloid precursor protein (APP) and tau. Modification of tau with as few as one single O-GlcNAc residue inhibits its toxic self-assembly. This modification also has the same effect on the assembly of the Parkinson's disease (PD) associated α-synuclein (ASyn) protein. In fact, O-GlcNAcylation ( O-linked GlcNAc modification) affects the processing of numerous proteins implicated in AD, PD, amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) in a similar manner. As such, manipulation of a protein's O-GlcNAcylation status has been proposed to offer therapeutic routes toward addressing multiple neurodegenerative pathologies. Here we review the various effects that O-GlcNAc modification, and its modulated expression, have on pathogenically significant proteins involved in neurodegenerative disease.
Collapse
Affiliation(s)
- Philip Ryan
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | - Mingming Xu
- Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
| | - Andrew K. Davey
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | | | - George D. Mellick
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Santosh Rudrawar
- Menzies Health Institute Queensland, Griffith University, Gold Coast 4222, Australia
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
AAV2/DJ-mediated alpha-synuclein overexpression in the rat substantia nigra as early stage model of Parkinson's disease. Cell Tissue Res 2019; 378:1-14. [PMID: 30989398 DOI: 10.1007/s00441-019-03013-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
Parkinson's disease (PD) is pathologically characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and alpha-synucleinopathy. We mimic the disease pathology with overexpression of either the human α-syn wildtype (α-syn-WT) or E46K mutant form (α-syn-E46K) in DA neurons of the SNpc in adult rats using AAV2/DJ as a viral vector for the first time. Transduction efficiency was compared to an equal virus titer expressing the green fluorescent protein (GFP). Motor skills of all animals were evaluated in the cylinder and amphetamine-induced rotation test over a total time period of 12 weeks. Additionally, stereological quantification of DA cells and striatal fiber density measurements were performed every 4 weeks after injection. Rats overexpressing α-syn-WT showed a progressive loss of DA neurons with 40% reduction after 12 weeks accompanied by a greater loss of striatal DA fibers. In contrast, α-syn-E46K led to this reduction after 4 weeks without further progress. Insoluble α-syn positive cytoplasmic inclusions were observed in both groups within DA neurons of the SNpc and VTA. In addition, both α-syn groups developed a characteristic worsening of the rotational behavior over time. However, only the α-syn-WT group reached statistically significant different values in the cylinder test. Summarizing these effects, we established a motor symptom animal model of PD by using AAV2/DJ in the brain for the first time. Thereby, overexpressing of α-syn-E46K mimicked a rather pre-symptomatic stage of the disease, while the α-syn-WT overexpressing animals imitated an early symptomatic stage of PD.
Collapse
|
19
|
Gribaudo S, Tixador P, Bousset L, Fenyi A, Lino P, Melki R, Peyrin JM, Perrier AL. Propagation of α-Synuclein Strains within Human Reconstructed Neuronal Network. Stem Cell Reports 2019; 12:230-244. [PMID: 30639210 PMCID: PMC6372945 DOI: 10.1016/j.stemcr.2018.12.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/01/2023] Open
Abstract
Reappraisal of neuropathological studies suggests that pathological hallmarks of Alzheimer’s disease and Parkinson’s disease (PD) spread progressively along predictable neuronal pathways in the human brain through unknown mechanisms. Although there is much evidence supporting the prion-like propagation and amplification of α-synuclein (α-Syn) in vitro and in rodent models, whether this scenario occurs in the human brain remains to be substantiated. Here we reconstructed in microfluidic devices corticocortical neuronal networks using human induced pluripotent stem cells derived from a healthy donor. We provide unique experimental evidence that different strains of human α-Syn disseminate in “wild-type” human neuronal networks in a prion-like manner. We show that two distinct α-Syn strains we named fibrils and ribbons are transported, traffic between neurons, and trigger to different extents, in a dose- and structure-dependent manner, the progressive accumulation of PD-like pathological hallmarks. We further demonstrate that seeded aggregation of endogenous soluble α-Syn affects synaptic integrity and mitochondria morphology. Different α-Syn strains propagate within WT human iPSC-derived cortical neuronal networks α-Syn strains differentially seed endogenous WT α-Syn forming LB/LN-like structures Phospho-α-Syn endogenous aggregates resist degradation and accumulate in cytoplasm Accumulation of phospho-α-Syn induces early neuronal dysfunctions
Collapse
Affiliation(s)
- Simona Gribaudo
- INSERM U861, I-STEM, AFM, Corbeil-Essonnes 91100, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, France
| | - Philippe Tixador
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS/UMR 8256, B2A, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, Paris 75005, France
| | - Luc Bousset
- Laboratory of Neurodegenerative Disease, Institut François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses 92265, France
| | - Alexis Fenyi
- Laboratory of Neurodegenerative Disease, Institut François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses 92265, France
| | - Patricia Lino
- INSERM U861, I-STEM, AFM, Corbeil-Essonnes 91100, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, France
| | - Ronald Melki
- Laboratory of Neurodegenerative Disease, Institut François Jacob, MIRCen, CEA-CNRS, Fontenay aux Roses 92265, France.
| | - Jean-Michel Peyrin
- Sorbonne Universités, Faculté des Sciences et Ingénierie, CNRS/UMR 8256, B2A, Biological Adaptation and Ageing, Institut de Biologie Paris Seine, Paris 75005, France.
| | - Anselme L Perrier
- INSERM U861, I-STEM, AFM, Corbeil-Essonnes 91100, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, France.
| |
Collapse
|
20
|
Albert K, Voutilainen MH, Domanskyi A, Piepponen TP, Ahola S, Tuominen RK, Richie C, Harvey BK, Airavaara M. Downregulation of tyrosine hydroxylase phenotype after AAV injection above substantia nigra: Caution in experimental models of Parkinson's disease. J Neurosci Res 2018; 97:346-361. [PMID: 30548446 DOI: 10.1002/jnr.24363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Adeno-associated virus (AAV) vector-mediated delivery of human α-synuclein (α-syn) gene in rat substantia nigra (SN) results in increased expression of α-syn protein in the SN and striatum which can progressively degenerate dopaminergic neurons. Therefore, this model is thought to recapitulate the neurodegeneration in Parkinson's disease. Here, using AAV to deliver α-syn above the SN in male and female rats resulted in clear expression of human α-syn in the SN and striatum. The protein was associated with moderate behavioral deficits and some loss of tyrosine hydroxylase (TH) in the nigrostriatal areas. However, the immunohistochemistry results were highly variable and showed little to no correlation with behavior and the amount of α-syn present. Expression of green fluorescent protein (GFP) was used as a control to monitor gene delivery and expression efficacy. AAV-GFP resulted in a similar or greater TH loss compared to AAV-α-syn and therefore an additional vector that does not express a protein was tested. Vectors with double-floxed inverse open reading frame (DIO ORF) encoding fluorescent proteins that generate RNA that is not translated also resulted in TH downregulation in the SN but showed no significant behavioral deficits. These results demonstrate that although expression of wild-type human α-syn can cause neurodegeneration, the variability and lack of correlation with outcome measures are drawbacks with the model. Furthermore, design and control selection should be considered carefully because of conflicting conclusions due to AAV downregulation of TH, and we recommend caution with having highly regulated TH as the only marker for the dopamine system.
Collapse
Affiliation(s)
- Katrina Albert
- Institute of Biotechnology, Program of Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Merja H Voutilainen
- Institute of Biotechnology, Program of Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Andrii Domanskyi
- Institute of Biotechnology, Program of Developmental Biology, University of Helsinki, Helsinki, Finland
| | - T Petteri Piepponen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Sari Ahola
- Institute of Biotechnology, Program of Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Raimo K Tuominen
- Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Christopher Richie
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, Maryland
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, Maryland
| | - Mikko Airavaara
- Institute of Biotechnology, Program of Developmental Biology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Brás IC, Tenreiro S, Silva AM, Outeiro TF. Identification of novel protein phosphatases as modifiers of alpha-synuclein aggregation in yeast. FEMS Yeast Res 2018; 18:5113455. [DOI: 10.1093/femsyr/foy108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/30/2018] [Indexed: 01/01/2023] Open
Affiliation(s)
- Inês Caldeira Brás
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Walweg 33, 37073 Goettingen, Germany
| | - Sandra Tenreiro
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n˚ 6, 6-A Edifício CEDOC II 1150-082 Lisboa, Portugal
| | - Andreia M Silva
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n˚ 6, 6-A Edifício CEDOC II 1150-082 Lisboa, Portugal
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, Walweg 33, 37073 Goettingen, Germany
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana n˚ 6, 6-A Edifício CEDOC II 1150-082 Lisboa, Portugal
- Max Planck Institute for Experimental Medicine, Hermann-Rein-Straße 3, 37075 Goettingen, Germany
- Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
22
|
Jewett M, Dickson E, Brolin K, Negrini M, Jimenez-Ferrer I, Swanberg M. Glutathione S-Transferase Alpha 4 Prevents Dopamine Neurodegeneration in a Rat Alpha-Synuclein Model of Parkinson's Disease. Front Neurol 2018; 9:222. [PMID: 29681884 PMCID: PMC5897443 DOI: 10.3389/fneur.2018.00222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is a common, progressive neurodegenerative disease, which typically presents itself with a range of motor symptoms, like resting tremor, bradykinesia, and rigidity, but also non-motor symptoms such as fatigue, constipation, and sleep disturbance. Neuropathologically, PD is characterized by loss of dopaminergic cells in the substantia nigra pars compacta (SNpc) and Lewy bodies, neuronal inclusions containing α-synuclein (α-syn). Mutations and copy number variations of SNCA, the gene encoding α-syn, are linked to familial PD and common SNCA gene variants are associated to idiopathic PD. Large-scale genome-wide association studies have identified risk variants across another 40 loci associated to idiopathic PD. These risk variants do not, however, explain all the genetic contribution to idiopathic PD. The rat Vra1 locus has been linked to neuroprotection after nerve- and brain injury in rats. Vra1 includes the glutathione S-transferase alpha 4 (Gsta4) gene, which encodes a protein involved in clearing lipid peroxidation by-products. The DA.VRA1 congenic rat strain, carrying PVG alleles in Vra1 on a DA strain background, was recently reported to express higher levels of Gsta4 transcripts and to display partial neuroprotection of SNpc dopaminergic neurons in a 6-hydroxydopamine (6-OHDA) induced model for PD. Since α-syn expression increases the risk for PD in a dose-dependent manner, we assessed the neuroprotective effects of Vra1 in an α-syn-induced PD model. Human wild-type α-syn was overexpressed by unilateral injections of the rAAV6-α-syn vector in the SNpc of DA and DA.VRA1 congenic rats. Gsta4 gene expression levels were significantly higher in the striatum and midbrain of DA.VRA1 compared to DA rats at 3 weeks post surgery, in both the ipsilateral and contralateral sides. At 8 weeks post surgery, DA.VRA1 rats suffered significantly lower fiber loss in the striatum and lower loss of dopaminergic neurons in the SNpc compared to DA. Immunofluorescent stainings showed co-expression of Gsta4 with Gfap at 8 weeks suggesting that astrocytic expression of Gsta4 underlies Vra1-mediated neuroprotection to α-syn induced pathology. This is the second PD model in which Vra1 is linked to protection of the nigrostriatal pathway, solidifying Gsta4 as a potential therapeutic target in PD.
Collapse
Affiliation(s)
- Michael Jewett
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Elna Dickson
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Kajsa Brolin
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Matilde Negrini
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Itzia Jimenez-Ferrer
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Maria Swanberg
- Translational Neurogenetics Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Creed RB, Goldberg MS. New Developments in Genetic rat models of Parkinson's Disease. Mov Disord 2018; 33:717-729. [PMID: 29418019 DOI: 10.1002/mds.27296] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/04/2017] [Accepted: 12/10/2017] [Indexed: 12/12/2022] Open
Abstract
Preclinical research on Parkinson's disease has relied heavily on mouse and rat animal models. Initially, PD animal models were generated primarily by chemical neurotoxins that induce acute loss of dopaminergic neurons in the substantia nigra. On the discovery of genetic mutations causally linked to PD, mice were used more than rats to generate laboratory animals bearing PD-linked mutations because mutagenesis was more difficult in rats. Recent advances in technology for mammalian genome engineering and optimization of viral expression vectors have increased the use of genetic rat models of PD. Emerging research tools include "knockout" rats with disruption of genes in which mutations have been causally linked to PD, including LRRK2, α-synuclein, Parkin, PINK1, and DJ-1. Rats have also been increasingly used for transgenic and viral-mediated overexpression of genes relevant to PD, particularly α-synuclein. It may not be realistic to obtain a single animal model that completely reproduces every feature of a human disease as complex as PD. Nevertheless, compared with mice with the same mutations, many genetic rat animal models of PD better reproduce key aspects of PD including progressive loss of dopaminergic neurons in the substantia nigra, locomotor behavior deficits, and age-dependent formation of abnormal α-synuclein protein aggregates. Here we briefly review new developments in genetic rat models of PD that may have greater potential for identifying underlying mechanisms, for discovering novel therapeutic targets, and for developing greatly needed treatments to slow or halt disease progression. © 2018 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rose B Creed
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew S Goldberg
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
24
|
Phosphorylated exogenous alpha-synuclein fibrils exacerbate pathology and induce neuronal dysfunction in mice. Sci Rep 2017; 7:16533. [PMID: 29184069 PMCID: PMC5705684 DOI: 10.1038/s41598-017-15813-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/27/2017] [Indexed: 01/03/2023] Open
Abstract
Approximately 90% of alpha-synuclein (α-Synuclein) deposited in Lewy bodies is phosphorylated at serine 129 suggesting that the accumulation of phosphorylated α-Synuclein is critical in the pathogenesis of Parkinson's disease. However, in vivo experiments addressing the role of phosphorylated α-Synuclein in the progression of Parkinson's disease have produced equivocal data. To clarify a role of Ser129 phosphorylation of α-Synuclein in pathology progression we performed stereotaxic injections targeting the mouse striatum with three fibrilar α-Synuclein types: wt-fibrils, phosphorylated S129 fibrils and, phosphorylation incompetent, S129A fibrils. Brain inoculation of all three fibrilar types caused seeding of the endogenous α-Synuclein. However, phosphorylated fibrils triggered the formation of more α-Synuclein inclusions in the Substantia Nigra pars compacta (SNpc), exacerbated pathology in the cortex and caused dopaminergic neuronal loss and fine motor impairment as early as 60 days post injection. Phosphorylated fibril injections also induced early changes in the innate immune response including alterations in macrophage recruitment and IL-10 release. Our study further shows that S129 phosphorylation facilitated α-Synuclein fibril uptake by neurons. Our results highlight the role of phosphorylated fibrilar α-Synuclein in pathology progression in vivo and suggest that targeting phosphorylated α-Synuclein assemblies might be important for delaying inclusion formation.
Collapse
|
25
|
Brundin P, Dave KD, Kordower JH. Therapeutic approaches to target alpha-synuclein pathology. Exp Neurol 2017; 298:225-235. [PMID: 28987463 DOI: 10.1016/j.expneurol.2017.10.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 01/09/2023]
Abstract
Starting two decades ago with the discoveries of genetic links between alpha-synuclein and Parkinson's disease risk and the identification of aggregated alpha-synuclein as the main protein constituent of Lewy pathology, alpha-synuclein has emerged as the major therapeutic target in Parkinson's disease and related synucleinopathies. Following the suggestion that alpha-synuclein pathology gradually spreads through the nervous system following a stereotypic pattern and the discovery that aggregated forms of alpha-synuclein can propagate pathology from one cell to another, and thereby probably aggravate existing deficits as well as generate additional symptoms, the idea that alpha-synuclein is a viable therapeutic target gained further support. In this review we describe current challenges and possibilities with alpha-synuclein as a therapeutic target. We briefly highlight gaps in the knowledge of the role of alpha-synuclein in disease, and propose that a deeper understanding of the pathobiology of alpha-synuclein can lead to improved therapeutic strategies. We describe several treatment approaches that are currently being tested in advanced animal experiments or already are in clinical trials. We have divided them into approaches that reduce alpha-synuclein production; inhibit alpha-synuclein aggregation inside cells; promote its degradation either inside or outside cells; and reduce its uptake by neighbouring cells following release from already affected neurons. Finally, we briefly discuss challenges related to the clinical testing of alpha-synuclein therapies, for example difficulties in monitoring target engagement and the need for relatively large trials of long duration. We conclude that alpha-synuclein remains one of the most compelling therapeutic targets for Parkinson's disease, and related synucleinopathies, and that the multitude of approaches being tested provides hope for the future.
Collapse
Affiliation(s)
- Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | - Kuldip D Dave
- The Michael J Fox Foundation, New York, NY 10017, USA
| | - Jeffrey H Kordower
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
26
|
Poststroke Induction of α-Synuclein Mediates Ischemic Brain Damage. J Neurosci 2017; 36:7055-65. [PMID: 27358461 DOI: 10.1523/jneurosci.1241-16.2016] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/23/2016] [Indexed: 01/24/2023] Open
Abstract
UNLABELLED α-Synuclein (α-Syn), one of the most abundant proteins in the CNS, is known to be a major player in the neurodegeneration observed in Parkinson's disease. We currently report that transient focal ischemia upregulates α-Syn protein expression and nuclear translocation in neurons of the adult rodent brain. We further show that knockdown or knock-out of α-Syn significantly decreases the infarction and promotes better neurological recovery in rodents subjected to focal ischemia. Furthermore, α-Syn knockdown significantly reduced postischemic induction of phospho-Drp1, 3-nitrotyrosine, cleaved caspase-3, and LC-3 II/I, indicating its role in modulating mitochondrial fragmentation, oxidative stress, apoptosis, and autophagy, which are known to mediate poststroke neuronal death. Transient focal ischemia also significantly upregulated serine-129 (S129) phosphorylation (pα-Syn) of α-Syn and nuclear translocation of pα-Syn. Furthermore, knock-out mice that lack PLK2 (the predominant kinase that mediates S129 phosphorylation) showed better functional recovery and smaller infarcts when subjected to transient focal ischemia, indicating a detrimental role of S129 phosphorylation of α-Syn. In conclusion, our studies indicate that α-Syn is a potential therapeutic target to minimize poststroke brain damage. SIGNIFICANCE STATEMENT Abnormal aggregation of α-synuclein (α-Syn) has been known to cause Parkinson's disease and other chronic synucleinopathies. However, even though α-Syn is linked to pathophysiological mechanisms similar to those that produce acute neurodenegerative disorders, such as stroke, the role of α-Syn in such disorder is not clear. We presently studied whether α-Syn mediates poststroke brain damage and more importantly whether preventing α-Syn expression is neuroprotective and leads to better physiological and functional outcome after stroke. Our study indicates that α-Syn is a potential therapeutic target for stroke therapy.
Collapse
|
27
|
Roberts HL, Schneider BL, Brown DR. α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP. PLoS One 2017; 12:e0171925. [PMID: 28187176 PMCID: PMC5302447 DOI: 10.1371/journal.pone.0171925] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/29/2017] [Indexed: 11/18/2022] Open
Abstract
α-Synuclein misfolding and aggregation is often accompanied by β-amyloid deposition in some neurodegenerative diseases. We hypothesised that α-synuclein promotes β-amyloid production from APP. β-Amyloid levels and APP amyloidogenic processing were investigated in neuronal cell lines stably overexpressing wildtype and mutant α-synuclein. γ-Secretase activity and β-secretase expression were also measured. We show that α-synuclein expression induces β-amyloid secretion and amyloidogenic processing of APP in neuronal cell lines. Certain mutations of α-synuclein potentiate APP amyloidogenic processing. γ-Secretase activity was not enhanced by wildtype α-synuclein expression, however β-secretase protein levels were induced. Furthermore, a correlation between α-synuclein and β-secretase protein was seen in rat brain striata. Iron chelation abolishes the effect of α-synuclein on neuronal cell β-amyloid secretion, whereas overexpression of the ferrireductase enzyme Steap3 is robustly pro-amyloidogenic. We propose that α-synuclein promotes β-amyloid formation by modulating β-cleavage of APP, and that this is potentially mediated by the levels of reduced iron and oxidative stress.
Collapse
Affiliation(s)
- Hazel L. Roberts
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David R. Brown
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
28
|
Albert K, Voutilainen MH, Domanskyi A, Airavaara M. AAV Vector-Mediated Gene Delivery to Substantia Nigra Dopamine Neurons: Implications for Gene Therapy and Disease Models. Genes (Basel) 2017; 8:genes8020063. [PMID: 28208742 PMCID: PMC5333052 DOI: 10.3390/genes8020063] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Gene delivery using adeno-associated virus (AAV) vectors is a widely used method to transduce neurons in the brain, especially due to its safety, efficacy, and long-lasting expression. In addition, by varying AAV serotype, promotor, and titer, it is possible to affect the cell specificity of expression or the expression levels of the protein of interest. Dopamine neurons in the substantia nigra projecting to the striatum, comprising the nigrostriatal pathway, are involved in movement control and degenerate in Parkinson’s disease. AAV-based gene targeting to the projection area of these neurons in the striatum has been studied extensively to induce the production of neurotrophic factors for disease-modifying therapies for Parkinson’s disease. Much less emphasis has been put on AAV-based gene therapy targeting dopamine neurons in substantia nigra. We will review the literature related to targeting striatum and/or substantia nigra dopamine neurons using AAVs in order to express neuroprotective and neurorestorative molecules, as well as produce animal disease models of Parkinson’s disease. We discuss difficulties in targeting substantia nigra dopamine neurons and their vulnerability to stress in general. Therefore, choosing a proper control for experimental work is not trivial. Since the axons along the nigrostriatal tract are the first to degenerate in Parkinson’s disease, the location to deliver the therapy must be carefully considered. We also review studies using AAV-α-synuclein (α-syn) to target substantia nigra dopamine neurons to produce an α-syn overexpression disease model in rats. Though these studies are able to produce mild dopamine system degeneration in the striatum and substantia nigra and some behavioural effects, there are studies pointing to the toxicity of AAV-carrying green fluorescent protein (GFP), which is often used as a control. Therefore, we discuss the potential difficulties in overexpressing proteins in general in the substantia nigra.
Collapse
Affiliation(s)
- Katrina Albert
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Merja H Voutilainen
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Andrii Domanskyi
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| | - Mikko Airavaara
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
29
|
Oueslati A. Implication of Alpha-Synuclein Phosphorylation at S129 in Synucleinopathies: What Have We Learned in the Last Decade? JOURNAL OF PARKINSONS DISEASE 2017; 6:39-51. [PMID: 27003784 PMCID: PMC4927808 DOI: 10.3233/jpd-160779] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abnormal accumulation of proteinaceous intraneuronal inclusions called Lewy bodies (LBs) is the neurpathological hallmark of Parkinson’s disease (PD) and related synucleinopathies. These inclusions are mainly constituted of a presynaptic protein, α-synuclein (α-syn). Over the past decade, growing amounts of studies reported an aberrant accumulation of phosphorylated α-syn at the residue S129 (pS129) in the brain of patients suffering from PD, as well as in transgenic animal models of synucleinopathies. Whereas only a small fraction of α-syn (<4%) is phosphorylated in healthy brains, a dramatic accumulation of pS129 (>90%) has been observed within LBs, suggesting that this post-translational modification may play an important role in the regulation of α-syn aggregation, LBs formation and neuronal degeneration. However, whether phosphorylation at S129 suppresses or enhances α-syn aggregation and toxicity in vivo remains a subject of active debate. The answer to this question has important implications for understanding the role of phosphorylation in the pathogenesis of synucleinopathies and determining if targeting kinases or phosphatases could be a viable therapeutic strategy for the treatment of these devastating neurological disorders. In the present review, we explore recent findings from in vitro, cell-based assays and in vivo studies describing the potential implications of pS129 in the regulation of α-syn physiological functions, as well as its implication in synucleinopathies pathogenesis and diagnosis.
Collapse
Affiliation(s)
- Abid Oueslati
- Correspondence to: Abid Oueslati, Centre de Recherche du CHU de Québec-Université Laval, Axe Neuroscience et Départe-ment de Médecine Moléculaire de l’Université Laval, Québec G1V4G2, Canada. Tel.: +1 4185254444/Ext 49119; Fax: +1 4186542125; E-mail:
| |
Collapse
|
30
|
Fischer DL, Gombash SE, Kemp CJ, Manfredsson FP, Polinski NK, Duffy MF, Sortwell CE. Viral Vector-Based Modeling of Neurodegenerative Disorders: Parkinson's Disease. Methods Mol Biol 2016; 1382:367-82. [PMID: 26611600 DOI: 10.1007/978-1-4939-3271-9_26] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gene therapy methods are increasingly used to model Parkinson's disease (PD) in animals in an effort to test experimental therapeutics within a more relevant context to disease pathophysiology and neuropathology. We have detailed several criteria that are critical or advantageous to accurately modeling PD in a murine model or in a nonhuman primate. Using these criteria, we then evaluate approaches made to model PD using viral vectors to date, including both adeno-associated viruses and lentiviruses. Lastly, we comment on the consideration of aging as a critical factor for modeling PD.
Collapse
Affiliation(s)
- D Luke Fischer
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
- MD/PhD Program, Michigan State University, Grand Rapids, MI, USA
- Neuroscience Graduate Program, Michigan State University, Grand Rapids, MI, USA
| | - Sara E Gombash
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Christopher J Kemp
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
| | - Fredric P Manfredsson
- Translational Science and Molecular Medicine, Michigan State University, College of Human Science, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
| | - Nicole K Polinski
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Program, Michigan State University, Grand Rapids, MI, USA
| | - Megan F Duffy
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Program, Michigan State University, Grand Rapids, MI, USA
| | - Caryl E Sortwell
- Department of Translational Science & Molecular Medicine, Michigan State University, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503-2532, USA.
| |
Collapse
|
31
|
Asakawa T, Fang H, Sugiyama K, Nozaki T, Hong Z, Yang Y, Hua F, Ding G, Chao D, Fenoy AJ, Villarreal SJ, Onoe H, Suzuki K, Mori N, Namba H, Xia Y. Animal behavioral assessments in current research of Parkinson's disease. Neurosci Biobehav Rev 2016; 65:63-94. [PMID: 27026638 DOI: 10.1016/j.neubiorev.2016.03.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is traditionally classified as a movement disorder. Patients typically suffer from many motor dysfunctions. Presently, clinicians and scientists recognize that many non-motor symptoms are associated with PD. There is an increasing interest in both motor and non-motor symptoms in clinical studies on PD patients and laboratory research on animal models that imitate the pathophysiologic features and symptoms of PD patients. Therefore, appropriate behavioral assessments are extremely crucial for correctly understanding the mechanisms of PD and accurately evaluating the efficacy and safety of novel therapies. This article systematically reviews the behavioral assessments, for both motor and non-motor symptoms, in various animal models involved in current PD research. We addressed the strengths and weaknesses of these behavioral tests and their appropriate applications. Moreover, we discussed potential mechanisms behind these behavioral tests and cautioned readers against potential experimental bias. Since most of the behavioral assessments currently used for non-motor symptoms are not particularly designed for animals with PD, it is of the utmost importance to greatly improve experimental design and evaluation in PD research with animal models. Indeed, it is essential to develop specific assessments for non-motor symptoms in PD animals based on their characteristics. We concluded with a prospective view for behavioral assessments with real-time assessment with mobile internet and wearable device in future PD research.
Collapse
Affiliation(s)
- Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan.
| | - Huan Fang
- Department of Pharmacy, Jinshan Hospital of Fudan University, Shanghai, China
| | - Kenji Sugiyama
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Takao Nozaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Zhen Hong
- Department of Neurology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yilin Yang
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Fei Hua
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Guanghong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Sebastian J Villarreal
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Hirotaka Onoe
- Functional Probe Research Laboratory, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Ying Xia
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA.
| |
Collapse
|
32
|
Xu Y, Deng Y, Qing H. The phosphorylation of α-synuclein: development and implication for the mechanism and therapy of the Parkinson's disease. J Neurochem 2015; 135:4-18. [PMID: 26134497 DOI: 10.1111/jnc.13234] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is cited to be the second most common neuronal degenerative disorders; however, the exact mechanism of PD is still unclear. α-synuclein is one of the key proteins in PD pathogenesis as it's the main component of the PD hallmark Lewy bodies (LBs). Nowadays, the study of α-synuclein phosphorylation mechanism related to the PD pathology has become a research hotspot, given that 90% of α-synuclein deposition in LBs is phosphorylated at Ser129, whereas in normal brains, only 4% or less of α-synuclein is phosphorylated at the residue. Here, we review the related study of PD pathological mechanism involving the phosphorylation of α-synuclein mainly at Ser129, Ser87, and Tyr125 residues in recent years, as well as some explorations relating to potential clinical application, in an attempt to describe the development and implication for the mechanism and therapy of PD. Given that some of the studies have yielded paradoxical results, there is need for more comprehensive research in the field. The phosphorylation of α-synuclein might provide a breakthrough for PD mechanism study and even supply a new therapeutic strategy. The milestone study on the phosphorylation of α-synuclein mainly at Ser129, Ser87, and Tyr125 relating to PD in recent years as well as some clinical application exploration are overviewed. The potential pathways of the phosphorylated α-synuclein related to PD are also summarized. The review may supply more ideas and thinking on this issue for the scientists in related research field.
Collapse
Affiliation(s)
- Yan Xu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
33
|
Van Rompuy AS, Oliveras-Salvá M, Van der Perren A, Corti O, Van den Haute C, Baekelandt V. Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration. Mol Neurodegener 2015; 10:23. [PMID: 26099628 PMCID: PMC4477319 DOI: 10.1186/s13024-015-0017-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/10/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Alpha-synuclein is a key protein in the pathogenesis of Parkinson's disease. Mutations in the parkin gene are the most common cause of early-onset autosomal recessive Parkinson's disease, probably through a loss-of-function mechanism. However, the molecular mechanism by which loss of parkin function leads to the development of the disease and the role of alpha-synuclein in parkin-associated Parkinson's disease is still not elucidated. Conflicting results were reported about the effect of the absence of parkin on alpha-synuclein-mediated neurotoxicity using a transgenic approach. In this study, we investigated the effect of loss of parkin on alpha-synuclein neuropathology and toxicity in adult rodent brain using viral vectors. Therefore, we overexpressed human wild type alpha-synuclein in the substantia nigra of parkin knockout and wild type mice using two different doses of recombinant adeno-associated viral vectors. RESULTS No difference was observed in nigral dopaminergic cell loss between the parkin knockout mice and wild type mice up to 16 weeks after viral vector injection. However, the level of alpha-synuclein phosphorylated at serine residue 129 in the substantia nigra was significantly increased in the parkin knockout mice compared to the wild type mice while the total expression level of alpha-synuclein was similar in both groups. The increased alpha-synuclein phosphorylation was confirmed in a parkin knockdown cell line. CONCLUSIONS These findings support a functional relationship between parkin and alpha-synuclein phosphorylation in rodent brain.
Collapse
Affiliation(s)
- Anne-Sophie Van Rompuy
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium.
| | - Marusela Oliveras-Salvá
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium
| | - Anke Van der Perren
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium.
| | - Olga Corti
- Inserm, U 975, CRICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France. .,UPMC Université Paris 06, UMR_S975, F-75013, Paris, France. .,CNRS, UMR 7225, F-75013, Paris, France.
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium. .,Leuven Viral Vector Core, KU Leuven, 3000, Leuven, Belgium.
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Flanders, Belgium.
| |
Collapse
|
34
|
Buck K, Landeck N, Ulusoy A, Majbour NK, El-Agnaf OMA, Kirik D. Ser129 phosphorylation of endogenous α-synuclein induced by overexpression of polo-like kinases 2 and 3 in nigral dopamine neurons is not detrimental to their survival and function. Neurobiol Dis 2015; 78:100-14. [PMID: 25818009 DOI: 10.1016/j.nbd.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/22/2015] [Accepted: 03/08/2015] [Indexed: 01/01/2023] Open
Abstract
Phosphorylation of the α-synuclein (α-syn) protein at Ser129 [P(S129)-α-syn] was found to be the most abundant form in intracellular inclusions in brains from Parkinson's disease (PD) patients. This finding suggests that P(S129)-α-syn plays a central role in the pathogenesis of PD. However, it is at present unclear whether P(S129)-α-syn is pathogenic driving the neurodegenerative process. Rodent studies using neither the phosphomimics of human α-syn nor co-expression of human wild-type α-syn and kinases phosphorylating α-syn at Ser129 gave consistent results. One major concern in interpreting these findings is that human α-syn was expressed above physiological levels inducing neurodegeneration in rat nigral neurons. In order to exclude this confounding factor, we took a different approach and increased the phosphorylation level of endogenous α-syn. For this purpose, we took advantage of recombinant adeno-associated viral (rAAV) vectors to deliver polo-like kinase (PLK) 2 or PLK3 in the substantia nigra and investigated whether increased levels of P(S129)-α-syn compromised the function and survival of nigral dopaminergic neurons. Interestingly, we observed that hyperphosphorylated α-syn did not induce nigral dopaminergic cell death, as assessed at 1 and 4months. Furthermore, histological analysis did not show any accumulation of α-syn protein or formation of inclusions. Using in vivo microdialysis, we found that the only measurable functional alteration was the depolarisation-induced release of dopamine, while the in vivo synthesis rate of DOPA and dopamine baseline release remained unaltered. Taken together, our results suggest that phosphorylation of α-syn at Ser129 does not confer a toxic gain of function per se.
Collapse
Affiliation(s)
- Kerstin Buck
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden.
| | - Natalie Landeck
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Ayse Ulusoy
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Nour K Majbour
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Omar M A El-Agnaf
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| |
Collapse
|
35
|
Cooper JM, Wiklander PBO, Nordin JZ, Al-Shawi R, Wood MJ, Vithlani M, Schapira AHV, Simons JP, El-Andaloussi S, Alvarez-Erviti L. Systemic exosomal siRNA delivery reduced alpha-synuclein aggregates in brains of transgenic mice. Mov Disord 2014; 29:1476-85. [PMID: 25112864 PMCID: PMC4204174 DOI: 10.1002/mds.25978] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/02/2014] [Accepted: 07/06/2014] [Indexed: 12/14/2022] Open
Abstract
Alpha-synuclein (α-Syn) aggregates are the main component of Lewy bodies, which are the characteristic pathological feature in Parkinson's disease (PD) brain. Evidence that α-Syn aggregation can be propagated between neurones has led to the suggestion that this mechanism is responsible for the stepwise progression of PD pathology. Decreasing α-Syn expression is predicted to attenuate this process and is thus an attractive approach to delay or halt PD progression. We have used α-Syn small interfering RNA (siRNA) to reduce total and aggregated α-Syn levels in mouse brains. To achieve widespread delivery of siRNAs to the brain we have peripherally injected modified exosomes expressing Ravies virus glycoprotein loaded with siRNA. Normal mice were analyzed 3 or 7 days after injection. To evaluate whether this approach can decrease α-Syn aggregates, we repeated the treatment using transgenic mice expressing the human phosphorylation-mimic S129D α-Syn, which exhibits aggregation. In normal mice we detected significantly reduced α-Syn messenger RNA (mRNA) and protein levels throughout the brain 3 and 7 days after treatment with RVG-exosomes loaded with siRNA to α-Syn. In S129D α-Syn transgenic mice we found a decreased α-Syn mRNA and protein levels throughout the brain 7 days after injection. This resulted in significant reductions in intraneuronal protein aggregates, including in dopaminergic neurones of the substantia nigra. This study highlights the therapeutic potential of RVG-exosome delivery of siRNA to delay and reverse brain α-Syn pathological conditions.
Collapse
Affiliation(s)
- J Mark Cooper
- Department of Clinical Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dzamko N, Zhou J, Huang Y, Halliday GM. Parkinson's disease-implicated kinases in the brain; insights into disease pathogenesis. Front Mol Neurosci 2014; 7:57. [PMID: 25009465 PMCID: PMC4068290 DOI: 10.3389/fnmol.2014.00057] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/05/2014] [Indexed: 12/12/2022] Open
Abstract
Substantial evidence implicates abnormal protein kinase function in various aspects of Parkinson’s disease (PD) etiology. Elevated phosphorylation of the PD-defining pathological protein, α-synuclein, correlates with its aggregation and toxic accumulation in neurons, whilst genetic missense mutations in the kinases PTEN-induced putative kinase 1 and leucine-rich repeat kinase 2, increase susceptibility to PD. Experimental evidence also links kinases of the phosphoinositide 3-kinase and mitogen-activated protein kinase signaling pathways, amongst others, to PD. Understanding how the levels or activities of these enzymes or their substrates change in brain tissue in relation to pathological states can provide insight into disease pathogenesis. Moreover, understanding when and where kinase dysfunction occurs is important as modulation of some of these signaling pathways can potentially lead to PD therapeutics. This review will summarize what is currently known in regard to the expression of these PD-implicated kinases in pathological human postmortem brain tissue.
Collapse
Affiliation(s)
- Nicolas Dzamko
- School of Medical Sciences, University of New South Wales Kensington, NSW, Australia ; Neuroscience Research Australia Randwick, NSW, Australia
| | - Jinxia Zhou
- School of Medical Sciences, University of New South Wales Kensington, NSW, Australia ; Neuroscience Research Australia Randwick, NSW, Australia
| | - Yue Huang
- School of Medical Sciences, University of New South Wales Kensington, NSW, Australia ; Neuroscience Research Australia Randwick, NSW, Australia
| | - Glenda M Halliday
- School of Medical Sciences, University of New South Wales Kensington, NSW, Australia ; Neuroscience Research Australia Randwick, NSW, Australia
| |
Collapse
|
37
|
Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death Dis 2014; 5:e1209. [PMID: 24810045 PMCID: PMC4047877 DOI: 10.1038/cddis.2014.175] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Phospho-Ser129 α-synuclein is the modified form of α-synuclein that occurs most frequently within Parkinson's disease pathological inclusions. Here we demonstrate that the antidiabetic drug metformin significantly reduces levels of phospho-Ser129 α-synuclein and the ratio of phospho-Ser129 α-synuclein to total α-synuclein. This effect was documented in vitro in SH-SY5Y and HeLa cells as well as in primary cultures of hippocampal neurons. In vitro work also elucidated the mechanisms underlying metformin's action. Following metformin exposure, decreased phospho-Ser129 α-synuclein was not strictly dependent on induction of AMP-activated protein kinase, a primary target of the drug. On the other hand, metformin-induced phospho-Ser129 α-synuclein reduction was consistently associated with inhibition of mammalian target of rapamycin (mTOR) and activation of protein phosphatase 2A (PP2A). Evidence supporting a key role of mTOR/PP2A signaling included the finding that, similar to metformin, the canonical mTOR inhibitor rapamycin was capable of lowering the ratio of phospho-Ser129 α-synuclein to total α-synuclein. Furthermore, no decrease in phosphorylated α-synuclein occurred with either metformin or rapamycin when phosphatase activity was inhibited, supporting a direct relationship between mTOR inhibition, PP2A activation and protein dephosphorylation. A final set of experiments confirmed the effectiveness of metformin in vivo in wild-type C57BL/6 mice. Addition of the drug to food or drinking water lowered levels of phospho-Ser129 α-synuclein in the brain of treated animals. These data reveal a new mechanism leading to α-synuclein dephosphorylation that could be targeted for therapeutic intervention by drugs like metformin and rapamycin.
Collapse
|
38
|
Corynoxine, a Natural Autophagy Enhancer, Promotes the Clearance of Alpha-Synuclein via Akt/mTOR Pathway. J Neuroimmune Pharmacol 2014; 9:380-7. [PMID: 24522518 DOI: 10.1007/s11481-014-9528-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/14/2014] [Indexed: 01/11/2023]
|
39
|
Escobar VD, Kuo YM, Orrison BM, Giasson BI, Nussbaum RL. Transgenic mice expressing S129 phosphorylation mutations in α-synuclein. Neurosci Lett 2014; 563:96-100. [PMID: 24486885 DOI: 10.1016/j.neulet.2014.01.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 01/10/2014] [Accepted: 01/18/2014] [Indexed: 12/19/2022]
Abstract
Aggregated α-synuclein is a predominant constituent of Lewy bodies, the intracellular protein aggregates seen in Parkinson's disease. While most α-synuclein in the nervous system is unphosphorylated, the majority of α-synuclein in Lewy bodies is phosphorylated at serine 129 (S129). We developed transgenic mice expressing human SNCA with either a phosphomimic (S129D) or a non-phosphorylatable (S129A) mutation, on a mouse Snca knockout background. Transgenic lines with each mutation expressing the human α-synuclein protein at levels ranging from 0.3 to 1.9 fold of endogenous mouse protein were chosen to avoid toxic overexpression effects. We previously demonstrated an altered distribution of presynaptic vesicles in Snca knockout mice, as well as enhanced interaction between presynaptic cytoskeletal proteins and α-synuclein when phosphorylated at S129 or carrying an S129D mutation. We therefore examined α-synuclein's synaptic localization and the distribution of presynaptic vesicles in these mutants. In addition, we evaluated the transgenic lines for reduced colonic motility, an early marker of α-synuclein pathology, and α-synuclein aggregates. No abnormalities were detected in mice expressing either phosphorylation mutant protein as their only α-synuclein protein. These results suggest the S129A and S129D mutations have no obvious effect on α-synuclein function.
Collapse
Affiliation(s)
- Valerie Drews Escobar
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Yien-Ming Kuo
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Bonnie M Orrison
- Genetic Disease Research Branch, NHGRI, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benoit I Giasson
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Robert L Nussbaum
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|