1
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
2
|
Chen Q, Li L, Xu L, Yang B, Huang Y, Qiao D, Yue X. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med 2024; 138:207-227. [PMID: 37338605 DOI: 10.1007/s00414-023-03039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and β-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and β-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.
Collapse
Affiliation(s)
- Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingyue Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
3
|
Liu Y, Luo Y, Zhang A, Wang Z, Wang X, Yu Q, Zhang Z, Zhu Z, Wang K, Chen L, Nie X, Zhang JH, Zhang J, Fang Y, Su Z, Chen S. Long Non-coding RNA H19 Promotes NLRP3-Mediated Pyroptosis After Subarachnoid Hemorrhage in Rats. Transl Stroke Res 2023; 14:987-1001. [PMID: 36418735 DOI: 10.1007/s12975-022-01104-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
NLRP3 inflammasomes have been reported to be an essential mediator in the inflammatory response during early brain injury (EBI) following subarachnoid hemorrhage (SAH). Recent studies have indicated that NLRP3 inflammasome-mediated pyroptosis and long non-coding RNA (lncRNA) H19 can participate in the inflammatory response. However, the roles and functions of lncRNA H19 in NLRP3 inflammasome-mediated pyroptosis during EBI after SAH are unknown and need to be further elucidated. NLRP3 inflammasome proteins were significantly elevated in CSF of human with SAH induced EBI and presented a positive correlation with severity. In ipsilateral hemisphere cortex of rats, these NLRP3 inflammasome proteins were also increased and accompanied with upregulation of H19, and both of NLRP3 and H19 were peaked at 24 h after SAH. However, knockdown of H19 markedly decreased the expression of NLRP3 inflammasome proteins at 24 h after SAH in rats and also ameliorated EBI, showing improved neurobehavioral deficits, cerebral edema, and neuronal injury. Moreover, knocking down of H19 downregulated the expression of Gasdermin D (GSDMD) in microglia in SAH rats. Similarly, knockdown of H19 also alleviated OxyHb-induced pyroptosis and NLRP3-mediated inflammasomes activation in primary microglia. Lastly, H19 competitively sponged with rno-miR-138-5p and then upregulated NLRP3 expression in the post-SAH inflammatory response. lncRNA H19 promotes NLRP3-mediated pyroptosis by functioning as rno-miR-138-5p sponge in rats during EBI after SAH, which might provide a potential therapeutic target for post-SAH inflammation regulation.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yujie Luo
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong, China
| | - Anke Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zefeng Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Xiaoyu Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Qian Yu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zeyu Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Zhoule Zhu
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Kaikai Wang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohu Nie
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
- Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jianmin Zhang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Zhongzhou Su
- Department of Neurosurgery, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine (Huzhou Central Hospital), Huzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Zhejiang Province, Hangzhou, People's Republic of China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Yin Y, Wei L, Caseley EA, Lopez‐Charcas O, Wei Y, Li D, Muench SP, Roger S, Wang L, Jiang L. Leveraging the ATP-P2X7 receptor signalling axis to alleviate traumatic CNS damage and related complications. Med Res Rev 2023; 43:1346-1373. [PMID: 36924449 PMCID: PMC10947395 DOI: 10.1002/med.21952] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 11/11/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
The P2X7 receptor is an exceptional member of the P2X purinergic receptor family, with its activation requiring high concentrations of extracellular adenosine 5'-triphosphate (ATP) that are often associated with tissue damage and inflammation. In the central nervous system (CNS), it is highly expressed in glial cells, particularly in microglia. In this review, we discuss the role and mechanisms of the P2X7 receptor in mediating neuroinflammation and other pathogenic events in a variety of traumatic CNS damage conditions, which lead to loss of neurological and cognitive functions. We raise the perspective on the steady progress in developing CNS-penetrant P2X7 receptor-specific antagonists that leverage the ATP-P2X7 receptor signaling axis as a potential therapeutic strategy to alleviate traumatic CNS damage and related complications.
Collapse
Affiliation(s)
- Yaling Yin
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Linyu Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Emily A. Caseley
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Osbaldo Lopez‐Charcas
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Yingjuan Wei
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Dongliang Li
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Sanquan College of Xinxiang Medical UniversityXinxiangChina
| | - Steve P. Muench
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Sebastian Roger
- EA4245, Transplantation, Immunology and Inflammation, Faculty of MedicineUniversity of ToursToursFrance
| | - Lu Wang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
| | - Lin‐Hua Jiang
- Sino‐UK Joint Laboratory of Brain Function and Injury of Henan Province, Department of Physiology and PathophysiologyXinxiang Medical UniversityXinxiangChina
- Faculty of Biological Sciences, School of Biomedical SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
5
|
Zhou J, Yang F, Li H, Xu P, Wang Z, Shao F, Shao A, Zhang J. Regulatory T Cells Secrete IL10 to Suppress Neuroinflammation in Early Stage after Subarachnoid Hemorrhage. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1317. [PMID: 37512128 PMCID: PMC10383056 DOI: 10.3390/medicina59071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Objective: Accumulating evidence supports neuroprotective effects of regulatory T cells (Tregs) in response to brain injury. However, the precise mechanisms underlying the beneficial effects of Tregs on suppressing neuroinflammation after subarachnoid hemorrhage (SAH) remain unclear. Methods: We performed flow cytometry to detect the infiltration of Tregs into the brain at different time points after SAH. Behavioral tests, including Adhesive and Rotarod, were performed to assess neurological deficits in mice after SAH. Bulk RNA sequencing was used to investigate the transcriptomic change of Tregs infiltrating into the brain after SAH. qPCR was performed to verify the variation of inflammatory cytokines expression in the brain after Tregs exogenous infusion. FoxP3-DTR mice and Il10 gene KO mice were used to explore the mechanism of Tregs inhibiting neuron apoptosis after infiltrating the brain following SAH onset. Results: Peripheral Tregs infiltrated into the brain one day after SAH and gradually accumulated in the hemorrhagic hemisphere. An exogenous infusion of Tregs significantly improved the neurological function of mice after SAH, while poor recovery of neurological function was observed in Tregs depletion mice. Transcriptome sequencing data suggested that the immunosuppressive function of brain-infiltrated Tregs was significantly upregulated. qPCR showed that the expression of pro-inflammatory cytokines decreased in the brain of SAH mice after exogenous Tregs infusion. Bioinformatic analysis revealed that IL-10 and other cytokines secreted by brain-infiltrated Tregs were upregulated after SAH. Moreover, exogenous infusion of Il10 gene KO Tregs did not totally improve neurological function in SAH mice. Conclusions: Tregs infiltrated into the brain in the early stage after SAH and exerted neuroprotective effect by secreting IL-10 to suppress neuroinflammation and reduce neuron apoptosis.
Collapse
Affiliation(s)
- Jingyi Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Fan Yang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Huaming Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Penglei Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Zefeng Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Fangjie Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310006, China
- Brain Research Institute, Zhejiang University, Hangzhou 310058, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Azari Jafari A, Mirmoeeni S, Johnson WC, Shah M, Hassani MS, Nazari S, Fielder T, Seifi A. The effect of induced hypertension in aneurysmal subarachnoid hemorrhage: A narrative review. CURRENT JOURNAL OF NEUROLOGY 2023; 22:188-196. [PMID: 38011457 PMCID: PMC10626142 DOI: 10.18502/cjn.v22i3.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/12/2023] [Indexed: 11/29/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) accounts for 2-5% of all strokes, and 10%-15% of aSAH patients will not survive until hospital admission. Induced hypertension (IH) is an emerging therapeutic option being used for the treatment of vasospasm in aSAH. For patients with cerebral vasospasm (CVS) consequent to SAH, IH is implemented to increase systolic blood pressure (SBP) in order to optimize cerebral blood flow (CBF) and prevent delayed cerebral ischemia (DCI). Prophylactic use of IH has been associated with the development of vasospasm and cerebral ischemia in SAH patients. Various trials have defined several different parameters to help clinicians decide when to initiate IH in a SAH patient. However, there is insufficient evidence to recommend therapeutic IH in aSAH due to the possible serious complications like myocardial ischemia, development of posterior reversible encephalopathy syndrome (PRES), pulmonary edema, and even rupture of another unsecured aneurysm. This narrative review showed the favorable impact of IH therapy on aSAH patients; however, it is crucial to conduct further clinical and molecular experiments to shed more light on the effects of IH in aSAH.
Collapse
Affiliation(s)
- Amirhossein Azari Jafari
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - William Chase Johnson
- Department of Neurosurgery, Division of Neuro Critical Care, University of Texas Health Science Center at San Antonio School of Medicine, San Antonio, Texas, USA
| | - Muffaqam Shah
- Deccan College of Medical Sciences, Owaisi Hospital and Research Centre, Hyderabad, Telangana State, India
| | - Maryam Sadat Hassani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tristan Fielder
- University of Texas Health Science Center at San Antonio School of Medicine, San Antonio, Texas, USA
| | - Ali Seifi
- Department of Neurosurgery, Division of Neuro Critical Care, University of Texas Health Science Center at San Antonio School of Medicine, San Antonio, Texas, USA
| |
Collapse
|
7
|
Tang L, Liu S, Li S, Chen Y, Xie B, Zhou J. Induction Mechanism of Ferroptosis, Necroptosis, and Pyroptosis: A Novel Therapeutic Target in Nervous System Diseases. Int J Mol Sci 2023; 24:10127. [PMID: 37373274 DOI: 10.3390/ijms241210127] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, three emerging cell deaths, ferroptosis, necroptosis and pyroptosis, have gradually attracted everyone's attention, and they also play an important role in the occurrence and development of various diseases. Ferroptosis is an idiographic iron-dependent form regulated cell death with the hallmark of accumulation of the intracellular reactive oxygen species (ROS). Necroptosis is a form of regulated necrotic cell death mediated by the receptor-interacting protein kinase 1(RIPK1) and receptor-interacting protein kinase 3RIPK3. Pyroptosis, also known as cell inflammatory necrosis, is a programmed cell necrosis mediated by Gasdermin D (GSDMD). It is manifested by the continuous swelling of the cells until the cell membrane ruptures, resulting in the release of the cell contents and the activation of a strong inflammatory response. Neurological disorders remain a clinical challenge and patients do not respond well to conventional treatments. Nerve cell death can aggravate the occurrence and development of neurological diseases. This article reviews the specific mechanisms of these three types of cell death and their relationship with neurological diseases and the evidence for the role of the three types of cell death in neurological diseases; understanding these pathways and their mechanisms is helpful for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lu Tang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Sitong Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Shiwei Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
8
|
He W, Hu Z, Zhong Y, Wu C, Li J. The Potential of NLRP3 Inflammasome as a Therapeutic Target in Neurological Diseases. Mol Neurobiol 2023; 60:2520-2538. [PMID: 36680735 DOI: 10.1007/s12035-023-03229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
NLRP3 (NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is the best-described inflammasome that plays a crucial role in the innate immune system and a wide range of diseases. The intimate association of NLRP3 with neurological disorders, including neurodegenerative diseases and strokes, further emphasizes its prominence as a clinical target for pharmacological intervention. However, after decades of exploration, the mechanism of NLRP3 activation remains indefinite. This review highlights recent advances and gaps in our insights into the regulation of NLRP3 inflammasome. Furthermore, we present several emerging pharmacological approaches of clinical translational potential targeting the NLRP3 inflammasome in neurological diseases. More importantly, despite small-molecule inhibitors of the NLRP3 inflammasome, we have focused explicitly on Chinese herbal medicine and botanical ingredients, which may be splendid therapeutics by inhibiting NLRP3 inflammasome for central nervous system disorders. We expect that we can contribute new perspectives to the treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Shi Y, Liu Q, Chen W, Wang R, Wang L, Liu ZQ, Duan XC, Zhang Y, Shen A, Peng D, Han L, Ji Z. Protection of Taohong Siwu Decoction on PC12 cells injured by oxygen glucose deprivation/reperfusion via mitophagy-NLRP3 inflammasome pathway in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115784. [PMID: 36206870 DOI: 10.1016/j.jep.2022.115784] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Taohong Siwu Decoction (THSWD) is a traditional Chinese medicine formula used to invigorate blood circulation and resolve blood stasis. It consists of Paeonia lactiflora Pall., Conioselinum anthriscoides (H.Boissieu) Pimenov & Kljuykov, Rehmannia glutinosa (Gaertn.) DC., Prunus persica (L.) Batsch, Angelica sinensis (Oliv.) Diels, and Carthamus creticus L. in the ratio of 3:2:4:3:3:2. THSWD is a common prescription for the treatment of ischemic stroke. AIM OF THE STUDY To study the protective effect and mechanism of Taohong Siwu Decoction (THSWD) on PC12 cells damaged by oxygen glucose deprivation/reperfusion (OGD/R). MATERIALS AND METHODS OGD/R model of PC12 cells was used to simulate ischemia-reperfusion (I/R) injury of nerve cells in vitro. The experiment was grouped as follows: control, OGD/R and OGD/R + THSWD (5%, 10% and 15%) group. Oxygen and glucose was restored for 24 h after 4-6 h of deprivation. The severity of damage to PC12 cells was evaluated by CCK8, flow cytometry and lactate dehydrogenase (LDH). Mitochondrial morphology and function were examined by transmission electron microscopy (TEM), ATP and mitochondrial membrane potential (MMP) assay kits. Cellular autophagy and NLRP3 inflammasome-associated proteins were detected by Western blot and immunofluorescence staining. RESULTS THSWD treatment improved the survival rate of PC12 cells injured by OGD/R, reduced cell damage and apoptosis. Moreover, ATP, MMP and the expression of autophagy marker proteins (LC3-II/LC3-I, Beclin1, Atg5) and mitophagy marker proteins (Parkin and PINK-1) was significantly elevated. The reactive oxygen species (ROS), NLRP3 inflammasome and pro-inflammatory cytokines induced by OGD/R were distinctly reduced. In contrast, these above beneficial effects of THSWD on mitochondrial autophagy and NLRP3 inflammasome were reversed by mitochondrial division inhibitory factor 1 (Mdivi-1). CONCLUSION THSWD protects PC12 cells against OGD/R injury by heightening mitophagy and suppressing the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yun Shi
- College of Pharmacy, Anhui University of Chinese Medicine, China
| | - Qing Liu
- College of Pharmacy, Anhui University of Chinese Medicine, China
| | - Weidong Chen
- College of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China; Institute of Traditional Chinese Medicine Resources Protection and Development, China; Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, China
| | - Ruirui Wang
- College of Pharmacy, Anhui University of Chinese Medicine, China
| | - Lei Wang
- College of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China; Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, China
| | - Zhu-Qing Liu
- College of Pharmacy, Anhui University of Chinese Medicine, China
| | - Xian-Chun Duan
- College of Pharmacy, Anhui University of Chinese Medicine, China
| | - Yanchun Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, China
| | - Aizong Shen
- Department of Pharmacy, Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, China; Institute of Traditional Chinese Medicine Resources Protection and Development, China
| | - Lan Han
- College of Pharmacy, Anhui University of Chinese Medicine, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, China.
| | - Zhaojie Ji
- College of Pharmacy, Anhui University of Chinese Medicine, China.
| |
Collapse
|
10
|
Yu X, Yu C, He W. Emerging trends and hot spots of NLRP3 inflammasome in neurological diseases: A bibliometric analysis. Front Pharmacol 2022; 13:952211. [PMID: 36160384 PMCID: PMC9490172 DOI: 10.3389/fphar.2022.952211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: NLRP3 inflammasome has been of great interest in the field of neurological diseases. To visualize the research hotspots and evolutionary trends in this area, we collected the relevant articles in the Web of Science Core Collection database from 2010 to 2022 and analyzed them using CiteSpace software. Methods: We performed a systematic search of the literature within the Web of Science Core Collection database using the strategy described below: TS = NLRP3 inflammasome AND TS = neurological diseases OR TS = neurological disorder OR TS = brain disorder OR TS = brain injury OR TS = central nervous system disease OR TS = CNS disease OR TS = central nervous system disorder OR TS = CNS disorder AND Language = English from 2010 to 2022. The type of literature was limited to articles and reviews. The data were processed using CiteSpace software (version 5.8. R3). Results: A total of 1,217 literature from 67 countries/regions and 337 research institutions was retrieved. Publications in this area have increased rapidly since 2013. China presents the highest number of published articles, but the United States has a higher centrality and h-index. The top five most published institutions and authors are from China, Zhejiang University and Li Y ranking first, respectively. Of the ten most cited articles, Prof. Heneka MT and colleagues accounted for three of them. In terms of the co-occurrence keyword diagram, the five most frequent keywords are “nlrp3 inflammasome”, “activation”, “oxidative stress”, “expression”, and “alzheimers disease”. Conclusion: The research of NLRP3 inflammasome in neurological disorders is overall developing well. Chinese scholars contributed the most significant number of articles, while researchers from developed countries presented more influential papers. The importance of NLRP3 inflammasome in neurological diseases is widely appreciated, and the mechanism is under study. Moreover, NLRP3 inflammasome is emerging as a promising therapeutic target in treating neurological disorders. However, despite decades of research, our understanding of NLRP3 inflammasome in central nervous system diseases is still lacking. More and more profound research is needed in the future.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chuan Yu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wenfang He,
| |
Collapse
|
11
|
Díaz-García E, Nanwani-Nanwani K, García-Tovar S, Alfaro E, López-Collazo E, Quintana-Díaz M, García-Rio F, Cubillos-Zapata C. NLRP3 Inflammasome Overactivation in Patients with Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2022; 14:334-346. [PMID: 35819747 PMCID: PMC10160181 DOI: 10.1007/s12975-022-01064-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is an uncommon and severe subtype of stroke leading to the loss of many years of productive life. We analyzed NLRP3 activity as well as key components of the inflammasome cascade in monocytes and plasma from 28 patients with aSAH and 14 normal controls using flow cytometry, western blot, ELISA, and qPCR technologies. Our data reveal that monocytes from patients with aSAH present an overactivation of the NLRP3 inflammasome, which results in the presence of high plasma levels of interleukin (IL)-1β, IL-18, gasdermin D, and tissue factor. Although further research is needed, we propose that serum tissue factor concentration might be a useful prognosis biomarker for clinical outcome, and for Tako-Tsubo cardiomyopathy and cerebral vasospasm prediction. Remarkably, MCC-950 inhibitor effectively blocks NLRP3 activation in aSAH monocyte culture and supresses tissue factor release to the extracellular space. Finally, our findings suggest that NLRP3 activation could be due to the release of erythrocyte breakdown products to the subarachnoid space during aSAH event. These data define NLRP3 activation in monocytes from aSAH patients, indicating systemic inflammation that results in serum TF upregulation which in turns correlates with aSAH severity and might serve as a prognosis biomarker for aSAH clinical outcome and for cerebral vasospasm and Tako-Tsubo cardiomyopathy prediction.
Collapse
Affiliation(s)
- Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain. .,Biomedical Research Networking Center On Respiratory Diseases (CIBERES), Madrid, Spain.
| | | | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | | | - Manuel Quintana-Díaz
- Department of Intensive Care Medicine, La Paz University Hospital, Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Francisco García-Rio
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.,Biomedical Research Networking Center On Respiratory Diseases (CIBERES), Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain. .,Biomedical Research Networking Center On Respiratory Diseases (CIBERES), Madrid, Spain.
| |
Collapse
|
12
|
Biological Effects and Mechanisms of Caspases in Early Brain Injury after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3345637. [PMID: 35847583 PMCID: PMC9277153 DOI: 10.1155/2022/3345637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/22/2022] [Indexed: 12/12/2022]
Abstract
Caspases are an evolutionarily conserved family of proteases responsible for mediating and initiating cell death signals. In the past, the dysregulated activation of caspases was reported to play diverse but equally essential roles in neurodegenerative diseases, such as brain injury and neuroinflammatory diseases. A subarachnoid hemorrhage (SAH) is a traumatic event that is either immediately lethal or induces a high risk of stroke and neurological deficits. Currently, the prognosis of SAH after treatment is not ideal. Early brain injury (EBI) is considered one of the main factors contributing to the poor prognosis of SAH. The mechanisms of EBI are complex and associated with oxidative stress, neuroinflammation, blood-brain barrier disruption, and cell death. Based on mounting evidence, caspases are involved in neuronal apoptosis or death, endothelial cell apoptosis, and increased inflammatory cytokine-induced by apoptosis, pyroptosis, and necroptosis in the initial stages after SAH. Caspases can simultaneously mediate multiple death modes and regulate each other. Caspase inhibitors (including XIAP, VX-765, and Z-VAD-FMK) play an essential role in ameliorating EBI after SAH. In this review, we explore the related pathways mediated by caspases and their reciprocal regulation patterns after SAH. Furthermore, we focus on the extensive crosstalk of caspases as a potential area of research on therapeutic strategies for treating EBI after SAH.
Collapse
|
13
|
Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the Role of the NLRP3 Inflammasome in Multiple Sclerosis: Pathogenesis, Diagnosis, and Therapeutics. Front Mol Neurosci 2022; 15:894298. [PMID: 35694441 PMCID: PMC9175009 DOI: 10.3389/fnmol.2022.894298] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is initiated with an aberrant innate immune response in the central nervous system (CNS) and is involved in many neurological diseases. Inflammasomes are intracellular multiprotein complexes that can be used as platforms to induce the maturation and secretion of proinflammatory cytokines and pyroptosis, thus playing a pivotal role in neuroinflammation. Among the inflammasomes, the nucleotide-binding oligomerization domain-, leucine-rich repeat- and pyrin domain-containing 3 (NLRP3) inflammasome is well-characterized and contributes to many neurological diseases, such as multiple sclerosis (MS), Alzheimer's disease (AD), and ischemic stroke. MS is a chronic autoimmune disease of the CNS, and its hallmarks include chronic inflammation, demyelination, and neurodegeneration. Studies have demonstrated a relationship between MS and the NLRP3 inflammasome. To date, the pathogenesis of MS is not fully understood, and clinical studies on novel therapies are still underway. Here, we review the activation mechanism of the NLRP3 inflammasome, its role in MS, and therapies targeting related molecules, which may be beneficial in MS.
Collapse
|
14
|
Wang L, Ren W, Wu Q, Liu T, Wei Y, Ding J, Zhou C, Xu H, Yang S. NLRP3 Inflammasome Activation: A Therapeutic Target for Cerebral Ischemia–Reperfusion Injury. Front Mol Neurosci 2022; 15:847440. [PMID: 35600078 PMCID: PMC9122020 DOI: 10.3389/fnmol.2022.847440] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Millions of patients are suffering from ischemic stroke, it is urgent to figure out the pathogenesis of cerebral ischemia–reperfusion (I/R) injury in order to find an effective cure. After I/R injury, pro-inflammatory cytokines especially interleukin-1β (IL-1β) upregulates in ischemic brain cells, such as microglia and neuron. To ameliorate the inflammation after cerebral I/R injury, nucleotide-binding oligomerization domain (NOD), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome is well-investigated. NLRP3 inflammasomes are complicated protein complexes that are activated by endogenous and exogenous danger signals to participate in the inflammatory response. The assembly and activation of the NLRP3 inflammasome lead to the caspase-1-dependent release of pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. Furthermore, pyroptosis is a pro-inflammatory cell death that occurs in a dependent manner on NLRP3 inflammasomes after cerebral I/R injury. In this review, we summarized the assembly and activation of NLRP3 inflammasome; moreover, we also concluded the pivotal role of NLRP3 inflammasome and inhibitors, targeting the NLRP3 inflammasome in cerebral I/R injury.
Collapse
Affiliation(s)
- Lixia Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ren
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qingjuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianzhu Liu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ying Wei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiru Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhou
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Houping Xu
| | - Sijin Yang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang
| |
Collapse
|
15
|
Zheng Y, Tang W, Zeng H, Peng Y, Yu X, Yan F, Cao S. Probenecid-Blocked Pannexin-1 Channel Protects Against Early Brain Injury via Inhibiting Neuronal AIM2 Inflammasome Activation After Subarachnoid Hemorrhage. Front Neurol 2022; 13:854671. [PMID: 35401398 PMCID: PMC8983901 DOI: 10.3389/fneur.2022.854671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Aim Previous studies have proved that inhibiting inflammasome activation provides neuroprotection against early brain injury (EBI) after subarachnoid hemorrhage (SAH), which is mainly focused on the microglial inflammatory response, but the potential role of neuronal inflammasome activation in EBI has not been clearly identified. This study examined whether the pannexin-1 channel inhibitor probenecid could reduce EBI after SAH by inhibiting neuronal AIM2 inflammasome activation. Methods There are in vivo and in vitro parts in this study. First, adult male SD rats were subjected to the endovascular perforation mode of SAH. The time course of pannexin-1 and AIM2 expressions were determined after SAH in 72 h. Brain water content, neurological function, AIM2 inflammasome activation, and inflammatory response were evaluated at 24 h after SAH in sham, SAH, and SAH + probenecid groups. In the in vitro part, HT22 cell treated with hemin was applied to mimic SAH. The expression of AIM2 inflammasome was detected by immunofluorescence staining. Neuronal death and mitochondrial dysfunction were determined by the LDH assay kit and JC-1 staining. Results The pannexin-1 and AIM2 protein levels were upregulated after SAH. Pannexin-1 channel inhibitor probenecid attenuated brain edema and improved neurological dysfunction by reducing AIM2 inflammasome activation and reactive oxygen species (ROS) generation after SAH in rats. Treating HT22 cells with hemin for 12 h resulted in AIM2 and caspase-1 upregulation and increased mitochondrial dysfunction and neuronal cell death. Probenecid significantly attenuated the hemin-induced AIM2 inflammasome activation and neuronal death. Conclusions AIM2 inflammasome is activated in neurons after SAH. Pharmacological inhibition of the pannexin-1 channel by probenecid attenuated SAH-induced AIM2 inflammasome activation and EBI in vivo and hemin-induced AIM2 inflammasome activation and neuronal death in vitro.
Collapse
Affiliation(s)
- Yonghe Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenwen Tang
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yucong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaobo Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Ye X, Song G, Huang S, Liang Q, Fang Y, Lian L, Zhu S. Caspase-1: A Promising Target for Preserving Blood–Brain Barrier Integrity in Acute Stroke. Front Mol Neurosci 2022; 15:856372. [PMID: 35370546 PMCID: PMC8971909 DOI: 10.3389/fnmol.2022.856372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/18/2022] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) acts as a physical and biochemical barrier that plays a fundamental role in regulating the blood-to-brain influx of endogenous and exogenous components and maintaining the homeostatic microenvironment of the central nervous system (CNS). Acute stroke leads to BBB disruption, blood substances extravasation into the brain parenchyma, and the consequence of brain edema formation with neurological impairment afterward. Caspase-1, one of the evolutionary conserved families of cysteine proteases, which is upregulated in acute stroke, mainly mediates pyroptosis and compromises BBB integrity via lytic cellular death and inflammatory cytokines release. Nowadays, targeting caspase-1 has been proven to be effective in decreasing the occurrence of hemorrhagic transformation (HT) and in attenuating brain edema and secondary damages during acute stroke. However, the underlying interactions among caspase-1, BBB, and stroke still remain ill-defined. Hence, in this review, we are concerned about the roles of caspase-1 activation and its associated mechanisms in stroke-induced BBB damage, aiming at providing insights into the significance of caspase-1 inhibition on stroke treatment in the near future.
Collapse
|
17
|
Shi M, Gong Y, Wu M, Gu H, Yu J, Gao F, Ren Z, Qian M, Dang B, Chen G. Downregulation of TREM2/NF-кB signaling may damage the blood-brain barrier and aggravate neuronal apoptosis in experimental rats with surgically injured brain. Brain Res Bull 2022; 183:116-126. [PMID: 35247489 DOI: 10.1016/j.brainresbull.2022.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022]
Abstract
Surgical brain injury (SBI) is unavoidable in neurosurgery, and could aggravate secondary brain injury. Post-brain injury, multiple inflammatory factors are released, resulting in neuroinflammation and cell apoptosis, with subsequent brain edema and nerve function injury. TREM2, an immune protein mainly expressed in microglia, is an important link for nerve cells to participate in the inflammatory response. TREM2 and nuclear factor кB (NF-кB) are indeed closely associated with the release of inflammatory cytokines following brain injury. This work aimed to determine the inflammatory function of TREM2 in SBI, and to investigate whether TREM2 regulates interleukin-1 beta (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) release through the NF-кB p65 signaling pathway. We established a rat model of SBI, and performed Western blotting (WB), immunofluorescence (IF) and enzyme-linked immunosorbent assay (ELISA) for further analysis. Next, brain edema and neurological score analyses were performed. Finally, whether TREM2 regulating NF-кB p65 signaling affects blood-brain barrier (BBB) permeability and nerve cell apoptosis was examined. We found that post-SBI, TREM2 was upregulated, and inflammation and brain injury were aggravated. After TREM2 downregulation, NF-кB p65 production, inflammation and brain injury were enhanced, suggesting that TREM2 may play a protective role by inhibiting NF-кB p65 production after SBI. Overall, these findings suggest that TREM2 in SBI may have protective effects on postoperative nerve and BBB damage, possibly in part via the NF-κB p65 pathway.
Collapse
Affiliation(s)
- Mengying Shi
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China; Department of Anesthesiology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Haiping Gu
- Department of Neurology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jiejie Yu
- Department of Emergency, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Fan Gao
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Zhe Ren
- Department of Infectious Diseases, The First People's Hospital of Zhangjiagang, Soochow University, Suzhou, China
| | - Min Qian
- Department of Anesthesiology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Gang Chen
- Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Emerging immune and cell death mechanisms in stroke: Saponins as therapeutic candidates. Brain Behav Immun Health 2021; 9:100152. [PMID: 34589895 PMCID: PMC8474497 DOI: 10.1016/j.bbih.2020.100152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
The complexity of the ischemic cascade is based on the integrated crosstalk of every cell type in the neurovascular unit. Depending on the features of the ischemic insult, several cell death mechanisms are triggered, such as apoptosis, necroptosis, ferroptosis/oxytosis, ETosis or pyroptosis, leading to reactive astrogliosis. However, emerging evidence demonstrates a dual role for the immune system in stroke pathophysiology, where it exerts both detrimental and also beneficial functions. In this review, we discuss the relevance of several cell death modalities and the dual role of the immune system in stroke pathophysiology. We also provide an overview of some emerging immunomodulatory therapeutic strategies, amongst which saponins, which are promising candidates that exert multiple pharmacological effects. Several cell death mechanisms coexist in stroke pathophysiology. Neurons are more vulnerable to necroptosis than glial cells. Inhibitors of receptor-interacting protein kinases and of ferroptosis induce neuroprotection. Saponins exert modulatory effects on inflammation and neuronal cell death in stroke.
Collapse
|
19
|
Ashrafizadeh M, Najafi M, Kavyiani N, Mohammadinejad R, Farkhondeh T, Samarghandian S. Anti-Inflammatory Activity of Melatonin: a Focus on the Role of NLRP3 Inflammasome. Inflammation 2021; 44:1207-1222. [PMID: 33651308 DOI: 10.1007/s10753-021-01428-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/19/2022]
Abstract
Melatonin is a hormone of the pineal gland that contributes to the regulation of physiological activities, such as sleep, circadian rhythm, and neuroendocrine processes. Melatonin is found in several plants and has pharmacological activities including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, and neuroprotective. It also has shown therapeutic efficacy in treatment of cancer and diabetes. Melatonin affects several molecular pathways to exert its protective effects. The NLRP3 inflammasome is considered a novel target of melatonin. This inflammasome contributes to enhanced level of IL-1β, caspase-1 activation, and pyroptosis stimulation. The function of NLRP3 inflammasome has been explored in various diseases, including cancer, diabetes, and neurological disorders. By inhibiting NLRP3, melatonin diminishes inflammation and influences various molecular pathways, such as SIRT1, microRNA, long non-coding RNA, and Wnt/β-catenin. Here, we discuss these molecular pathways and suggest that melatonin-induced inhibition of NLRP3 should be advanced in disease therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nasim Kavyiani
- Department of Basic Science, Faculty of Veterinary Medicine Faculty, Islamic Azad Branch, University of Shushtar, Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
20
|
Wang G, Chen S, Shao Z, Li Y, Wang W, Mao L, Li J, Mei X. Metformin alleviates hydrogen peroxide-induced inflammation and oxidative stress via inhibiting P2X7R signaling in spinal cord tissue cells neurons. Can J Physiol Pharmacol 2021; 99:768-774. [PMID: 33201730 DOI: 10.1139/cjpp-2020-0373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metformin, the first medication that is often prescribed for the treatment of type 2 diabetes mellitus, was recently found to be neuroprotective. To study the mechanism underlying the neuroprotective effect of metformin, we pretreated primary spinal cord neurons with 50 µM or 100 µM metformin for 2 h prior to treatment with hydrogen peroxide (H2O2) for up to 48 h. Our results showed that H2O2 increased the expression of purinergic receptor P2X7 (P2X7R) in spinal cord neurons, which promoted the downstream pro-inflammatory cytokines release and oxidative stress. We found that metformin could reverse these pro-inflammatory and pro-oxidative effects of H2O2. Besides, P2X7R knockdown by siRNA suppressed H2O2-induced pro-inflammatory cytokine release and oxidative stress response. In conclusion, our results show that metformin can alleviate H2O2-induced inflammation and oxidative stress via modulating the P2X7R signaling pathway.
Collapse
Affiliation(s)
- Gang Wang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, 121000, China
- Department of Orthopedic, Maanshan People's Hospital, Ma'anshan City, China
| | - Shurui Chen
- Jinzhou Medical University, Jinzhou City, 121000, China
| | - Zhenya Shao
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, 121000, China
| | - Yankun Li
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, 121000, China
| | - Wei Wang
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, 121000, China
| | - Liang Mao
- Department of Oncology, Key Laboratory of Medical Tissue Engineering of Liaoning Province, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, China
| | - Jian Li
- Department of Orthopedic, Maanshan People's Hospital, Ma'anshan City, China
| | - Xifan Mei
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, 121000, China
| |
Collapse
|
21
|
BMSCs Regulate Astrocytes through TSG-6 to Protect the Blood-Brain Barrier after Subarachnoid Hemorrhage. Mediators Inflamm 2021; 2021:5522291. [PMID: 34305453 PMCID: PMC8263246 DOI: 10.1155/2021/5522291] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
Background In patients with subarachnoid hemorrhage (SAH), the damage of the blood-brain barrier (BBB) can be life-threatening. Mesenchymal stem cells are widely used in clinical research due to their pleiotropic properties. This study is aimed at exploring the effect of BMSCs regulating astrocytes on the BBB after SAH. Methods The SAH model was established by perforating the blood vessels. BMSCs were transfected with TSG-6 inhibitor plasmid and cocultured with astrocytes. Intravenous transplantation of BMSCs was utilized to treat SAH rats. We performed ELISA, neurological scoring, Evans blue staining, NO measurement, immunofluorescence, BBB permeability, Western blot, HE staining, Nissl staining, and immunohistochemistry to evaluate the effect of BMSCs on astrocytes and BBB. Results SAH rats showed BBB injury, increased BBB permeability, and brain histological damage. BMSCs will secrete TSG-6 after being activated by TNF-α. Under the influence of TSG-6, the NF-κB and MAPK signaling pathways of astrocytes were inhibited. The expression of iNOS was reduced, while occludin, claudin 3, and ZO-1 expression was increased. The production of harmful substances NO and ONOO- decreased. The level of inflammatory factors decreased. The apoptosis of astrocytes was weakened. TSG-6 secreted by BMSCs can relieve inflammation caused by SAH injury. The increase in BBB permeability of SAH rats was further reduced and the risk of rebleeding was reduced. Conclusion BMSCs can regulate the activation of astrocytes through secreting TSG-6 in vivo and in vitro to protect BBB.
Collapse
|
22
|
Qin M, Liu Y, Sun M, Li X, Xu J, Zhang L, Jiang H. Protective effects of melatonin on the white matter damage of neonatal rats by regulating NLRP3 inflammasome activity. Neuroreport 2021; 32:739-747. [PMID: 33994520 DOI: 10.1097/wnr.0000000000001642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the protective effects and relevant mechanisms of melatonin on the white matter damage (WMD) caused by endotoxin and ischemic hypoxia in neonatal rats. METHODS Seventy-two female neonatal rats (postnatal day 3) were randomly divided into the sham, melatonin-treated, and control groups (n = 24 for each group). The periventricular white matter was collected to evaluate the WMD and apoptosis. In addition, the reactive oxygen species (ROS) level was measured. The expression levels of nucleotide-binding domain-like receptor protein 3 (NLRP3), interleukin (IL)-1β, IL-18, pink1, parkin, Toll-like receptor (TLR)-4, and nuclear factor (NF)-κB were detected. RESULTS Hematoxylin and eosin and terminal-deoxynucleoitidyl transferase mediated nick end labeling staining showed that the WMD, as well as cell degeneration, necrosis, and apoptosis in the control group, were more severe than those in the melatonin-treated group. Endotoxin and ischemic hypoxia upregulated the expression of NLRP3 and downstream inflammatory factors such as IL-1β and IL-18, which could be reversed by melatonin treatment. Melatonin increased mitochondrial autophagy marker (pink1 and parkin) expression in the white matter and reduced ROS production. Moreover, melatonin-reduced TLR4 and NF-κB expression. CONCLUSIONS Melatonin can inhibit the hyperactivity of NLRP3 inflammasomes by enhancing mitochondrial autophagy and inhibiting TLR4/NF-κB pathway activity. Thus, melatonin may be a promising treatment for alleviating the WMD caused by endotoxin and ischemic hypoxia in neonatal rats.
Collapse
Affiliation(s)
- Miao Qin
- Department of Neonatology, Affiliated Hospital of Qingdao University, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Bai R, Lang Y, Shao J, Deng Y, Refuhati R, Cui L. The Role of NLRP3 Inflammasome in Cerebrovascular Diseases Pathology and Possible Therapeutic Targets. ASN Neuro 2021; 13:17590914211018100. [PMID: 34053242 PMCID: PMC8168029 DOI: 10.1177/17590914211018100] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular diseases are pathological conditions involving impaired blood flow in the brain, primarily including ischaemic stroke, intracranial haemorrhage, and subarachnoid haemorrhage. The nucleotide-binding and oligomerisation (NOD) domain-like receptor (NLR) family pyrin domain (PYD)-containing 3 (NLRP3) inflammasome is a protein complex and a vital component of the immune system. Emerging evidence has indicated that the NLRP3 inflammasome plays an important role in cerebrovascular diseases. The function of the NLRP3 inflammasome in the pathogenesis of cerebrovascular diseases remains an interesting field of research. In this review, we first summarised the pathological mechanism of cerebrovascular diseases and the pathological mechanism of the NLRP3 inflammasome in aggravating atherosclerosis and cerebrovascular diseases. Second, we outlined signalling pathways through which the NLRP3 inflammasome participates in aggravating or mitigating cerebrovascular diseases. Reactive oxygen species (ROS)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), ROS/thioredoxin-interacting protein (TXNIP) and purinergic receptor-7 (P2X7R) signalling pathways can activate the NLRP3 inflammasome; activation of the NLRP3 inflammasome can aggravate cerebrovascular diseases by mediating apoptosis and pyroptosis. Autophagy/mitochondrial autophagy, nuclear factor E2-related factor-2 (Nrf2), interferon (IFN)-β, sirtuin (SIRT), and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) reportedly alleviate cerebrovascular diseases by inhibiting NLRP3 inflammasome activation. Finally, we explored specific inhibitors of the NLRP3 inflammasome based on the two-step activation of the NLRP3 inflammasome, which can be developed as new drugs to treat cerebrovascular diseases.
Collapse
Affiliation(s)
- Rongrong Bai
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jie Shao
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Deng
- Department of Hepatopancreatobiliary Surgery, The First Hospital of Jilin University, Changchun, China
| | - Reyisha Refuhati
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Zhao S, Li X, Wang J, Wang H. The Role of the Effects of Autophagy on NLRP3 Inflammasome in Inflammatory Nervous System Diseases. Front Cell Dev Biol 2021; 9:657478. [PMID: 34079796 PMCID: PMC8166298 DOI: 10.3389/fcell.2021.657478] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a stable self-sustaining process in eukaryotic cells. In this process, pathogens, abnormal proteins, and organelles are encapsulated by a bilayer membrane to form autophagosomes, which are then transferred to lysosomes for degradation. Autophagy is involved in many physiological and pathological processes. Nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, containing NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) and pro-caspase-1, can activate caspase-1 to induce pyroptosis and lead to the maturation and secretion of interleukin-1 β (IL-1 β) and IL-18. NLRP3 inflammasome is related to many diseases. In recent years, autophagy has been reported to play a vital role by regulating the NLRP3 inflammasome in inflammatory nervous system diseases. However, the related mechanisms are not completely clarified. In this review, we sum up recent research about the role of the effects of autophagy on NLRP3 inflammasome in Alzheimer’s disease, chronic cerebral hypoperfusion, Parkinson’s disease, depression, cerebral ischemia/reperfusion injury, early brain injury after subarachnoid hemorrhage, and experimental autoimmune encephalomyelitis and analyzed the related mechanism to provide theoretical reference for the future research of inflammatory neurological diseases.
Collapse
Affiliation(s)
- Shizhen Zhao
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Xiaotian Li
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Jie Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Honggang Wang
- Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
25
|
Huang L, Lenahan C, Boling W, Tang J, Zhang JH. Molecular Hydrogen Application in Stroke: Bench to Bedside. Curr Pharm Des 2021; 27:703-712. [PMID: 32940172 DOI: 10.2174/1381612826666200917152316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Stroke is a major cause of mortality and morbidity worldwide. Effective treatments are limited. Molecular hydrogen is emerging as a novel medical gas with therapeutic potential for various neurological diseases, including stroke. We reviewed the experimental and clinical findings of the effects of molecular hydrogen therapy in stroke patients and models. The underlying neuroprotective mechanisms against stroke pathology were also discussed.
Collapse
Affiliation(s)
- Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92324, United States
| | - Warren Boling
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| | - Jiping Tang
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, 92324, United States
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA92354, United States
| |
Collapse
|
26
|
Bagherniya M, Khedmatgozar H, Fakheran O, Xu S, Johnston TP, Sahebkar A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother Res 2021; 35:4804-4833. [PMID: 33856730 DOI: 10.1002/ptr.7118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is a multiprotein complex that induces caspase-1 activation and the downstream substrates involved with the processing and secretion of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 and tumor necrosis factor-α (TNF- α). The NLRP3 inflammasome is activated by a wide range of danger signals that derive from metabolic dysregulation. Activation of this complex often involves the adaptor ASC and upstream sensors including NLRP1, NLRP3, NLRC4, AIM2, and pyrin, which are activated by different stimuli including infectious agents and changes in cell homeostasis. It has been shown that nutraceuticals and medicinal plants have antiinflammatory properties and could be used as complementary therapy in the treatment of several chronic diseases that are related to inflammation, for example, cardiovascular diseases and diabetes mellitus. Herb-based medicine has demonstrated protective effects against NLRP3 inflammasome activation. Therefore, this review focuses on the effects of nutraceuticals and bioactive compounds derived from medicinal plants on NLRP3 inflammasome activation and the possible mechanisms of action of these natural products. Thus, herb-based, natural products/compounds can be considered novel, practical, and accessible agents in chronic inflammatory diseases by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Food Security Research Center, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Khedmatgozar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Fakheran
- Dental Research Center, Department of Periodontics, Dental Research Institute, Isfahan University of Medical sciences, Isfahan, Iran
| | - Suowen Xu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Territo PR, Zarrinmayeh H. P2X 7 Receptors in Neurodegeneration: Potential Therapeutic Applications From Basic to Clinical Approaches. Front Cell Neurosci 2021; 15:617036. [PMID: 33889073 PMCID: PMC8055960 DOI: 10.3389/fncel.2021.617036] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/02/2021] [Indexed: 12/27/2022] Open
Abstract
Purinergic receptors play important roles in central nervous system (CNS), where the bulk of these receptors are implicated in neuroinflammatory responses and regulation of cellular function of neurons, microglial and astrocytes. Within the P2X receptor family, P2X7 receptor is generally known for its inactivity in normal conditions and activation by moderately high concentrations (>100 μM) of extracellular adenosine 5′-triphosphate (ATP) released from injured cells as a result of brain injury or pathological conditions. Activation of P2X7R contributes to the activation and proliferation of microglia and directly contribute to neurodegeneration by provoking microglia-mediated neuronal death, glutamate-mediated excitotoxicity, and NLRP3 inflammasome activation that results in initiation, maturity and release of the pro-inflammatory cytokines and generation of reactive oxygen and nitrogen species. These components of the inflammatory response play important roles in many neural pathologies and neurodegeneration disorders. In CNS, expression of P2X7R on microglia, astrocytes, and oligodendrocytes are upregulated under neuroinflammatory conditions. Several in vivo studies have demonstrated beneficial effects of the P2X7 receptor antagonists in animal model systems of neurodegenerative diseases. A number of specific and selective P2X7 receptor antagonists have been developed, but only few of them have shown efficient brain permeability. Finding potent and selective P2X7 receptor inhibitors which are also CNS penetrable and display acceptable pharmacokinetics (PK) has presented challenges for both academic researchers and pharmaceutical companies. In this review, we discuss the role of P2X7 receptor function in neurodegenerative diseases, the pharmacological inhibition of the receptor, and PET radiopharmaceuticals which permit non-invasive monitoring of the P2X7 receptor contribution to neuroinflammation associated with neurodegeneration.
Collapse
Affiliation(s)
- Paul R Territo
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hamideh Zarrinmayeh
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
28
|
Wang Z, He C, Shi JS. Natural Products for the Treatment of Neurodegenerative Diseases. Curr Med Chem 2020; 27:5790-5828. [PMID: 31131744 DOI: 10.2174/0929867326666190527120614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Chunyang He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China
| |
Collapse
|
29
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
30
|
Du C, Xi C, Wu C, Sha J, Zhang J, Li C. Ginkgo biloba extract protects early brain injury after subarachnoid hemorrhage via inhibiting thioredoxin interacting protein/NLRP3 signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1340-1345. [PMID: 33149868 PMCID: PMC7585531 DOI: 10.22038/ijbms.2020.42834.10090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Objective(s): To investigate the effect of Ginkgo biloba extract EGb761 in early brain injury (EBI) after subarachnoid hemorrhage (SAH) and its mechanism. Materials and Methods: The SAH rat model was constructed and pre-treated with EGb761.The neurological function, severity of SAH, water content of brain tissue, damage degree of the blood-brain barrier, related indexes of oxidative stress, and the level of inflammatory cytokines were compared among the groups. The expression of TXNIP/NLRP3 signaling pathway-related proteins in brain tissues was detected by Western blot. Results: After SAH modeling, the neurological function score was significantly reduced, the degree of brain injury, levels of oxidative stress, inflammatory factors, expression of NLRP3 and TXNIP were all increased. Compared with the SAH rats, the neurological function score of rats pre-treated by EGb761 was higher, the degree of brain injury, levels of oxidative stress and inflammatory factors, expression of NLRP3 and TXNIP were all lower. Conclusion: EGb761 could protect neurological injury after SAH and its mechanism may be that EGb761 could inhibit the activation of the TXNIP/NLRP3 signaling pathway and inflammatory reaction after oxidative stress.
Collapse
Affiliation(s)
- Chuan Du
- Neurosurgery Department, Zhangqiu District People's Hospital, Jinan 250200, China
| | - Chao Xi
- Cardiothoracic Surgery Department, Zhangqiu District People's Hospital, Jinan250200, China
| | - Chunxiao Wu
- Pharmacy Intravenous Admixture Services, Zhangqiu District People's Hospital, Jinan 250200, China
| | - Jichang Sha
- Neurosurgery Department, Zhangqiu District People's Hospital, Jinan 250200, China
| | - Jinan Zhang
- ENT Department, Zhangqiu District People's Hospital, Jinan 250200, China
| | - Chao Li
- Neurosurgery Department, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
31
|
Du X, Xu Y, Chen S, Fang M. Inhibited CSF1R Alleviates Ischemia Injury via Inhibition of Microglia M1 Polarization and NLRP3 Pathway. Neural Plast 2020; 2020:8825954. [PMID: 32908485 PMCID: PMC7474788 DOI: 10.1155/2020/8825954] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Ischemia cerebral stroke is one of the common neurological diseases with severe inflammatory response and neuron death. The inhibition of colony-stimulating factor 1 receptor (CSF1R) which especially expressed in microglia/macrophage exerted neuroprotection in stroke. However, the underlying neuroinflammatory regulation effects of CSF1R in ischemia stroke are not clear. In this study, cerebral ischemia stroke mice model was established. The C57/B6J mice were administered with Ki20227, a CSF1R inhibitor, by gavage for 7 consecutive days (0.002 mg/kg/day) before modeling. The Rota-Rod test and neurobehavioral score test were investigated to assess neurobehavioral functions. The area of infarction was assessed by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. The mRNA expressions of M1/M2 microglia markers were evaluated by real-time PCR. Immunofluorescence and Western blot were utilized to detect the changes of Iba1 and NLRP3 pathway proteins. Results showed that neurobehavioral function improvement was demonstrated by an increased stay time on the Rota-Rod test and a decreased neurobehavioral score in the Ki20227 treatment group. The area of infarction reduced in Ki20227 group when compared to the stroke group. Moreover, the mRNA expression of M1 microglia markers (TNF-α and iNOS) decreased while M2 microglia markers (IL-10 and Arg-1) increased. Meanwhile, compared to the stroke and stroke+PBS group, Ki20227 administration downregulated the expression of NLRP3, active caspase 1, and NF-κB protein in the ischemia penumbra of Ki20227 treatment group mice. In short, the CSF1R inhibitor, Ki20227, played vital neuroprotective roles in ischemia cerebral stroke mice, and the mechanisms may be via inhibiting microglia M1 polarization and NLRP3 inflammasome pathway activation. Our study provides a potential new target for the treatment of ischemic stroke injury.
Collapse
Affiliation(s)
- Xiaoxue Du
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
- Translational Medicine Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shijia Chen
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, 310006 Zhejiang, China
| |
Collapse
|
32
|
Neuroinflammation Mediated by NLRP3 Inflammasome After Intracerebral Hemorrhage and Potential Therapeutic Targets. Mol Neurobiol 2020; 57:5130-5149. [PMID: 32856203 DOI: 10.1007/s12035-020-02082-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most fatal subtype of stroke; there is still a lack of effective treatment. Microglia are a major component of the innate immune system, and they respond to acute brain injury by activating and forming classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotype. The existence of the polarization indicates that the role of microglia in disease's progression and recovery after ICH is still unclear, perhaps involving microglial secretion of anti-inflammatory or pro-inflammatory cytokines and chemokines. The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is considered to be the main participant in neuroinflammation. Recent evidence has shown that NLRP3 inflammasome can be activated after ICH, resulting in inflammatory cascade reactions and aggravating brain injury. Furthermore, previous studies have reported that NLRP3 inflammasome is mainly present in microglia, so we speculate that its activation may be strongly associated with microglial polarization. Many scholars have investigated the role of brain injury caused by NLRP3 inflammasome after ICH, but the precise operating mechanisms remain uncertain. This review summarized the activation mechanism of NLRP3 inflammasome after ICH and the possible mechanism of NLRP3 inflammasome promoting neuroinflammation and aggravating nerve injury and discussed the relevant potential therapeutic targets.
Collapse
|
33
|
Wang C, Jia Q, Sun C, Jing C. Calcium sensing receptor contribute to early brain injury through the CaMKII/NLRP3 pathway after subarachnoid hemorrhage in mice. Biochem Biophys Res Commun 2020; 530:651-657. [PMID: 32768195 DOI: 10.1016/j.bbrc.2020.07.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022]
Abstract
The subversive role of Calcium sensing receptor (CaSR) in cerebral ischemia and traumatic brain injury has been recently reported. Nevertheless, the role of CaSR in early brain injury (EBI) after subarachnoid hemorrhage (SAH) remains unexplored. Using the endovascular perforation model in mice, this study was aimed at investigating the role and potential mechanism of CaSR in EBI after SAH. Gadolinium trichloride (GdCI3), an agonist of CaSR, and NPS-2143, an inhibitor of CaSR, were administered intraperitoneally. The CaMKII inhibitor KN-93 was injected to intracerebroventricular. We found that CaSR expression was increased and widely expressed in neurons, astrocytes, and microglia after SAH. GdCI3 further deteriorated neurological function, brain edema, neurodegeneration, which were alleviated by NPS-2143. Also, GdCI3 increased the level of CaMKII phosphorylation, and upregulated expression of NLRP3, cleaved caspase-1, and IL-1β, which were attenuated by NPS-2143. Besides, CaMKII inhibitor KN-93 down-regulated the upregulated expression of NLRP3, cleaved caspase-1, and IL-1β induced by GdCI3. In conclusion, CaSR activation promotes early brain injury, which may be related to the CaMKII/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingbin Jia
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Chenjun Sun
- Department of Neurosurgery, Shaoxing Central Hospital, Shaoxing, Zhejiang, China
| | - Chaohui Jing
- Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Matsumura K, Kumar TP, Guddanti T, Yan Y, Blackburn SL, McBride DW. Neurobehavioral Deficits After Subarachnoid Hemorrhage in Mice: Sensitivity Analysis and Development of a New Composite Score. J Am Heart Assoc 2020; 8:e011699. [PMID: 30971151 PMCID: PMC6507191 DOI: 10.1161/jaha.118.011699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Because of the failure of numerous clinical trials, various recommendations have been made to improve the usefulness of preclinical studies. Specifically, the STAIR (Stroke Therapy Academic Industry Roundtable) recommendations highlighted functional outcome as a critical measure. Recent reviews of experimental subarachnoid hemorrhage (SAH) studies have brought to light the numerous neurobehavioral scoring systems that are used in preclinical SAH studies. To gain insight into the utility of these scoring systems, as well as to identify a scoring system that best captures the deficits caused by SAH in mice, we designed the current study. Methods and Results Adult male C57BL/6J mice were used. One cohort of mice was randomly allocated to either sham or SAH and had functional testing performed on days 1 to 3 post‐SAH using the modified Bederson Score, Katz Score, Garcia Neuroscore, and Parra Neuroscore, as well as 21 individual subtests. A new composite neuroscore was developed using the 8 most diagnostically accurate subtests. To validate the use of the developed composite neuroscore, another cohort of mice was randomly assigned to either the sham or SAH group and neurobehavior was evaluated on days 1 to 3, 5, and 7 after injury. Receiver operating characteristic curves were used to analyze the diagnostic accuracy of each scoring system, as well as the subtests. Of the 4 published scoring systems, the Parra Neuroscore was diagnostically accurate for SAH injury in mice versus the modified Bederson and Katz Scores, but not the Garcia Neuroscore. However, the newly developed composite neuroscore was found to be statistically more diagnostically accurate than even the Parra Neuroscore. Conclusions The findings of this study promote use of the newly developed composite neuroscore for experimental SAH studies in mice.
Collapse
Affiliation(s)
- Kanako Matsumura
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - T Peeyush Kumar
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Tejesh Guddanti
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Yuanqing Yan
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Spiros L Blackburn
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| | - Devin W McBride
- 1 The Vivian L. Smith Department of Neurosurgery McGovern Medical School The University of Texas Health Science Center at Houston Houston TX
| |
Collapse
|
35
|
Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, Lenahan C, Zhang JH, Shao A, Zhang J. Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke. Front Cell Neurosci 2020; 14:68. [PMID: 32317935 PMCID: PMC7146617 DOI: 10.3389/fncel.2020.00068] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening neurological disease characterized by high mortality and morbidity. Various pathophysiological responses are initiated after blood enters the interstitial space of the brain, compressing the brain tissue and thus causing cell death. Recently, three new programmed cell deaths (PCDs), necroptosis, pyroptosis, and ferroptosis, were also found to be important contributors in the pathophysiology of hemorrhagic stroke. Additionally, blood-brain barrier (BBB) dysfunction plays a crucial role in the pathophysiology of hemorrhagic stroke. The primary insult following BBB dysfunction may disrupt the tight junctions (TJs), transporters, transcytosis, and leukocyte adhesion molecule expression, which may lead to brain edema, ionic homeostasis disruption, altered signaling, and immune infiltration, consequently causing neuronal cell death. This review article summarizes recent advances in our knowledge of the mechanisms regarding these new PCDs and reviews their contributions in hemorrhagic stroke and potential crosstalk in BBB dysfunction. Numerous studies revealed that necroptosis, pyroptosis, and ferroptosis participate in cell death after subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH). Endothelial dysfunction caused by these three PCDs may be the critical factor during BBB damage. Also, several signaling pathways were involved in PCDs and BBB dysfunction. These new PCDs (necroptosis, pyroptosis, ferroptosis), as well as BBB dysfunction, each play a critical role after hemorrhagic stroke. A better understanding of the interrelationship among them might provide us with better therapeutic targets for the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 2020; 35:623-636. [PMID: 32026458 DOI: 10.14670/hh-18-208] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disorder. Neuroinflammation is a critical cause of brain injury following SAH in both acute and chronic phases. While accumulating evidence has shown that therapies targeting neuroinflammation exerted beneficial effects in experimental SAH, there is little clinical evidence. One of the factors making neuroinflammation complicated is that inflammatory signaling pathways and mediators act as protective or detrimental responses at different phases. In addition, biomarkers to detect neuroinflammation are little known in clinical settings. In this review, first, we discuss how the inflammatory signaling pathways contribute to brain injury and other secondary pathophysiological changes in SAH. Damage-associated molecular patterns arising from mechanical stress, transient global cerebral ischemia, red blood cell breakdown and delayed cerebral ischemia following SAH trigger to activate pattern recognition receptors (PRRs) such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and receptors for advanced glycation end products. Most of PRRs activate common downstream signaling transcriptional factor nuclear factor-κΒ and mitogen-activated protein kinases, releasing pro-inflammatory mediators and cytokines. Next, we focus on how pro-inflammatory substances play a role during the course of SAH. Finally, we highlight an important inducer of neuroinflammation, matricellular protein (MCP). MCPs are a component of extracellular matrix and exert beneficial and harmful effects through binding to receptors, other matrix proteins, growth factors, and cytokines. Treatment targeting MCPs is being proved efficacious in pre-clinical models for preventing brain injury including neuroinflammation in SAH. In addition, MCPs may be a candidate of biomarkers predicting brain injury following SAH in clinical settings.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
37
|
Zhuang K, Zuo YC, Sherchan P, Wang JK, Yan XX, Liu F. Hydrogen Inhalation Attenuates Oxidative Stress Related Endothelial Cells Injury After Subarachnoid Hemorrhage in Rats. Front Neurosci 2020; 13:1441. [PMID: 32038143 PMCID: PMC6985445 DOI: 10.3389/fnins.2019.01441] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disease with poor clinical outcome. Nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome serves a key role in inflammatory response, which may lead to endothelial cell injury and blood-brain barrier (BBB) disruption. Hydrogen (H2) is considered a neuroprotective antioxidant. This study was set out to explore whether hydrogen inhalation protects against SAH induced endothelial cell injury, BBB disruption, microthrombosis and vasospasm in rats. Methods: One hundred eighty-two male SD rats were used for the study. SAH was induced by endovascular perforation. H2 at a concentration of 3.3% was inhaled beginning at 0.5 h after SAH for duration of 30, 60 or 120 min, followed by single administration or once daily administration for 3 days. The temporal expression of NLRP3 and ASC in the brain was determined, with the effect of hydrogen inhalation evaluated. In addition, brain water content, oxidative stress markers, inflammasome, apoptotic markers, microthrombosis, and vasospasm were evaluated at 24 or 72 h after SAH. Results: The expression of NLRP3 and ASC were upregulated after SAH associated with elevated expression of MDA, 8-OHdG, 4-HNE, HO-1, TLR4/NF-κB, inflammatory and apoptotic makers. Hydrogen inhalation reduced the expression of these inflammatory and apoptotic makers in the vessels, brain edema, microthrombi formation, and vasospasm in rats with SAH relative to control. Hydrogen inhalation also improved short-term and long-term neurological recovery after SAH. Conclusion: Hydrogen inhalation can ameliorate oxidative stress related endothelial cells injury in the brain and improve neurobehavioral outcomes in rats following SAH. Mechanistically, the above beneficial effects might be related to, at least in part, the inhibition of activation of ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Kai Zhuang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Chun Zuo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Ji-Kai Wang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Luo Y, Reis C, Chen S. NLRP3 Inflammasome in the Pathophysiology of Hemorrhagic Stroke: A Review. Curr Neuropharmacol 2020; 17:582-589. [PMID: 30592254 PMCID: PMC6712291 DOI: 10.2174/1570159x17666181227170053] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/26/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Hemorrhagic stroke is a devastating disease with high morbidity and mortality. There is still a lack of effective ther-apeutic approach. The recent studies have shown that the innate immune system plays a significant role in hemorrhagic stroke. Microglia, as major components in innate immune system, are activated and then can release cytokines and chemo-kines in response to hemorrhagic stroke, and ultimately led to neuroinflammation and brain injury. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is predominantly released by microglia and is believed as the main contributor of neuroinflammation. Several studies have focused on the role of NLRP3 inflammasome in hemorrhagic stroke-induced brain injury, however, the specific mechanism of NLRP3 activation and regulation remains unclear. This re-view summarized the mechanism of NLRP3 activation and its role in hemorrhagic stroke and discussed the translational sig-nificance.
Collapse
Affiliation(s)
- Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
39
|
Zuo Y, He T, Liao P, Zhuang K, Yan X, Liu F. 17-Allylamino-Demethoxygeldanamycin Ameliorate Microthrombosis Via HSP90/RIP3/NLRP3 Pathway After Subarachnoid Hemorrhage in Rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2020; 127:69-75. [PMID: 31407066 DOI: 10.1007/978-3-030-04615-6_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) is a severe and emergent cerebrovascular disease, the prognosis of which usually very poor. Microthrombi formation highlighted with inflammation occurs early after SAH. As the main cause of DCI, microthrombosis associated with the prognosis of SAH. The aim of this study was to show HSP90 inhibitor 17-AAG effect on microthrombosis after SAH in rats. METHODS Ninety-five SD rats were used for the experiment. For time course study, the rats were randomly divided into five groups: sham group and SAH group with different time point (1d, 2d, 3d, 5d). Endovascular perforation method was conducted for SAH model. Neurological score, SAH grade, and mortality were measured after SAH. The samples of the left hemisphere brain were collected. The expression of HSP90 was detected by Western blot. The microthrombosis after SAH in rats' brain was detected by immunohistochemistry. For mechanism study, rats were randomly divided into three groups: sham, SAH + vehicle, and SAH +17-AAG (n = 6/group). 17-AAG was given by intraperitoneal injection (80 mg/kg) 1 h after SAH. Neurological function were measured at 24 h after SAH. The expression of RIP3, NLRP3, ASC, and IL-1β was measured by Western blot. Microthrombosis was detected by immunohistochemistry. RESULTS Our results showed that the HSP90 protein level increased and peaked at 2 days after SAH. Microthrombosis caused by SAH was increased in 1 day and peaked at 2 days after SAH. Administration HSP90 specific inhibitor 17-AAG reduced expression of RIP3, NLRP3, ASC, and IL-1β, reduced microthrombosis after SAH, and improved neurobehavior when compared to vehicle group. CONCLUSIONS 17-AAG can ameliorate microthrombosis via HSP90/RIP3/NLRP3 pathway and improve neurobehavior after SAH.
Collapse
Affiliation(s)
- Yuchun Zuo
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Tibiao He
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Peiqiang Liao
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Kai Zhuang
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy, The XiangYa Medical School, Central South University, Changsha, China
| | - Fei Liu
- Department of Neurosurgery, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
40
|
Li J, Chen S, Fan J, Zhang G, Ren R. Minocycline Attenuates Experimental Subarachnoid Hemorrhage in Rats. Open Life Sci 2019; 14:595-602. [PMID: 33817197 PMCID: PMC7874754 DOI: 10.1515/biol-2019-0067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Backgroud The aim of this study was to evaluate the therapeutic effect of minocycline on treating experimental subarachnoid hemorrhage (SAH) in rats and to explore its possible molecular mechanism. Methods SAH was induced in male Sprague-Dawley rats by endovascular perforation. The rats were treated with minocycline (25 mg/kg or 50 mg/kg) or saline at 2 hand 12 h post SAH. Neurological function, cerebral hemorrhage, and edema were scored at 48 h post SAH. Cell death and P2X4 receptor (P2X4R) expression were observed in the prefrontal cortex (PFC). Results Treatment with a highdose of minocycline significantly improved the neurological function score, and attenuated cerebral hemorrhage and edema. Low-dose minocycline could reduce hemorrhage, but the effect on neurological deficits and brain edema was not obvious. Minocycline treatment could alleviate neuronal apoptosis in the PFC, which was related to reduced expression of inflammatory cytokines. Immunofluorescence showed that P2X4R on microglia was activated after SAH. Minocycline treatment inhibited P2X4R activation and further suppressed the phosphorylation of downstream p38 MAPK. Conclusions Minocycline plays a neuroprotective role by attenuating early brain injury after experimental SAH. The therapeutic mechanism of minocycline may be mediated by the inhibition of P2X4R on microglia.
Collapse
Affiliation(s)
- Jingbo Li
- Neurocritical Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, P.R. China
| | - Shuda Chen
- Neurocritical Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, P.R. China
| | - Jing Fan
- Neurocritical Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, P.R. China
| | - Gao Zhang
- Neurocritical Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, P.R. China
| | - Reng Ren
- Neurocritical Care Unit, the Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, Zhejiang Province, P.R. China
| |
Collapse
|
41
|
Hung W, Ho C, Pan M. Targeting the NLRP3 Inflammasome in Neuroinflammation: Health Promoting Effects of Dietary Phytochemicals in Neurological Disorders. Mol Nutr Food Res 2019; 64:e1900550. [DOI: 10.1002/mnfr.201900550] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/15/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Wei‐Lun Hung
- School of Food SafetyTaipei Medical University Taipei 11031 Taiwan
| | - Chi‐Tang Ho
- Department of Food ScienceRutgers University New Brunswick NJ 08901 USA
| | - Min‐Hsiung Pan
- Institute of Food Science and TechnologyNational Taiwan University Taipei 10617 Taiwan
- Department of Medical ResearchChina Medical University HospitalChina Medical University Taichung 40402 Taiwan
- Department of Health and Nutrition BiotechnologyAsia University Taichung 41354 Taiwan
| |
Collapse
|
42
|
Yuan S, Yu Z, Zhang Z, Zhang J, Zhang P, Li X, Li H, Shen H, Chen G. RIP3 participates in early brain injury after experimental subarachnoid hemorrhage in rats by inducing necroptosis. Neurobiol Dis 2019; 129:144-158. [PMID: 31082470 DOI: 10.1016/j.nbd.2019.05.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/22/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Necroptosis is a regulated form of necrosis that is mediated by a variety of proteins including tumor necrosis factor-α (TNF-α) and receptor-interacting proteins (RIPs). TNF-α, a critical inflammatory molecule, is one of the initiating signals in the necroptosis pathway, and RIP3 acts as a switch that commits the cell to necroptosis. Subarachnoid hemorrhage (SAH) is a common type of hemorrhagic stroke with high mortality and disability rates. RIP3 has been studied in many central nervous system (CNS) diseases, but its role in SAH has not been investigated in depth. Here, we used an autologous-blood injection model to study the role of RIP3 in brain injury induced by SAH in rats. Several indexes such as brain edema, loss of blood-brain barrier (BBB) integrity, and behavioral tests of neurological function were used to evaluate brain damage in SAH-injured rats. We found that the expression of RIP3 was increased in the rat brain after SAH, reaching the highest point 24 h post-injury. We also showed that genetic or pharmacological inhibition of RIP3 or TNF-α reduced the brain damage induced by SAH, whereas overexpression of RIP3 aggravated brain injury and neurological damage. Additionally, we verified the presence of RIP3-mediated necroptosis in an in vitro SAH model of primary cultured neurons treated with conditioned medium from primary microglia activated by oxygen hemoglobin (OxyHb). Collectively, our findings indicated that RIP3 contributed to brain damage after SAH by inducing necroptosis.
Collapse
Affiliation(s)
- Shuai Yuan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhuwei Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Peng Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
43
|
Qi X, Liu J, Wu J, Bi Y, Han C, Zhang G, Lou M, Lu J, Tang J. Initiating TrkB/Akt Signaling Cascade Preserves Blood-Brain Barrier after Subarachnoid Hemorrhage in Rats. Cell Transplant 2019; 28:1002-1008. [PMID: 31208230 PMCID: PMC6728706 DOI: 10.1177/0963689719857649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The integrity of the blood–brain barrier (BBB) plays a vital role in affecting the
prognosis of subarachnoid hemorrhage (SAH). This study aimed to investigate activation of
the Tropomyosin-related kinase receptor B (TrkB) and its downstream signaling pathway on
preserving BBB breakdown after experimental SAH. An endovascular perforation SAH model was
applied. N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2- oxopiperidine-3-carboxamide (HIOC), the
derivative of N-acetyl serotonin (NAS), was intracerebroventricularly administered 3 h
after SAH induction. The neurologic scores and brain water content were evaluated in an
outcome study. Western blot and immunofluorescence staining were used to investigate the
mechanism. The results indicated that HIOC activated the TrkB/Akt pathway, increased the
tight junction expression, improved neurologic deficits, and ameliorated brain edema after
SAH. Thus, we conclude that initiating the TrkB/Akt signaling cascade preserves BBB
breakdown after experimental SAH in rats.
Collapse
Affiliation(s)
- Xiangqian Qi
- 1 Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Both authors are the co-authors of this article
| | - Juan Liu
- 1 Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Both authors are the co-authors of this article
| | - Jiejin Wu
- 1 Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunke Bi
- 1 Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cong Han
- 1 Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiyun Zhang
- 1 Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiqing Lou
- 1 Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfei Lu
- 2 Discipline of Neuroscience, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjia Tang
- 1 Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Li Z, Han X. Resveratrol alleviates early brain injury following subarachnoid hemorrhage: possible involvement of the AMPK/SIRT1/autophagy signaling pathway. Biol Chem 2019; 399:1339-1350. [PMID: 30067508 DOI: 10.1515/hsz-2018-0269] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Resveratrol (RSV) attenuates early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study aimed to investigate whether the effects of RSV on SAH-induced EBI were mediated via the AMPK/SIRT1/autophagy pathway. A SAH rat model was established and oxyhemoglobin (Oxyhb)-induced primary cortical neurons were prepared to mimic SAH in vitro. The results showed that RSV significantly reduced microglia activation and the release of inflammatory cytokines, resulting in the alleviation of neurological behavior impairment, brain edema and neural apoptosis at 24 h post-SAH. However, RSV failed to ameliorate neurological deficits, brain edema and neural apoptosis when SAH injury lasted for 72 h. Additionally, at 24 h post-SAH, RSV-administered rats showed a significant increase in the LC3-II/I ratio and the phosphorylation state of AMPK and SIRT1 protein expression in brain tissues. Further in vitro studies revealed that RSV notably reduced the release of inflammatory cytokines and neural apoptosis in neurons at 24 post-Oxyhb, which was abolished by 3MA (an autophagy inhibitor) and Compound C (an AMPK inhibitor). Moreover, Compound C decreased LC3-II/I ratio and inhibited SIRT1 protein expression, whereas 3MA had no significant effects on AMPK/SIRT1-related proteins. In conclusion, the AMPK/SIRT1/autophagy pathway plays an important role in the alleviation of SAH-induced EBI by RSV.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jian She Road, Zhengzhou 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jian She Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
45
|
Alishahi M, Farzaneh M, Ghaedrahmati F, Nejabatdoust A, Sarkaki A, Khoshnam SE. NLRP3 inflammasome in ischemic stroke: As possible therapeutic target. Int J Stroke 2019; 14:574-591. [PMID: 30940045 DOI: 10.1177/1747493019841242] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inflammation is a devastating pathophysiological process during stroke, a devastating disease that is the second most common cause of death worldwide. Activation of the NOD-like receptor protein (NLRP3)-infammasome has been proposed to mediate inflammatory responses during ischemic stroke. Briefly, NLRP3 inflammasome activates caspase-1, which cleaves both pro-IL-1 and pro-IL-18 into their active pro-inflammatory cytokines that are released into the extracellular environment. Several NLRP3 inflammasome inhibitors have been promoted, including small molecules, type I interferon, micro RNAs, nitric oxide, and nuclear factor erythroid-2 related factor 2 (Nrf2), some of which are potentially efficacious clinically. This review will describe the structure and cellular signaling pathways of the NLRP3 inflammasome during ischemic stroke, and current evidence for NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- 1 Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Farzaneh
- 2 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Farhoodeh Ghaedrahmati
- 3 Immunology Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Nejabatdoust
- 4 Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Alireza Sarkaki
- 5 Department of Physiology, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- 5 Department of Physiology, Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
46
|
RP001 hydrochloride improves neurological outcome after subarachnoid hemorrhage. J Neurol Sci 2019; 399:6-14. [PMID: 30738334 DOI: 10.1016/j.jns.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023]
Abstract
Subarachnoid hemorrhage (SAH) results in neurological damage, acute cardiac damage and has a high mortality rate. Immunoresponse in the acute phase after SAH plays a key role in mediating vasospasm, edema, inflammation and neuronal damage. The S1P/S1PR pathway impacts multiple cellular functions, exerts anti-inflammatory and anti-apoptotic effects, promotes remyelination, and improves outcome in several central nervous system (CNS) diseases. RP001 hydrochloride is a novel S1PR agonist, which sequesters lymphocytes within their secondary tissues and prevents infiltration of immune cells into the CNS thereby reducing immune response. In this study, we investigated whether RP001 attenuates neuronal injury after SAH by reducing inflammation. S1PRs, specifically S1PR1, 3 not only exerts anti-inflammatory effects, but also decreases heart rate and induces atrioventricular conduction abnormalities. Therefore, we also tested whether RP001 treatment of SAH regulates cardiac functional outcome. Male adult C57BL/6 mice were subjected to SAH, and neurological function tests, echocardiography, and immunohistochemical analysis were performed. SAH induces neurological deficits and acute cardiac dysfunction compared to sham control mice. Treatment of SAH with a low-dose of RP001 induces better neurological outcome and cardiac function compared to a high-dose of RP001. Low-dose-RP001 treatment significantly decreases apoptosis, white matter damage, blood brain barrier permeability, microglial/astrocyte activation, macrophage chemokine protein-1, matrix metalloproteinase-9 and NADPH oxidase-2 expression in the brain compared to SAH control mice. Our findings indicate that low-dose of RP001 alleviates neurological damage after SAH, in part by decreasing neuroinflammation.
Collapse
|
47
|
Liu W, Li R, Yin J, Guo S, Chen Y, Fan H, Li G, Li Z, Li X, Zhang X, He X, Duan C. Mesenchymal stem cells alleviate the early brain injury of subarachnoid hemorrhage partly by suppression of Notch1-dependent neuroinflammation: involvement of Botch. J Neuroinflammation 2019; 16:8. [PMID: 30646897 PMCID: PMC6334441 DOI: 10.1186/s12974-019-1396-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/02/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Activated microglia-mediated neuroinflammation has been regarded as an underlying key player in the pathogenesis of subarachnoid hemorrhage (SAH)-induced early brain injury (EBI). The therapeutic potential of bone marrow mesenchymal stem cells (BMSCs) transplantation has been demonstrated in several brain injury models and is thought to involve modulation of the inflammatory response. The present study investigated the salutary effects of BMSCs on EBI after SAH and the potential mechanism mediated by Notch1 signaling pathway inhibition. METHODS The Sprague-Dawley rats SAH model was induced by endovascular perforation method. BMSCs (3 × 106 cells) were transplanted intravenously into rats, and N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT), a Notch1 activation inhibitor, and Notch1 small interfering RNA (siRNA) were injected intracerebroventricularly. The effects of BMSCs on EBI were assayed by neurological score, brain water content (BWC), blood-brain barrier (BBB) permeability, magnetic resonance imaging, hematoxylin and eosin staining, and Fluoro-Jade C staining. Immunofluorescence and immunohistochemistry staining, Western blotting, and quantitative real-time polymerase chain reaction were used to analyze various proteins and transcript levels. Pro-inflammatory cytokines were measured by enzyme-linked immunosorbent assay. RESULTS BMSCs treatment mitigated the neurobehavioral dysfunction, BWC and BBB disruption associated with EBI after SAH, reduced ionized calcium binding adapter molecule 1 and cluster of differentiation 68 staining and interleukin (IL)-1 beta, IL-6 and tumor necrosis factor alpha expression in the left hemisphere but concurrently increased IL-10 expression. DAPT or Notch1 siRNA administration reduced Notch1 signaling pathway activation following SAH, ameliorated neurobehavioral impairments, and BBB disruption; increased BWC and neuronal degeneration; and inhibited activation of microglia and production of pro-inflammatory factors. The augmentation of Notch1 signal pathway agents and phosphorylation of nuclear factor-κB after SAH were suppressed by BMSCs but the levels of Botch were upregulated in the ipsilateral hemisphere. Botch knockdown in BMSCs abrogated the protective effects of BMSCs treatment on EBI and the suppressive effects of BMSCs on Notch1 expression. CONCLUSIONS BMSCs treatment alleviated neurobehavioral impairments and the inflammatory response in EBI after SAH; these effects may be attributed to Botch upregulation in brain tissue, which subsequently inhibited the Notch1 signaling pathway.
Collapse
Affiliation(s)
- Wenchao Liu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Ran Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Jian Yin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Shenquan Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Yunchang Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Haiyan Fan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Gancheng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Zhenjun Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Xifeng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Xin Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Xuying He
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| | - Chuanzhi Duan
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, 510282 China
| |
Collapse
|
48
|
Sun J, Chi L, He Z, Gao Y, Gao Y, Huang Y, Nan G. NLRP3 inflammasome contributes to neurovascular unit damage in stroke. J Drug Target 2019; 27:866-875. [PMID: 30601069 DOI: 10.1080/1061186x.2018.1564925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recently, a wealth of information has emerged connecting the activation of the NLRP3 (NOD-like receptor family pyrin domain-containing 3) inflammasome to stroke pathogenesis, although the exact influence of the NLRP3 inflammasome on stroke is still in the stage of preliminary study and is awaiting further confirmation. In this paper, we will review the structure, assembly and activation of the NLRP3 inflammasome and its expression in the neurovascular units and will speculate on its possible roles in neurovascular injury post-stroke. Evidence on this topic suggests that targeting NLRP3-mediated inflammation at multiple levels may provide a new therapeutic strategy to prevent the deterioration of neurovascular units after stroke. However, many aspects of the biological link between the NLRP3 inflammasome and stroke remain ill-defined or even completely unknown. As fresh insights come to light regarding the NLRP3 inflammasome, the opportunities to develop new therapeutic strategies for stroke patients are expected to improve accordingly.
Collapse
Affiliation(s)
- Jing Sun
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Lumei Chi
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Zhidong He
- b Department of Neurosurgery , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Yu Gao
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Yufen Gao
- b Department of Neurosurgery , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Yujing Huang
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| | - Guangxian Nan
- a Department of Neurology , China-Japan Union Hospital of Jilin University , Changchun , Jilin , China
| |
Collapse
|
49
|
Ocak U, Ocak PE, Wang A, Zhang JH, Boling W, Wu P, Mo J, Zhang T, Huang L. Targeting mast cell as a neuroprotective strategy. Brain Inj 2018; 33:723-733. [PMID: 30554528 DOI: 10.1080/02699052.2018.1556807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Mast cells (MCs) are perivascularly located immune cells of haematopoietic origin. Emerging evidences suggest that the activation of MCs play important roles in the pathogenesis of blood brain barrier disruption, neuroinflammation, and neurodegeneration. Objectives: In this review, we aimed to discuss the detrimental effects of MCs in response to various types of brain injury, as well as the therapeutic potential and neuroprotective effects of targeting the activation and degranulation of MCs, particularly in the management of the acute phase. Methods: An extensive online literature search was conducted through Pubmed/Central on March 2018. Then, we comprehensively summarized the effects of the activation of brain MCs in acute brain injury along with current pharmacological strategies targeting at the activation of MCs. Results: The review of the current literature indicated that the activation and degranulation of brain MCs significantly contribute to the acute pathological process following different types of brain injury including focal and global cerebral ischaemia, intracerebral haemorrhage, subarachnoid haemorrhage, and traumatic brain injury. Conclusions: Brain MCs significantly contribute to the acute pathological processes following brain injury. In that regard, targeting brain MCs may provide a novel strategy for neuroprotection.
Collapse
Affiliation(s)
- Umut Ocak
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Pinar Eser Ocak
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Annie Wang
- b Department of Anesthesiology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - John H Zhang
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,b Department of Anesthesiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,c Department of Neurosurgery , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Warren Boling
- c Department of Neurosurgery , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Pei Wu
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,d Department of Neurosurgery , The First Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| | - Jun Mo
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,e Department of Neurosurgery, The Fourth Affiliated Hospital , School of Medicine, Zhejiang University , Yiwu , Zhejiang , China
| | - Tongyu Zhang
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,d Department of Neurosurgery , The First Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| | - Lei Huang
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,c Department of Neurosurgery , Loma Linda University School of Medicine , Loma Linda , CA , USA
| |
Collapse
|
50
|
Zuo Y, Wang J, Liao F, Yan X, Li J, Huang L, Liu F. Inhibition of Heat Shock Protein 90 by 17-AAG Reduces Inflammation via P2X7 Receptor/NLRP3 Inflammasome Pathway and Increases Neurogenesis After Subarachnoid Hemorrhage in Mice. Front Mol Neurosci 2018; 11:401. [PMID: 30459553 PMCID: PMC6232389 DOI: 10.3389/fnmol.2018.00401] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening cerebrovascular disease that usually has a poor prognosis. Heat shock proteins (HSPs) have been implicated in the mechanisms of SAH-associated damage, including increased inflammation and reduced neurogenesis. The aim of this study was to investigate the effects of HSP90 inhibition on inflammation and neurogenesis in a mouse model of experimental SAH induced by endovascular surgery. Western blotting showed HSP90 levels to be decreased, while neurogenesis, evaluated by 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry, was decreased in the hippocampuses of SAH mice. SAH also induced pro-inflammatory factors such as interleukin-1β (IL-1β), capase-1 and the NLRP3 inflammasome. However, intraperitoneal administration of the specific HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) reduced the levels of HSP90, NLRP3, ASC, caspase-1 and IL-1β, while increasing the levels of brain-derived neurotrophic factor and doublecortin (DCX), as well as the number of BrdU-positive cells in SAH mice. In addition, 17-AGG improved short- and long-term neurobehavioral outcomes. The neuroprotective and anti-inflammatory effects of 17-AGG were reversed by recombinant HSP90 (rHSP90); this detrimental effect of HSP90 was inhibited by the specific P2X7 receptor (P2X7R) inhibitor A438079, indicating that SAH-induced inflammation and inhibition of neurogenesis were likely mediated by HSP90 and the P2X7R/NLRP3 inflammasome pathway. HSP90 inhibition by 17-AAG may be a promising therapeutic strategy for the treatment of SAH.
Collapse
Affiliation(s)
- Yuchun Zuo
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, China
| | - Jikai Wang
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, China
| | - Fan Liao
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy, XiangYa Medical School, Central South University, Changsha, China
| | - Jianming Li
- Neuroscience Research Center, Changsha Medical University, Changsha, China
| | - Lei Huang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Neurosurgery, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Fei Liu
- Department of Neurosurgery, Third XiangYa Hospital, Central South University, Changsha, China
| |
Collapse
|