1
|
Scanga A, Lafontaine AL, Kaminska M. An overview of the effects of levodopa and dopaminergic agonists on sleep disorders in Parkinson's disease. J Clin Sleep Med 2023; 19:1133-1144. [PMID: 36716191 PMCID: PMC10235717 DOI: 10.5664/jcsm.10450] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 01/31/2023]
Abstract
Sleep disorders are among the most common nonmotor symptoms in Parkinson's disease and are associated with reduced cognition and health-related quality of life. Disturbed sleep can often present in the prodromal or early stages of this neurodegenerative disease, rendering it crucial to manage and treat these symptoms. Levodopa and dopaminergic agonists are frequently prescribed to treat motor symptoms in Parkinson's disease, and there is increasing interest in how these pharmacological agents affect sleep and their effect on concomitant sleep disturbances and disorders. In this review, we discuss the role of dopamine in regulating the sleep-wake state and the impact of neurodegeneration on sleep. We provide an overview of the effects of levodopa and dopaminergic agonists on sleep architecture, insomnia, excessive daytime sleepiness, sleep-disordered breathing, rapid eye movement sleep behavior disorder, and restless legs syndrome in Parkinson's disease. Levodopa and dopaminergic drugs may have different effects, beneficial or adverse, depending on dosing, method of administration, and differential effects on the different dopamine receptors. Future research in this area should focus on elucidating the specific mechanisms by which these drugs affect sleep in order to better understand the pathophysiology of sleep disorders in Parkinson's disease and aid in developing suitable therapies and treatment regimens. CITATION Scanga A, Lafontaine A-L, Kaminska M. An overview of the effects of levodopa and dopaminergic agonists on sleep disorders in Parkinson's disease. J Clin Sleep Med. 2023;19(6):1133-1144.
Collapse
Affiliation(s)
- Amanda Scanga
- Division of Experimental Medicine, Glen Site, McGill University Health Centre, Montréal, Québec, Canada
| | - Anne-Louise Lafontaine
- Montreal Neurological Institute, McGill University Health Centre, Montréal, Québec, Canada
| | - Marta Kaminska
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Respiratory Division and Sleep Laboratory, McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
2
|
Meng L, Wang M, Gao Y, Chen L, Wang K, Gao W, Liu Q. Dopamine D1 receptor agonist alleviates acute lung injury via modulating inflammatory responses in macrophages and barrier function in airway epithelial cells. Free Radic Biol Med 2023; 202:2-16. [PMID: 36965538 PMCID: PMC10033496 DOI: 10.1016/j.freeradbiomed.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
Acute lung injury (ALI) or its severe form, acute respiratory distress syndrome (ARDS) is a life-threatening illness without effective therapeutic interventions currently. Multiple lines of evidence indicated that overwhelming inflammatory responses and impaired epithelial barrier contributed to the pathogenesis of ALI/ARDS. Recently, dopamine (DA) system was identified to participate in various pulmonary diseases. Here, we discovered that dopamine D1-like receptors mainly expressed in macrophages and airway epithelial cells (AECs), which were downregulated by lipopolysaccharide (LPS) challenge in ALI mouse lung. SKF38393 (SKF) is a selective agonist for D1-like receptors and was demonstrated to inhibit excessive inflammatory responses and oxidative stress in THP-1 cell-derived macrophages and Beas-2B cells, as well as improve airway epithelial barrier dysfunction induced by LPS stimulation. Moreover, SKF administration could effectively decrease pulmonary inflammation, ameliorate tissue damage in the LPS-triggered ALI mice. The broad protective actions of SKF might be attributed to the activation of Nrf2 antioxidative system by use of the specific inhibitor, ML385. This study offers evidence of potent immunoregulatory activity of SKF in macrophages, AECs as well as ALI mouse model, which opens novel therapeutic avenues for the intervention of ALI/ARDS.
Collapse
Affiliation(s)
- Linlin Meng
- Shandong University of Traditional Chinese Medicine, Shandong, 250002, PR China; Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, PR China
| | - Liangzhi Chen
- Shandong University of Traditional Chinese Medicine, Shandong, 250002, PR China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China.
| | - Qinghua Liu
- Shandong University of Traditional Chinese Medicine, Shandong, 250002, PR China; Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China.
| |
Collapse
|
3
|
Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. Eur J Neurosci 2023; 57:178-200. [PMID: 36342744 PMCID: PMC10099399 DOI: 10.1111/ejn.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.
Collapse
Affiliation(s)
- Ziba Asadpoordezaki
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Beverley M Henley
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| |
Collapse
|
4
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
5
|
Cao R, Ma R, Wang K, Hu P. Association Between Dopaminergic Medications and the Evolution of REM Sleep Behavior Disorder in Parkinson's Disease. Front Neurol 2022; 13:880583. [PMID: 35756917 PMCID: PMC9226298 DOI: 10.3389/fneur.2022.880583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
REM sleep behavior disorder (RBD) is closely associated with Parkinson's disease (PD), however, the influence of dopaminergic replacement therapy (DRT) on the clinical course of RBD in PD remains less understood. The objective of our study is to investigate how DRTs modify the evolution of RBD in a longitudinal cohort study of initially de novo PD patients. Four hundred and five drug-naive patients with early-stage PD were included. RBD symptoms were assessed using the 10-item RBD Screening Questionnaire (RBDSQ) at baseline and during the 5-year follow-up. A generalized estimating equation was used to examine predictors of the evolution of RBD symptoms. For patients without baseline pRBD, patients on levodopa treatment showed a greater increase in RBDSQ scores than those not on levodopa treatment, and the increase in RBDSQ scores was significantly correlated with the levodopa-LEDD. Moreover, the changes in RBDSQ scores at a given post-baseline visit were significantly associated with the use of levodopa (OR = 1.875, p = 0.008) and the combined use of levodopa and DA (OR = 2.188, p = 0.012), as well as the levodopa-LEDD (OR = 1.001, p = 0.005) at that visit. The use of DA alone or the DA-LEDD was not a significant predictor of changes in RBDSQ scores. Similarly, a conversion from pRBD negative to pRBD positive was significantly associated with levodopa-LEDD (OR = 1.001, p = 0.014) but not DA-LEDD. Together, these finding implicated that the use of levodopa may act as a contributing factor to the increasing prevalence of RBD after the onset of PD, suggesting different mechanisms underlying prodromal RBD and late-onset RBD.
Collapse
Affiliation(s)
- Ruihua Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Ruolin Ma
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, Hefei, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
| |
Collapse
|
6
|
Zhou H, Zhang J, Shi H, Li P, Sui X, Wang Y, Wang L. Downregulation of CDK5 signaling in the dorsal striatum alters striatal microcircuits implicating the association of pathologies with circadian behavior in mice. Mol Brain 2022; 15:53. [PMID: 35701839 PMCID: PMC9195255 DOI: 10.1186/s13041-022-00939-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of striatal dopaminergic circuits has been implicated in motor impairment and Parkinson’s disease (PD)-related circadian perturbations that may represent an early prodromal marker of PD. Cyclin-dependent kinase 5 (CDK5) negatively regulates dopamine signaling in the striatum, suggesting a critical role of CDK5 in circadian and sleep disorders. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing to produce mice with a dorsal striatum (DS)-specific knockdown (KD) of the Cdk5 gene (referred to as DS-CDK5-KD mice) and investigate its role in vivo. DS-CDK5-KD mice exhibited deficits in locomotor activity and disturbances in activity/rest behavior. Additionally, Golgi staining of neurons in the DS revealed that CDK5 deletion reduced dendrite length and the number of functional synapses, which was confirmed by significant downregulation of MAP2, PSD-95, and synapsin I. Correlated with this, DS-CDK5-KD mice displayed reduced phosphorylation of Tau at Thr181. Furthermore, whole-cell patch-clamp recordings of green fluorescent protein-tagged neurons in the striatum of DS-CDK5-KD mice revealed a decreased frequency of spontaneous inhibitory postsynaptic currents and altered excitatory/inhibitory synaptic balance. Notably, anterograde labeling showed that CDK5 KD in the DS disrupted long-range projections to the secondary motor cortex, dorsal and ventral thalamic nuclei, and basolateral amygdala, which are involved in the regulation of motor and circadian rhythms in the brain. These findings support a critical role of CDK5 in the DS in maintaining the striatal neural circuitry underlying motor functions and activity/rest associated with circadian rhythms that are perturbed in neurodegenerative disorders.
Collapse
Affiliation(s)
- Hu Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jingxin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Huaxiang Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Pengfei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
7
|
Heshmati M, Bruchas MR. Historical and Modern Evidence for the Role of Reward Circuitry in Emergence. Anesthesiology 2022; 136:997-1014. [PMID: 35362070 PMCID: PMC9467375 DOI: 10.1097/aln.0000000000004148] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Increasing evidence supports a role for brain reward circuitry in modulating arousal along with emergence from anesthesia. Emergence remains an important frontier for investigation, since no drug exists in clinical practice to initiate rapid and smooth emergence. This review discusses clinical and preclinical evidence indicating a role for two brain regions classically considered integral components of the mesolimbic brain reward circuitry, the ventral tegmental area and the nucleus accumbens, in emergence from propofol and volatile anesthesia. Then there is a description of modern systems neuroscience approaches to neural circuit investigations that will help span the large gap between preclinical and clinical investigation with the shared aim of developing therapies to promote rapid emergence without agitation or delirium. This article proposes that neuroscientists include models of whole-brain network activity in future studies to inform the translational value of preclinical investigations and foster productive dialogues with clinician anesthesiologists.
Collapse
Affiliation(s)
- Mitra Heshmati
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Biological Structure, University of Washington, Seattle, Washington
| | - Michael R Bruchas
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, and Department of Pharmacology, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Zhang J, Li J, Liu C, Gui H, Yuan C, Zhang Y. The role of intracerebral dopamine D1 and D2 receptors in sleep-wake cycles and general anesthesia. IBRAIN 2022; 8:48-54. [PMID: 37786416 PMCID: PMC10528804 DOI: 10.1002/ibra.12024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 10/04/2023]
Abstract
Dopamine (DA), a monoamine neurotransmitter, is synthesized and released mainly by neurons in the ventral tegmental area and the substantia nigra (SN) pars compacta of the midbrain. DA and its receptors are essential for the regulation of arousal, movement, cognition, reward, and other neurobiological behaviors. Arousal, locomotion, cognition, reward, and other neurobiological functions are all regulated by dopamine and its receptors. Dopamine receptors can be divided into D1-like receptors (including D1 and D5) or D2-like receptors (containing D2, D3, and D4), with D1 and D2 receptors (D1Rs, and D2Rs) being the most important. Currently, studies indicated that D1Rs and D2Rs are tightly involved with the process of sleep-wake and general anesthesia, but the specific mechanism remains unclear. In this review, we compiled the most recent findings, mainly focusing on the structure, distribution, and signal pathway of D1Rs and D2Rs in the central nervous system, as well as the involvement of D1Rs and D2Rs in sleep-wake and general anesthesia. Thus, the investigations of the D1Rs and D2Rs will benefit not only better knowledge for how sleep-wake control works but also the mechanism of general anesthesia.
Collapse
Affiliation(s)
- Jie Zhang
- The Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Jia Li
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Cheng‐Xi Liu
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Huan Gui
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Cheng‐Dong Yuan
- The Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Yi Zhang
- The Second Affiliated Hospital of Zunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- School of AnesthesiologyZunyi Medical UniversityZunyiChina
| |
Collapse
|
9
|
Hao J, Beck J, Zhou X, Lackner GL, Johnston R, Reinhard M, Goldsmith P, Hollinshead S, Dehlinger V, Filla SA, Wang XS, Richardson J, Posada M, Mohutsky M, Schober D, Katner JS, Chen Q, Hu B, Remick DM, Coates DA, Mathes BM, Hawk MK, Svensson KA, Hembre E. Synthesis and Preclinical Characterization of LY3154885, a Human Dopamine D1 Receptor Positive Allosteric Modulator with an Improved Nonclinical Drug-Drug Interaction Risk Profile. J Med Chem 2022; 65:3786-3797. [PMID: 35175768 DOI: 10.1021/acs.jmedchem.1c01887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Results from recently completed clinical studies suggest the dopamine D1 receptor positive allosteric modulator (PAM) mevidalen (1) could offer unique value for lewy body dementia (LBD) patients. In nonclinical assessments, 1 was mainly eliminated by CYP3A4-mediated metabolism, therefore at the risk of being a victim of drug-drug interactions (DDI) with CYP3A4 inhibitors and inducers. An effort was initiated to identify a new D1 PAM with an improved DDI risk profile. While attempts to introduce additional metabolic pathways mediated by other CYP isoforms failed to provide molecules with an acceptable profile, we discovered that the relative contribution of CYP-mediated oxidation and UGT-mediated conjugation could be tuned to reduce the CYP3A4-mediated victim DDI risk. We have identified LY3154885 (5), a D1 PAM that possesses similar in vitro and in vivo pharmacologic properties as 1, but is metabolized mainly by UGT, predicting it could potentially offer lower victim DDI risk in clinic.
Collapse
|
10
|
Dong H, Chen ZK, Guo H, Yuan XS, Liu CW, Qu WM, Huang ZL. Striatal neurons expressing dopamine D 1 receptor promote wakefulness in mice. Curr Biol 2022; 32:600-613.e4. [PMID: 35021048 DOI: 10.1016/j.cub.2021.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/17/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Patients with Parkinson's disease (PD) suffer from severe sleep disorders. Pathophysiology of the basal ganglia (BG) underlies PD, and the dorsal striatum represents the major input pathway of the BG. However, the roles and mechanisms of the dorsal striatum in controlling sleep-wake cycles remain unknown. To demonstrate the contribution of dopamine D1 receptor (D1R)-positive neurons within the dorsal striatum in promoting wakefulness, we combined optogenetic manipulations and fiber photometry with electroencephalography/electromyography recording in D1R-Cre mice. As a result, optogenetic activation of striatal D1R neurons induced immediate transitions from non-rapid eye movement (NREM) sleep to wakefulness, whereas inhibition of striatal D1R neurons attenuated wakefulness by chemogenetics. Multi-channel fiber photometry recordings revealed that the activity of striatal D1R neurons synchronized with that of BG upstreams, namely the prefrontal cortex and mediodorsal thalamus, in terms of immediate increase in activity during NREM-to-wake transitions and rapid decease during wake-to-NREM transitions. Further optogenetic manipulations revealed a prominent contribution of striatal D1R neurons in control of wakefulness by upstream, corticostriatal, thalamostriatal, and nigrostriatal projections and via downstream, striato-entopeduncular, or striatonigral pathways. Taken together, our findings revealed a circuit regulating wakefulness through striatal D1R neurons. Striatal D1R neurons play an important role in controlling wakefulness by integrating the corticostriatal, thalamostriatal, and nigrostriatal projections and innervation of striato-entopeduncular or striatonigral pathways.
Collapse
Affiliation(s)
- Hui Dong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Han Guo
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiang-Shan Yuan
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Cheng-Wei Liu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Liu H, Li J, Wang X, Huang J, Wang T, Lin Z, Xiong N. Excessive Daytime Sleepiness in Parkinson's Disease. Nat Sci Sleep 2022; 14:1589-1609. [PMID: 36105924 PMCID: PMC9464627 DOI: 10.2147/nss.s375098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Excessive daytime sleepiness (EDS) is one of the most common sleep disorders in Parkinson's disease (PD). It has attracted much attention due to high morbidity, poor quality of life, increased risk for accidents, obscure mechanisms, comorbidity with PD and limited therapeutic approaches. In this review, we summarize the current literature on epidemiology of EDS in PD to address the discrepancy between subjective and objective measures and clarify the reason for the inconsistent prevalence in previous studies. Besides, we focus on the effects of commonly used antiparkinsonian drugs on EDS and related pharmacological mechanisms to provide evidence for rational clinical medication in sleepy PD patients. More importantly, degeneration of wake-promoting nuclei owing to primary neurodegenerative process of PD is the underlying pathogenesis of EDS. Accordingly, altered wake-promoting nerve nuclei and neurotransmitter systems in PD patients are highlighted to providing clues for identifying EDS-causing targets in the sleep and wake cycles. Future mechanistic studies toward this direction will hopefully advance the development of novel and specific interventions for EDS in PD patients.
Collapse
Affiliation(s)
- Hanshu Liu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jingwen Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinyi Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinsha Huang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tao Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhicheng Lin
- Laboratory of Psychiatric Neurogenomics, McLean Hospital; Harvard Medical School, Belmont, MA, 02478, USA
| | - Nian Xiong
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
12
|
Guo M, Xiang T, Li M, Sun Y, Sun S, Chen D, Jia Q, Li Y, Yao X, Wang X, Zhang X, He F, Wang M. Effects of intrastriatal injection of the dopamine receptor agonist SKF38393 and quinpirole on locomotor behavior in hemiparkinsonism rats. Behav Brain Res 2021; 411:113339. [PMID: 33945831 DOI: 10.1016/j.bbr.2021.113339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/27/2022]
Abstract
Dopamine (DA) in the striatum is essential to influence motor behavior and may lead to movement impairment in Parkinson's disease (PD). The present study examined the different functions of the DA D1 receptor (D1R) and DA D2 receptor (D2R) by intrastriatal injection of the D1R agonist SKF38393 and the D2R agonist quinpirole in 6-hydroxydopamine (6-OHDA)-lesioned and control rats. All rats separately underwent dose-response behavior testing for SKF38393 (0, 0.5, 1.0, and 1.5 μg/site) or quinpirole (0, 1.0, 2.0, and 3.0 μg/site) to determine the effects of the optimal modulating threshold dose. Two behavior assessment indices, the time of latency to fall and the number of steps on a rotating treadmill, were used as reliable readouts of motor stimulation variables for quantifying the motor effects of the drugs. The findings indicate that at threshold doses, SKF38393 (1.0 μg/site) and quinpirole (1.0 μg/site) produce a dose-dependent increase in locomotor activity compared to vehicle injection. The ameliorated behavioral responses to either SKF38393 or quinpirole in lesioned rats were greater than those in unlesioned control rats. Moreover, the dose-dependent increase in locomotor capacity for quinpirole was greater than that for SKF38393 in lesioned rats. These results can clarify several key issues related to DA receptors directly and may provide a basis for exploring the potential of future selective dopamine therapies for PD in humans.
Collapse
Affiliation(s)
- Mengnan Guo
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Tianyu Xiang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Min Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Yue Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Shuang Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Dadian Chen
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Qingmei Jia
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Yuchuan Li
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China
| | - Xiaomeng Yao
- School of Nursing Qilu Institute of Technology, Jinan, 250200, People's Republic of China
| | - Xiaojun Wang
- The First Hospital Affiliated With Shandong First Medicine University, Jinan, People's Republic of China
| | - Xiao Zhang
- School of Computer Science and Technology, Shandong Jianzhu University, Jinan, 250200, People's Republic of China
| | - Feng He
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China.
| | - Min Wang
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, People's Republic of China.
| |
Collapse
|
13
|
Kozak R, Kiss T, Dlugolenski K, Johnson DE, Gorczyca RR, Kuszpit K, Harvey BD, Stolyar P, Sukoff Rizzo SJ, Hoffmann WE, Volfson D, Hajós M, Davoren JE, Abbott AL, Williams GV, Castner SA, Gray DL. Characterization of PF-6142, a Novel, Non-Catecholamine Dopamine Receptor D1 Agonist, in Murine and Nonhuman Primate Models of Dopaminergic Activation. Front Pharmacol 2020; 11:1005. [PMID: 32733245 PMCID: PMC7358525 DOI: 10.3389/fphar.2020.01005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022] Open
Abstract
Selective activation of dopamine D1 receptors remains a promising pro-cognitive therapeutic strategy awaiting robust clinical investigation. PF-6142 is a key example from a recently disclosed novel series of non-catechol agonists and partial agonists of the dopamine D1/5 receptors (D1R) that exhibit pharmacokinetic (PK) properties suitable for oral delivery. Given their reported potential for functionally biased signaling compared to known catechol-based selective agonists, and the promising rodent PK profile of PF-6142, we utilized relevant in vivo assays in male rodents and male and female non-human primates (NHP) to evaluate the pharmacology of this new series. Studies in rodents showed that PF-6142 increased locomotor activity and prefrontal cortex acetylcholine release, increased time spent in wakefulness, and desynchronized the EEG, like known D1R agonists. D1R selectivity of PF-6142 was supported by lack of effect in D1R knock-out mice and blocked response in the presence of the D1R antagonist SCH-23390. Further, PF-6142 improved performance in rodent models of NMDA receptor antagonist-induced cognitive dysfunction, such as MK-801-disrupted paired-pulse facilitation, and ketamine-disrupted working memory performance in the radial arm maze. Similarly, PF-6142 reversed ketamine-induced deficits in NHP performing the spatial delayed recognition task. Of importance, PF-6142 did not alter the efficacy of risperidone in assays predictive of antipsychotic-like effect in rodents including pre-pulse inhibition and conditioned avoidance responding. These data support the continued development of non-catechol based D1R agonists for the treatment of cognitive impairment associated with brain disorders including schizophrenia.
Collapse
Affiliation(s)
- Rouba Kozak
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Tamás Kiss
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Keith Dlugolenski
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - David E Johnson
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | | | - Kyle Kuszpit
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Brian D Harvey
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Polina Stolyar
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | | | | | - Dmitri Volfson
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| | - Mihaly Hajós
- Global Research and Development, Pfizer Inc., Groton, CT, United States.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | | | - Amanda L Abbott
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Graham V Williams
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - Stacy A Castner
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| | - David L Gray
- Global Research and Development, Pfizer Inc., Groton, CT, United States
| |
Collapse
|
14
|
Xu M, Bohlen JK, Moore C, Nipper MA, Finn DA, Jones CE, Lim MM, Meshul CK. Effects of sleep disruption on stress, nigrostriatal markers, and behavior in a chronic/progressive MPTP male mouse model of parkinsonism. J Neurosci Res 2019; 97:1706-1719. [PMID: 31535395 PMCID: PMC6801095 DOI: 10.1002/jnr.24520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022]
Abstract
Sleep complaints are an early clinical symptom of neurodegenerative disorders. Patients with Parkinson's disease (PD) experience sleep disruption (SD). The objective of this study was to determine if preexisting, chronic SD leads to a greater loss of tyrosine hydroxylase (TH) within the striatum and the substantia nigra following chronic/progressive exposure with the neurotoxin, 1-methyl-2-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Male mice underwent chronic SD for 4 weeks, then injected with vehicle (VEH) or increasing doses of MPTP for 4 weeks. There was a significant decrease in the plasma corticosterone levels in the MPTP group, an increase in the SD group, and a return to the VEH levels in the SD+MPTP group. Protein expression levels for TH in the striatum (terminals) and substantia nigra pars compacta (dopamine [DA] cell counts) revealed up to a 78% and 38% decrease, respectively, in the MPTP and SD+MPTP groups compared to their relevant VEH and SD groups. DA transporter protein expression increased in the striatum in the MPTP versus VEH group and in the SN/midbrain between the SD+MPTP and the VEH group. There was a main effect of MPTP on various gait measures (e.g., braking) relative to the SD or VEH groups. In the SD+MPTP group, there were no differences compared to the VEH group. Thus, SD, prior to administration of MPTP, has effects on serum corticosterone and gait but more importantly does not potentiate greater loss of TH within the nigrostriatal pathway compared to the MPTP group, suggesting that in PD patients with SD, there is no exacerbation of the DA cell loss.
Collapse
MESH Headings
- 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- Animals
- Corpus Striatum/enzymology
- Corpus Striatum/pathology
- Corticosterone/blood
- Disease Models, Animal
- Dopamine Plasma Membrane Transport Proteins/analysis
- Gait Disorders, Neurologic/etiology
- Gait Disorders, Neurologic/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Nerve Tissue Proteins/analysis
- Oxidopamine/toxicity
- Parkinsonian Disorders/complications
- Parkinsonian Disorders/metabolism
- Single-Blind Method
- Sleep Disorders, Intrinsic/blood
- Sleep Disorders, Intrinsic/etiology
- Sleep Disorders, Intrinsic/physiopathology
- Stress, Physiological
- Substantia Nigra/enzymology
- Substantia Nigra/pathology
- Tyrosine 3-Monooxygenase/analysis
- Vesicular Monoamine Transport Proteins/analysis
Collapse
Affiliation(s)
- Mo Xu
- Research Services, VA Medical Center/Portland, OR
| | | | | | | | - Deborah A. Finn
- Research Services, VA Medical Center/Portland, OR
- Department of Behavioral Neuroscience, Oregon Heath & Science University
| | - Carolyn E. Jones
- Research Services, VA Medical Center/Portland, OR
- Department of Behavioral Neuroscience, Oregon Heath & Science University
| | - Miranda M. Lim
- Research Services, VA Medical Center/Portland, OR
- Department of Behavioral Neuroscience, Oregon Heath & Science University
- Department of Neurology, Oregon Health & Science University
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University
| | - Charles K. Meshul
- Research Services, VA Medical Center/Portland, OR
- Department of Behavioral Neuroscience, Oregon Heath & Science University
- Department of Pathology, Oregon Health & Science University
| |
Collapse
|
15
|
Hao J, Beck JP, Schaus JM, Krushinski JH, Chen Q, Beadle CD, Vidal P, Reinhard MR, Dressman BA, Massey SM, Boulet SL, Cohen MP, Watson BM, Tupper D, Gardinier KM, Myers J, Johansson AM, Richardson J, Richards DS, Hembre EJ, Remick DM, Coates DA, Bhardwaj RM, Diseroad BA, Bender D, Stephenson G, Wolfangel CD, Diaz N, Getman BG, Wang XS, Heinz BA, Cramer JW, Zhou X, Maren DL, Falcone JF, Wright RA, Mitchell SN, Carter G, Yang CR, Bruns RF, Svensson KA. Synthesis and Pharmacological Characterization of 2-(2,6-Dichlorophenyl)-1-((1 S,3 R)-5-(3-hydroxy-3-methylbutyl)-3-(hydroxymethyl)-1-methyl-3,4-dihydroisoquinolin-2(1 H)-yl)ethan-1-one (LY3154207), a Potent, Subtype Selective, and Orally Available Positive Allosteric Modulator of the Human Dopamine D1 Receptor. J Med Chem 2019; 62:8711-8732. [PMID: 31532644 DOI: 10.1021/acs.jmedchem.9b01234] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clinical development of catechol-based orthosteric agonists of the dopamine D1 receptor has thus far been unsuccessful due to multiple challenges. To address these issues, we identified LY3154207 (3) as a novel, potent, and subtype selective human D1 positive allosteric modulator (PAM) with minimal allosteric agonist activity. Conformational studies showed LY3154207 adopts an unusual boat conformation, and a binding pose with the human D1 receptor was proposed based on this observation. In contrast to orthosteric agonists, LY3154207 showed a distinct pharmacological profile without a bell-shaped dose-response relationship or tachyphylaxis in preclinical models. Identification of a crystalline form of free LY3154207 from the discovery lots was not successful. Instead, a novel cocrystal form with superior solubility was discovered and determined to be suitable for development. This cocrystal form was advanced to clinical development as a potential first-in-class D1 PAM and is now in phase 2 studies for Lewy body dementia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Daniel S Richards
- AMRI UK Ltd , Erl Wood Manor, Sunninghill Road , Windlesham , Surrey , GU20 6PH , United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Parkinson's Disease is Associated with Dysregulations of a Dopamine-Modulated Gene Network Relevant to Sleep and Affective Neurobehaviors in the Striatum. Sci Rep 2019; 9:4808. [PMID: 30886221 PMCID: PMC6423036 DOI: 10.1038/s41598-019-41248-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022] Open
Abstract
In addition to the characteristic motor symptoms, Parkinson’s disease (PD) often involves a constellation of sleep and mood symptoms. However, the mechanisms underlying these comorbidities are largely unknown. We have previously reconstructed gene networks in the striatum of a population of (C57BL/6J x A/J) F2 mice and associated the networks to sleep and affective phenotypes, providing a resource for integrated analyses to investigate perturbed sleep and affective functions at the gene network level. Combining this resource with PD-relevant transcriptomic datasets from humans and mice, we identified four networks that showed elevated gene expression in PD patients, including a circadian clock and mitotic network that was altered similarly in mouse models of PD. We then utilized multiple types of omics data from public databases and linked this gene network to postsynaptic dopamine signaling in the striatum, CDK1-modulated transcriptional regulation, and the genetic susceptibility of PD. These findings suggest that dopamine deficiency, a key aspect of PD pathology, perturbs a circadian/mitotic gene network in striatal neurons. Since the normal functions of this network were relevant to sleep and affective behaviors, these findings implicate that dysregulation of functional gene networks may be involved in the emergence of non-motor symptoms in PD. Our analyses present a framework for integrating multi-omics data from diverse sources in mice and humans to reveal insights into comorbid symptoms of complex diseases.
Collapse
|
17
|
Wang HT, Wang L, He Y, Yu G. Rotigotine transdermal patch for the treatment of neuropsychiatric symptoms in Parkinson's disease: A meta-analysis of randomized placebo-controlled trials. J Neurol Sci 2018; 393:31-38. [DOI: 10.1016/j.jns.2018.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023]
|
18
|
Veyres N, Hamadjida A, Huot P. Predictive Value of Parkinsonian Primates in Pharmacologic Studies: A Comparison between the Macaque, Marmoset, and Squirrel Monkey. J Pharmacol Exp Ther 2018. [DOI: 10.1124/jpet.117.247171] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
19
|
Willis GL, Freelance CB. Emerging preclinical interest concerning the role of circadian function in Parkinson's disease. Brain Res 2017; 1678:203-213. [PMID: 28958865 DOI: 10.1016/j.brainres.2017.09.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/08/2023]
Abstract
The importance of circadian function in the aetiology, progression and treatment of Parkinson's disease is a topic of increasing interest to the scientific and clinical community. While clinical studies on this theme are relatively new and limited in number there are many preclinical studies which explore possible circadian involvement in Parkinson's disease and speculate as to the mechanism by which clinical benefit can be derived by manipulating the circadian system. The present review explores the sequelae of circadian related studies from a historical perspective and reveals mechanisms that may be involved in the aetiology and progression of the disease. A systematic review of these studies also sets the stage for understanding the basic neuroscientific approaches which have been applied and provides new direction from which circadian function can be explored.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Vic 3444, Australia.
| | - Christopher B Freelance
- The Bronowski Institute of Behavioural Neuroscience, Coliban Medical Centre, 19 Jennings Street, Kyneton, Vic 3444, Australia
| |
Collapse
|
20
|
Ko WKD, Bezard E. Experimental animal models of Parkinson's disease: A transition from assessing symptomatology to α-synuclein targeted disease modification. Exp Neurol 2017; 298:172-179. [PMID: 28764902 DOI: 10.1016/j.expneurol.2017.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
Abstract
With the understanding that α-synuclein plays a major role in the pathogenesis of Parkinson's disease (PD), novel animal models have been developed for conducting preclinical research in screening novel disease modifying therapies. Advancements in research techniques in α-synuclein targeted disease modification have utilised methods such as viral mediated expression of human α-synuclein, as well as the inoculation of pathogenic α-synuclein species from Lewy Bodies of PD patients, for accurately modelling progressive self-propagating neurodegeneration. In applying these cutting-edge research tools with sophisticated trial designs in preclinical drug trials, a useful platform has emerged for developing candidate agents with disease modifying actions, promising a greater chance of success for clinical translation. In this article, we describe the transition of well-established animal models of PD symptomatology to newly developed models of PD pathogenesis, with specific focus on methods of viral-mediated and inoculation of pathogenic α-synuclein, that aim to aid scientific translation of neuroprotective strategies.
Collapse
Affiliation(s)
- Wai Kin D Ko
- Motac Neuroscience Ltd, Manchester, United Kingdom.
| | - Erwan Bezard
- Motac Neuroscience Ltd, Manchester, United Kingdom; Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
21
|
Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nat Rev Neurosci 2017; 18:435-450. [PMID: 28592904 DOI: 10.1038/nrn.2017.62] [Citation(s) in RCA: 1063] [Impact Index Per Article: 151.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many of the motor symptoms of Parkinson disease (PD) can be preceded, sometimes for several years, by non-motor symptoms that include hyposmia, sleep disorders, depression and constipation. These non-motor features appear across the spectrum of patients with PD, including individuals with genetic causes of PD. The neuroanatomical and neuropharmacological bases of non-motor abnormalities in PD remain largely undefined. Here, we discuss recent advances that have helped to establish the presence, severity and effect on the quality of life of non-motor symptoms in PD, and the neuroanatomical and neuropharmacological mechanisms involved. We also discuss the potential for the non-motor features to define a prodrome that may enable the early diagnosis of PD.
Collapse
Affiliation(s)
- Anthony H V Schapira
- Department of Clinical Neurosciences, University College London (UCL) Institute of Neurology, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK
| | - K Ray Chaudhuri
- National Parkinson Foundation International Centre of Excellence, King's College Hospital, King's College London, Camberwell Road, London SE5 9RS, UK
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, King's College London, Newcomen Street, London SE1 1UL, UK
| |
Collapse
|
22
|
Blesa J, Trigo-Damas I, del Rey NLG, Obeso JA. The use of nonhuman primate models to understand processes in Parkinson’s disease. J Neural Transm (Vienna) 2017; 125:325-335. [DOI: 10.1007/s00702-017-1715-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/16/2017] [Indexed: 02/07/2023]
|
23
|
Role of the pedunculopontine nucleus in controlling gait and sleep in normal and parkinsonian monkeys. J Neural Transm (Vienna) 2017; 125:471-483. [PMID: 28084536 DOI: 10.1007/s00702-017-1678-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/07/2017] [Indexed: 12/20/2022]
Abstract
Patients with Parkinson's disease (PD) develop cardinal motor symptoms, including akinesia, rigidity, and tremor, that are alleviated by dopaminergic medication and/or subthalamic deep brain stimulation. Over the time course of the disease, gait and balance disorders worsen and become resistant to pharmacological and surgical treatments. These disorders generate debilitating motor symptoms leading to increased dependency, morbidity, and mortality. PD patients also experience sleep disturbance that raise the question of a common physiological basis. An extensive experimental and clinical body of work has highlighted the crucial role of the pedunculopontine nucleus (PPN) in the control of gait and sleep, and its potential major role in PD. Here, we summarise our investigations in the monkey PPN in the normal and parkinsonian states. We first examined the anatomy and connectivity of the PPN and the cuneiform nucleus which both belong to the mesencephalic locomotor region. Second, we conducted experiments to demonstrate the specific effects of PPN cholinergic lesions on locomotion in the normal and parkinsonian monkey. Third, we aimed to understand how PPN cholinergic lesions impair sleep in parkinsonian monkeys. Our final goal was to develop a novel model of advanced PD with gait and sleep disorders. We believe that this monkey model, even if it does not attempt to reproduce the exact human disease with all its complexities, represents a good biomedical model to characterise locomotion and sleep in the context of PD.
Collapse
|
24
|
Videnovic A, Golombek D. Circadian Dysregulation in Parkinson's Disease. Neurobiol Sleep Circadian Rhythms 2017; 2:53-58. [PMID: 28713867 PMCID: PMC5509072 DOI: 10.1016/j.nbscr.2016.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/19/2016] [Accepted: 11/03/2016] [Indexed: 12/27/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects over one million individuals in the US alone. PD is characterized by a plethora of motor and non-motor manifestations, resulting from a progressive degeneration of dopaminergic neurons and disbalance of several other neurotransmitters. A growing body of evidence points to significant alterations of the circadian system in PD. This is not surprising given the pivotal role that dopamine plays in circadian regulation as well as the role of circadian influences in dopamine metabolism. In this review we present basic and clinical investigations that examined the function of the circadian system in PD.
Collapse
Affiliation(s)
- Aleksandar Videnovic
- Movement Disorders Unit and Division of Sleep Medicine, Massachusetts General Hospital Harvard Medical School, MGH Neurological Clinical Research Institute, 165 Cambridge Street, Suite 600, Boston, MA 02446, United States
| | - Diego Golombek
- Department of Science and Technology, National University of Quilmes/CONICET, R.S. Peña 352, 1876 Bernal, Buenos Aires, Argentina
| |
Collapse
|
25
|
Unraveling a new circuitry for sleep regulation in Parkinson's disease. Neuropharmacology 2016; 108:161-71. [DOI: 10.1016/j.neuropharm.2016.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/10/2016] [Accepted: 04/14/2016] [Indexed: 12/14/2022]
|
26
|
Pierantozzi M, Placidi F, Liguori C, Albanese M, Imbriani P, Marciani MG, Mercuri NB, Stanzione P, Stefani A. Rotigotine may improve sleep architecture in Parkinson's disease: a double-blind, randomized, placebo-controlled polysomnographic study. Sleep Med 2016; 21:140-4. [PMID: 27448485 DOI: 10.1016/j.sleep.2016.01.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/21/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND/OBJECTIVES Growing evidence demonstrates that in Parkinson's Disease (PD) sleep disturbances are frequent and difficult to treat. Since the efficacy of rotigotine on sleep is corroborated by studies lacking polysomnography (PSG), this study explores the possible rotigotine-mediated impact on PSG parameters in PD patients. METHODS This is a randomized, double-blind, placebo-controlled, parallel-group study to determine the efficacy of rotigotine vs placebo on PSG parameters in moderately advanced PD patients. An unusual protocol was utilized, since patches were maintained from 18:00 h to awakening, minimizing the possible diurnal impact on motor symptoms. All participants underwent sleep PSG recordings, subjective sleep questionnaires (Parkinson Disease Sleep Scale [PDSS], Pittsburgh Sleep Quality Index [PSQI]), and the assessment of early-morning motor disability. RESULTS We evaluated 42 PD patients (Hoehn & Yahr stages 2 and 3) with sleep impairment randomly assigned to active branch (N =21) or placebo (N = 21). Rotigotine significantly increased sleep efficiency and reduced both wakefulness after sleep onset and sleep latency compared to placebo. Moreover, the mean change in REM sleep quantity was significantly higher in the rotigotine than placebo group. The improvement of PSG parameters corresponded to the amelioration of PDSS and PSQI scores together with the improvement of patient morning motor symptoms. CONCLUSIONS This study demonstrated the significant effect of rotigotine on sleep quality and continuity in PD patients by promoting sleep stability and increasing REM. The effectiveness of rotigotine on sleep may be ascribed to its pharmacokinetic/pharmacodynamic profile directly on both D1 and D2 receptors.
Collapse
Affiliation(s)
- Mariangela Pierantozzi
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Fabio Placidi
- Sleep Disorders Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Claudio Liguori
- Sleep Disorders Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Maria Albanese
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Imbriani
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Grazia Marciani
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Nicola Biagio Mercuri
- Sleep Disorders Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paolo Stanzione
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; Sleep Disorders Centre, Neurophysiopathology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alessandro Stefani
- Movement Disorders Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
27
|
Fifel K, Piggins H, Deboer T. Modeling sleep alterations in Parkinson's disease: How close are we to valid translational animal models? Sleep Med Rev 2016; 25:95-111. [DOI: 10.1016/j.smrv.2015.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
|
28
|
Parkinson Disease: The Relationship Between Non-motor Symptoms and Motor Phenotype. Can J Neurol Sci 2015; 43:261-7. [DOI: 10.1017/cjn.2015.328] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground: Parkinson disease (PD) presents with motor and non-motor symptoms (NMS). The NMS often precede the onset of motor symptoms, but may progress throughout the disease course. Tremor dominant, postural instability gait difficulty (PIGD), and indeterminate phenotypes can be distinguished using Unified PD Rating scales (UPDRS-III). We hypothesized that the PIGD phenotype would be more likely to develop NMS, and that the non-dopamine–responsive axial signs would correlate with NMS severity. Methods: We conducted a retrospective cross-sectional chart review to assess the relationship between NMS and PD motor phenotypes. PD patients were administered the NMS Questionnaire, the UPDRS-III, and the Mini-Mental State Examination score. The relationship between NMS burden and PD subtypes was examined using linear regression models. The prevalence of each NMS among difference PD motor subtypes was analyzed using chi-square test. Results: PD patients with more advanced disease based on their UPDRS-III had higher NMS Questionnaire scores. The axial component of UPDRS-III correlated with higher NMS. There was no correlation between NMS and tremor scores. There was a significant correlation between PIGD score and higher NMS burden. PIGD group had higher prevalence in most NMS domains when compared with tremor dominant and indeterminate groups independent of disease duration and severity. Conclusions: NMS profile and severity vary according to motor phenotype. We conclude that in the PD population, patients with a PIGD phenotype who have more axial involvement, associated with advanced disease and poor motor response, have a higher risk for a higher NMS burden.
Collapse
|
29
|
Johnston TM, Fox SH. Symptomatic Models of Parkinson's Disease and L-DOPA-Induced Dyskinesia in Non-human Primates. Curr Top Behav Neurosci 2015; 22:221-35. [PMID: 25158623 DOI: 10.1007/7854_2014_352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Models of Parkinson's disease (PD) can be produced in several non-human primate (NHP) species by applying neurotoxic lesions to the nigrostriatal dopamine pathway. The most commonly used neurotoxin is MPTP, a compound accidentally discovered as a contaminant of street drugs. Compared to other neurotoxins, MPTP has the advantage of crossing the blood-brain barrier and can thus be administered systemically. MPTP-lesioned NHPs exhibit the main core clinical features of PD. When treated with L-DOPA, these NHP models develop involuntary movements resembling the phenomenology of human dyskinesias. In old-world NHP species (macaques, baboons), choreic and dystonic dyskinesias can be readily distinguished and quantified with specific rating scales. More recently, certain non-motor symptoms relevant to human PD have been described in L-DOPA-treated MPTP-NHPs, including a range of neuropsychiatric abnormalities and sleep disturbances. The main shortcomings of MPTP-NHP models consist in a lack of progression of the underlying neurodegenerative lesion, along with an inability to model the intracellular protein-inclusion pathology typical of PD. The strength of MPTP-NHP models lies in their face and predictive validity for symptomatic treatments of parkinsonian motor features. Indeed, these models have been instrumental to the development of several medical and surgical approaches that are currently applied to treat PD.
Collapse
Affiliation(s)
- Tom M Johnston
- Toronto Western Research Institute, University of Toronto, Toronto Western Hospital, 399, Bathurst St, Toronto, ON, M5T 2S8, Canada
| | | |
Collapse
|
30
|
Aron Badin R, Vadori M, Cozzi E, Hantraye P. Translational research for Parkinson׳s disease: The value of pre-clinical primate models. Eur J Pharmacol 2015; 759:118-26. [DOI: 10.1016/j.ejphar.2015.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
|
31
|
Jenner P. Treatment of the later stages of Parkinson's disease - pharmacological approaches now and in the future. Transl Neurodegener 2015; 4:3. [PMID: 25973178 PMCID: PMC4429454 DOI: 10.1186/2047-9158-4-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/01/2015] [Indexed: 11/10/2022] Open
Abstract
The problems associated with the pharmacological treatment of the later stages of Parkinson's disease (PD) remain those seen over many years. These centre on a loss of drug effect ('wearing off') with disease progression, the occurrence of dyskinesia, notably with L-dopa use and the appearance of non-motor symptoms that are largely refractory to dopaminergic medication. Treatment strategies in late PD have been dominated by the use of drug combinations and the subtle manipulation of drug dosage. However, change is occurring as the understanding of the basis of motor complications and fluctuations and non-motor symptoms improves. New pharmacological options are expanding with the advent of longer acting versions of existing dopaminergic drugs, new drug delivery systems and the introduction of non-dopaminergic agents able to manipulate motor function both within the basal ganglia and in other brain regions. Non-dopaminergic agents are also being investigated for the treatment of dyskinesia and for the relief of non-motor symptoms. However, while therapy continues to improve, the treatment of late stage PD remains problematic with non-motor symptoms dominating the unmet need in this patient group.
Collapse
Affiliation(s)
- Peter Jenner
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Sciences, Faculty of Health Sciences and Medicine, King's College, London, SE1 1UL UK
| |
Collapse
|
32
|
Effect of zishenpingchan granule on neurobehavioral manifestations and the activity and gene expression of striatal dopamine d1 and d2 receptors of rats with levodopa-induced dyskinesias. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:342506. [PMID: 25477990 PMCID: PMC4247981 DOI: 10.1155/2014/342506] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 10/10/2014] [Accepted: 10/17/2014] [Indexed: 11/30/2022]
Abstract
This study was performed to observe the effects of Zishenpingchan granule on neurobehavioral manifestations and the activity and gene expression of striatal dopamine D1 and D2 receptors of rats with levodopa-induced dyskinesias (LID). We established normal control group, LID model group, and TCM intervention group. Each group received treatment for 4 weeks. Artificial neural network (ANN) was applied to excavate the main factor influencing variation in neurobehavioral manifestations of rats with LID. The results showed that overactivation in direct pathway mediated by dopamine D1 receptor and overinhibition in indirect pathway mediated by dopamine D2 receptor may be the main mechanism of LID. TCM increased the efficacy time of LD to ameliorate LID symptoms effectively mainly by upregulating dopamine D2 receptor gene expression.
Collapse
|
33
|
Sleep disorders in Parkinsonian macaques: effects of L-dopa treatment and pedunculopontine nucleus lesion. J Neurosci 2014; 34:9124-33. [PMID: 24990932 DOI: 10.1523/jneurosci.0181-14.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patients with Parkinson's disease (PD) display significant sleep disturbances and daytime sleepiness. Dopaminergic treatment dramatically improves PD motor symptoms, but its action on sleep remains controversial, suggesting a causal role of nondopaminergic lesions in these symptoms. Because the pedunculopontine nucleus (PPN) regulates sleep and arousal, and in view of the loss of its cholinergic neurons in PD, the PPN could be involved in these sleep disorders. The aims of this study were as follows: (1) to characterize sleep disorders in a monkey model of PD; (2) to investigate whether l-dopa treatment alleviates sleep disorders; and (3) to determine whether a cholinergic PPN lesion would add specific sleep alterations. To this end, long-term continuous electroencephalographic monitoring of vigilance states was performed in macaques, using an implanted miniaturized telemetry device. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment induced sleep disorders that comprised sleep episodes during daytime and sleep fragmentation and a reduction of sleep efficiency at nighttime. It also induced a reduction in time spent in rapid eye movement (REM) sleep and slow-wave sleep and an increase in muscle tone during REM and non-REM sleep episodes and in the number of awakenings and movements. l-Dopa treatment resulted in a partial but significant improvement of almost all sleep parameters. PPN lesion induced a transient decrease in REM sleep and in slow-wave sleep followed by a slight improvement of sleep quality. Our data demonstrate the efficacy of l-dopa treatment in improving sleep disorders in parkinsonian monkeys, and that adding a cholinergic PPN lesion improves sleep quality after transient sleep impairment.
Collapse
|