1
|
Miralles RM, Boscia AR, Kittur S, Hanflink JC, Panchal PS, Yorek MS, Deutsch TCJ, Reever CM, Vundela SR, Wengert ER, Patel MK. Parvalbumin interneuron impairment causes synaptic transmission deficits and seizures in SCN8A developmental and epileptic encephalopathy. JCI Insight 2024; 9:e181005. [PMID: 39435659 PMCID: PMC11529981 DOI: 10.1172/jci.insight.181005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
SCN8A developmental and epileptic encephalopathy (DEE) is a severe epilepsy syndrome resulting from mutations in the voltage-gated sodium channel Nav1.6, encoded by the gene SCN8A. Nav1.6 is expressed in excitatory and inhibitory neurons, yet previous studies primarily focus on how SCN8A mutations affect excitatory neurons, with limited studies on the importance of inhibitory interneurons. Parvalbumin (PV) interneurons are a prominent inhibitory interneuron subtype that expresses Nav1.6. To assess PV interneuron function within SCN8A DEE, we used 2 mouse models harboring patient-derived SCN8A gain-of-function variants, Scn8aD/+, where the SCN8A variant N1768D is expressed globally, and Scn8aW/+-PV, where the SCN8A variant R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A variant selectively in PV interneurons led to development of spontaneous seizures and seizure-induced death. Electrophysiology studies showed that Scn8aD/+ and Scn8aW/+-PV interneurons were susceptible to depolarization block and exhibited increased persistent sodium current. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed synaptic transmission deficits in Scn8aD/+ and Scn8aW/+-PV interneurons. Together, our findings indicate that PV interneuron failure via depolarization block along with inhibitory synaptic impairment likely elicits an overall inhibitory reduction in SCN8A DEE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.
Collapse
Affiliation(s)
- Raquel M. Miralles
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | - Caeley M. Reever
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | - Eric R. Wengert
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Manoj K. Patel
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Jones SP, O'Neill N, Carpenter JC, Muggeo S, Colasante G, Kullmann DM, Lignani G. Early developmental alterations of CA1 pyramidal cells in Dravet syndrome. Neurobiol Dis 2024; 201:106688. [PMID: 39368670 DOI: 10.1016/j.nbd.2024.106688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024] Open
Abstract
Dravet Syndrome (DS) is most often caused by heterozygous loss-of-function mutations in the voltage-gated sodium channel gene SCN1A (Nav1.1), resulting in severe epilepsy and neurodevelopmental impairment thought to be cause by reduced interneuron excitability. However, recent studies in mouse models suggest that interneuron dysfunction alone does not completely explain all the cellular and network impairments seen in DS. Here, we investigated the development of the intrinsic, synaptic, and network properties of CA1 pyramidal cells in a DS model prior to the appearance of overt seizures. We report that CA1 pyramidal cell development is altered by heterozygous reduction of Scn1a, and propose that this is explained by a period of reduced intrinsic excitability in early postnatal life, during which Scn1a is normally expressed in hippocampal pyramidal cells. We also use a novel ex vivo model of homeostatic plasticity to show an instability in homeostatic response during DS epileptogenesis. This study provides evidence for the early effects of Scn1a haploinsufficiency in pyramidal cells in contributing to the pathophysiology of DS.
Collapse
Affiliation(s)
- Steffan P Jones
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Nathanael O'Neill
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Jenna C Carpenter
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Sharon Muggeo
- San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Gaia Colasante
- San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK.
| |
Collapse
|
3
|
Conecker G, Xia MY, Hecker J, Achkar C, Cukiert C, Devries S, Donner E, Fitzgerald M, Gardella E, Hammer M, Hegde A, Hu C, Kato M, Luo T, Schreiber JM, Wang Y, Kooistra T, Oudin M, Waldrop K, Youngquist JT, Zhang D, Wirrell E, Perry MS. Global modified-Delphi consensus on comorbidities and prognosis of SCN8A-related epilepsy and/or neurodevelopmental disorders. Epilepsia 2024; 65:2308-2321. [PMID: 38802989 DOI: 10.1111/epi.17991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES We aimed to develop consensus on comorbidities (frequency, severity, and prognosis) and overall outcomes in epilepsy, development, and cognition for the five phenotypes of SCN8A-related disorders. METHODS A core panel consisting of 13 clinicians, 1 researcher, and 6 caregivers was formed and split into three workgroups. One group focused on comorbidities and prognosis. All groups performed a literature review and developed questions for use in a modified-Delphi process. Twenty-eight clinicians, one researcher, and 13 caregivers from 16 countries participated in three rounds of the modified-Delphi process. Consensus was defined as follows: strong consensus ≥80% fully agree; moderate consensus ≥80% fully or partially agree, <10% disagree; and modest consensus 67%-79% fully or partially agree, <10% disagree. RESULTS Consensus was reached on the presence of 14 comorbidities in patients with Severe Developmental and Epileptic Encephalopathy (Severe DEE) spanning non-seizure neurological disorders and other organ systems; impacts were mostly severe and unlikely to improve or resolve. Across Mild/Moderate Developmental and Epileptic Encephalopathy (Mild/Moderate DEE), Neurodevelopmental Delay with Generalized Epilepsy (NDDwGE), and NDD without Epilepsy (NDDwoE) phenotypes, cognitive and sleep-related comorbidities as well as fine and gross motor delays may be present but are less severe and more likely to improve compared to Severe DEE. There was no consensus on comorbidities in the SeL(F)IE phenotype but strong conesensus that seizures would largely resolve. Seizure freedom is rare in patients with Severe DEE but may occur in some with Mild/Moderate DEE and NDDwGE. SIGNIFICANCE Significant comorbidities are present in most phenotypes of SCN8A-related disorders but are most severe and pervasive in the Severe DEE phenotype. We hope that this work will improve recognition, early intervention, and long-term management for patients with these comorbidities and provide the basis for future evidence-based studies on optimal treatments of SCN8A-related disorders. Identifying the prognosis of patients with SCN8A-related disorders will also improve care and quality-of-life for patients and their caregivers.
Collapse
Affiliation(s)
- Gabrielle Conecker
- International SCN8A Alliance, a Project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
| | - Maya Y Xia
- International SCN8A Alliance, a Project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
- COMBINEDBrain, Brentwood, Tennessee, USA
| | - JayEtta Hecker
- International SCN8A Alliance, a Project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
| | - Christelle Achkar
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cristine Cukiert
- Department of Neurology and Neurosurgery, Cukiert Clinic, São Paulo, Brazil
| | - Seth Devries
- Pediatric Neurology, Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Elizabeth Donner
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark Fitzgerald
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, Dianalund, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Michael Hammer
- Department of Neurology and Bio5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Anaita Hegde
- Department of Pediatric Neurosciences, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Chunhui Hu
- Department of Neurology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), National Regional Medical Center, Fuzhou, China
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Epilepsy Medical Center, Showa University Hospital, Shinagawa-ku, Japan
| | - Tian Luo
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - John M Schreiber
- Department of Neurology, Children's National Hospital, Washington, District of Columbia, USA
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Tammy Kooistra
- International SCN8A Alliance, a Project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
- International SCN8A Alliance Caregiver Representative, Global
| | - Madeleine Oudin
- International SCN8A Alliance, a Project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
- International SCN8A Alliance Caregiver Representative, Global
- Department of Biomedical Engineering, 200 College Avenue, Tufts University, Medford, Massachusetts, USA
| | - Kayla Waldrop
- International SCN8A Alliance Caregiver Representative, Global
| | | | - Dennis Zhang
- International SCN8A Alliance Caregiver Representative, Global
| | - Elaine Wirrell
- Child and Adolescent Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Neurosciences Center, Cook Children's Medical Center, Texas, USA
| |
Collapse
|
4
|
Quinn S, Zhang N, Fenton TA, Brusel M, Muruganandam P, Peleg Y, Giladi M, Haitin Y, Lerche H, Bassan H, Liu Y, Ben-Shalom R, Rubinstein M. Complex biophysical changes and reduced neuronal firing in an SCN8A variant associated with developmental delay and epilepsy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167127. [PMID: 38519006 DOI: 10.1016/j.bbadis.2024.167127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
Mutations in the SCN8A gene, encoding the voltage-gated sodium channel NaV1.6, are associated with a range of neurodevelopmental syndromes. The p.(Gly1625Arg) (G1625R) mutation was identified in a patient diagnosed with developmental epileptic encephalopathy (DEE). While most of the characterized DEE-associated SCN8A mutations were shown to cause a gain-of-channel function, we show that the G1625R variant, positioned within the S4 segment of domain IV, results in complex effects. Voltage-clamp analyses of NaV1.6G1625R demonstrated a mixture of gain- and loss-of-function properties, including reduced current amplitudes, increased time constant of fast voltage-dependent inactivation, a depolarizing shift in the voltage dependence of activation and inactivation, and increased channel availability with high-frequency repeated depolarization. Current-clamp analyses in transfected cultured neurons revealed that these biophysical properties caused a marked reduction in the number of action potentials when firing was driven by the transfected mutant NaV1.6. Accordingly, computational modeling of mature cortical neurons demonstrated a mild decrease in neuronal firing when mimicking the patients' heterozygous SCN8A expression. Structural modeling of NaV1.6G1625R suggested the formation of a cation-π interaction between R1625 and F1588 within domain IV. Double-mutant cycle analysis revealed that this interaction affects the voltage dependence of inactivation in NaV1.6G1625R. Together, our studies demonstrate that the G1625R variant leads to a complex combination of gain and loss of function biophysical changes that result in an overall mild reduction in neuronal firing, related to the perturbed interaction network within the voltage sensor domain, necessitating personalized multi-tiered analysis for SCN8A mutations for optimal treatment selection.
Collapse
Affiliation(s)
- Shir Quinn
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nan Zhang
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Timothy A Fenton
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Marina Brusel
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Preethi Muruganandam
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Yoav Peleg
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Giladi
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yoni Haitin
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Haim Bassan
- Pediatric Neurology and Development Center, Shamir Medical Center (Assaf Harofeh), Zerifin, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| | - Roy Ben-Shalom
- Neurology Department, MIND Institute, University of California, Davis, Sacramento, CA, United States.
| | - Moran Rubinstein
- Goldschleger Eye Research Institute, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Miralles RM, Boscia AR, Kittur S, Vundela SR, Wengert ER, Patel MK. Parvalbumin Interneuron Impairment Leads to Synaptic Transmission Deficits and Seizures in SCN8A Epileptic Encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579511. [PMID: 38464208 PMCID: PMC10925130 DOI: 10.1101/2024.02.09.579511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
SCN8A epileptic encephalopathy (EE) is a severe epilepsy syndrome resulting from de novo mutations in the voltage-gated sodium channel Na v 1.6, encoded by the gene SCN8A . Na v 1.6 is expressed in both excitatory and inhibitory neurons, yet previous studies have primarily focused on the impact SCN8A mutations have on excitatory neuron function, with limited studies on the importance of inhibitory interneurons to seizure onset and progression. Inhibitory interneurons are critical in balancing network excitability and are known to contribute to the pathophysiology of other epilepsies. Parvalbumin (PV) interneurons are the most prominent inhibitory neuron subtype in the brain, making up about 40% of inhibitory interneurons. Notably, PV interneurons express high levels of Na v 1.6. To assess the role of PV interneurons within SCN8A EE, we used two mouse models harboring patient-derived SCN8A gain-of-function mutations, Scn8a D/+ , where the SCN8A mutation N1768D is expressed globally, and Scn8a W/+ -PV, where the SCN8A mutation R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A mutation selectively in PV interneurons led to the development of spontaneous seizures in Scn8a W/+ -PV mice and seizure-induced death, decreasing survival compared to wild-type. Electrophysiology studies showed that PV interneurons in Scn8a D/+ and Scn8a W/+ -PV mice were susceptible to depolarization block, a state of action potential failure. Scn8a D/+ and Scn8a W/+ -PV interneurons also exhibited increased persistent sodium current, a hallmark of SCN8A gain-of-function mutations that contributes to depolarization block. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed an increase in synaptic transmission failure at high frequencies (80-120Hz) as well as an increase in synaptic latency in Scn8a D/+ and Scn8a W/+ -PV interneurons. These data indicate a distinct impairment of synaptic transmission in SCN8A EE, potentially decreasing overall cortical network inhibition. Together, our novel findings indicate that failure of PV interneuron spiking via depolarization block along with frequency-dependent inhibitory synaptic impairment likely elicits an overall reduction in the inhibitory drive in SCN8A EE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.
Collapse
|
6
|
Chung KM, Hack J, Andrews J, Galindo-Kelly M, Schreiber J, Watkins J, Hammer MF. Clinical severity is correlated with age at seizure onset and biophysical properties of recurrent gain of function variants associated with SCN8A-related epilepsy. Epilepsia 2023; 64:3365-3376. [PMID: 37585367 DOI: 10.1111/epi.17747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE Genetic variants in the SCN8A gene underlie a wide spectrum of neurodevelopmental phenotypes including several distinct seizure types and a host of comorbidities. One of the major challenges facing clinicians and researchers alike is to identify genotype-phenotype (G-P) correlations that may improve prognosis, guide treatment decisions, and lead to precision medicine approaches. METHODS We investigated G-P correlations among 270 participants harboring gain-of-function (GOF) variants enrolled in the International SCN8A Registry, a patient-driven online database. We performed correlation analyses stratifying the cohort by clinical phenotypes to identify diagnostic features that differ among patients with varying levels of clinical severity, and that differ among patients with distinct GOF variants. RESULTS Our analyses confirm positive correlations between age at seizure onset and developmental skills acquisition (developmental quotient), rate of seizure freedom, and percentage of cohort with developmental delays, and identify negative correlations with number of current and weaned antiseizure medications. This set of features is more detrimentally affected in individuals with a priori expectations of more severe clinical phenotypes. Our analyses also reveal a significant correlation between a severity index combining clinical features of individuals with a particular highly recurrent variant and an independent electrophysiological score assigned to each variant based on in vitro testing. SIGNIFICANCE This is one of the first studies to identify statistically significant G-P correlations for individual SCN8A variants with GOF properties. The results suggest that individual GOF variants (1) are predictive of clinical severity for individuals carrying those variants and (2) may underlie distinct clinical phenotypes of SCN8A disease, thus helping to explain the wide SCN8A-related epilepsy disease spectrum. These results also suggest that certain features present at initial diagnosis are predictive of clinical severity, and with more informed treatment plans, may serve to improve prognosis for patients with SCN8A GOF variants.
Collapse
Affiliation(s)
- Kyung Mi Chung
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Joshua Hack
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Jennifer Andrews
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | | | - John Schreiber
- Department of Neurology, Children's National Medical Center, Washington, District of Columbia, USA
| | - Joseph Watkins
- Department of Mathematics, University of Arizona, Tucson, Arizona, USA
| | - Michael F Hammer
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Neurology Department, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
7
|
Dolma S, Joshi A. The Node of Ranvier as an Interface for Axo-Glial Interactions: Perturbation of Axo-Glial Interactions in Various Neurological Disorders. J Neuroimmune Pharmacol 2023; 18:215-234. [PMID: 37285016 DOI: 10.1007/s11481-023-10072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The action potential conduction along the axon is highly dependent on the healthy interactions between the axon and myelin-producing glial cells. Myelin, which facilitates action potential, is the protective insulation around the axon formed by Schwann cells and oligodendrocytes in the peripheral (PNS) and central nervous system (CNS), respectively. Myelin is a continuous structure with intermittent gaps called nodes of Ranvier, which are the sites enriched with ion channels, transmembrane, scaffolding, and cytoskeletal proteins. Decades-long extensive research has identified a comprehensive proteome with strictly regularized localization at the node of Ranvier. Concurrently, axon-glia interactions at the node of Ranvier have gathered significant attention as the pathophysiological targets for various neurodegenerative disorders. Numerous studies have shown the alterations in the axon-glia interactions culminating in neurological diseases. In this review, we have provided an update on the molecular composition of the node of Ranvier. Further, we have discussed in detail the consequences of disruption of axon-glia interactions during the pathogenesis of various CNS and PNS disorders.
Collapse
Affiliation(s)
- Sonam Dolma
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India
| | - Abhijeet Joshi
- Department of Pharmacy, Birla Institute of Technology and Sciences- Pilani, Hyderabad campus, Telangana state, India.
| |
Collapse
|
8
|
Guo QB, Zhan L, Xu HY, Gao ZB, Zheng YM. SCN8A epileptic encephalopathy mutations display a gain-of-function phenotype and divergent sensitivity to antiepileptic drugs. Acta Pharmacol Sin 2022; 43:3139-3148. [PMID: 35902765 PMCID: PMC9712530 DOI: 10.1038/s41401-022-00955-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
De novo missense mutations in SCN8A gene encoding voltage-gated sodium channel NaV1.6 are linked to a severe form of early infantile epileptic encephalopathy named early infantile epileptic encephalopathy type13 (EIEE13). The majority of the patients with EIEE13 does not respond favorably to the antiepileptic drugs (AEDs) in clinic and has a significantly increased risk of death. Although more than 60 EIEE13-associated mutations have been discovered, only few mutations have been functionally analyzed. In this study we investigated the functional influences of mutations N1466T and N1466K, two EIEE13-associated mutations located in the inactivation gate, on sodium channel properties. Sodium currents were recorded from CHO cells expressing the mutant and wide-type (WT) channels using the whole-cell patch-clamp technique. We found that, in comparison with WT channels, both the mutant channels exhibited increased window currents, persistent currents (INaP) and ramp currents, suggesting that N1466T and N1466K were gain-of-function (GoF) mutations. Sodium channel inhibition is one common mechanism of currently available AEDs, in which topiramate (TPM) was effective in controlling seizures of patients carrying either of the two mutations. We found that TPM (100 µM) preferentially inhibited INaP and ramp currents but did not affect transient currents (INaT) mediated by N1466T or N1466K. Among the other 6 sodium channel-inhibiting AEDs tested, phenytoin and carbamazepine displayed greater efficacy than TPM in suppressing both INaP and ramp currents. Functional characterization of mutants N1466T and N1466K is beneficial for understanding the pathogenesis of EIEE13. The divergent effects of sodium channel-inhibiting AEDs on INaP and ramp currents provide insight into the development of therapeutic strategies for the N1466T and N1466K-associated EIEE13.
Collapse
Affiliation(s)
- Qian-Bei Guo
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hai-Yan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhao-Bing Gao
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528437, China.
| | - Yue-Ming Zheng
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| |
Collapse
|
9
|
Johannesen KM, Liu Y, Koko M, Gjerulfsen CE, Sonnenberg L, Schubert J, Fenger CD, Eltokhi A, Rannap M, Koch NA, Lauxmann S, Krüger J, Kegele J, Canafoglia L, Franceschetti S, Mayer T, Rebstock J, Zacher P, Ruf S, Alber M, Sterbova K, Lassuthová P, Vlckova M, Lemke JR, Platzer K, Krey I, Heine C, Wieczorek D, Kroell-Seger J, Lund C, Klein KM, Au PYB, Rho JM, Ho AW, Masnada S, Veggiotti P, Giordano L, Accorsi P, Hoei-Hansen CE, Striano P, Zara F, Verhelst H, Verhoeven JS, Braakman HMH, van der Zwaag B, Harder AVE, Brilstra E, Pendziwiat M, Lebon S, Vaccarezza M, Le NM, Christensen J, Grønborg S, Scherer SW, Howe J, Fazeli W, Howell KB, Leventer R, Stutterd C, Walsh S, Gerard M, Gerard B, Matricardi S, Bonardi CM, Sartori S, Berger A, Hoffman-Zacharska D, Mastrangelo M, Darra F, Vøllo A, Motazacker MM, Lakeman P, Nizon M, Betzler C, Altuzarra C, Caume R, Roubertie A, Gélisse P, Marini C, Guerrini R, Bilan F, Tibussek D, Koch-Hogrebe M, Perry MS, Ichikawa S, Dadali E, Sharkov A, Mishina I, Abramov M, Kanivets I, Korostelev S, Kutsev S, Wain KE, Eisenhauer N, Wagner M, Savatt JM, Müller-Schlüter K, Bassan H, Borovikov A, Nassogne MC, Destrée A, Schoonjans AS, Meuwissen M, Buzatu M, Jansen A, Scalais E, Srivastava S, Tan WH, Olson HE, Loddenkemper T, Poduri A, Helbig KL, Helbig I, Fitzgerald MP, Goldberg EM, Roser T, Borggraefe I, Brünger T, May P, Lal D, Lederer D, Rubboli G, Heyne HO, Lesca G, Hedrich UBS, Benda J, Gardella E, Lerche H, Møller RS. Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications. Brain 2022; 145:2991-3009. [PMID: 34431999 PMCID: PMC10147326 DOI: 10.1093/brain/awab321] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel Nav1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups were identified: Group 1, benign familial infantile epilepsy (n = 15, normal cognition, treatable seizures); Group 2, intermediate epilepsy (n = 33, mild intellectual disability, partially pharmaco-responsive); Group 3, developmental and epileptic encephalopathy (n = 177, severe intellectual disability, majority pharmaco-resistant); Group 4, generalized epilepsy (n = 20, mild to moderate intellectual disability, frequently with absence seizures); Group 5, unclassifiable epilepsy (n = 127); and Group 6, neurodevelopmental disorder without epilepsy (n = 20, mild to moderate intellectual disability). Those in Groups 1-3 presented with focal or multifocal seizures (median age of onset: 4 months) and focal epileptiform discharges, whereas the onset of seizures in patients with generalized epilepsy was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human Nav1.6 channels and whole-cell patch-clamping. Two variants causing developmental and epileptic encephalopathy showed a strong gain-of-function (hyperpolarizing shift of steady-state activation, strongly increased neuronal firing rate) and one variant causing benign familial infantile epilepsy or intermediate epilepsy showed a mild gain-of-function (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (reduced current amplitudes, depolarizing shift of steady-state activation, reduced neuronal firing). Functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested gain-of-function variant had either focal (n = 97, Groups 1-3) or unclassifiable (n = 39) epilepsy, whereas 34 individuals with a loss-of-function variant had either generalized (n = 14), no (n = 11) or unclassifiable (n = 6) epilepsy; only three had developmental and epileptic encephalopathy. Computational modelling in the gain-of-function group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. Gain-of-function variant carriers responded significantly better to sodium channel blockers than to other anti-seizure medications, and the same applied for all individuals in Groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of loss-of-function variant carriers and the extent of the electrophysiological dysfunction of the gain-of-function variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that sodium channel blockers present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.
Collapse
Affiliation(s)
- Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, 5230 Odense, Denmark
| | - Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Cathrine E Gjerulfsen
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
| | - Lukas Sonnenberg
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
- Institute for Neurobiology, University of Tuebingen, 72072 Tuebingen, Germany
| | - Julian Schubert
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
| | - Ahmed Eltokhi
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Maert Rannap
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Nils A Koch
- Institute for Neurobiology, University of Tuebingen, 72072 Tuebingen, Germany
| | - Stephan Lauxmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
- Institute for Neurobiology, University of Tuebingen, 72072 Tuebingen, Germany
| | - Johanna Krüger
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Josua Kegele
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Laura Canafoglia
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologio Carlo Besta, 20125 Milan, Italy
| | - Silvana Franceschetti
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologio Carlo Besta, 20125 Milan, Italy
| | - Thomas Mayer
- Epilepsy Center Kleinwachau, 01454 Dresden-Radeberg, Germany
| | | | - Pia Zacher
- Epilepsy Center Kleinwachau, 01454 Dresden-Radeberg, Germany
| | - Susanne Ruf
- Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, 72072 Tuebingen, Germany
| | - Michael Alber
- Department of Pediatric Neurology and Developmental Medicine, University Children’s Hospital, 72072 Tuebingen, Germany
| | - Katalin Sterbova
- Department of Child Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 10000 Prague, Czech Republic
| | - Petra Lassuthová
- Department of Child Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 10000 Prague, Czech Republic
| | - Marketa Vlckova
- Department of Child Neurology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, 10000 Prague, Czech Republic
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 4275 Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 4275 Leipzig, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 4275 Leipzig, Germany
| | - Constanze Heine
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 4275 Leipzig, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, University Clinic, Heinrich-Heine-University, 40210 Düsseldorf, Germany
| | - Judith Kroell-Seger
- Children’s Department, Swiss Epilepsy Centre, Clinic Lengg, 8001 Zurich, Switzerland
| | - Caroline Lund
- National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, 0001 Oslo, Norway
| | - Karl Martin Klein
- Departments of Clinical Neurosciences, Medical Genetics and Community Health Sciences, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2P 0A1, Canada
| | - P Y Billie Au
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, University of Calgary, AB T6G 2T4, Canada
| | - Jong M Rho
- Section of Pediatric Neurology, Alberta Children’s Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB T2P 0A1, Canada
| | - Alice W Ho
- Section of Pediatric Neurology, Alberta Children’s Hospital, Cumming School of Medicine, University of Calgary, Calgary, AB T2P 0A1, Canada
| | - Silvia Masnada
- Department of Child Neurology, V. Buzzi Children’s Hospital, 20125 Milan, Italy
| | - Pierangelo Veggiotti
- Department of Child Neurology, V. Buzzi Children’s Hospital, 20125 Milan, Italy
- ‘L. Sacco’ Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy
| | - Lucio Giordano
- Child Neuropsychiatric Unit, Civilian Hospital, 25100 Brescia, Italy
| | - Patrizia Accorsi
- Child Neuropsychiatric Unit, Civilian Hospital, 25100 Brescia, Italy
| | - Christina E Hoei-Hansen
- Department of Pediatrics, Copenhagen University Hospital Rigshospitalet, 2200 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16121 Genova, Italy
- IRCCS ‘G. Gaslini’ Institute, 16121 Genoa, Italy
| | | | - Helene Verhelst
- Department of Pediatrics, Division of Pediatric Neurology, Gent University Hospital, 9042 Gent, Belgium
| | - Judith S Verhoeven
- Academic Center for Epileptology, Kempenhaeghe/Maastricht University Medical Center, 5591 Heeze, The Netherlands
| | - Hilde M H Braakman
- Department of Pediatric Neurology, Amalia Children’s Hospital, Radboud University Medical Center, 6525 Nijmegen, The Netherlands
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3553 Utrecht, The Netherlands
| | - Aster V E Harder
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3553 Utrecht, The Netherlands
| | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3553 Utrecht, The Netherlands
| | - Manuela Pendziwiat
- Department of Neuropediatrics, Universitätsklinikum Schleswig Holstein Campus Kiel, 24106 Kiel, Germany
| | - Sebastian Lebon
- Pediatric Neurology and Neurorehabilitation Unit, Woman Mother Child Department, Lausanne University Hospital (CHUV), 1000 Lausanne, Switzerland
- University of Lausanne, 1000 Lausanne, Switzerland
| | - Maria Vaccarezza
- Department of Pediatric Neurology, Hospital Italiano de Buenos Aires, C1428 Buenos Aires, Argentina
| | - Ngoc Minh Le
- Center for Pediatric Neurology, Cleveland Clinic, Cleveland, OH 44102, USA
| | - Jakob Christensen
- Department of Neurology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Sabine Grønborg
- Center for Rare Diseases, Department of Pediatrics and Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, 2200 Copenhagen, Denmark
| | - Stephen W Scherer
- McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON 66777, Canada
- The Centre for Applied Genomics and Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON 66777, Canada
| | - Jennifer Howe
- Department of Neuropediatrics, University Hospital Bonn, 53229 Bonn, Germany
| | - Walid Fazeli
- Institute for Molecular and Behavioral Neuroscience, University of Cologne, 50667 Cologne, Germany
- Neurology Department, The Royal Children’s Hospital Melbourne, 3002 Melbourne, Australia
| | - Katherine B Howell
- Neurology Department, The Royal Children’s Hospital Melbourne, 3002 Melbourne, Australia
- Murdoch Children’s Research Institute, 3052 Parkville, Australia
- Department of Pediatrics, University of Melbourne, Royal Children’s Hospital, 3052 Parkville, Australia
| | - Richard Leventer
- Neurology Department, The Royal Children’s Hospital Melbourne, 3002 Melbourne, Australia
- Murdoch Children’s Research Institute, 3052 Parkville, Australia
- Department of Pediatrics, University of Melbourne, Royal Children’s Hospital, 3052 Parkville, Australia
| | - Chloe Stutterd
- Murdoch Children’s Research Institute, 3052 Parkville, Australia
- Department of Pediatrics, University of Melbourne, Royal Children’s Hospital, 3052 Parkville, Australia
| | - Sonja Walsh
- Department of Neuropediatrics, Children’s Hospital, University Hospital Carl Gustav Carus, Technical University, 1099 Dresden, Germany
| | - Marion Gerard
- Genetics Department, CHU Côte de Nacre, 14118 Caen, France
| | | | - Sara Matricardi
- Child Neurology and Psychiatry Unit, Children’s Hospital G. Salesi, 60121 Ancona, Italy
| | - Claudia M Bonardi
- Department of Woman’s and Child’s Health, Padova University Hospital, 35100 Padova, Italy
| | - Stefano Sartori
- Child Neurology and Clinical Neurophysiology Unit, Padova University Hospital, 35100 Padova, Italy
| | - Andrea Berger
- Department of Neuropediatrics, Klinikum Weiden, Kliniken Nordoberpfalz AG, 92637 Weiden, Germany
| | | | - Massimo Mastrangelo
- Pediatric Neurology Unit, Vittore Buzzi Hospital, ASST Fatebenefratelli Sacco, 20100 Milan, Italy
| | - Francesca Darra
- Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, 37121 Verona, Italy
| | - Arve Vøllo
- Department of Pediatrics, Oestfold Hospital, 1712 Graalum, Norway
| | - M Mahdi Motazacker
- Laboratory of Genome Diagnostics, Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, 1019 Amsterdam, Netherlands
| | - Phillis Lakeman
- Department of Clinical Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, 1019 Amsterdam, Netherlands
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, 44093 Nantes, France
| | - Cornelia Betzler
- Clinic for Neuropediatrics and Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik, 83569 Vogtareuth, Germany
- Research Institute ‘Rehabilitation, Transition, Palliation’, PMU Salzburg, 5020 Salzburg, Austria
| | - Cecilia Altuzarra
- Department of Pediatrics, St. Jacques Hospital, 25000 Besançon, France
| | - Roseline Caume
- Clinique de Génétique Guy Fontaine, CHU Lille, 59000, Lille, France
| | - Agathe Roubertie
- Département de Neuropédiatrie, INSERM, CHU Montpellier, 34000 Montpellier, France
| | - Philippe Gélisse
- Département de Neuropédiatrie, INSERM, CHU Montpellier, 34000 Montpellier, France
| | - Carla Marini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children’s Hospital, University of Florence, 50131 Florence, Italy
| | | | - Frederic Bilan
- Service de Génétique, Centre Hospitalier Universitaire de Poitiers, 86021 Poitiers, France
| | - Daniel Tibussek
- Child Neurology, Center for Pediatric and Teenage Health Care, 53757 Sankt Augustin, Germany
| | | | - M Scott Perry
- Justin Neurosciences Center, Cook Children’s Medical Center, Fort Worth, TX 76101, USA
| | - Shoji Ichikawa
- Department of Clinical Diagnostics, Ambry Genetics, Aliso Viejo, CA 92637, USA
| | - Elena Dadali
- Research Centre for Medical Genetics, 115522 Moscow, Russia
- Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, 125412 Moscow, Russia
| | - Artem Sharkov
- Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, 125412 Moscow, Russia
- Genomed Ltd., 100000 Moscow, Russia
| | - Irina Mishina
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Mikhail Abramov
- Veltischev Research and Clinical Institute for Pediatrics, Pirogov Russian National Research Medical University, 125412 Moscow, Russia
| | - Ilya Kanivets
- Svt. Luka’s Institute of Child Neurology & Epilepsy, 100000 Moscow, Russia
- Russian Medical Academy of Continuous Professional Education, 100000 Moscow, Russia
| | - Sergey Korostelev
- Svt. Luka’s Institute of Child Neurology & Epilepsy, 100000 Moscow, Russia
- I.M. Sechenov First Moscow State Medical University, 100000 Moscow, Russia
| | - Sergey Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia
| | - Karen E Wain
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Nancy Eisenhauer
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Monisa Wagner
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Juliann M Savatt
- Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA 17837, USA
| | - Karen Müller-Schlüter
- Epilepsy Center for Children, University Hospital Neuruppin, Brandenburg Medical School, 16816 Neuruppin, Germany
| | - Haim Bassan
- Pediatric Neurology & Development Center, Shamir Medical Center (Assaf Harofe), Be'er Ya'akov, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 5296001 Tel Aviv, Israel
| | | | - Marie Cecile Nassogne
- Pediatric Neurology Unit, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1000 Brussels, Belgium
| | - Anne Destrée
- Institute for Pathology and Genetics, 6040 Gosselies, Belgium
| | - An Sofie Schoonjans
- Department of Pediatrics and Pediatric Neurology, Antwerp University Hospital, University of Antwerp, 2650 Edegem, Belgium
| | - Marije Meuwissen
- Pediatric Neurology, Marie Curie Hospital—CHU Charleroi, 6032 Charleroi, Belgium
| | - Marga Buzatu
- Pediatric Neurology, Marie Curie Hospital—CHU Charleroi, 6032 Charleroi, Belgium
| | - Anna Jansen
- Pediatric Neurology Unit, Department of Pediatrics, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Emmanuel Scalais
- Pediatric Neurology Unit, Department of Pediatrics, Centre Hospitalier de Luxembourg, 1313 Luxembourg, Luxembourg
| | - Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02108, USA
| | - Wen Hann Tan
- Department of Genetics, Boston Children’s Hospital, Boston, MA 02108, USA
| | - Heather E Olson
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02108, USA
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, MA 02108, USA
| | - Tobias Loddenkemper
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02108, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02108, USA
- Epilepsy Genetics Program, Boston Children’s Hospital, Boston, MA 02108, USA
| | - Katherine L Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy Neurogenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy Neurogenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
- Department of Neuropediatrics, Kiel University, 24105 Kiel, Germany
| | - Mark P Fitzgerald
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy Neurogenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- Institute of Clinical Molecular Biology, Kiel University, 24105 Kiel, Germany
| | - Ethan M Goldberg
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- The Epilepsy Neurogenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Timo Roser
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Haunersches Children’s Hospital, Ludwig-Maximilian-University of Munich, 80331 Munich, Germany
| | - Ingo Borggraefe
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, Dr. von Haunersches Children’s Hospital, Ludwig-Maximilian-University of Munich, 80331 Munich, Germany
- Comprehensive Epilepsy Center, Ludwig-Maximilian- University of Munich, 80331 Munich, Germany
| | - Tobias Brünger
- Luxembourg Centre for Systems Biomedicine (LCSB), University Luxembourg, L-4243 Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44102, USA
| | - Dennis Lal
- Luxembourg Centre for Systems Biomedicine (LCSB), University Luxembourg, L-4243 Esch-sur-Alzette, Luxembourg
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44102, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T., Cambridge, MA 02138, USA
- Cologne Center for Genomics (CCG), University of Cologne, 50667 Cologne, Germany
| | - Damien Lederer
- Institute for Pathology and Genetics, 6040 Gosselies, Belgium
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
- University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrike O Heyne
- Institute of Human Genetics, University of Leipzig Hospitals and Clinics, 4275 Leipzig, Germany
- Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, 320 Helsinki, Finland
- Program for Medical and Population Genetics/Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02138, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02108, USA
| | - Gaetan Lesca
- Department of Medical Genetics, Groupement Hospitalier Est and ERN EpiCARE, University Hospitals of Lyon (HCL), 69001 Lyon, France
- Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, 69001 Lyon, France
| | - Ulrike B S Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Jan Benda
- Institute for Neurobiology, University of Tuebingen, 72072 Tuebingen, Germany
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, 5230 Odense, Denmark
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, 72072 Tuebingen, Germany
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, The Danish Epilepsy Center, 4293 Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
10
|
A nutraceutical product, extracted from Cannabis sativa, modulates voltage-gated sodium channel function. J Cannabis Res 2022; 4:30. [PMID: 35689251 PMCID: PMC9185959 DOI: 10.1186/s42238-022-00136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background Purified cannabidiol (CBD), a non-psychoactive phytocannabinoid, has gained regulatory approval to treat intractable childhood epilepsies. Despite this, artisanal and commercial CBD-dominant hemp-based products continue to be used by epilepsy patients. Notably, the CBD doses used in these latter products are much lower than that found to be effective in reducing seizures in clinical trials with purified CBD. This might be because these CBD-dominant hemp products contain other bioactive compounds, including phytocannabinoids and terpenes, which may exert unique effects on epilepsy-relevant drug targets. Voltage-gated sodium (NaV) channels are vital for initiation of neuronal action potential propagation and genetic mutations in these channels result in epilepsy phenotypes. Recent studies suggest that NaV channels are inhibited by purified CBD. However, the effect of cannabis-based products on the function of NaV channels is unknown. Methods Using automated-planar patch-clamp technology, we profile a hemp-derived nutraceutical product (NP) against human NaV1.1–NaV1.8 expressed in mammalian cells to examine effects on the biophysical properties of channel conductance, steady-state fast inactivation and recovery from fast inactivation. Results NP modifies peak current amplitude of the NaV1.1–NaV1.7 subtypes and has variable effects on the biophysical properties for all channel subtypes tested. NP potently inhibits NaV channels revealing half-maximal inhibitory concentration (IC50) values of between 1.6 and 4.2 μg NP/mL. Purified CBD inhibits NaV1.1, NaV1.2, NaV1.6 and NaV1.7 to reveal IC50 values in the micromolar range. The CBD content of the product equates to IC50 values (93–245 nM), which are at least an order of magnitude lower than purified CBD. Unlike NP, hemp seed oil vehicle alone did not inhibit NaV channels, suggesting that the inhibitory effects of NP are independent of hemp seed oil. Conclusions This CBD-dominant NP potently inhibits NaV channels. Future study of the individual elements of NP, including phytocannabinoids and terpenes, may reveal a potent individual component or that its components interact to modulate NaV channels. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-022-00136-x.
Collapse
|
11
|
OUP accepted manuscript. Brain 2022; 145:e28-e30. [DOI: 10.1093/brain/awac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/14/2022] Open
|
12
|
Peng BW, Tian Y, Chen L, Duan LF, Wang XY, Zhu HX, Shi KL, Zheng KL, Shen HL, Liang W, Li XJ, Chen WX. OUP accepted manuscript. Brain 2022; 145:e24-e27. [PMID: 35230384 PMCID: PMC9129090 DOI: 10.1093/brain/awac038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/23/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bing-wei Peng
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yang Tian
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Chen
- Epilepsy Treatment Center, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Li-fen Duan
- Division of Neurology, The Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Xiu-ying Wang
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hai-xia Zhu
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai-li Shi
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ke-lu Zheng
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hui-ling Shen
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Liang
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-jing Li
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Correspondence to: Prof. Xiao-Jing Li
Department of Neurology
Guangzhou Women and Children’s Medical Center
Guangzhou Medical University
318# Ren Min Road, 510120, Guangzhou City
Guangdong Province, China
E-mail:
| | - Wen-xiong Chen
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Correspondence may also be addressed to: Prof. Wen-Xiong Chen, PhD, MD
E-mail:
| |
Collapse
|
13
|
Wong JC, Butler KM, Shapiro L, Thelin JT, Mattison KA, Garber KB, Goldenberg PC, Kubendran S, Schaefer GB, Escayg A. Pathogenic in-Frame Variants in SCN8A: Expanding the Genetic Landscape of SCN8A-Associated Disease. Front Pharmacol 2021; 12:748415. [PMID: 34867351 PMCID: PMC8635767 DOI: 10.3389/fphar.2021.748415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 01/11/2023] Open
Abstract
Numerous SCN8A mutations have been identified, of which, the majority are de novo missense variants. Most mutations result in epileptic encephalopathy; however, some are associated with less severe phenotypes. Mouse models generated by knock-in of human missense SCN8A mutations exhibit seizures and a range of behavioral abnormalities. To date, there are only a few Scn8a mouse models with in-frame deletions or insertions, and notably, none of these mouse lines exhibit increased seizure susceptibility. In the current study, we report the generation and characterization of two Scn8a mouse models (ΔIRL/+ and ΔVIR/+) carrying overlapping in-frame deletions within the voltage sensor of domain 4 (DIVS4). Both mouse lines show increased seizure susceptibility and infrequent spontaneous seizures. We also describe two unrelated patients with the same in-frame SCN8A deletion in the DIV S5-S6 pore region, highlighting the clinical relevance of this class of mutations.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, GA, United States.,Greenwood Genetic Center, Greenwood, SC, United States
| | - Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Jacquelyn T Thelin
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kari A Mattison
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kathryn B Garber
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Paula C Goldenberg
- Department of Pediatrics and Medical Genetics, Harvard Medical School, Boston, MA, United States
| | - Shobana Kubendran
- Department of Pediatrics, Kansas University School of Medicine-Wichita, Wichita, KS, United States
| | - G Bradley Schaefer
- University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Liu Y, Koko M, Lerche H. A SCN8A variant associated with severe early onset epilepsy and developmental delay: Loss- or gain-of-function? Epilepsy Res 2021; 178:106824. [PMID: 34847423 DOI: 10.1016/j.eplepsyres.2021.106824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
SCN8A, encoding the voltage-gated sodium channel subunit NaV1.6, has been associated with a wide spectrum of neuropsychiatric disorders. Missense variants in SCN8A which increase the channel activity can cause a severe developmental and epileptic encephalopathy (DEE). One DEE variant (p.(Arg223Gly)) was described to cause a predominant loss-of-function (LOF) mechanism when expressed in neuroblastoma cells, which is not consistent with the genotype-phenotype correlations in this gene. To resolve this discrepancy and understand the pathophysiological mechanism of this variant, we performed comprehensive electrophysiological studies in both neuroblastoma cells and primary hippocampal neuronal cultures. Although we also found that p.(Arg223Gly) significantly decreased Na+ current density and enhanced fast inactivation compared to the wild type (WT) channel in transfected neuroblastoma cells (both LOF mechanisms), it also caused a strong hyperpolarizing shift of steady-state activation and accelerated the recovery from fast inactivation (both gain-of-function (GOF) mechanisms). In cultured neurons transfected with mutant vs. WT NaV1.6 channels, we found more depolarized resting membrane potentials and a decreased rheobase leading to enhanced action potential firing. We conclude that SCN8A p.(Arg223Gly) leads to a net GOF resulting in neuronal hyperexcitability and a higher firing rate, fitting with the central role of GOF mechanisms in DEE.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Koko
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
15
|
Abstract
SCN8A epileptic encephalopathy is a devastating epilepsy syndrome caused by mutant SCN8A, which encodes the voltage-gated sodium channel NaV1.6. To date, it is unclear if and how inhibitory interneurons, which express NaV1.6, influence disease pathology. Using both sexes of a transgenic mouse model of SCN8A epileptic encephalopathy, we found that selective expression of the R1872W SCN8A mutation in somatostatin (SST) interneurons was sufficient to convey susceptibility to audiogenic seizures. Patch-clamp electrophysiology experiments revealed that SST interneurons from mutant mice were hyperexcitable but hypersensitive to action potential failure via depolarization block under normal and seizure-like conditions. Remarkably, GqDREADD-mediated activation of WT SST interneurons resulted in prolonged electrographic seizures and was accompanied by SST hyperexcitability and depolarization block. Aberrantly large persistent sodium currents, a hallmark of SCN8A mutations, were observed and were found to contribute directly to aberrant SST physiology in computational modeling and pharmacological experiments. These novel findings demonstrate a critical and previously unidentified contribution of SST interneurons to seizure generation not only in SCN8A epileptic encephalopathy, but epilepsy in general.SIGNIFICANCE STATEMENT SCN8A epileptic encephalopathy is a devastating neurological disorder that results from de novo mutations in the sodium channel isoform Nav1.6. Inhibitory neurons express NaV1.6, yet their contribution to seizure generation in SCN8A epileptic encephalopathy has not been determined. We show that mice expressing a human-derived SCN8A variant (R1872W) selectively in somatostatin (SST) interneurons have audiogenic seizures. Physiological recordings from SST interneurons show that SCN8A mutations lead to an elevated persistent sodium current which drives initial hyperexcitability, followed by premature action potential failure because of depolarization block. Furthermore, chemogenetic activation of WT SST interneurons leads to audiogenic seizure activity. These findings provide new insight into the importance of SST inhibitory interneurons in seizure initiation, not only in SCN8A epileptic encephalopathy, but for epilepsy broadly.
Collapse
|
16
|
Gorman KM, Peters CH, Lynch B, Jones L, Bassett DS, King MD, Ruben PC, Rosch RE. Persistent sodium currents in SCN1A developmental and degenerative epileptic dyskinetic encephalopathy. Brain Commun 2021; 3:fcab235. [PMID: 34755109 PMCID: PMC8568850 DOI: 10.1093/braincomms/fcab235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 11/14/2022] Open
Abstract
Pathogenic variants in the voltage-gated sodium channel gene (SCN1A) are amongst the most common genetic causes of childhood epilepsies. There is considerable heterogeneity in both the types of causative variants and associated phenotypes; a recent expansion of the phenotypic spectrum of SCN1A associated epilepsies now includes an early onset severe developmental and epileptic encephalopathy with regression and a hyperkinetic movement disorder. Herein, we report a female with a developmental and degenerative epileptic-dyskinetic encephalopathy, distinct and more severe than classic Dravet syndrome. Clinical diagnostics indicated a paternally inherited c.5053G>T; p. A1685S variant of uncertain significance in SCN1A. Whole-exome sequencing detected a second de novo mosaic (18%) c.2345G>A; p. T782I likely pathogenic variant in SCN1A (maternal allele). Biophysical characterization of both mutant channels in a heterologous expression system identified gain-of-function effects in both, with a milder shift in fast inactivation of the p. A1685S channels; and a more severe persistent sodium current in the p. T782I. Using computational models, we show that large persistent sodium currents induce hyper-excitability in individual cortical neurons, thus relating the severe phenotype to the empirically quantified sodium channel dysfunction. These findings further broaden the phenotypic spectrum of SCN1A associated epilepsies and highlight the importance of testing for mosaicism in epileptic encephalopathies. Detailed biophysical evaluation and computational modelling further highlight the role of gain-of-function variants in the pathophysiology of the most severe phenotypes associated with SCN1A.
Collapse
Affiliation(s)
- Kathleen M Gorman
- Department of Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Colin H Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
- Department of Physiology and Biophysics, University of Colorado, Denver, CO, USA
| | - Bryan Lynch
- Department of Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
| | - Laura Jones
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Dani S Bassett
- Departments of Bioengineering, Electrical & Systems Engineering, Physics & Astronomy, Neurology, and Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Mary D King
- Department of Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Richard E Rosch
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
17
|
Abstract
The presence of unprovoked, recurrent seizures, particularly when drug resistant and associated with cognitive and behavioral deficits, warrants investigation for an underlying genetic cause. This article provides an overview of the major classes of genes associated with epilepsy phenotypes divided into functional categories along with the recommended work-up and therapeutic considerations. Gene discovery in epilepsy supports counseling and anticipatory guidance but also opens the door for precision medicine guiding therapy with a focus on those with disease-modifying effects.
Collapse
Affiliation(s)
- Luis A Martinez
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Yi-Chen Lai
- Department of Pediatrics, Section of Pediatric Critical Care Medicine, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - J Lloyd Holder
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA
| | - Anne E Anderson
- Department of Pediatrics, Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, 1250 Moursund Drive, Houston, TX 77030, USA.
| |
Collapse
|
18
|
Kopach O, Esteras N, Wray S, Abramov AY, Rusakov DA. Genetically engineered MAPT 10+16 mutation causes pathophysiological excitability of human iPSC-derived neurons related to 4R tau-induced dementia. Cell Death Dis 2021; 12:716. [PMID: 34274950 PMCID: PMC8286258 DOI: 10.1038/s41419-021-04007-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Human iPSC lines represent a powerful translational model of tauopathies. We have recently described a pathophysiological phenotype of neuronal excitability of human cells derived from the patients with familial frontotemporal dementia and parkinsonism (FTDP-17) caused by the MAPT 10+16 splice-site mutation. This mutation leads to the increased splicing of 4R tau isoforms. However, the role of different isoforms of tau protein in initiating neuronal dementia-related dysfunction, and the causality between the MAPT 10+16 mutation and altered neuronal activity have remained unclear. Here, we employed genetically engineered cells, in which the IVS10+16 mutation was introduced into healthy donor iPSCs to increase the expression of 4R tau isoform in exon 10, aiming to explore key physiological traits of iPSC-derived MAPT IVS10+16 neurons using patch-clamp electrophysiology and multiphoton fluorescent imaging techniques. We found that during late in vitro neurogenesis (from ~180 to 230 days) iPSC-derived cortical neurons of the control group (parental wild-type tau) exhibited membrane properties compatible with "mature" neurons. In contrast, MAPT IVS10+16 neurons displayed impaired excitability, as reflected by a depolarized resting membrane potential, an increased input resistance, and reduced voltage-gated Na+- and K+-channel-mediated currents. The mutation changed the channel properties of fast-inactivating Nav and decreased the Nav1.6 protein level. MAPT IVS10+16 neurons exhibited reduced firing accompanied by a changed action potential waveform and severely disturbed intracellular Ca2+ dynamics, both in the soma and dendrites, upon neuronal depolarization. These results unveil a causal link between the MAPT 10+16 mutation, hence overproduction of 4R tau, and a dysfunction of human cells, identifying a biophysical basis of changed neuronal activity in 4R tau-triggered dementia. Our study lends further support to using iPSC lines as a suitable platform for modelling tau-induced human neuropathology in vitro.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Noemí Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
19
|
Abstract
Genetic testing has yielded major advances in our understanding of the causes of epilepsy. Seizures remain resistant to treatment in a significant proportion of cases, particularly in severe, childhood-onset epilepsy, the patient population in which an underlying causative genetic variant is most likely to be identified. A genetic diagnosis can be explanatory as to etiology, and, in some cases, might suggest a therapeutic approach; yet, a clear path from genetic diagnosis to treatment remains unclear in most cases. Here, we discuss theoretical considerations behind the attempted use of small molecules for the treatment of genetic epilepsies, which is but one among various approaches currently under development. We explore a few salient examples and consider the future of the small molecule approach for genetic epilepsies. We conclude that significant additional work is required to understand how genetic variation leads to dysfunction of epilepsy-associated protein targets, and how this impacts the function of diverse subtypes of neurons embedded within distributed brain circuits to yield epilepsy and epilepsy-associated comorbidities. A syndrome- or even variant-specific approach may be required to achieve progress. Advances in the field will require improved methods for large-scale target validation, compound identification and optimization, and the development of accurate model systems that reflect the core features of human epilepsy syndromes, as well as novel approaches towards clinical trials of such compounds in small rare disease cohorts.
Collapse
Affiliation(s)
- Ethan M Goldberg
- Department of Pediatrics, Division of Neurology, Abramson Research Center, The Epilepsy Neurogenetics Initiative, The Children's Hospital of Philadelphia, Abramson Research Center Room 502A, 19104, Philadelphia, PA, USA.
- Departments of Neurology and Neuroscience, The University of Pennsylvania Perelman School of Medicine, 19104, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Zybura A, Hudmon A, Cummins TR. Distinctive Properties and Powerful Neuromodulation of Na v1.6 Sodium Channels Regulates Neuronal Excitability. Cells 2021; 10:1595. [PMID: 34202119 PMCID: PMC8307729 DOI: 10.3390/cells10071595] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (Navs) are critical determinants of cellular excitability. These ion channels exist as large heteromultimeric structures and their activity is tightly controlled. In neurons, the isoform Nav1.6 is highly enriched at the axon initial segment and nodes, making it critical for the initiation and propagation of neuronal impulses. Changes in Nav1.6 expression and function profoundly impact the input-output properties of neurons in normal and pathological conditions. While mutations in Nav1.6 may cause channel dysfunction, aberrant changes may also be the result of complex modes of regulation, including various protein-protein interactions and post-translational modifications, which can alter membrane excitability and neuronal firing properties. Despite decades of research, the complexities of Nav1.6 modulation in health and disease are still being determined. While some modulatory mechanisms have similar effects on other Nav isoforms, others are isoform-specific. Additionally, considerable progress has been made toward understanding how individual protein interactions and/or modifications affect Nav1.6 function. However, there is still more to be learned about how these different modes of modulation interact. Here, we examine the role of Nav1.6 in neuronal function and provide a thorough review of this channel's complex regulatory mechanisms and how they may contribute to neuromodulation.
Collapse
Affiliation(s)
- Agnes Zybura
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Theodore R. Cummins
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Biology Department, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Thompson CH, Ben-Shalom R, Bender KJ, George AL. Alternative splicing potentiates dysfunction of early-onset epileptic encephalopathy SCN2A variants. J Gen Physiol 2021; 152:133672. [PMID: 31995133 PMCID: PMC7054859 DOI: 10.1085/jgp.201912442] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
Epileptic encephalopathies are severe forms of infantile-onset epilepsy often complicated by severe neurodevelopmental impairments. Some forms of early-onset epileptic encephalopathy (EOEE) have been associated with variants in SCN2A, which encodes the brain voltage-gated sodium channel NaV1.2. Many voltage-gated sodium channel genes, including SCN2A, undergo developmentally regulated mRNA splicing. The early onset of these disorders suggests that developmentally regulated alternative splicing of NaV1.2 may be an important consideration when elucidating the pathophysiological consequences of epilepsy-associated variants. We hypothesized that EOEE-associated NaV1.2 variants would exhibit greater dysfunction in a splice isoform that is prominently expressed during early development. We engineered five EOEE-associated NaV1.2 variants (T236S, E999K, S1336Y, T1623N, and R1882Q) into the adult and neonatal splice isoforms of NaV1.2 and performed whole-cell voltage clamp to elucidate their functional properties. All variants exhibited functional defects that could enhance neuronal excitability. Three of the five variants (T236S, E999K, and S1336Y) exhibited greater dysfunction in the neonatal isoform compared with those observed in the adult isoform. Computational modeling of a developing cortical pyramidal neuron indicated that T236S, E999K, S1336Y, and R1882Q showed hyperexcitability preferentially in immature neurons. These results suggest that both splice isoform and neuronal developmental stage influence how EOEE-associated NaV1.2 variants affect neuronal excitability.
Collapse
Affiliation(s)
- Christopher H Thompson
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Roy Ben-Shalom
- Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Kevin J Bender
- Center for Integrative Neuroscience, Kavli Institute for Fundamental Neuroscience, Department of Neurology, University of California, San Francisco, San Francisco, CA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
22
|
Velíšková J, Marra C, Liu Y, Shekhar A, Park DS, Iatckova V, Xie Y, Fishman GI, Velíšek L, Goldfarb M. Early onset epilepsy and sudden unexpected death in epilepsy with cardiac arrhythmia in mice carrying the early infantile epileptic encephalopathy 47 gain-of-function FHF1(FGF12) missense mutation. Epilepsia 2021; 62:1546-1558. [PMID: 33982289 DOI: 10.1111/epi.16916] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Fibroblast growth factor homologous factors (FHFs) are brain and cardiac sodium channel-binding proteins that modulate channel density and inactivation gating. A recurrent de novo gain-of-function missense mutation in the FHF1(FGF12) gene (p.Arg52His) is associated with early infantile epileptic encephalopathy 47 (EIEE47; Online Mendelian Inheritance in Man database 617166). To determine whether the FHF1 missense mutation is sufficient to cause EIEE and to establish an animal model for EIEE47, we sought to engineer this mutation into mice. METHODS The Arg52His mutation was introduced into fertilized eggs by CRISPR (clustered regularly interspaced short palindromic repeats) editing to generate Fhf1R52H /F+ mice. Spontaneous epileptiform events in Fhf1R52H /+ mice were assessed by cortical electroencephalography (EEG) and video monitoring. Basal heart rhythm and seizure-induced arrhythmia were recorded by electrocardiography. Modulation of cardiac sodium channel inactivation by FHF1BR52H protein was assayed by voltage-clamp recordings of FHF-deficient mouse cardiomyocytes infected with adenoviruses expressing wild-type FHF1B or FHF1BR52H protein. RESULTS All Fhf1R52H /+ mice experienced seizure or seizurelike episodes with lethal ending between 12 and 26 days of age. EEG recordings in 19-20-day-old mice confirmed sudden unexpected death in epilepsy (SUDEP) as severe tonic seizures immediately preceding loss of brain activity and death. Within 2-53 s after lethal seizure onset, heart rate abruptly declined from 572 ± 16 bpm to 108 ± 15 bpm, suggesting a parasympathetic surge accompanying seizures that may have contributed to SUDEP. Although ectopic overexpression of FHF1BR52H in cardiomyocytes induced a 15-mV depolarizing shift in voltage of steady-state sodium channel inactivation and slowed the rate of channel inactivation, heart rhythm was normal in Fhf1R52H /+ mice prior to seizure. SIGNIFICANCE The Fhf1 missense mutation p.Arg52His induces epileptic encephalopathy with full penetrance in mice. Both Fhf1 (p.Arg52His) and Scn8a (p.Asn1768Asp) missense mutations enhance sodium channel Nav 1.6 currents and induce SUDEP with bradycardia in mice, suggesting an FHF1/Nav 1.6 functional axis underlying altered brain sodium channel gating in epileptic encephalopathy.
Collapse
Affiliation(s)
- Jana Velíšková
- Department of Cell Biology & Anatomy and Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Obstetrics and Gynecology, New York Medical College, Valhalla, New York, USA.,Department of Neurology, New York Medical College, Valhalla, New York, USA
| | - Christopher Marra
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| | - Yue Liu
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| | - Akshay Shekhar
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - David S Park
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Vasilisa Iatckova
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA
| | - Ying Xie
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy and Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Neurology, New York Medical College, Valhalla, New York, USA.,Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Mitchell Goldfarb
- Department of Biological Sciences, Hunter College of City University of New York, New York, New York, USA.,Program in Biology, Graduate Center of City University of New York, New York, New York, USA
| |
Collapse
|
23
|
SCN8A Encephalopathy: Case Report and Literature Review. Neurol Int 2021; 13:143-150. [PMID: 33915942 PMCID: PMC8167728 DOI: 10.3390/neurolint13020014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/19/2022] Open
Abstract
Epileptic encephalopathy is a condition resulting from extreme forms of intractable childhood epilepsy. The disease can cause severe delays in cognitive, sensory, and motor function development, in addition to being fatal in some cases. Missense mutations of SCN8A, which encodes Nav1.6, one of the main voltage-gated sodium channel subunits in neurons and muscles, have been linked to early infantile SCN8A encephalopathy. Herein, we report the case of a 5-month-old girl with SCN8A encephalopathy with a novel missense mutation. Apart from intractable seizures and autistic phenotypes, the results of blood and biochemical tests, electroencephalogram (EEG) results, and brain magnetic resonance imaging (MRI) results were all normal. As the phenotypes caused by these mutations cannot be identified by any clinical, neuroimaging, or electrophysiological features, genetic sequencing should be considered to identify the underlying genetic causes. Although phenytoin is recommended as a last-resort treatment for SCN8A encephalopathy, the administration of the oxcarbazepine, instead of phenytoin, mitigated this patient's intractable seizures.
Collapse
|
24
|
Ademuwagun IA, Rotimi SO, Syrbe S, Ajamma YU, Adebiyi E. Voltage Gated Sodium Channel Genes in Epilepsy: Mutations, Functional Studies, and Treatment Dimensions. Front Neurol 2021; 12:600050. [PMID: 33841294 PMCID: PMC8024648 DOI: 10.3389/fneur.2021.600050] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Genetic epilepsy occurs as a result of mutations in either a single gene or an interplay of different genes. These mutations have been detected in ion channel and non-ion channel genes. A noteworthy class of ion channel genes are the voltage gated sodium channels (VGSCs) that play key roles in the depolarization phase of action potentials in neurons. Of huge significance are SCN1A, SCN1B, SCN2A, SCN3A, and SCN8A genes that are highly expressed in the brain. Genomic studies have revealed inherited and de novo mutations in sodium channels that are linked to different forms of epilepsies. Due to the high frequency of sodium channel mutations in epilepsy, this review discusses the pathogenic mutations in the sodium channel genes that lead to epilepsy. In addition, it explores the functional studies on some known mutations and the clinical significance of VGSC mutations in the medical management of epilepsy. The understanding of these channel mutations may serve as a strong guide in making effective treatment decisions in patient management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Steffen Syrbe
- Clinic for Pediatric and Adolescent Medicine, Heidelberg University, Heidelberg, Germany
| | | | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research, Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Wengert ER, Wenker IC, Wagner EL, Wagley PK, Gaykema RP, Shin JB, Patel MK. Adrenergic Mechanisms of Audiogenic Seizure-Induced Death in a Mouse Model of SCN8A Encephalopathy. Front Neurosci 2021; 15:581048. [PMID: 33762902 PMCID: PMC7982890 DOI: 10.3389/fnins.2021.581048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death amongst patients whose seizures are not adequately controlled by current therapies. Patients with SCN8A encephalopathy have an elevated risk for SUDEP. While transgenic mouse models have provided insight into the molecular mechanisms of SCN8A encephalopathy etiology, our understanding of seizure-induced death has been hampered by the inability to reliably trigger both seizures and seizure-induced death in these mice. Here, we demonstrate that mice harboring an Scn8a allele with the patient-derived mutation N1768D (D/+) are susceptible to audiogenic seizures and seizure-induced death. In adult D/+ mice, audiogenic seizures are non-fatal and have nearly identical behavioral, electrographical, and cardiorespiratory characteristics as spontaneous seizures. In contrast, at postnatal days 20–21, D/+ mice exhibit the same seizure behavior, but have a significantly higher incidence of seizure-induced death following an audiogenic seizure. Seizure-induced death was prevented by either stimulating breathing via mechanical ventilation or by acute activation of adrenergic receptors. Conversely, in adult D/+ mice inhibition of adrenergic receptors converted normally non-fatal audiogenic seizures into fatal seizures. Taken together, our studies show that in our novel audiogenic seizure-induced death model adrenergic receptor activation is necessary and sufficient for recovery of breathing and prevention of seizure-induced death.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| | - Ian C Wenker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pravin K Wagley
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Ronald P Gaykema
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Jung-Bum Shin
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
26
|
Zhang Y, Wang L, Peng D, Zhang Q, Yang Q, Li J, Li D, Tang D, Chen M, Liang S, Liu Y, Wang S, Liu Z. Engineering of highly potent and selective HNTX-III mutant against hNa v1.7 sodium channel for treatment of pain. J Biol Chem 2021; 296:100326. [PMID: 33493520 PMCID: PMC7988488 DOI: 10.1016/j.jbc.2021.100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Human voltage-gated sodium channel Nav1.7 (hNav1.7) is involved in the generation and conduction of neuropathic and nociceptive pain signals. Compelling genetic and preclinical studies have validated that hNav1.7 is a therapeutic target for the treatment of pain; however, there is a dearth of currently available compounds capable of targeting hNav1.7 with high potency and specificity. Hainantoxin-III (HNTX-III) is a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. Here, we report the engineering of improved potency and Nav selectivity of hNav1.7 inhibition peptides derived from the HNTX-III scaffold. Alanine scanning mutagenesis showed key residues for HNTX-III interacting with hNav1.7. Site-directed mutagenesis analysis indicated key residues on hNav1.7 interacting with HNTX-III. Molecular docking was conducted to clarify the binding interface between HNTX-III and Nav1.7 and guide the molecular engineering process. Ultimately, we obtained H4 [K0G1-P18K-A21L-V] based on molecular docking of HNTX-III and hNav1.7 with a 30-fold improved potency (IC50 0.007 ± 0.001 μM) and >1000-fold selectivity against Nav1.4 and Nav1.5. H4 also showed robust analgesia in the acute and chronic inflammatory pain model and neuropathic pain model. Thus, our results provide further insight into peptide toxins that may prove useful in guiding the development of inhibitors with improved potency and selectivity for Nav subtypes with robust analgesia.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Li Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dezheng Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China
| | - Qingfeng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Qiuchu Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jiayan Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dan Li
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Dongfang Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Songping Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yu Liu
- Key Laboratory of Hunan Province for Advanced Carbon-based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan, China.
| | - Sheng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
27
|
Poulin H, Chahine M. R1617Q epilepsy mutation slows Na V 1.6 sodium channel inactivation and increases the persistent current and neuronal firing. J Physiol 2021; 599:1651-1664. [PMID: 33442870 DOI: 10.1113/jp280838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS A human NaV 1.6 construct was established to study the biophysical consequences of the R1617Q mutation on NaV 1.6 identified in patients with unclassified epileptic encephalopathy and severe intellectual disability. The R1617Q mutation disrupts the inactivation process of the channel, and more specifically, slows the current decay, increases the persistent sodium current that was blocked by tetrodotoxin and riluzole, and disrupts the inactivation voltage-dependence and increases the kinetics of recovery. In native hippocampal neurons, the R1617Q mutation exhibited a significant increase in action potentials triggered in response to stimulation and a significant increase in the number of neurons that exhibited spontaneous activity compared to neurons expressing WT channels that were inhibited by riluzole. The abnormally persistent current activity caused by the disruption of the channel inactivation process in NaV 1.6/R1617Q may result in epileptic encephalopathy in patients. ABSTRACT The voltage-gated sodium channel NaV 1.6 is the most abundantly expressed sodium channel isoform in the central nervous system. It plays a critical role in saltatory and continuous conduction. Although over 40 NaV 1.6 mutations have been linked to epileptic encephalopathy, only a few have been functionally analysed. In the present study, we characterized a NaV 1.6 mutation (R1617Q) identified in patients with epileptic encephalopathy and intellectual disability. R1617Q substitutes an arginine for a glutamine in the S4 segment of domain IV, which plays a major role in coupling the activation and inactivation of sodium channels. We used patch-clamp to show that R1617Q is a gain-of-function mutation. It is typified by slower inactivation kinetics and a loss of inactivation of voltage-dependence, which result in a 2.5-fold increase in the window current. In addition, sodium currents exhibited an enhanced rate of recovery from inactivation, most likely due to the destabilization of the inactivation state. The alterations in the fast inactivation caused a significant increase in the persistent sodium current. Overexpression of R1617Q in rat hippocampal neurons resulted in an increase in action potential firing activity that was inhibited by riluzole, consistent with the gain-of-function observed. We conclude that the R1617Q mutation causes neuronal hyperexcitability and may result in epileptic encephalopathy.
Collapse
Affiliation(s)
- Hugo Poulin
- CERVO Brain Research Centre, Quebec City, Québec, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, Quebec City, Québec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
28
|
Solé L, Wagnon JL, Tamkun MM. Functional analysis of three Na v1.6 mutations causing early infantile epileptic encephalopathy. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165959. [PMID: 32916281 DOI: 10.1016/j.bbadis.2020.165959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022]
Abstract
The voltage-gated sodium channel Nav1.6 is associated with more than 300 cases of epileptic encephalopathy. Nav1.6 epilepsy-causing mutations are spread over the entire channel's structure and only 10% of mutations have been characterized at the molecular level, with most of them being gain of function mutations. In this study, we analyzed three previously uncharacterized Nav1.6 epilepsy-causing mutations: G214D, N215D and V216D, located within a mutation hot-spot at the S3-S4 extracellular loop of Domain1. Voltage clamp experiments showed a 6-16 mV hyperpolarizing shift in the activation mid-point for all three mutants. V216D presented the largest shift along with decreased current amplitude, enhanced inactivation and a lack of persistent current. Recordings at hyperpolarized potentials indicated that all three mutants presented gating pore currents. Furthermore, trafficking experiments performed in cultured hippocampal neurons demonstrated that the mutants trafficked properly to the cell surface, with no significant differences regarding surface expression within the axon initial segment or soma compared to wild-type. These trafficking data suggest that the disease-causing consequences are due to only changes in the biophysical properties of the channel. Interestingly, the patient carrying the V216D mutation, which is the mutant with the greatest electrophysiological changes as compared to wild-type, exhibited the most severe phenotype. These results emphasize that these mutations will mandate unique treatment approaches, for normal sodium channel blockers may not work given that the studied mutations present gating pore currents. This study emphasizes the importance of molecular characterization of disease-causing mutations in order to improve the pharmacological treatment of patients.
Collapse
Affiliation(s)
- Laura Solé
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO 80523, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Jacy L Wagnon
- Department of Neuroscience, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Michael M Tamkun
- Molecular, Cellular and Integrative Neurosciences Graduate Program, Colorado State University, Fort Collins, CO 80523, USA; Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA; Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
29
|
Menezes LFS, Sabiá Júnior EF, Tibery DV, Carneiro LDA, Schwartz EF. Epilepsy-Related Voltage-Gated Sodium Channelopathies: A Review. Front Pharmacol 2020; 11:1276. [PMID: 33013363 PMCID: PMC7461817 DOI: 10.3389/fphar.2020.01276] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/31/2020] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is a disease characterized by abnormal brain activity and a predisposition to generate epileptic seizures, leading to neurobiological, cognitive, psychological, social, and economic impacts for the patient. There are several known causes for epilepsy; one of them is the malfunction of ion channels, resulting from mutations. Voltage-gated sodium channels (NaV) play an essential role in the generation and propagation of action potential, and malfunction caused by mutations can induce irregular neuronal activity. That said, several genetic variations in NaV channels have been described and associated with epilepsy. These mutations can affect channel kinetics, modifying channel activation, inactivation, recovery from inactivation, and/or the current window. Among the NaV subtypes related to epilepsy, NaV1.1 is doubtless the most relevant, with more than 1500 mutations described. Truncation and missense mutations are the most observed alterations. In addition, several studies have already related mutated NaV channels with the electrophysiological functioning of the channel, aiming to correlate with the epilepsy phenotype. The present review provides an overview of studies on epilepsy-associated mutated human NaV1.1, NaV1.2, NaV1.3, NaV1.6, and NaV1.7.
Collapse
Affiliation(s)
- Luis Felipe Santos Menezes
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Elias Ferreira Sabiá Júnior
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Diogo Vieira Tibery
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| | - Lilian Dos Anjos Carneiro
- Faculdade de Medicina, Centro Universitário Euro Americano, Brasília, Brazil.,Faculdade de Medicina, Centro Universitário do Planalto Central, Brasília, Brazil
| | - Elisabeth Ferroni Schwartz
- Laboratório de Neurofarmacologia, Departamento de Ciências Fisiológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
30
|
Fatema K, Rahman MM, Faruk O. SCN8A Mutation in Infantile Epileptic Encephalopathy: Report of Two Cases. J Epilepsy Res 2020; 9:147-151. [PMID: 32509551 PMCID: PMC7251340 DOI: 10.14581/jer.19017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/21/2019] [Accepted: 01/09/2020] [Indexed: 12/03/2022] Open
Abstract
Early infantile epileptic encephalopathy type 13 is a severe form of epilepsy caused by mutations in the sodium channel 8 alpha (SCN8A) gene. This gene encodes the neuronal voltage-gated sodium channel which plays vital role in neuronal excitability. Here we present two cases with SCN8A encephalopathy. Both cases had mutation in p.Arg1872Gin the SCN8A gene, which was detected by targeted next generation sequencing. Case 1 was a 14-month old boy, who had a normal birth history with normal development up to 6 months and then developed repeated generalized seizure, which was nonresponsive to multiple antiepileptic drugs. He also had neuroregression and dystonia. His electroencephalogram (EEG) showed progressive background abnormality with burst suppression pattern. His metabolic panel was normal and had partial response to carbamazepine. The second case was for an 11-month old boy with the onset of seizure at the age of 7 months. Seizure was generalized, resistant to multiple antiepileptic drugs. He had developmental delay from beginning, no movement disorder. EEG showed focal discharge from left temporal and occipital region. He showed partial response to oxcarbazepine. Our cases had similarities with the previously reported cases. The detailed discussion of our cases would contribute to early detection and targeted treatment of SCN8A encephalopathy. This also gives special emphasis on a genetic test in infants with intractable epilepsy, movement disorder and developmental delay.
Collapse
Affiliation(s)
- Kanij Fatema
- Department of Pediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md Mizanur Rahman
- Department of Pediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Omar Faruk
- Department of Pediatric Neurology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
31
|
Kopach O, Esteras N, Wray S, Rusakov DA, Abramov AY. Maturation and phenotype of pathophysiological neuronal excitability of human cells in tau-related dementia. J Cell Sci 2020; 133:jcs241687. [PMID: 32299835 PMCID: PMC7272359 DOI: 10.1242/jcs.241687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/01/2020] [Indexed: 01/23/2023] Open
Abstract
Frontotemporal dementia and parkinsonism (FTDP-17) caused by the 10+16 splice-site mutation in the gene encoding microtubule-associated protein tau (MAPT) provides an established platform to model tau-related dementia in vitro Neurons derived from human induced pluripotent stem cells (iPSCs) have been shown to recapitulate the neurodevelopmental profile of tau pathology during in vitro corticogenesis, as in the adult human brain. However, the neurophysiological phenotype of these cells has remained unknown, leaving unanswered questions regarding the functional relevance and the gnostic power of this disease model. In this study, we used electrophysiology to explore the membrane properties and intrinsic excitability of the generated neurons and found that human cells mature by ∼150 days of neurogenesis to become compatible with matured cortical neurons. In earlier FTDP-17, however, neurons exhibited a depolarized resting membrane potential associated with increased resistance and reduced voltage-gated Na+- and K+-channel-mediated conductance. Expression of the Nav1.6 protein was reduced in FTDP-17. These effects led to reduced cell capability of induced firing and changed the action potential waveform in FTDP-17. The revealed neuropathology might thus contribute to the clinicopathological profile of the disease. This sheds new light on the significance of human in vitro models of dementia.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Noemí Esteras
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Selina Wray
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
32
|
Pan Y, Cummins TR. Distinct functional alterations in SCN8A epilepsy mutant channels. J Physiol 2020; 598:381-401. [PMID: 31715021 PMCID: PMC7216308 DOI: 10.1113/jp278952] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS Mutations in the SCN8A gene cause early infantile epileptic encephalopathy. We characterize a new epilepsy-related SCN8A mutation, R850Q, in the human SCN8A channel and present gain-of-function properties of the mutant channel. Systematic comparison of R850Q with three other SCN8A epilepsy mutations, T761I, R1617Q and R1872Q, identifies one common dysfunction in resurgent current, although these mutations alter distinct properties of the channel. Computational simulations in two different neuron models predict an increased excitability of neurons carrying these mutations, which explains the over-excitation that underlies seizure activities in patients. These data provide further insight into the mechanism of SCN8A-related epilepsy and reveal subtle but potentially important distinction of functional characterization performed in the human vs. rodent channels. ABSTRACT SCN8A is a novel causal gene for early infantile epileptic encephalopathy. It is well accepted that gain-of-function mutations in SCN8A underlie the disorder, although the remarkable heterogeneity of its clinical presentation and poor treatment response demand a better understanding of the disease mechanisms. Here, we characterize a new epilepsy-related SCN8A mutation, R850Q, in human Nav1.6. We show that it is a gain-of-function mutation, with a hyperpolarizing shift in voltage dependence of activation, a two-fold increase of persistent current and a slowed decay of resurgent current. We systematically compare its biophysics with three other SCN8A epilepsy mutations, T767I, R1617Q and R1872Q, in the human Nav1.6 channel. Although all of these mutations are gain-of-function, the mutations affect different aspects of channel properties. One commonality that we discovered is an alteration of resurgent current kinetics, although the mechanisms by which resurgent currents are augmented remain unclear for all of the mutations. Computational simulations predict an increased excitability of neurons carrying these mutations with differential enhancement by open channel blockade.
Collapse
Affiliation(s)
- Yanling Pan
- Program in Medical Neuroscience, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, IN, USA
| | - Theodore R Cummins
- Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, IN, USA
- Department of Biology, School of Science, IUPUI, IN, USA
| |
Collapse
|
33
|
Schreiber JM, Tochen L, Brown M, Evans S, Ball LJ, Bumbut A, Thewamit R, Whitehead MT, Black C, Boutzoukas E, Fanto E, Suslovic W, Berl M, Hammer M, Gaillard WD. A multi-disciplinary clinic for SCN8A-related epilepsy. Epilepsy Res 2019; 159:106261. [PMID: 31887642 DOI: 10.1016/j.eplepsyres.2019.106261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVE We endeavored to evaluate a cohort of patients diagnosed with SCN8A-related epilepsy in a multi-disciplinary clinic and to create a bio-repository. METHODS We recruited patients with epilepsy due to SCN8A variants at Children's National Medical Center, through family organizations, or SCN8A.net. Study procedures included medical record review, review of EEG and MRI data, clinical evaluation, the Vineland Adaptive Behavior Scales, Third Edition (VABS-3), DNA extraction, and preparation of peripheral blood mononuclear cells. RESULTS Seventeen patients (9 months - 19 years) completed the study. Age at seizure onset was 1 day to 4 years old (median age 4 months). Epilepsy phenotype ranged from mild epilepsy to severe developmental and epileptic encephalopathy. Medications targeting the voltage-gated sodium channel were most often effective, while levetiracetam resulted in worsening seizures and/or developmental regression in 7/16 (p < 0.05). VABS-3 scores were below age expectations for most children; older children had lower scores. Neurological examination revealed hypotonia (13), spastic quadriparesis (1), ataxia (9), dyskinesia (2)/ dystonia (7), and four non-ambulatory. CONCLUSIONS This is the first report of a large series of patients with epilepsy due to SCN8A variants evaluated in a single multi-disciplinary clinic. By utilizing a more comprehensive and consistent evaluation, we clarify specific seizure and epilepsy types, describe a distinct epilepsy phenotype in a patient with a nonsense variant, delineate patterns of developmental delay, language, and swallow function (specifically anomic aphasia and flaccid dysarthria), identify and characterize movement disorders, report common findings on physical exam, and demonstrate clinical worsening with levetiracetam.
Collapse
Affiliation(s)
- John M Schreiber
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Laura Tochen
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Mackenzie Brown
- Children's National Medical Center, Department of Physical Medicine and Rehabilitation, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Sarah Evans
- Children's National Medical Center, Department of Physical Medicine and Rehabilitation, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Laura J Ball
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA; The George Washington University Hospital, 900 23rd St NW, Washington, DC, 20037, USA.
| | - Adrian Bumbut
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Rapeepat Thewamit
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA; Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
| | - Matthew T Whitehead
- Children's National Medical Center, Department of Neuroradiology, 111 Michigan Ave NW, Washington, DC, 20010, USA; Neuroradiology, The George Washington University Hospital, 900 23rd St NW, Washington, DC, 20037, USA.
| | - Chelsea Black
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Emanuel Boutzoukas
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Eleanor Fanto
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - William Suslovic
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Madison Berl
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| | - Michael Hammer
- University of Arizona, Keating Building 111, Department of Anthropology, PO Box 210030, Tucson, AZ, 85721, USA.
| | - William D Gaillard
- Children's National Medical Center, Department of Neurology, 111 Michigan Ave NW, Washington, DC, 20010, USA.
| |
Collapse
|
34
|
Gardella E, Møller RS. Phenotypic and genetic spectrum of
SCN
8A
‐related disorders, treatment options, and outcomes. Epilepsia 2019; 60 Suppl 3:S77-S85. [DOI: 10.1111/epi.16319] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Elena Gardella
- Danish Epilepsy Center Dianalund Denmark
- Institute for Regional Health Services University of Southern Denmark Odense Denmark
| | - Rikke S. Møller
- Danish Epilepsy Center Dianalund Denmark
- Institute for Regional Health Services University of Southern Denmark Odense Denmark
| |
Collapse
|
35
|
Genetic and clinical features of SCN8A developmental and epileptic encephalopathy. Epilepsy Res 2019; 158:106222. [DOI: 10.1016/j.eplepsyres.2019.106222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/13/2019] [Accepted: 10/19/2019] [Indexed: 01/22/2023]
|
36
|
Bunton-Stasyshyn RKA, Wagnon JL, Wengert ER, Barker BS, Faulkner A, Wagley PK, Bhatia K, Jones JM, Maniaci MR, Parent JM, Goodkin HP, Patel MK, Meisler MH. Prominent role of forebrain excitatory neurons in SCN8A encephalopathy. Brain 2019; 142:362-375. [PMID: 30601941 DOI: 10.1093/brain/awy324] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/29/2018] [Indexed: 12/25/2022] Open
Abstract
De novo mutations of the sodium channel gene SCN8A result in an epileptic encephalopathy with refractory seizures, developmental delay, and elevated risk of sudden death. p.Arg1872Trp is a recurrent de novo SCN8A mutation reported in 14 unrelated individuals with epileptic encephalopathy that included seizure onset in the prenatal or infantile period and severe verbal and ambulatory comorbidities. The major biophysical effect of the mutation was previously shown to be impaired channel inactivation accompanied by increased current density. We have generated a conditional mouse mutation in which expression of this severe gain-of-function mutation is dependent upon Cre recombinase. Global activation of p.Arg1872Trp by EIIa-Cre resulted in convulsive seizures and lethality at 2 weeks of age. Neural activation of the p.Arg1872Trp mutation by Nestin-Cre also resulted in early onset seizures and death. Restriction of p.Arg1872Trp expression to excitatory neurons using Emx1-Cre recapitulated seizures and juvenile lethality between 1 and 2 months of age. In contrast, activation of p.Arg1872Trp in inhibitory neurons by Gad2-Cre or Dlx5/6-Cre did not induce seizures or overt neurological dysfunction. The sodium channel modulator GS967/Prax330 prolonged survival of mice with global expression of R1872W and also modulated the activity of the mutant channel in transfected cells. Activation of the p.Arg1872Trp mutation in adult mice was sufficient to generate seizures and death, indicating that successful therapy will require lifelong treatment. These findings provide insight into the pathogenic mechanism of this gain-of-function mutation of SCN8A and identify excitatory neurons as critical targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Eric R Wengert
- Department of Anesthesiology, University of Virginia, Charlottesville VA, USA.,Neuroscience Graduate Program, University of Virginia, Charlottesville VA, USA
| | - Bryan S Barker
- Department of Anesthesiology, University of Virginia, Charlottesville VA, USA.,Neuroscience Graduate Program, University of Virginia, Charlottesville VA, USA
| | - Alexa Faulkner
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Pravin K Wagley
- Department of Neurology, University of Virginia, Charlottesville VA, USA
| | - Kritika Bhatia
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Julie M Jones
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marissa R Maniaci
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jack M Parent
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Howard P Goodkin
- Neuroscience Graduate Program, University of Virginia, Charlottesville VA, USA.,Department of Neurology, University of Virginia, Charlottesville VA, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia, Charlottesville VA, USA.,Neuroscience Graduate Program, University of Virginia, Charlottesville VA, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
37
|
Wengert ER, Saga AU, Panchal PS, Barker BS, Patel MK. Prax330 reduces persistent and resurgent sodium channel currents and neuronal hyperexcitability of subiculum neurons in a mouse model of SCN8A epileptic encephalopathy. Neuropharmacology 2019; 158:107699. [PMID: 31278928 DOI: 10.1016/j.neuropharm.2019.107699] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 11/28/2022]
Abstract
SCN8A epileptic encephalopathy is a severe genetic epilepsy syndrome caused by de novo gain-of-function mutations of SCN8A encoding the voltage-gated sodium (Na) channel (VGSC) NaV1.6. Therapeutic management is difficult in many patients, leading to uncontrolled seizures and risk of sudden unexpected death in epilepsy (SUDEP). There is a need to develop novel anticonvulsants that can specifically target aberrant VGSC activity associated with SCN8A gain-of-function mutations. In this study, we investigate the effects of Prax330, a novel VGSC inhibitor, on the biophysical properties of wild-type (WT) NaV1.6 and the patient mutation p.Asn1768Asp (N1768D) in ND7/23 cells. The effects of Prax330 on persistent (INaP) and resurgent (INaR) Na currents and neuronal excitability in subiculum neurons from a knock-in mouse model of the Scn8a-N1768D mutation (Scn8aD/+) were also examined. In ND7/23 cells, Prax330 reduced INaP currents recorded from cells expressing Scn8a-N1768D and hyperpolarized steady-state inactivation curves. Recordings from brain slices demonstrated elevated INaP and INaR in subiculum neurons from Scn8aD/+ mutant mice and abnormally large action potential (AP) burst-firing events in a subset of neurons. Prax330 (1 μM) reduced both INaP and INaR and suppressed AP bursts, with a smaller effect on AP waveforms that had similar morphology to WT neurons. Prax330 (1 μM) also reduced synaptically-evoked APs in Scn8aD/+ subiculum neurons but not in WT neurons. Our results highlight the efficacy of targeting INaP and INaR and inactivation parameters in controlling subiculum excitability and suggest Prax330 as a promising novel therapy for SCN8A epileptic encephalopathy.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Anusha U Saga
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Payal S Panchal
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Bryan S Barker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, 22908, USA; Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
38
|
De novo SCN1A, SCN8A, and CLCN2 mutations in childhood absence epilepsy. Epilepsy Res 2019; 154:55-61. [PMID: 31054517 DOI: 10.1016/j.eplepsyres.2019.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/07/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022]
Abstract
This study aimed to identify monogenic mutations from Chinese patients with childhood absence epilepsy (CAE) and summarize their characteristics. A total of 100 patients with CAE were recruited in Peking University First Hospital from 2005 to 2016 and underwent telephone and outpatient follow-up review. We used targeted disease-specific gene capture sequencing (involving 300 genes) to identify pathogenic variations for these patients. We identified three de novo epilepsy-related gene mutations, including missense mutations of SCN1A (c. 5399 T > A; p. Val1800Asp), SCN8A (c. 2371 G > T; p. Val791Phe), and CLCN2 (c. 481 G > A; p. Gly161Ser), from three patients, separately. All recruited patients presented typical CAE features and good prognosis. To date, CAE has been considered a complex disease caused by multiple susceptibility genes. In this study, we observed that 3% of typical CAE patients had a de novo mutation of a known monogenic epilepsy-related gene. Our study suggests that a significant proportion of typical CAE cases may be monogenic forms of epilepsy. For genetic generalized epilepsies, such as CAE, further studies are needed to clarify the contributions of de novo or inherited rare monogenic coding, noncoding and copy number variants.
Collapse
|
39
|
Johannesen KM, Gardella E, Encinas AC, Lehesjoki A, Linnankivi T, Petersen MB, Lund ICB, Blichfeldt S, Miranda MJ, Pal DK, Lascelles K, Procopis P, Orsini A, Bonuccelli A, Giacomini T, Helbig I, Fenger CD, Sisodiya SM, Hernandez‐Hernandez L, Krithika S, Rumple M, Masnada S, Valente M, Cereda C, Giordano L, Accorsi P, Bürki SE, Mancardi M, Korff C, Guerrini R, Spiczak S, Hoffman‐Zacharska D, Mazurczak T, Coppola A, Buono S, Vecchi M, Hammer MF, Varesio C, Veggiotti P, Lal D, Brünger T, Zara F, Striano P, Rubboli G, Møller RS. The spectrum of intermediate
SCN
8A
‐related epilepsy. Epilepsia 2019; 60:830-844. [DOI: 10.1111/epi.14705] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Katrine M. Johannesen
- Department of Epilepsy Genetics and Personalized TreatmentDanish Epilepsy Center Filadelfia Dianalund Denmark
- Institute for Regional Health ServicesUniversity of Southern Denmark Odense Denmark
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized TreatmentDanish Epilepsy Center Filadelfia Dianalund Denmark
- Institute for Regional Health ServicesUniversity of Southern Denmark Odense Denmark
| | - Alejandra C. Encinas
- Graduate Interdisciplinary Program of GeneticsUniversity of Arizona Tucson Arizona
| | - Anna‐Elina Lehesjoki
- Folkhälsan Research Center Helsinki Finland
- Research Programs Unit, Molecular Neurology and MedicumUniversity of Helsinki Helsinki Finland
| | - Tarja Linnankivi
- Department of Child NeurologyChildren's HospitalUniversity of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Michael B. Petersen
- Department of Clinical GeneticsAalborg University Hospital Aalborg Denmark
- Department of Clinical MedicineAalborg University Aalborg Denmark
| | | | | | | | - Deb K. Pal
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology, and NeuroscienceKing's College London London UK
- King's College Hospital London UK
- Evelina London Children's Hospital London UK
- Medical Research Council Centre for Neurodevelopmental DisordersKing's College London UK
| | - Karine Lascelles
- Department of Basic and Clinical NeuroscienceInstitute of Psychiatry, Psychology, and NeuroscienceKing's College London London UK
| | - Peter Procopis
- Children's Hospital Westmead, Sydney New South Wales Australia
- Discipline of Child and Adolescent HealthSydney Medical SchoolUniversity of Sydney Sydney New South Wales Australia
| | | | - Alice Bonuccelli
- Pediatric NeurologyPediatric ClinicUniversity of Pisa Pisa Italy
| | - Thea Giacomini
- Child Neuropsychiatry UnitDepartment of Neurosciences, Rehabilitation, Ophthalmology, Genetics, and Maternal and Children's SciencesGiannina Gaslini InstituteUniversity of Genoa Genoa Italy
| | - Ingo Helbig
- Department of NeuropediatricsUniversity Medical Center Schleswig Holstein Kiel Germany
- Division of NeurologyChildren's Hospital of Philadelphia Philadelphia Pennsylvania
| | - Christina D. Fenger
- Department of Epilepsy Genetics and Personalized TreatmentDanish Epilepsy Center Filadelfia Dianalund Denmark
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of Neurology London UK
- Chalfont Centre for Epilepsy Bucks UK
| | - Laura Hernandez‐Hernandez
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of Neurology London UK
- Chalfont Centre for Epilepsy Bucks UK
| | - Sundararaman Krithika
- Department of Clinical and Experimental EpilepsyUniversity College London Institute of Neurology London UK
- Chalfont Centre for Epilepsy Bucks UK
| | - Melissa Rumple
- Pediatric NeurologyBanner Children's Specialists Glendale Arizona
| | - Silvia Masnada
- Department of Brain and Behavioral SciencesUniversity of Pavia Pavia Italy
| | - Marialuisa Valente
- Genomic and Postgenomic CenterScientific Institute for Research and Healthcare (IRCCS) Mondino Foundation Pavia Italy
| | - Cristina Cereda
- Genomic and Postgenomic CenterScientific Institute for Research and Healthcare (IRCCS) Mondino Foundation Pavia Italy
| | - Lucio Giordano
- Child Neurology and Psychiatry UnitCivilian Hospital Brescia Italy
| | - Patrizia Accorsi
- Child Neurology and Psychiatry UnitCivilian Hospital Brescia Italy
| | - Sarah E. Bürki
- Department of PediatricsDivision of Child NeurologyUniversity Children's Hospital BernUniversity of Bern Bern Switzerland
| | - Margherita Mancardi
- Unit of Child NeuropsychiatryEpilepsy CenterDepartment of Clinical and Surgical Neuroscience and RehabilitationGiannina Gaslini Institute Genoa Italy
| | - Christian Korff
- Child Neurology UnitUniversity Children's Hospital Geneva Switzerland
| | - Renzo Guerrini
- Neuroscience DepartmentChildren's Hospital Anna Meyer, University of Florence Florence Italy
| | - Sarah Spiczak
- Department of NeuropediatricsChristian Albrecht University Kiel Germany
- Northern German Epilepsy Center for Children and Adolescents Schwentinental Germany
| | | | - Tomasz Mazurczak
- Department of Neurology of Children and AdolescentsInstitute of Mother and Child Warsaw Poland
| | - Antonietta Coppola
- Department of Neuroscience and Reproductive and Odontostomatological SciencesFederico II University Naples Italy
| | - Salvatore Buono
- Neurology DivisionHospital of National Relevance (AORN), Santobono Pausilipon Naples Italy
| | - Marilena Vecchi
- Pediatric Clinic, Hospital CompanyUniversity of Padua Padua Italy
| | - Michael F. Hammer
- University of Arizona Genetic CoreUniversity of Arizona Tucson Arizona
| | - Costanza Varesio
- Brain and Behavior DepartmentUniversity of Pavia Pavia Italy
- Child and Adolescence Neurology DepartmentIRCCS C. Mondino National Neurological Institute Pavia Italy
| | - Pierangelo Veggiotti
- Department of Child NeurologyV. Buzzi Children's Hospital Milan Italy
- L. Sacco Department of Biomedical and Clinical SciencesUniversity of Milan Milan Italy
| | - Dennis Lal
- Epilepsy CenterNeurological InstituteCleveland Clinic Cleveland Ohio
- Genomic Medicine InstituteLerner Research Institute Cleveland Clinic Cleveland Ohio
- Stanley Center for Psychiatric ResearchBroad Institute of Massachusetts Institute of Technology and Harvard Cambridge Massachusetts
- Analytic and Translational Genetics UnitMassachusetts General Hospital Boston Massachusetts
- Cologne Center for GenomicsUniversity of Cologne Cologne Germany
| | - Tobias Brünger
- Cologne Center for GenomicsUniversity of Cologne Cologne Germany
| | - Federico Zara
- Laboratory of Neurogenetics and NeuroscienceDepartment of Head‐Neck and NeuroscienceGiannina Gaslini Institute Genoa Italy
| | - Pasquale Striano
- Pediatric NeurologyPediatric ClinicUniversity of Studies of Pisa Pisa Italy
| | - Guido Rubboli
- Department of Epilepsy Genetics and Personalized TreatmentDanish Epilepsy Center Filadelfia Dianalund Denmark
- University of Copenhagen Copenhagen Denmark
| | - Rikke S. Møller
- Department of Epilepsy Genetics and Personalized TreatmentDanish Epilepsy Center Filadelfia Dianalund Denmark
- Institute for Regional Health ServicesUniversity of Southern Denmark Odense Denmark
| |
Collapse
|
40
|
Ko A, Kang HC. Frequently Identified Genetic Developmental and Epileptic Encephalopathy: A Review Focusing on Precision Medicine. ANNALS OF CHILD NEUROLOGY 2019. [DOI: 10.26815/acn.2019.00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
41
|
Zhang F, Wu Y, Zou X, Tang Q, Zhao F, Cao Z. BmK AEP, an Anti-Epileptic Peptide Distinctly Affects the Gating of Brain Subtypes of Voltage-Gated Sodium Channels. Int J Mol Sci 2019; 20:ijms20030729. [PMID: 30744067 PMCID: PMC6387193 DOI: 10.3390/ijms20030729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
BmK AEP, a scorpion peptide purified form the venom of Buthus martensii Karsch, has been reported to display anti-epileptic activity. Voltage-gated sodium channels (VGSCs) are responsible for the rising phase of action potentials (APs) in neurons and, therefore, controlling neuronal excitability. To elucidate the potential molecular mechanisms responsible for its anti-epileptic activity, we examined the influence of BmK AEP on AP firing in cortical neurons and how BmK AEP influences brain subtypes of VGSCs (Nav1.1–1.3 and Nav1.6). BmK AEP concentration-dependently suppresses neuronal excitability (AP firing) in primary cultured cortical neurons. Consistent with its inhibitory effect on AP generation, BmK AEP inhibits Na+ peak current in cortical neurons with an IC50 value of 2.12 µM by shifting the half-maximal voltage of activation of VGSC to hyperpolarized direction by ~7.83 mV without affecting the steady-state inactivation. Similar to its action on Na+ currents in cortical neurons, BmK AEP concentration-dependently suppresses the Na+ currents of Nav1.1, Nav1.3, and Nav1.6, which were heterologously expressed in HEK-293 cells, with IC50 values of 3.20, 1.46, and 0.39 µM with maximum inhibition of 82%, 56%, and 93%, respectively. BmK AEP shifts the voltage-dependent activation in the hyperpolarized direction by ~15.60 mV, ~9.97 mV, and ~6.73 mV in Nav1.1, Nav1.3, and Nav1.6, respectively, with minimal effect on steady-state inactivation. In contrast, BmK AEP minimally suppresses Nav1.2 currents (~15%) but delays the inactivation of the channel with an IC50 value of 1.69 µM. Considered together, these data demonstrate that BmK AEP is a relatively selective Nav1.6 gating modifier which distinctly affects the gating of brain subtypes of VGSCs.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ying Wu
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Xiaohan Zou
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Qinglian Tang
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Fang Zhao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines and Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Development, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
42
|
Atanasoska M, Vazharova R, Ivanov I, Balabanski L, Andonova S, Ivanov S, Pacheva I, Malinov M, Toncheva D. SCN8A p.Arg1872Gln mutation in early infantile epileptic encephalopathy type 13: Review and case report. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1532815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Maya Atanasoska
- Genetic Laboratory, Gynecology and Assisted Reproduction Hospital “Dr Malinov D.M.”, Sofia, Bulgaria
| | - Radoslava Vazharova
- Genetic Laboratory, Gynecology and Assisted Reproduction Hospital “Dr Malinov D.M.”, Sofia, Bulgaria
- Department of Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Ivan Ivanov
- Department of Paediatrics and Medical Genetics, St. George University Hospital, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Lubomir Balabanski
- Genetic Laboratory, Gynecology and Assisted Reproduction Hospital “Dr Malinov D.M.”, Sofia, Bulgaria
| | - Silvia Andonova
- National Genetic Laboratory, University Hospital of Obstetrics and Gynecology “Maichin dom”, Medical University of Sofia, Sofia, Bulgaria
| | - Samuil Ivanov
- Genetic Laboratory, Gynecology and Assisted Reproduction Hospital “Dr Malinov D.M.”, Sofia, Bulgaria
| | - Iliana Pacheva
- Department of Paediatrics and Medical Genetics, St. George University Hospital, Medical University - Plovdiv, Plovdiv, Bulgaria
| | - Maxim Malinov
- Genetic Laboratory, Gynecology and Assisted Reproduction Hospital “Dr Malinov D.M.”, Sofia, Bulgaria
| | - Draga Toncheva
- Genetic Laboratory, Gynecology and Assisted Reproduction Hospital “Dr Malinov D.M.”, Sofia, Bulgaria
- Department of Medical Genetics, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
43
|
Zhang Y, Peng D, Huang B, Yang Q, Zhang Q, Chen M, Rong M, Liu Z. Discovery of a Novel Na v1.7 Inhibitor From Cyriopagopus albostriatus Venom With Potent Analgesic Efficacy. Front Pharmacol 2018; 9:1158. [PMID: 30386239 PMCID: PMC6198068 DOI: 10.3389/fphar.2018.01158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 01/15/2023] Open
Abstract
Spider venoms contain a vast array of bioactive peptides targeting ion channels. A large number of peptides have high potency and selectivity toward sodium channels. Nav1.7 contributes to action potential generation and propagation and participates in pain signaling pathway. In this study, we describe the identification of μ-TRTX-Ca2a (Ca2a), a novel 35-residue peptide from the venom of Vietnam spider Cyriopagopus albostriatus (C. albostriatus) that potently inhibits Nav1.7 (IC50 = 98.1 ± 3.3 nM) with high selectivity against skeletal muscle isoform Nav1.4 (IC50 > 10 μM) and cardiac muscle isoform Nav1.5 (IC50 > 10 μM). Ca2a did not significantly alter the voltage-dependent activation or fast inactivation of Nav1.7, but it hyperpolarized the slow inactivation. Site-directed mutagenesis analysis indicated that Ca2a bound with Nav1.7 at the extracellular S3–S4 linker of domain II. Meanwhile, Ca2a dose-dependently attenuated pain behaviors in rodent models of formalin-induced paw licking, hot plate test, and acetic acid-induced writhing. This study indicates that Ca2a is a potential lead molecule for drug development of novel analgesics.
Collapse
Affiliation(s)
- Yunxiao Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Dezheng Peng
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Biao Huang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiuchu Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qingfeng Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Minzhi Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Mingqiang Rong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
44
|
Gardella E, Marini C, Trivisano M, Fitzgerald MP, Alber M, Howell KB, Darra F, Siliquini S, Bölsterli BK, Masnada S, Pichiecchio A, Johannesen KM, Jepsen B, Fontana E, Anibaldi G, Russo S, Cogliati F, Montomoli M, Specchio N, Rubboli G, Veggiotti P, Beniczky S, Wolff M, Helbig I, Vigevano F, Scheffer IE, Guerrini R, Møller RS. The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology 2018; 91:e1112-e1124. [DOI: 10.1212/wnl.0000000000006199] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/20/2018] [Indexed: 12/20/2022] Open
Abstract
ObjectiveTo delineate the electroclinical features of SCN8A infantile developmental and epileptic encephalopathy (EIEE13, OMIM #614558).MethodsTwenty-two patients, aged 19 months to 22 years, underwent electroclinical assessment.ResultsSixteen of 22 patients had mildly delayed development since birth. Drug-resistant epilepsy started at a median age of 4 months, followed by developmental slowing, pyramidal/extrapyramidal signs (22/22), movement disorders (12/22), cortical blindness (17/22), sialorrhea, and severe gastrointestinal symptoms (15/22), worsening during early childhood and plateauing at age 5 to 9 years. Death occurred in 4 children, following extreme neurologic deterioration, at 22 months to 5.5 years. Nonconvulsive status epilepticus recurred in 14 of 22 patients. The most effective antiepileptic drugs were oxcarbazepine, carbamazepine, phenytoin, and benzodiazepines. EEG showed background deterioration, epileptiform abnormalities with a temporo-occipital predominance, and posterior delta/beta activity correlating with visual impairment. Video-EEG documented focal seizures (FS) (22/22), spasm-like episodes (8/22), cortical myoclonus (8/22), and myoclonic absences (1/22). FS typically clustered and were prolonged (<20 minutes) with (1) cyanosis, hypomotor, and vegetative semiology, sometimes unnoticed, followed by (2) tonic-vibratory and (3) (hemi)-clonic manifestations ± evolution to a bilateral tonic-clonic seizure. FS had posterior-temporal/occipital onset, slowly spreading and sometimes migrating between hemispheres. Brain MRI showed progressive parenchymal atrophy and restriction of the optic radiations.Conclusions:SCN8A developmental and epileptic encephalopathy has strikingly consistent electroclinical features, suggesting a global progressive brain dysfunction primarily affecting the temporo-occipital regions. Both uncontrolled epilepsy and developmental compromise contribute to the profound impairment (increasing risk of death) during early childhood, but stabilization occurs in late childhood.
Collapse
|
45
|
Wagnon JL, Mencacci NE, Barker BS, Wengert ER, Bhatia KP, Balint B, Carecchio M, Wood NW, Patel MK, Meisler MH. Partial loss-of-function of sodium channel SCN8A in familial isolated myoclonus. Hum Mutat 2018; 39:965-969. [PMID: 29726066 PMCID: PMC6032947 DOI: 10.1002/humu.23547] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 02/01/2023]
Abstract
Variants in the neuronal sodium channel gene SCN8A have been implicated in several neurological disorders. Early infantile epileptic encephalopathy type 13 results from de novo gain‐of‐function mutations that alter the biophysical properties of the channel. Complete loss‐of‐function variants of SCN8A have been identified in cases of isolated intellectual disability. We now report a novel heterozygous SCN8A variant, p.Pro1719Arg, in a small pedigree with five family members affected with autosomal dominant upper limb isolated myoclonus without seizures or cognitive impairment. Functional analysis of the p.Pro1719Arg variant in transfected neuron‐derived cells demonstrated greatly reduced Nav1.6 channel activity without altered gating properties. Hypomorphic alleles of Scn8a in the mouse are known to result in similar movement disorders. This study expands the phenotypic and functional spectrum of SCN8A variants to include inherited nonepileptic isolated myoclonus. SCN8A can be considered as a candidate gene for isolated movement disorders without seizures.
Collapse
Affiliation(s)
- Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan
| | - Niccolò E Mencacci
- Department of Neurology, Northwestern University, Chicago, Illinois.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Bryan S Barker
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia.,Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
| | - Eric R Wengert
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia.,Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
| | - Kailash P Bhatia
- Sobell Department, Institute of Neurology, University College of London, London, UK
| | - Bettina Balint
- Sobell Department, Institute of Neurology, University College of London, London, UK
| | - Miryam Carecchio
- Molecular Neurogenetics Unit, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy.,Department of Pediatric Neurology, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy.,Department of Medicine and Surgery, PhD Programme in Molecular and Translational Medicine, Milan Bicocca University, Monza, Italy
| | - Nicholas W Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia, Charlottesville, Virginia.,Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan.,Department of Neurology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
46
|
Ye M, Yang J, Tian C, Zhu Q, Yin L, Jiang S, Yang M, Shu Y. Differential roles of Na V1.2 and Na V1.6 in regulating neuronal excitability at febrile temperature and distinct contributions to febrile seizures. Sci Rep 2018; 8:753. [PMID: 29335582 PMCID: PMC5768682 DOI: 10.1038/s41598-017-17344-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/20/2017] [Indexed: 01/25/2023] Open
Abstract
Dysregulation of voltage-gated sodium channels (VGSCs) is associated with multiple clinical disorders, including febrile seizures (FS). The contribution of different sodium channel subtypes to environmentally triggered seizures is not well understood. Here we demonstrate that somatic and axonal sodium channels primarily mediated through NaV1.2 and NaV1.6 subtypes, respectively, behave differentially at FT, and might play distinct roles in FS generation. In contrast to sodium channels on the main axonal trunk, somatic ones are more resistant to inactivation and display significantly augmented currents, faster gating rates and kinetics of recovery from inactivation at FT, features that promote neuronal excitabilities. Pharmacological inhibition of NaV1.2 by Phrixotoxin-3 (PTx3) suppressed FT-induced neuronal hyperexcitability in brain slice, while up-regulation of NaV1.2 as in NaV1.6 knockout mice showed an opposite effect. Consistently, NaV1.6 knockout mice were more susceptible to FS, exhibiting much lower temperature threshold and shorter onset latency than wildtype mice. Neuron modeling further suggests that NaV1.2 is the major subtype mediating FT-induced neuronal hyperexcitability, and predicts potential outcomes of alterations in sodium channel subtype composition. Together, these data reveal a role of native NaV1.2 on neuronal excitability at FT and its important contribution to FS pathogenesis.
Collapse
Affiliation(s)
- Mingyu Ye
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Jun Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science, Beijing Normal University, Beijing, China
| | - Cuiping Tian
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Qiyu Zhu
- Brain Institute, College of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Luping Yin
- State Key Laboratory of Cognitive Neuroscience and Learning, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science, Beijing Normal University, Beijing, China
| | - Shan Jiang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingpo Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yousheng Shu
- State Key Laboratory of Cognitive Neuroscience and Learning, School of Brain and Cognitive Sciences, the Collaborative Innovation Center for Brain Science, Beijing Normal University, Beijing, China.
| |
Collapse
|
47
|
Wong JC, Makinson CD, Lamar T, Cheng Q, Wingard JC, Terwilliger EF, Escayg A. Selective targeting of Scn8a prevents seizure development in a mouse model of mesial temporal lobe epilepsy. Sci Rep 2018; 8:126. [PMID: 29317669 PMCID: PMC5760706 DOI: 10.1038/s41598-017-17786-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/30/2017] [Indexed: 11/08/2022] Open
Abstract
We previously found that genetic mutants with reduced expression or activity of Scn8a are resistant to induced seizures and that co-segregation of a mutant Scn8a allele can increase survival and seizure resistance of Scn1a mutant mice. In contrast, Scn8a expression is increased in the hippocampus following status epilepticus and amygdala kindling. These findings point to Scn8a as a promising therapeutic target for epilepsy and raise the possibility that aberrant overexpression of Scn8a in limbic structures may contribute to some epilepsies, including temporal lobe epilepsy. Using a small-hairpin-interfering RNA directed against the Scn8a gene, we selectively reduced Scn8a expression in the hippocampus of the intrahippocampal kainic acid (KA) mouse model of mesial temporal lobe epilepsy. We found that Scn8a knockdown prevented the development of spontaneous seizures in 9/10 mice, ameliorated KA-induced hyperactivity, and reduced reactive gliosis. These results support the potential of selectively targeting Scn8a for the treatment of refractory epilepsy.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| | | | - Tyra Lamar
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| | - Qi Cheng
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| | - Jeffrey C Wingard
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ernest F Terwilliger
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
48
|
Oyrer J, Maljevic S, Scheffer IE, Berkovic SF, Petrou S, Reid CA. Ion Channels in Genetic Epilepsy: From Genes and Mechanisms to Disease-Targeted Therapies. Pharmacol Rev 2018; 70:142-173. [PMID: 29263209 DOI: 10.1124/pr.117.014456] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
Epilepsy is a common and serious neurologic disease with a strong genetic component. Genetic studies have identified an increasing collection of disease-causing genes. The impact of these genetic discoveries is wide reaching-from precise diagnosis and classification of syndromes to the discovery and validation of new drug targets and the development of disease-targeted therapeutic strategies. About 25% of genes identified in epilepsy encode ion channels. Much of our understanding of disease mechanisms comes from work focused on this class of protein. In this study, we review the genetic, molecular, and physiologic evidence supporting the pathogenic role of a number of different voltage- and ligand-activated ion channels in genetic epilepsy. We also review proposed disease mechanisms for each ion channel and highlight targeted therapeutic strategies.
Collapse
Affiliation(s)
- Julia Oyrer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Ingrid E Scheffer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Samuel F Berkovic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia (J.O., S.M., I.E.S., S.P., C.A.R.); Department of Medicine, Austin Health, University of Melbourne, Heidelberg West, Melbourne, Australia (I.E.S., S.F.B.); and Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia (I.E.S.)
| |
Collapse
|
49
|
Early-onset epileptic encephalopathy with de novo SCN8A mutation. Epilepsy Res 2018; 139:9-13. [DOI: 10.1016/j.eplepsyres.2017.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 09/09/2017] [Accepted: 10/24/2017] [Indexed: 01/09/2023]
|
50
|
Jin ZB, Li Z, Liu Z, Jiang Y, Cai XB, Wu J. Identification of de novo germline mutations and causal genes for sporadic diseases using trio-based whole-exome/genome sequencing. Biol Rev Camb Philos Soc 2017; 93:1014-1031. [PMID: 29154454 DOI: 10.1111/brv.12383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 09/28/2017] [Accepted: 10/10/2017] [Indexed: 12/14/2022]
Abstract
Whole-genome or whole-exome sequencing (WGS/WES) of the affected proband together with normal parents (trio) is commonly adopted to identify de novo germline mutations (DNMs) underlying sporadic cases of various genetic disorders. However, our current knowledge of the occurrence and functional effects of DNMs remains limited and accurately identifying the disease-causing DNM from a group of irrelevant DNMs is complicated. Herein, we provide a general-purpose discussion of important issues related to pathogenic gene identification based on trio-based WGS/WES data. Specifically, the relevance of DNMs to human sporadic diseases, current knowledge of DNM biogenesis mechanisms, and common strategies or software tools used for DNM detection are reviewed, followed by a discussion of pathogenic gene prioritization. In addition, several key factors that may affect DNM identification accuracy and causal gene prioritization are reviewed. Based on recent major advances, this review both sheds light on how trio-based WGS/WES technologies can play a significant role in the identification of DNMs and causal genes for sporadic diseases, and also discusses existing challenges.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Division of Ophthalmic Genetics, The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China.,State Key Laboratory of Ophthalmology Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhongshan Li
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhenwei Liu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yi Jiang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| | - Xue-Bi Cai
- Division of Ophthalmic Genetics, The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, 325027, China.,State Key Laboratory of Ophthalmology Optometry and Vision Science, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|