1
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612106. [PMID: 39314281 PMCID: PMC11419079 DOI: 10.1101/2024.09.09.612106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that was associated with a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 KO cells revealed simultaneous upregulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a pro-survival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7a flx/Y :: Vil1 Cre/+ mice identified upregulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are partially rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency. Significance Copper deficiency is present in rare conditions such as Menkes disease and CTR1 deficiency and in more common diseases like Alzheimer's. The mechanisms of resilience and ultimate susceptibility to copper deficiency and associated pathology in the brain remain unknown. We demonstrate that in a human cell line, Drosophila , and the mouse cerebellum, copper-deficient neuronal cells exhibit increased protein synthesis through mTORC1 activation and decreased PERK (EIF2AK3) activity. Upregulation of protein synthesis facilitates resilience of neuronal cells to copper deficiency, including partial restoration of dendritic arborization. Our findings offer a new framework for understanding copper deficiency-related pathology in neurological disorders.
Collapse
|
2
|
Wróblewska J, Nuszkiewicz J, Wróblewski M, Wróblewska W, Woźniak A. Selected Trace Elements and Their Impact on Redox Homeostasis in Eye Health. Biomolecules 2024; 14:1356. [PMID: 39595533 PMCID: PMC11591929 DOI: 10.3390/biom14111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress plays a crucial role in the pathogenesis of various ocular degenerative diseases, leading to structural and functional changes in eye tissues. This imbalance between reactive oxygen species (ROS) and antioxidants significantly contributes to conditions such as age-related macular degeneration, diabetic retinopathy, cataracts, and glaucoma. Both enzymatic and nonenzymatic antioxidants are vital for maintaining ocular health by neutralizing ROS and restoring cellular redox balance. Essential trace elements, including iron, zinc, copper, and selenium, are fundamental for the proper functioning of these antioxidant systems. Iron is indispensable for enzymatic activity and cellular energy production, zinc supports numerous proteins involved in visual functions and antioxidant defense, copper is essential for various enzymatic reactions preventing oxidative stress, and selenium is critical for the activity of antioxidant enzymes such as glutathione peroxidase (GPX) and thioredoxin reductase (TrxR). This review summarizes current research on the complex interactions between oxidative stress and trace elements in ocular diseases, highlighting the therapeutic potential of antioxidant supplementation to mitigate oxidative damage and improve eye health. By integrating insights from studies on oxidative stress, trace elements, and eye physiology, this article underscores new diagnostic and therapeutic strategies that could lead to more effective prevention and treatment of ocular diseases, aiming to enhance clinical outcomes and guide future research in optimizing therapeutic strategies for eye health.
Collapse
Affiliation(s)
- Joanna Wróblewska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.W.)
| | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.W.)
| | - Marcin Wróblewski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.W.)
| | - Weronika Wróblewska
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland; (J.W.); (M.W.)
| |
Collapse
|
3
|
Craciun L, Muroy SE, Saijo K. Role of copper during microglial inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613750. [PMID: 39345477 PMCID: PMC11429826 DOI: 10.1101/2024.09.18.613750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Copper plays crucial roles in various physiological functions of the nervous and immune systems. Dysregulation of copper homeostasis is linked to several diseases, including neurodegenerative diseases. Since dysfunctional microglial immunity can contribute to such diseases, we investigated the role of copper in microglial immunity. We found that both increased and decreased copper levels induced by chemical treatments suppresses lipopolysaccharide (LPS)-mediated inflammation in microglial cells, as determined by RT-qPCR analysis. RNA sequencing (RNA-seq) analysis confirmed that increased copper level reduces the inflammatory response to LPS; however, it also showed that decreased copper level affects genes involved in cell proliferation, transcription, and autophagosome regulation. These findings suggest that copper is vital for maintaining normal immune function in microglia, and both copper excess and deficiency can disrupt microglial immunity.
Collapse
|
4
|
Blades B, Hung YH, Belaidi AA, Volitakis I, Schultz AG, Cater MA, Cheung NS, Bush AI, Ayton S, La Fontaine S. Impaired cellular copper regulation in the presence of ApoE4. J Neurochem 2024; 168:3284-3307. [PMID: 39135362 DOI: 10.1111/jnc.16198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 10/04/2024]
Abstract
The strongest genetic risk factor for late-onset Alzheimer's disease (AD) is allelic variation of the APOE gene, with the following risk structure: ε4 > ε3 > ε2. The biochemical basis for this risk profile is unclear. Here, we reveal a new role for the APOE gene product, apolipoprotein E (ApoE) in regulating cellular copper homeostasis, which is perturbed in the AD brain. Exposure of ApoE target replacement (TR) astrocytes (immortalised astrocytes from APOE knock-in mice) to elevated copper concentrations resulted in exacerbated copper accumulation in ApoE4- compared to ApoE2- and ApoE3-TR astrocytes. This effect was also observed in SH-SY5Y neuroblastoma cells treated with conditioned medium from ApoE4-TR astrocytes. Increased intracellular copper levels in the presence of ApoE4 may be explained by reduced levels and delayed trafficking of the copper transport protein, copper-transporting ATPase 1 (ATP7A/Atp7a), potentially leading to impaired cellular copper export. This new role for ApoE in copper regulation lends further biochemical insight into how APOE genotype confers risk for AD and reveals a potential contribution of ApoE4 to the copper dysregulation that is a characteristic pathological feature of the AD brain.
Collapse
Affiliation(s)
- Bryce Blades
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Ya Hui Hung
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Abdel A Belaidi
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Irene Volitakis
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Michael A Cater
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Nam Sang Cheung
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
| | - Ashley I Bush
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Scott Ayton
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Sharon La Fontaine
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia
- The Florey Neuroscience Institute, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Teng X, Stefaniak E, Willison KR, Ying L. Interplay between Copper, Phosphatidylserine, and α-Synuclein Suggests a Link between Copper Homeostasis and Synaptic Vesicle Cycling. ACS Chem Neurosci 2024; 15:2884-2896. [PMID: 39013013 PMCID: PMC11311125 DOI: 10.1021/acschemneuro.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Copper homeostasis is critical to the functioning of the brain, and its breakdown is linked with many brain diseases. Copper is also known to interact with the negatively charged lipid, phosphatidylserine (PS), as well as α-synuclein, an aggregation-prone protein enriched in the synapse, which plays a role in synaptic vesicle docking and fusion. However, the interplay between copper, PS lipid, and α-synuclein is not known. Herein, we report a detailed and predominantly kinetic study of the interactions among these three components pertinent to copper homeostasis and neurotransmission. We found that synaptic vesicle-mimicking small unilamellar vesicles (SUVs) can sequester any excess free Cu2+ within milliseconds, and bound Cu2+ on SUVs can be reduced to Cu+ by GSH at a nearly constant rate under physiological conditions. Moreover, we revealed that SUV-bound Cu2+ does not affect the binding between wild-type α-synuclein and SUVs but affect that between N-terminal acetylated α-synuclein and SUVs. In contrast, Cu2+ can effectively displace both types of α-synuclein from the vesicles. Our results suggest that synaptic vesicles may mediate copper transfer in the brain, while copper could participate in synaptic vesicle docking to the plasma membrane via its regulation of the interaction between α-synuclein and synaptic vesicle.
Collapse
Affiliation(s)
- Xiangyu Teng
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Ewelina Stefaniak
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, U.K.
| | - Keith R. Willison
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
| | - Liming Ying
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, 82 Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
6
|
Gale J, Aizenman E. The physiological and pathophysiological roles of copper in the nervous system. Eur J Neurosci 2024; 60:3505-3543. [PMID: 38747014 PMCID: PMC11491124 DOI: 10.1111/ejn.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 07/06/2024]
Abstract
Copper is a critical trace element in biological systems due the vast number of essential enzymes that require the metal as a cofactor, including cytochrome c oxidase, superoxide dismutase and dopamine-β-hydroxylase. Due its key role in oxidative metabolism, antioxidant defence and neurotransmitter synthesis, copper is particularly important for neuronal development and proper neuronal function. Moreover, increasing evidence suggests that copper also serves important functions in synaptic and network activity, the regulation of circadian rhythms, and arousal. However, it is important to note that because of copper's ability to redox cycle and generate reactive species, cellular levels of the metal must be tightly regulated to meet cellular needs while avoiding copper-induced oxidative stress. Therefore, it is essential that the intricate system of copper transporters, exporters, copper chaperones and copper trafficking proteins function properly and in coordinate fashion. Indeed, disorders of copper metabolism such as Menkes disease and Wilson disease, as well as diseases linked to dysfunction of copper-requiring enzymes, such as SOD1-linked amyotrophic lateral sclerosis, demonstrate the dramatic neurological consequences of altered copper homeostasis. In this review, we explore the physiological importance of copper in the nervous system as well as pathologies related to improper copper handling.
Collapse
Affiliation(s)
- Jenna Gale
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Zhu J, Liao Y, Li X, Jia F, Ma X, Qu H. Brain and the whole-body bone imaging appearances in Menkes disease: a case report and literature review. BMC Pediatr 2024; 24:411. [PMID: 38926644 PMCID: PMC11202368 DOI: 10.1186/s12887-024-04885-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Menkes disease (MD) is a rare, inherited, multisystemic copper metabolism disorder. Classical Menkes disease is characterized by low serum copper and ceruloplasmin concentrations, leading to multiple abnormalities in the whole-body, especially in connective tissue and central nervous system. However, serum copper and ceruloplasmin levels are not reliable diagnostic biomarkers due to the low concentrations in healthy newborns either. The featured imaging manifestations play an important role in diagnosing Menkes disease. To our knowledge, there are few reports on the systemic imaging manifestations of Menkes disease. CASE PRESENTATION A 4-month-old male patient presented with recurrent seizures. He had cognitive, intellectual, growth, gross motor, precision movement, and language developmental lags. The patient's hemoglobin and serum ceruloplasmin level were low. On MRI, increased intracranial vascular tortuosity, cerebral and cerebellar atrophy, white matter changes, and basal ganglia abnormalities were observed. Plain radiograph revealed wormian bones, rib flaring, metaphyseal spurring, and periosteal reactions in the long bones of the limbs. A pathogenic variant in ATP7A gene was identified in the patient, so he was confirmed the diagnosis of Menkes disease. His symptoms did not improve despite symptomatic and supportive treatment during his hospitalization. Unfortunately, the infant died 3 months after leaving hospital. CONCLUSION A comprehensive and intuitive understanding of the disease's imaging manifestations can help clinicians to identify the disease and avoid delays in care.
Collapse
Affiliation(s)
- Juncheng Zhu
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
- Department of Radiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, 610213, Sichuan Province, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Yi Liao
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xuesheng Li
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Fenglin Jia
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Xinmao Ma
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Haibo Qu
- Department of Radiology, West China Second University Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
8
|
Harkness JR, Thomas HB, Urquhart JE, Jamieson P, O'Keefe RT, Kingston HM, Deshpande C, Newman WG. Deep intronic variant causes aberrant splicing of ATP7A in a family with a variable occipital horn syndrome phenotype. Eur J Med Genet 2024; 67:104907. [PMID: 38141875 PMCID: PMC10918460 DOI: 10.1016/j.ejmg.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Genetic variants in ATP7A are associated with a spectrum of X-linked disorders. In descending order of severity, these are Menkes disease, occipital horn syndrome, and X-linked distal spinal muscular atrophy. After 30 years of diagnostic investigation, we identified a deep intronic ATP7A variant in four males from a family affected to variable degrees by a predominantly skeletal phenotype, featuring bowing of long bones, elbow joints with restricted mobility which dislocate frequently, coarse curly hair, chronic diarrhoea, and motor coordination difficulties. Analysis of whole genome sequencing data from the Genomics England 100,000 Genomes Project following clinical re-evaluation identified a deep intronic ATP7A variant, which was predicted by SpliceAI to have a modest splicing effect. Using a mini-gene splicing assay, we determined that the intronic variant results in aberrant splicing. Sanger sequencing of patient cDNA revealed ATP7A transcripts with exon 5 skipping, or inclusion of a novel intron 4 pseudoexon. In both instances, frameshift leading to premature termination are predicted. Quantification of ATP7A mRNA transcripts using a qPCR assay indicated that the majority of transcripts (86.1 %) have non-canonical splicing, with 68.0 % featuring exon 5 skipping, and 18.1 % featuring the novel pseudoexon. We suggest that the variability of the phenotypes within the affected males results from the stochastic effects of splicing. This deep intronic variant, resulting in aberrant ATP7A splicing, expands the understanding of intronic variation on the ATP7A-related disease spectrum.
Collapse
Affiliation(s)
- J Robert Harkness
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Huw B Thomas
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Jill E Urquhart
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Peter Jamieson
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Raymond T O'Keefe
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK
| | - Helen M Kingston
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Charulata Deshpande
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - William G Newman
- Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
9
|
Więcek S, Paprocka J. Disorders of Copper Metabolism in Children-A Problem too Rarely Recognized. Metabolites 2024; 14:38. [PMID: 38248841 PMCID: PMC10818781 DOI: 10.3390/metabo14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/23/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Copper plays an important role in metabolic processes. Both deficiency and excess of this element have a negative effect and lead to pathological conditions. Copper is a cofactor of many enzymatic reactions. Its concentration depends on the delivery in the diet, the absorption in enterocytes, transport with the participation of ATP7A/ATP7B protein, and proper excretion. Copper homeostasis disorders lead to serious medical conditions such as Menkes disease (MD) and Wilson's disease (WD). A mutation in the ATP7A gene is the cause of Menkes disease, it prevents the supply of copper ions to enzymes dependent on them, such as dopamine β-hydroxylase and lysyl oxidase. This leads to progressive changes in the central nervous system and disorders of the connective tissue. In turn, Wilson's disease is an inherited autosomal recessive disease. It is caused by a mutation of the ATP7B gene encoding the ATP7B protein which means excess copper cannot be removed from the body, leading to the pathological accumulation of this element in the liver and brain. The clinical picture is dominated by the liver, neurological, and/or psychiatric symptoms. Early inclusion of zinc preparations and chelating drugs significantly improves the prognosis in this group of patients. The aim of the study is to analyse, based on the latest literature, the following factors: the etiopathogenesis, clinical picture, diagnostic tests, treatment, prognosis, and complications of disease entities associated with copper disturbances: Menkes disease and Wilson's disease. In addition, it is necessary for general practitioners, neurologists, and gastroenterologists to pay attention to these disease entities because they are recognized too late and too rarely, especially in the paediatric population.
Collapse
Affiliation(s)
- Sabina Więcek
- Department of Paediatrics, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
| | - Justyna Paprocka
- Department of Paediatric Neurology, Faculty of Medical Sciences, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
10
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
11
|
The Role of Copper Homeostasis in Brain Disease. Int J Mol Sci 2022; 23:ijms232213850. [PMID: 36430330 PMCID: PMC9698384 DOI: 10.3390/ijms232213850] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the human body, copper is an important trace element and is a cofactor for several important enzymes involved in energy production, iron metabolism, neuropeptide activation, connective tissue synthesis, and neurotransmitter synthesis. Copper is also necessary for cellular processes, such as the regulation of intracellular signal transduction, catecholamine balance, myelination of neurons, and efficient synaptic transmission in the central nervous system. Copper is naturally present in some foods and is available as a dietary supplement. Only small amounts of copper are typically stored in the body and a large amount of copper is excreted through bile and urine. Given the critical role of copper in a breadth of cellular processes, local concentrations of copper and the cellular distribution of copper transporter proteins in the brain are important to maintain the steady state of the internal environment. The dysfunction of copper metabolism or regulatory pathways results in an imbalance in copper homeostasis in the brain, which can lead to a myriad of acute and chronic pathological effects on neurological function. It suggests a unique mechanism linking copper homeostasis and neuronal activation within the central nervous system. This article explores the relationship between impaired copper homeostasis and neuropathophysiological progress in brain diseases.
Collapse
|
12
|
Zaks N, Austin C, Arora M, Reichenberg A. Reprint of: Elemental dysregulation in psychotic spectrum disorders: A review and research synthesis. Schizophr Res 2022; 247:33-40. [PMID: 36075821 DOI: 10.1016/j.schres.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 10/14/2022]
Abstract
Accumulating evidence from observational studies, genetic research, and animal models suggests a relationship between toxic and nutritive elements and psychotic spectrum disorders (PSD). This review systematically evaluates the current research evidence for two hypotheses: 1) that exposures to abnormal levels of toxic and nutritive elements early in life contributes to the subsequent development of PSD, and 2) that an imbalance of element levels is linked to psychotic illness and clinical severity. We focused on the extant literature on five elements, lead (Pb), copper (Cu), magnesium (Mg), manganese (Mn), and zinc (Zn), because of their previously documented associations with psychiatric problems and the availability of pertinent literature. The review identified 38 studies of which 11 measured Pb, 27 measured Cu, 16 measured Mg, 15 measured Mn, and 25 measured Zn concentrations in PSD patients and controls. A majority of research has been conducted on nutritive element imbalance, and findings are largely mixed. While it is biologically plausible that element dysregulation is an important modifiable risk factor for PSD, more research into exposure in early life is needed to better characterize this relationship.
Collapse
Affiliation(s)
- Nina Zaks
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, NY, USA
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine, Mount Sinai, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine, Mount Sinai, NY, USA; Seaver Center of Research and Treatment, Icahn School of Medicine, Mount Sinai, NY, USA; Friedman Brain Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA.
| |
Collapse
|
13
|
Chakraborty K, Kar S, Rai B, Bhagat R, Naskar N, Seth P, Gupta A, Bhattacharjee A. Copper dependent ERK1/2 phosphorylation is essential for the viability of neurons and not glia. Metallomics 2022; 14:mfac005. [PMID: 35150272 PMCID: PMC8975716 DOI: 10.1093/mtomcs/mfac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 02/10/2022] [Indexed: 01/24/2023]
Abstract
Intracellular copper [Cu(I)] has been hypothesized to play role in the differentiation of the neurons. This necessitates understanding the role of Cu(I) not only in the neurons but also in the glia considering their anatomical proximity, contribution towards ion homeostasis, and neurodegeneration. In this study, we did a systematic investigation of the changes in the cellular copper homeostasis during neuronal and glial differentiation and the pathways triggered by them. Our study demonstrates increased mRNA for the plasma membrane copper transporter CTR1 leading to increased Cu(I) during the neuronal (PC-12) differentiation. ATP7A is retained in the trans-Golgi network (TGN) despite high Cu(I) demonstrating its utilization towards the neuronal differentiation. Intracellular copper triggers pathways essential for neurite generation and ERK1/2 activation during the neuronal differentiation. ERK1/2 activation also accompanies the differentiation of the foetal brain derived neuronal progenitor cells. The study demonstrates that ERK1/2 phosphorylation is essential for the viability of the neurons. In contrast, differentiated C-6 (glia) cells contain low intracellular copper and significant downregulation of the ERK1/2 phosphorylation demonstrating that ERK1/2 activation does not regulate the viability of the glia. But ATP7A shows vesicular localization despite low copper in the glia. In addition to the TGN, ATP7A localizes into RAB11 positive recycling endosomes in the glial neurites. Our study demonstrates the role of copper dependent ERK1/2 phosphorylation in the neuronal viability. Whereas glial differentiation largely involves sequestration of Cu(I) into the endosomes potentially (i) for ready release and (ii) rendering cytosolic copper unavailable for pathways like the ERK1/2 activation.
Collapse
Affiliation(s)
| | - Sumanta Kar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Bhawana Rai
- Amity Institute of Biotechnology, Amity University, Kolkata, India
| | - Reshma Bhagat
- Molecular and Cellular Neuroscience, Neurovirology Division, National Brain Research Centre, Manesar, India
| | - Nabanita Naskar
- Chemical Sciences Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Pankaj Seth
- Molecular and Cellular Neuroscience, Neurovirology Division, National Brain Research Centre, Manesar, India
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | | |
Collapse
|
14
|
Sluysmans S, Méan I, Xiao T, Boukhatemi A, Ferreira F, Jond L, Mutero A, Chang CJ, Citi S. PLEKHA5, PLEKHA6, and PLEKHA7 bind to PDZD11 to target the Menkes ATPase ATP7A to the cell periphery and regulate copper homeostasis. Mol Biol Cell 2021; 32:ar34. [PMID: 34613798 PMCID: PMC8693958 DOI: 10.1091/mbc.e21-07-0355] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/12/2023] Open
Abstract
Copper homeostasis is crucial for cellular physiology and development, and its dysregulation leads to disease. The Menkes ATPase ATP7A plays a key role in copper efflux, by trafficking from the Golgi to the plasma membrane upon cell exposure to elevated copper, but the mechanisms that target ATP7A to the cell periphery are poorly understood. PDZD11 interacts with the C-terminus of ATP7A, which contains sequences involved in ATP7A trafficking, but the role of PDZD11 in ATP7A localization is unknown. Here we identify PLEKHA5 and PLEKHA6 as new interactors of PDZD11 that bind to the PDZD11 N-terminus through their WW domains similarly to the junctional protein PLEKHA7. Using CRISPR-KO kidney epithelial cells, we show by immunofluorescence microscopy that WW-PLEKHAs (PLEKHA5, PLEKHA6, PLEKHA7) recruit PDZD11 to distinct plasma membrane localizations and that they are required for the efficient anterograde targeting of ATP7A to the cell periphery in elevated copper conditions. Pull-down experiments show that WW-PLEKHAs promote PDZD11 interaction with the C-terminus of ATP7A. However, WW-PLEKHAs and PDZD11 are not necessary for ATP7A Golgi localization in basal copper, ATP7A copper-induced exit from the Golgi, and ATP7A retrograde trafficking to the Golgi. Finally, measuring bioavailable and total cellular copper, metallothionein-1 expression, and cell viability shows that WW-PLEKHAs and PDZD11 are required for maintaining low intracellular copper levels when cells are exposed to elevated copper. These data indicate that WW-PLEKHAs-PDZD11 complexes regulate the localization and function of ATP7A to promote copper extrusion in elevated copper.
Collapse
Affiliation(s)
- Sophie Sluysmans
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Isabelle Méan
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
| | - Amina Boukhatemi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Flavio Ferreira
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Lionel Jond
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Annick Mutero
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Sandra Citi
- Department of Cell Biology, Faculty of Sciences, University of Geneva, CH-1205 Geneva, Switzerland
| |
Collapse
|
15
|
Elemental dysregulation in psychotic spectrum disorders: A review and research synthesis. Schizophr Res 2021; 233:64-71. [PMID: 34242950 DOI: 10.1016/j.schres.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
Accumulating evidence from observational studies, genetic research, and animal models suggests a relationship between toxic and nutritive elements and psychotic spectrum disorders (PSD). This review systematically evaluates the current research evidence for two hypotheses: 1) that exposures to abnormal levels of toxic and nutritive elements early in life contributes to the subsequent development of PSD, and 2) that an imbalance of element levels is linked to psychotic illness and clinical severity. We focused on the extant literature on five elements, lead (Pb), copper (Cu), magnesium (Mg), manganese (Mn), and zinc (Zn), because of their previously documented associations with psychiatric problems and the availability of pertinent literature. The review identified 38 studies of which 11 measured Pb, 27 measured Cu, 16 measured Mg, 15 measured Mn, and 25 measured Zn concentrations in PSD patients and controls. A majority of research has been conducted on nutritive element imbalance, and findings are largely mixed. While it is biologically plausible that element dysregulation is an important modifiable risk factor for PSD, more research into exposure in early life is needed to better characterize this relationship.
Collapse
|
16
|
ATP7A-Regulated Enzyme Metalation and Trafficking in the Menkes Disease Puzzle. Biomedicines 2021; 9:biomedicines9040391. [PMID: 33917579 PMCID: PMC8067471 DOI: 10.3390/biomedicines9040391] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022] Open
Abstract
Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.
Collapse
|
17
|
Hartwig C, Méndez GM, Bhattacharjee S, Vrailas-Mortimer AD, Zlatic SA, Freeman AAH, Gokhale A, Concilli M, Werner E, Sapp Savas C, Rudin-Rush S, Palmer L, Shearing N, Margewich L, McArthy J, Taylor S, Roberts B, Lupashin V, Polishchuk RS, Cox DN, Jorquera RA, Faundez V. Golgi-Dependent Copper Homeostasis Sustains Synaptic Development and Mitochondrial Content. J Neurosci 2021; 41:215-233. [PMID: 33208468 PMCID: PMC7810662 DOI: 10.1523/jneurosci.1284-20.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023] Open
Abstract
Rare genetic diseases preponderantly affect the nervous system causing neurodegeneration to neurodevelopmental disorders. This is the case for both Menkes and Wilson disease, arising from mutations in ATP7A and ATP7B, respectively. The ATP7A and ATP7B proteins localize to the Golgi and regulate copper homeostasis. We demonstrate genetic and biochemical interactions between ATP7 paralogs with the conserved oligomeric Golgi (COG) complex, a Golgi apparatus vesicular tether. Disruption of Drosophila copper homeostasis by ATP7 tissue-specific transgenic expression caused alterations in epidermis, aminergic, sensory, and motor neurons. Prominent among neuronal phenotypes was a decreased mitochondrial content at synapses, a phenotype that paralleled with alterations of synaptic morphology, transmission, and plasticity. These neuronal and synaptic phenotypes caused by transgenic expression of ATP7 were rescued by downregulation of COG complex subunits. We conclude that the integrity of Golgi-dependent copper homeostasis mechanisms, requiring ATP7 and COG, are necessary to maintain mitochondria functional integrity and localization to synapses.SIGNIFICANCE STATEMENT Menkes and Wilson disease affect copper homeostasis and characteristically afflict the nervous system. However, their molecular neuropathology mechanisms remain mostly unexplored. We demonstrate that copper homeostasis in neurons is maintained by two factors that localize to the Golgi apparatus, ATP7 and the conserved oligomeric Golgi (COG) complex. Disruption of these mechanisms affect mitochondrial function and localization to synapses as well as neurotransmission and synaptic plasticity. These findings suggest communication between the Golgi apparatus and mitochondria through homeostatically controlled cellular copper levels and copper-dependent enzymatic activities in both organelles.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | - Shatabdi Bhattacharjee
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | | | | | - Amanda A H Freeman
- The Center for the Study of Human Health, Emory University, Atlanta, Georgia 30322
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Mafalda Concilli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Erica Werner
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | | | | | - Laura Palmer
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Nicole Shearing
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| | - Lindsey Margewich
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Jacob McArthy
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Savanah Taylor
- School of Biological Sciences, IL State University, Normal, Illinois 617901
| | - Blaine Roberts
- Departments of Biochemistry, Emory University, Atlanta, Georgia 30322
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Daniel N Cox
- Neuroscience Institute, Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Ramon A Jorquera
- Neuroscience Department, Universidad Central del Caribe, Bayamon, Puerto Rico 00956
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
18
|
Guthrie LM, Soma S, Yuan S, Silva A, Zulkifli M, Snavely TC, Greene HF, Nunez E, Lynch B, De Ville C, Shanbhag V, Lopez FR, Acharya A, Petris MJ, Kim BE, Gohil VM, Sacchettini JC. Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science 2020; 368:620-625. [PMID: 32381719 DOI: 10.1126/science.aaz8899] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/10/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022]
Abstract
Loss-of-function mutations in the copper (Cu) transporter ATP7A cause Menkes disease. Menkes is an infantile, fatal, hereditary copper-deficiency disorder that is characterized by progressive neurological injury culminating in death, typically by 3 years of age. Severe copper deficiency leads to multiple pathologies, including impaired energy generation caused by cytochrome c oxidase dysfunction in the mitochondria. Here we report that the small molecule elesclomol escorted copper to the mitochondria and increased cytochrome c oxidase levels in the brain. Through this mechanism, elesclomol prevented detrimental neurodegenerative changes and improved the survival of the mottled-brindled mouse-a murine model of severe Menkes disease. Thus, elesclomol holds promise for the treatment of Menkes and associated disorders of hereditary copper deficiency.
Collapse
Affiliation(s)
- Liam M Guthrie
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Shivatheja Soma
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Sai Yuan
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Andres Silva
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Thomas C Snavely
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Hannah Faith Greene
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Elyssa Nunez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Brogan Lynch
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Courtney De Ville
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Vinit Shanbhag
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Franklin R Lopez
- Texas Veterinary Medicine Diagnostic Laboratory, College Station, TX 77843, USA
| | - Arjun Acharya
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Byung-Eun Kim
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
19
|
Lee CE, Singleton KS, Wallin M, Faundez V. Rare Genetic Diseases: Nature's Experiments on Human Development. iScience 2020; 23:101123. [PMID: 32422592 PMCID: PMC7229282 DOI: 10.1016/j.isci.2020.101123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 01/25/2023] Open
Abstract
Rare genetic diseases are the result of a continuous forward genetic screen that nature is conducting on humans. Here, we present epistemological and systems biology arguments highlighting the importance of studying these rare genetic diseases. We contend that the expanding catalog of mutations in ∼4,000 genes, which cause ∼6,500 diseases and their annotated phenotypes, offer a wide landscape for discovering fundamental mechanisms required for human development and involved in common diseases. Rare afflictions disproportionately affect the nervous system in children, but paradoxically, the majority of these disease-causing genes are evolutionarily ancient and ubiquitously expressed in human tissues. We propose that the biased prevalence of childhood rare diseases affecting nervous tissue results from the topological complexity of the protein interaction networks formed by ubiquitous and ancient proteins encoded by childhood disease genes. Finally, we illustrate these principles discussing Menkes disease, an example of the discovery power afforded by rare diseases.
Collapse
Affiliation(s)
- Chelsea E Lee
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Kaela S Singleton
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Melissa Wallin
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
20
|
Affiliation(s)
- Svetlana Lutsenko
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
21
|
The Endolysosomal System and Proteostasis: From Development to Degeneration. J Neurosci 2019; 38:9364-9374. [PMID: 30381428 DOI: 10.1523/jneurosci.1665-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
How do neurons adapt their endolysosomal system to address the particular challenge of membrane transport across their elaborate cellular landscape and to maintain proteostasis for the lifetime of the organism? Here we review recent findings that address this central question. We discuss the cellular and molecular mechanisms of endolysosomal trafficking and the autophagy pathway in neurons, as well as their role in neuronal development and degeneration. These studies highlight the importance of understanding the basic cell biology of endolysosomal trafficking and autophagy and their roles in the maintenance of proteostasis within the context of neurons, which will be critical for developing effective therapies for various neurodevelopmental and neurodegenerative disorders.
Collapse
|
22
|
Ratiometric two-photon microscopy reveals attomolar copper buffering in normal and Menkes mutant cells. Proc Natl Acad Sci U S A 2019; 116:12167-12172. [PMID: 31160463 DOI: 10.1073/pnas.1900172116] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Copper is controlled by a sophisticated network of transport and storage proteins within mammalian cells, yet its uptake and efflux occur with rapid kinetics. Present as Cu(I) within the reducing intracellular environment, the nature of this labile copper pool remains elusive. While glutathione is involved in copper homeostasis and has been assumed to buffer intracellular copper, we demonstrate with a ratiometric fluorescent indicator, crisp-17, that cytosolic Cu(I) levels are buffered to the vicinity of 1 aM, where negligible complexation by glutathione is expected. Enabled by our phosphine sulfide-stabilized phosphine (PSP) ligand design strategy, crisp-17 offers a Cu(I) dissociation constant of 8 aM, thus exceeding the binding affinities of previous synthetic Cu(I) probes by four to six orders of magnitude. Two-photon excitation microscopy with crisp-17 revealed rapid, reversible increases in intracellular Cu(I) availability upon addition of the ionophoric complex CuGTSM or the thiol-selective oxidant 2,2'-dithiodipyridine (DTDP). While the latter effect was dramatically enhanced in 3T3 cells grown in the presence of supplemental copper and in cultured Menkes mutant fibroblasts exhibiting impaired copper efflux, basal Cu(I) availability in these cells showed little difference from controls, despite large increases in total copper content. Intracellular copper is thus tightly buffered by endogenous thiol ligands with significantly higher affinity than glutathione. The dual utility of crisp-17 to detect normal intracellular buffered Cu(I) levels as well as to probe the depth of the labile copper pool in conjunction with DTDP provides a promising strategy to characterize perturbations of cellular copper homeostasis.
Collapse
|
23
|
Liu Y, Zhang Y, Hu M, Li YH, Cao XH. Carnosic acid alleviates brain injury through NF‑κB‑regulated inflammation and Caspase‑3‑associated apoptosis in high fat‑induced mouse models. Mol Med Rep 2019; 20:495-504. [PMID: 31180544 PMCID: PMC6579991 DOI: 10.3892/mmr.2019.10299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/08/2019] [Indexed: 12/31/2022] Open
Abstract
High fat diet (HFD) is a risk factor for various diseases in humans and animals. Metabolic disease-induced brain injury is becoming an increasingly popular research topic. Carnosic acid (CA) is a phenolic diterpene synthesized by plants belonging to the Lamiaceae family, which exhibits multiple biological activities. In the present study, a mouse model of HFD-induced metabolic syndrome was generated. The body weight, liver weight, daily food intake, daily caloric intake, serum TG, serum TC, serum insulin and serum glucose of animals treated with CA were recorded. Additionally, the gene and protein expression levels of inflammatory cytokines, NF-κB signaling componnts, and caspase-3 were evaluated in the various CA treatment groups via immunohistochemical analysis, western blotting, reverse transcription-quantitative PCR. CA treatment significantly decreased HFD-induced metabolic syndrome by decreasing the serum levels of triglycerides, total cholesterol, insulin and glucose. Furthermore, CA served a protective role against brain injury by inhibiting the inflammatory response. CA significantly decreased the protein expression levels of various pro-inflammatory cytokines in serum and brain tissues, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α, regulated by the NF-κB signaling pathway. In addition, CA was revealed to promote the expression levels of anti-apoptotic Bcl-2, and to decrease the expression levels of pro-apoptotic Bax and matrix metallopeptidase 9. The present results suggested that CA was able to alleviate brain injury by modulating the inflammatory response and the apoptotic pathway. Administration of CA may represent a novel therapeutic strategy to treat metabolic disease-induced brain injury in the future.
Collapse
Affiliation(s)
- Yong Liu
- Department of Anesthesiology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830099, P.R. China
| | - Yan Zhang
- Department of Anesthesiology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830099, P.R. China
| | - Ming Hu
- Department of Anesthesiology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830099, P.R. China
| | - Yu-Hu Li
- Department of Anesthesiology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830099, P.R. China
| | - Xing-Hua Cao
- Department of Anesthesiology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang 830099, P.R. China
| |
Collapse
|
24
|
Trafficking mechanisms of P-type ATPase copper transporters. Curr Opin Cell Biol 2019; 59:24-33. [PMID: 30928671 DOI: 10.1016/j.ceb.2019.02.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/13/2019] [Accepted: 02/26/2019] [Indexed: 12/13/2022]
Abstract
Copper is an essential micronutrient required for oxygen-dependent enzymes, yet excess of the metal is a toxicant. The tug-of-war between these copper activities is balanced by chaperones and membrane transporters, which control copper distribution and availability. The P-type ATPase transporters, ATP7A and ATP7B, regulate cytoplasmic copper by pumping copper out of cells or into the endomembrane system. Mutations in ATP7A and ATP7B cause diseases that share neuropsychiatric phenotypes, which are similar to phenotypes observed in mutations affecting cytoplasmic trafficking complexes required for ATP7A/B dynamics. Here, we discuss evidence indicating that phenotypes associated to genetic defects in trafficking complexes, such as retromer and the adaptor complex AP-1, result in part from copper dyshomeostasis due to mislocalized ATP7A and ATP7B.
Collapse
|
25
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
26
|
Horn N, Møller LB, Nurchi VM, Aaseth J. Chelating principles in Menkes and Wilson diseases: Choosing the right compounds in the right combinations at the right time. J Inorg Biochem 2018; 190:98-112. [PMID: 30384011 DOI: 10.1016/j.jinorgbio.2018.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/06/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023]
Abstract
Dysregulation of copper homeostasis in humans is primarily found in two genetic diseases of copper transport, Menkes and Wilson diseases, which show symptoms of copper deficiency or overload, respectively. However, both diseases are copper storage disorders despite completely opposite clinical pictures. Clinically, Menkes disease is characterized by copper deficiency secondary to poor loading of copper-requiring enzymes although sufficient body copper. Copper accumulates in non-hepatic tissues, but is deficient in blood, liver, and brain. In contrast, Wilson disease is characterized by symptoms of copper toxicity secondary to accumulation of copper in several organs most notably brain and liver, and a saturated blood copper pool. It is a challenge to correct copper dyshomeostasis in either disease though copper depletion in Menkes disease is most challenging. Both diseases are caused by defective copper export from distinct cells, and we seek to give new angles and guidelines to improve treatment of these two complementary diseases. Therapy of Menkes disease with copper-histidine, thiocarbamate, nitrilotriacetate or lipoic acid is discussed. In Wilson disease combination of a hydrophilic chelator e.g. trientine or dimercaptosuccinate with a brain shuttle e.g. thiomolybdate or lipoate, is discussed. New chelating principles for copper removal or delivery are outlined.
Collapse
Affiliation(s)
| | - Lisbeth Birk Møller
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Gl. Landevej 7, 2600 Glostrup, Denmark
| | | | - Jan Aaseth
- Innlandet Hospital, Norway; Inland Norway University of Applied Sciences, Elverum, Norway.
| |
Collapse
|
27
|
Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system. Nat Chem Biol 2018; 14:655-663. [PMID: 29867144 PMCID: PMC6008210 DOI: 10.1038/s41589-018-0062-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/19/2018] [Indexed: 12/21/2022]
Abstract
The unusually high demand for metals in the brain along with insufficient understanding of how their dysregulation contributes to neurological diseases motivates the study of how inorganic chemistry influences neural circuitry. We now report that the transition metal copper is essential for regulating rest–activity cycles and arousal. Copper imaging and gene expression analysis in zebrafish identifies the locus coeruleus-norepinephrine (LC-NE) system, a vertebrate-specific neuromodulatory circuit critical for regulating sleep, arousal, attention, memory and emotion, as a copper-enriched unit with high levels of copper transporters CTR1 and ATP7A and the copper enzyme dopamine beta-hydroxylase (DBH) that produces NE. Copper deficiency induced by genetic disruption of ATP7A, which loads copper into DBH, lowers NE levels and hinders LC function as manifested by disruption in rest–activity modulation. Moreover, LC dysfunction caused by copper deficiency from ATP7A disruption can be rescued by restoring synaptic levels of NE, establishing a molecular CTR1-ATP7A-DBH-NE axis for copper-dependent LC function.
Collapse
|
28
|
Zlatic SA, Vrailas-Mortimer A, Gokhale A, Carey LJ, Scott E, Burch R, McCall MM, Rudin-Rush S, Davis JB, Hartwig C, Werner E, Li L, Petris M, Faundez V. Rare Disease Mechanisms Identified by Genealogical Proteomics of Copper Homeostasis Mutant Pedigrees. Cell Syst 2018; 6:368-380.e6. [PMID: 29397366 DOI: 10.1016/j.cels.2018.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/28/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022]
Abstract
Rare neurological diseases shed light onto universal neurobiological processes. However, molecular mechanisms connecting genetic defects to their disease phenotypes are elusive. Here, we obtain mechanistic information by comparing proteomes of cells from individuals with rare disorders with proteomes from their disease-free consanguineous relatives. We use triple-SILAC mass spectrometry to quantify proteomes from human pedigrees affected by mutations in ATP7A, which cause Menkes disease, a rare neurodegenerative and neurodevelopmental disorder stemming from systemic copper depletion. We identified 214 proteins whose expression was altered in ATP7A-/y fibroblasts. Bioinformatic analysis of ATP7A-mutant proteomes identified known phenotypes and processes affected in rare genetic diseases causing copper dyshomeostasis, including altered mitochondrial function. We found connections between copper dyshomeostasis and the UCHL1/PARK5 pathway of Parkinson disease, which we validated with mitochondrial respiration and Drosophila genetics assays. We propose that our genealogical "omics" strategy can be broadly applied to identify mechanisms linking a genomic locus to its phenotypes.
Collapse
Affiliation(s)
| | - Alysia Vrailas-Mortimer
- School of Biological Sciences Illinois State University, Normal, IL 617901, USA; University of Denver, Department of Biological Sciences, Denver, CO 80208, USA
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Lucas J Carey
- School of Biological Sciences Illinois State University, Normal, IL 617901, USA
| | - Elizabeth Scott
- School of Biological Sciences Illinois State University, Normal, IL 617901, USA
| | - Reid Burch
- School of Biological Sciences Illinois State University, Normal, IL 617901, USA; University of Denver, Department of Biological Sciences, Denver, CO 80208, USA
| | - Morgan M McCall
- School of Biological Sciences Illinois State University, Normal, IL 617901, USA
| | | | | | - Cortnie Hartwig
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; Department of Chemistry, Agnes Scott College, Decatur, GA 30030, USA
| | - Erica Werner
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Lian Li
- Department of Pharmacology, Emory University, Atlanta, GA 30322, USA
| | - Michael Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
29
|
Vajro P, Zielinska K, Ng BG, Maccarana M, Bengtson P, Poeta M, Mandato C, D'Acunto E, Freeze HH, Eklund EA. Three unreported cases of TMEM199-CDG, a rare genetic liver disease with abnormal glycosylation. Orphanet J Rare Dis 2018; 13:4. [PMID: 29321044 PMCID: PMC5763540 DOI: 10.1186/s13023-017-0757-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 12/29/2017] [Indexed: 01/21/2023] Open
Abstract
Background TMEM199 deficiency was recently shown in four patients to cause liver disease with steatosis, elevated serum transaminases, cholesterol and alkaline phosphatase and abnormal protein glycosylation. There is no information on the long-term outcome in this disorder. Results We here present three novel patients with TMEM199-CDG. All three patients carried the same set of mutations (c.13-14delTT (p.Ser4Serfs*30) and c.92G > C (p.Arg31Pro), despite only two were related (siblings). One mutation (c.92G > C) was described previously whereas the other was deemed pathogenic due to its early frameshift. Western Blot analysis confirmed a reduced level of TMEM199 protein in patient fibroblasts and all patients showed a similar glycosylation defect. The patients presented with a very similar clinical and biochemical phenotype to the initial publication, confirming that TMEM199-CDG is a non-encephalopathic liver disorder. Two of the patients were clinically assessed over two decades without deterioration. Conclusion A rising number of disorders affecting Golgi homeostasis have been published over the last few years. A hallmark finding is deficiency in protein glycosylation, both in N- and O-linked types. Most of these disorders have signs of both liver and brain involvement. However, the present and the four previously reported patients do not show encephalopathy but a chronic, non-progressive (over decades) liver disease with hypertransaminasemia and steatosis. This information is crucial for the patient/families and clinician at diagnosis, as it distinguishes it from other Golgi homeostasis disorders, in having a much more favorable course.
Collapse
Affiliation(s)
- Pietro Vajro
- Unit of Pediatrics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, (Sa), Italy
| | | | - Bobby G Ng
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marco Maccarana
- Section for Matrix Biology, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Per Bengtson
- Division of Clinical Chemistry, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Marco Poeta
- Unit of Pediatrics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, (Sa), Italy
| | - Claudia Mandato
- Children's Hospital "Santobono-Pausilipon", 1st Division of Pediatrics, Naples, Italy
| | - Elisa D'Acunto
- Unit of Pediatrics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, (Sa), Italy
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Erik A Eklund
- Division of Pediatrics, Lund University, Lund, Sweden.
| |
Collapse
|
30
|
Balsano C, Porcu C, Sideri S. Is copper a new target to counteract the progression of chronic diseases? Metallomics 2018; 10:1712-1722. [DOI: 10.1039/c8mt00219c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review, we highlight the importance of a Cu imbalance in the pathogenesis of several chronic inflammatory diseases.
Collapse
|
31
|
Navarro JA, Schneuwly S. Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster. Front Genet 2017; 8:223. [PMID: 29312444 PMCID: PMC5743009 DOI: 10.3389/fgene.2017.00223] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 01/19/2023] Open
Abstract
Maintenance of metal homeostasis is crucial for many different enzymatic activities and in turn for cell function and survival. In addition, cells display detoxification and protective mechanisms against toxic accumulation of metals. Perturbation of any of these processes normally leads to cellular dysfunction and finally to cell death. In the last years, loss of metal regulation has been described as a common pathological feature in many human neurodegenerative diseases. However, in most cases, it is still a matter of debate whether such dyshomeostasis is a primary or a secondary downstream defect. In this review, we will summarize and critically evaluate the contribution of Drosophila to model human diseases that involve altered metabolism of metals or in which metal dyshomeostasis influence their pathobiology. As a prerequisite to use Drosophila as a model, we will recapitulate and describe the main features of core genes involved in copper and zinc metabolism that are conserved between mammals and flies. Drosophila presents some unique strengths to be at the forefront of neurobiological studies. The number of genetic tools, the possibility to easily test genetic interactions in vivo and the feasibility to perform unbiased genetic and pharmacological screens are some of the most prominent advantages of the fruitfly. In this work, we will pay special attention to the most important results reported in fly models to unveil the role of copper and zinc in cellular degeneration and their influence in the development and progression of human neurodegenerative pathologies such as Parkinson's disease, Alzheimer's disease, Huntington's disease, Friedreich's Ataxia or Menkes, and Wilson's diseases. Finally, we show how these studies performed in the fly have allowed to give further insight into the influence of copper and zinc in the molecular and cellular causes and consequences underlying these diseases as well as the discovery of new therapeutic strategies, which had not yet been described in other model systems.
Collapse
Affiliation(s)
- Juan A. Navarro
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
32
|
Manara R, Rocco MC, D'agata L, Cusmai R, Freri E, Giordano L, Darra F, Procopio E, Toldo I, Peruzzi C, Vittorini R, Spalice A, Fusco C, Nosadini M, Longo D, Sartori S. Neuroimaging Changes in Menkes Disease, Part 2. AJNR Am J Neuroradiol 2017; 38:1858-1865. [PMID: 28495940 PMCID: PMC7963635 DOI: 10.3174/ajnr.a5192] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This is the second part of a retrospective and review MR imaging study aiming to define the frequency rate, timing, imaging features, and evolution of gray matter changes in Menkes disease, a rare multisystem X-linked disorder of copper metabolism characterized by early, severe, and progressive neurologic involvement. According to our analysis, neurodegenerative changes and focal basal ganglia lesions already appear in the early phases of the disease. Subdural collections are less common than generally thought; however, their presence remains important because they might challenge the differential diagnosis with child abuse and might precipitate the clinical deterioration. Anecdotal findings in our large sample seem to provide interesting clues about the protean mechanisms of brain injury in this rare disease and further highlight the broad spectrum of MR imaging findings that might be expected while imaging a child with the suspicion of or a known diagnosis of Menkes disease.
Collapse
Affiliation(s)
- R Manara
- From the Neuroradiology (R.M., M.C.R.), Sezione di Neuroscienze, Medicine and Surgery Department, University of Salerno, Salerno, Italy
| | - M C Rocco
- From the Neuroradiology (R.M., M.C.R.), Sezione di Neuroscienze, Medicine and Surgery Department, University of Salerno, Salerno, Italy
| | - L D'agata
- Department of Neuroscience (L.D.), University of Padova, Padova, Italy
| | - R Cusmai
- Neurology Unit (R.C., D.L.), Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - E Freri
- Department of Pediatric Neuroscience (E.F.), Foundation IRCCS, Neurological Institute "C. Besta," Milano, Italy
| | - L Giordano
- Child Neuropsychiatry Unit (L.G.), "Spedali Civili," Brescia, Italy
| | - F Darra
- Child Neuropsychiatry Unit (F.D.), Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - E Procopio
- Metabolic and Neuromuscular Unit (E.P.), Department of Neuroscience, Meyer Children Hospital, Firenze, Italy
| | - I Toldo
- Pediatric Neurology and Neurophysiology Unit (I.T., M.N., S.S.), Department of Woman and Child Health, University Hospital of Padova, Padova, Italy
| | - C Peruzzi
- Child Neuropsychiatry (C.P.), Ospedale Maggiore, Novara, Italy
| | - R Vittorini
- Child Neurology and Psychiatry (R.V.), Department of Pediatrics and Pediatric Specialties, AOU Città della Salute e della Scienza, Torino, Italy
| | - A Spalice
- Children Neurology Division (A.S.), University La Sapienza Roma, Roma, Italy
| | - C Fusco
- Child Neurology and Psychiatry Unit, (C.F.), Department of Pediatrics, ASMN-IRCCS, Reggio Emilia, Italy
| | - M Nosadini
- Pediatric Neurology and Neurophysiology Unit (I.T., M.N., S.S.), Department of Woman and Child Health, University Hospital of Padova, Padova, Italy
| | - D Longo
- Neurology Unit (R.C., D.L.), Bambino Gesù Children's Hospital IRCCS, Roma, Italy
| | - S Sartori
- Pediatric Neurology and Neurophysiology Unit (I.T., M.N., S.S.), Department of Woman and Child Health, University Hospital of Padova, Padova, Italy
| |
Collapse
|
33
|
Comstra HS, McArthy J, Rudin-Rush S, Hartwig C, Gokhale A, Zlatic SA, Blackburn JB, Werner E, Petris M, D'Souza P, Panuwet P, Barr DB, Lupashin V, Vrailas-Mortimer A, Faundez V. The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors. eLife 2017; 6. [PMID: 28355134 PMCID: PMC5400511 DOI: 10.7554/elife.24722] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/28/2017] [Indexed: 02/04/2023] Open
Abstract
Genetic and environmental factors, such as metals, interact to determine neurological traits. We reasoned that interactomes of molecules handling metals in neurons should include novel metal homeostasis pathways. We focused on copper and its transporter ATP7A because ATP7A null mutations cause neurodegeneration. We performed ATP7A immunoaffinity chromatography and identified 541 proteins co-isolating with ATP7A. The ATP7A interactome concentrated gene products implicated in neurodegeneration and neurodevelopmental disorders, including subunits of the Golgi-localized conserved oligomeric Golgi (COG) complex. COG null cells possess altered content and subcellular localization of ATP7A and CTR1 (SLC31A1), the transporter required for copper uptake, as well as decreased total cellular copper, and impaired copper-dependent metabolic responses. Changes in the expression of ATP7A and COG subunits in Drosophila neurons altered synapse development in larvae and copper-induced mortality of adult flies. We conclude that the ATP7A interactome encompasses a novel COG-dependent mechanism to specify neuronal development and survival.
Collapse
Affiliation(s)
- Heather S Comstra
- Departments of Cell Biology, Emory University, Atlanta, United States
| | - Jacob McArthy
- School of Biological Sciences, Illinois State University, Normal, United States
| | | | - Cortnie Hartwig
- Department of Chemistry, Agnes Scott College, Decatur, Georgia
| | - Avanti Gokhale
- Departments of Cell Biology, Emory University, Atlanta, United States
| | | | - Jessica B Blackburn
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Erica Werner
- Department of Biochemistry, Emory University, Atlanta, United States
| | - Michael Petris
- Department of Biochemistry, University of Missouri, Columbia, United States
| | - Priya D'Souza
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Parinya Panuwet
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Dana Boyd Barr
- Rollins School of Public Health, Emory University, Atlanta, United States
| | - Vladimir Lupashin
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, United States
| | | | - Victor Faundez
- Departments of Cell Biology, Emory University, Atlanta, United States
| |
Collapse
|
34
|
Climer LK, Hendrix RD, Lupashin VV. Conserved Oligomeric Golgi and Neuronal Vesicular Trafficking. Handb Exp Pharmacol 2017; 245:227-247. [PMID: 29063274 DOI: 10.1007/164_2017_65] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The conserved oligomeric Golgi (COG) complex is an evolutionary conserved multi-subunit vesicle tethering complex essential for the majority of Golgi apparatus functions: protein and lipid glycosylation and protein sorting. COG is present in neuronal cells, but the repertoire of COG function in different Golgi-like compartments is an enigma. Defects in COG subunits cause alteration of Golgi morphology, protein trafficking, and glycosylation resulting in human congenital disorders of glycosylation (CDG) type II. In this review we summarize and critically analyze recent advances in the function of Golgi and Golgi-like compartments in neuronal cells and functions and dysfunctions of the COG complex and its partner proteins.
Collapse
Affiliation(s)
- Leslie K Climer
- College of Medicine, Physiology and Biophysics, UAMS, Little Rock, AR, USA
| | - Rachel D Hendrix
- College of Medicine, Neurobiology and Developmental Sciences, UAMS, Little Rock, AR, USA
| | | |
Collapse
|
35
|
Affiliation(s)
- Elias Aizenman
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Pier G Mastroberardino
- Department of Neurobiology and Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
36
|
Copper dyshomoeostasis in Parkinson's disease: implications for pathogenesis and indications for novel therapeutics. Clin Sci (Lond) 2016; 130:565-74. [PMID: 26957644 DOI: 10.1042/cs20150153] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Copper is a biometal essential for normal brain development and function, thus copper deficiency or excess results in central nervous system disease. Well-characterized disorders of disrupted copper homoeostasis with neuronal degeneration include Menkes disease and Wilson's disease but a large body of evidence also implicates disrupted copper pathways in other neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Huntington's disease and prion diseases. In this short review we critically evaluate the data regarding changes in systemic and brain copper levels in Parkinson's disease, where alterations in brain copper are associated with regional neuronal cell death and disease pathology. We review copper regulating mechanisms in the human brain and the effects of dysfunction within these systems. We then examine the evidence for a role for copper in pathogenic processes in Parkinson's disease and consider reports of diverse copper-modulating strategies in in vitro and in vivo models of this disorder. Copper-modulating therapies are currently advancing through clinical trials for Alzheimer's and Huntington's disease and may also hold promise as disease modifying agents in Parkinson's disease.
Collapse
|
37
|
Gokhale A, Vrailas-Mortimer A, Larimore J, Comstra HS, Zlatic SA, Werner E, Manvich DF, Iuvone PM, Weinshenker D, Faundez V. Neuronal copper homeostasis susceptibility by genetic defects in dysbindin, a schizophrenia susceptibility factor. Hum Mol Genet 2015. [PMID: 26199316 DOI: 10.1093/hmg/ddv282] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Environmental factors and susceptible genomes interact to determine the risk of neurodevelopmental disorders. Although few genes and environmental factors have been linked, the intervening cellular and molecular mechanisms connecting a disorder susceptibility gene with environmental factors remain mostly unexplored. Here we focus on the schizophrenia susceptibility gene DTNBP1 and its product dysbindin, a subunit of the BLOC-1 complex, and describe a neuronal pathway modulating copper metabolism via ATP7A. Mutations in ATP7A result in Menkes disease, a disorder of copper metabolism. Dysbindin/BLOC-1 and ATP7A genetically and biochemically interact. Furthermore, disruption of this pathway causes alteration in the transcriptional profile of copper-regulatory and dependent factors in the hippocampus of dysbindin/BLOC-1-null mice. Dysbindin/BLOC-1 loss-of-function alleles do not affect cell and tissue copper content, yet they alter the susceptibility to toxic copper challenges in both mammalian cells and Drosophila. Our results demonstrate that perturbations downstream of the schizophrenia susceptibility gene DTNBP1 confer susceptibility to copper, a metal that in excess is a neurotoxin and whose depletion constitutes a micronutrient deficiency.
Collapse
Affiliation(s)
- Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | - Heather S Comstra
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Erica Werner
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Daniel F Manvich
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - P Michael Iuvone
- Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA, Center for Social Translational Neuroscience, Emory University, Atlanta, GA 30322, USA,
| |
Collapse
|