1
|
Fox SN, Savage CH, Amireddy NR, McMeekin LJ, Crossman DK, Detloff PJ, Gray M, Cowell RM. Estrogen-related receptor gamma is a regulator of mitochondrial, autophagy, and immediate-early gene programs in spiny projection neurons: Relevance for transcriptional changes in Huntington disease. Neurobiol Dis 2025; 206:106818. [PMID: 39884587 DOI: 10.1016/j.nbd.2025.106818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
Mitochondrial dysfunction, transcriptional dysregulation, and protein aggregation are hallmarks of multiple neurodegenerative disorders, including Huntington's disease (HD). Strategies are needed to counteract these processes to restore neuronal health and function in HD. Recent evidence indicates that the transcription factor estrogen-related receptor gamma (ERRγ/Esrrg) is required for normal expression of mitochondrial, synaptic, and autophagy genes in neurons. Further, overexpression of Esrrg in dopaminergic neurons reduces synuclein load in the pre-formed fibril model of synucleinopathy. For these reasons, we sought to understand ERRγ's role in transcriptional regulation in spiny projection neurons (SPNs), one of the neuronal populations vulnerable to transcriptional dysregulation, mitochondrial dysfunction, and protein aggregation in HD. Here, we demonstrate that developmental deletion of Esrrg selectively in SPNs causes a transcriptional pattern consistent with a reduction of Drd1 and Drd2-positive neurons in the mouse dorsolateral striatum. To avoid effects of developmental deletion and explore Esrrg's role within adult SPN populations, we deleted or overexpressed Esrrg in adult SPNs. While overexpression was sufficient to increase the expression of mitochondrial and lysosome-related transcripts, Esrrg deletion surprisingly caused increased expression of immediate-early genes and genes with enrichment of binding sites for transcriptional repressors. In contrast, these genes were downregulated by Esrrg overexpression. Concordantly, Esrrg-deficient mice exhibited lack of amphetamine-induced hyperactivity and further upregulation of immediate-early genes. To determine whether the alterations observed with ERRγ modulation have any relevance for understanding transcriptional changes in SPNs in neurodegeneration, we measured Esrrg and its responsive genes in two mouse models of HD. We found an increase in Esrrg expression in HD models, accompanied by a transcriptional profile with similarities to that observed with Esrrg overexpression, suggesting the existence of an ERRγ-dependent, stress-related response. Altogether, these studies suggest that ERRγ is a key activator of mitochondrial and lysosomal transcripts in SPNs with a potential bi-functional role as a mediator of immediate-early gene repression. Ongoing studies are investigating mechanisms underlying ERRγ's roles in transcriptional activation and repression in SPNs to inform strategies to promote neuroprotective actions of ERRγ in SPNs in HD.
Collapse
Affiliation(s)
- Stephanie N Fox
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Southern Research, Birmingham, AL 35205, USA.
| | - Cody H Savage
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Southern Research, Birmingham, AL 35205, USA
| | - Narcy R Amireddy
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | - David K Crossman
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Peter J Detloff
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michelle Gray
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Rita M Cowell
- Department of Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Southern Research, Birmingham, AL 35205, USA.
| |
Collapse
|
2
|
Chou CC, Vest R, Prado MA, Wilson-Grady J, Paulo JA, Shibuya Y, Moran-Losada P, Lee TT, Luo J, Gygi SP, Kelly JW, Finley D, Wernig M, Wyss-Coray T, Frydman J. Proteostasis and lysosomal repair deficits in transdifferentiated neurons of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.03.27.534444. [PMID: 37034684 PMCID: PMC10081252 DOI: 10.1101/2023.03.27.534444] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Aging is the most prominent risk factor for Alzheimer's disease (AD). However, the cellular mechanisms linking neuronal proteostasis decline to the characteristic aberrant protein deposits in AD brains remain elusive. Here, we develop transdifferentiated neurons (tNeurons) from human dermal fibroblasts as a neuronal model that retains aging hallmarks and exhibits AD-linked vulnerabilities. Remarkably, AD tNeurons accumulate proteotoxic deposits, including phospho-Tau and Aβ, resembling those in AD patient and APP mouse brains. Quantitative tNeuron proteomics identify aging and AD-linked deficits in proteostasis and organelle homeostasis, most notably in endosome-lysosomal components. Lysosomal deficits in aged tNeurons, including constitutive lysosomal damage and ESCRT-mediated lysosomal repair defects, are exacerbated in AD tNeurons and linked to inflammatory cytokine secretion and cell death. Supporting lysosomal deficits' centrality in AD, compounds ameliorating lysosomal function reduce Aβ deposits and cytokine secretion. Thus, the tNeuron model system reveals impaired lysosomal homeostasis as an early event of aging and AD.
Collapse
Affiliation(s)
- Ching-Chieh Chou
- Department of Biology, Stanford University, Stanford, California, USA
| | - Ryan Vest
- Department of Chemical Engineering, Stanford University, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
- Qinotto, Inc. San Carlos, California, USA
| | - Miguel A. Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Joshua Wilson-Grady
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Yohei Shibuya
- Departments of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Patricia Moran-Losada
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Ting-Ting Lee
- Department of Biology, Stanford University, Stanford, California, USA
| | - Jian Luo
- Palo Alto Veterans Institute for Research, Inc. (PAVIR), Palo Alto, California, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, California, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marius Wernig
- Departments of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA and The Phil and Penny Knight Initiative for Brain Resilience, Stanford University, Stanford, CA, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
3
|
Bayati A, Ayoubi R, Aguila A, Zorca CE, Deyab G, Han C, Recinto SJ, Nguyen-Renou E, Rocha C, Maussion G, Luo W, Shlaifer I, Banks E, McDowell I, Del Cid Pellitero E, Ding XE, Sharif B, Séguéla P, Yaqubi M, Chen CXQ, You Z, Abdian N, McBride HM, Fon EA, Stratton JA, Durcan TM, Nahirney PC, McPherson PS. Modeling Parkinson's disease pathology in human dopaminergic neurons by sequential exposure to α-synuclein fibrils and proinflammatory cytokines. Nat Neurosci 2024; 27:2401-2416. [PMID: 39379564 DOI: 10.1038/s41593-024-01775-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/28/2024] [Indexed: 10/10/2024]
Abstract
Lewy bodies (LBs), α-synuclein-enriched intracellular inclusions, are a hallmark of Parkinson's disease (PD) pathology, yet a cellular model for LB formation remains elusive. Recent evidence indicates that immune dysfunction may contribute to the development of PD. In this study, we found that induced pluripotent stem cell (iPSC)-derived human dopaminergic (DA) neurons form LB-like inclusions after treatment with α-synuclein preformed fibrils (PFFs) but only when coupled to a model of immune challenge (interferon-γ or interleukin-1β treatment) or when co-cultured with activated microglia-like cells. Exposure to interferon-γ impairs lysosome function in DA neurons, contributing to LB formation. The knockdown of LAMP2 or the knockout of GBA in conjunction with PFF administration is sufficient for inclusion formation. Finally, we observed that the LB-like inclusions in iPSC-derived DA neurons are membrane bound, suggesting that they are not limited to the cytoplasmic compartment but may be formed due to dysfunctions in autophagy. Together, these data indicate that immune-triggered lysosomal dysfunction may contribute to the development of PD pathology.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Riham Ayoubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Adriana Aguila
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Cornelia E Zorca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ghislaine Deyab
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Chanshuai Han
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Sherilyn Junelle Recinto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Gilles Maussion
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Wen Luo
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Irina Shlaifer
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Emily Banks
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Ian McDowell
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Esther Del Cid Pellitero
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xue Er Ding
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Behrang Sharif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Philippe Séguéla
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Carol X-Q Chen
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Zhipeng You
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Narges Abdian
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Edward A Fon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Thomas M Durcan
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC, Canada
| | - Patrick C Nahirney
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Paidlewar M, Kumari S, Dhapola R, Sharma P, HariKrishnaReddy D. Unveiling the role of astrogliosis in Alzheimer's disease Pathology: Insights into mechanisms and therapeutic approaches. Int Immunopharmacol 2024; 141:112940. [PMID: 39154532 DOI: 10.1016/j.intimp.2024.112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is one of the most debilitating age-related disorders that affect people globally. It impacts social and cognitive behavior of the individual and is characterized by phosphorylated tau and Aβ accumulation. Astrocytesmaintain a quiescent, anti-inflammatory state on anatomical level, expressing few cytokines and exhibit phagocytic activity to remove misfolded proteins. But in AD, in response to specific stimuli, astrocytes overstimulate their phagocytic character with overexpressing cytokine gene modules. Upon interaction with generated Aβ and neurofibrillary tangle, astrocytes that are continuously activated release a large number of inflammatory cytokines. This cytokine storm leads to neuroinflammation which is also one of the recognizable features of AD. Astrogliosis eventually promotes cholinergic dysfunction, calcium imbalance, oxidative stress and excitotoxicity. Furthermore, C5aR1, Lcn2/, BDNF/TrkB and PPARα/TFEB signaling dysregulation has a major impact on the disease progression. This review clarifies numerous ways that lead to astrogliosis, which is stimulated by a variety of processes that exacerbate AD pathology and make it a suitable target for AD treatment. Drugs under clinical and preclinical investigations that target several pathways managing astrogliosis and are efficacious in ameliorating the pathology of the disease are also included in this study. D-ALA2GIP, TRAM-34, Genistein, L-serine, MW150 and XPro1595 are examples of few drugs targeting astrogliosis. Therefore, this study may aid in the development of a potent therapeutic agent for ameliorating astrogliosis mediated AD progression.
Collapse
Affiliation(s)
- Mohit Paidlewar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India.
| |
Collapse
|
5
|
Kong L, Xu P, Shen N, Li W, Li R, Tao C, Wang G, Zhang Y, Sun W, Hu W, Liu X. STING orchestrates microglia polarization via interaction with LC3 in autophagy after ischemia. Cell Death Dis 2024; 15:824. [PMID: 39537618 PMCID: PMC11560960 DOI: 10.1038/s41419-024-07208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Autophagy has both protective and pathogenetic effects on injury caused by cerebral ischemia/reperfusion (I/R). Our previous research has indicated that stimulator of interferon genes (STING) could orchestrate microglia polarization following middle cerebral artery occlusion. However, it remains largely unexplored whether STING balances microglial polarization by regulating autophagy in brain I/R injury. Here, STING was observed to show an up-regulation in the microglia from mice subjected to experimental ischemic stroke. Strikingly, the deletion of STING led to the significant skewness of microglia activated by ischemia from a pro- to anti-inflammatory state and substantially alleviated ischemia-induced infarction and neuronal injury. In addition, STING-null mice can restore long-term neurobehavioral function. Then, the crosstalk between neuroinflammation and microglia autophagy was analyzed. The differential activity of autophagy in wild-type and STING-knockout (KO) mice or primary microglia was largely reversed when STING was restored in microglia. Irritating autophagy by rapamycin skewed the anti‑inflammatory state induced by STING-KO to a pro‑inflammatory state in microglia. Furthermore, microtubule-associated protein light-chain-3 (LC3) was identified as the key factor in the STING regulation of autophagy by glutathione-S-transferase (GST) pull-down analysis. Mechanically, STING can directly interact with LC3 through the STING transmembrane domain (1-139aa). Herein, current data determine the pivotal role of autophagy, specifically via LC3 protein, in the regulation of microglial phenotypic transformation by STING. These findings may provide a possible treatment target for delaying the progression of ischemic stroke.
Collapse
Affiliation(s)
- Lingqi Kong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Pengfei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Nan Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wenyu Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Rui Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Chunrong Tao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wen Sun
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Xinfeng Liu
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
6
|
Sweeney N, Kim TY, Morrison CT, Li L, Acosta D, Liang J, Datla NV, Fitzgerald JA, Huang H, Liu X, Tan GH, Wu M, Karelina K, Bray CE, Weil ZM, Scharre DW, Serrano GE, Saito T, Saido TC, Beach TG, Kokiko-Cochran ON, Godbout JP, Johnson GVW, Fu H. Neuronal BAG3 attenuates tau hyperphosphorylation, synaptic dysfunction, and cognitive deficits induced by traumatic brain injury via the regulation of autophagy-lysosome pathway. Acta Neuropathol 2024; 148:52. [PMID: 39394356 PMCID: PMC11469979 DOI: 10.1007/s00401-024-02810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Growing evidence supports that early- or middle-life traumatic brain injury (TBI) is a risk factor for developing Alzheimer's disease (AD) and AD-related dementia (ADRD). Nevertheless, the molecular mechanisms underlying TBI-induced AD-like pathology and cognitive deficits remain unclear. In this study, we found that a single TBI (induced by controlled cortical impact) reduced the expression of BCL2-associated athanogene 3 (BAG3) in neurons and oligodendrocytes, which is associated with decreased proteins related to the autophagy-lysosome pathway (ALP) and increased hyperphosphorylated tau (ptau) accumulation in excitatory neurons and oligodendrocytes, gliosis, synaptic dysfunction, and cognitive deficits in wild-type (WT) and human tau knock-in (hTKI) mice. These pathological changes were also found in human cases with a TBI history and exaggerated in human AD cases with TBI. The knockdown of BAG3 significantly inhibited autophagic flux, while overexpression of BAG3 significantly increased it in vitro. Specific overexpression of neuronal BAG3 in the hippocampus attenuated AD-like pathology and cognitive deficits induced by TBI in hTKI mice, which is associated with increased ALP-related proteins. Our data suggest that targeting neuronal BAG3 may be a therapeutic strategy for preventing or reducing AD-like pathology and cognitive deficits induced by TBI.
Collapse
Affiliation(s)
- Nicholas Sweeney
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Tae Yeon Kim
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Cody T Morrison
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Liangping Li
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Diana Acosta
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Jiawen Liang
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Nithin V Datla
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Julie A Fitzgerald
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Haoran Huang
- Medical Scientist Training Program, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Xianglan Liu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Gregory Huang Tan
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Min Wu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kate Karelina
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Chelsea E Bray
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Zachary M Weil
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, Ohio State University, Columbus, OH, USA
| | | | - Takashi Saito
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama, 351-0198, Japan
| | | | - Olga N Kokiko-Cochran
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester, Rochester, NY, USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA.
| |
Collapse
|
7
|
Bayati A, McPherson PS. Alpha-synuclein, autophagy-lysosomal pathway, and Lewy bodies: Mutations, propagation, aggregation, and the formation of inclusions. J Biol Chem 2024; 300:107742. [PMID: 39233232 PMCID: PMC11460475 DOI: 10.1016/j.jbc.2024.107742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
Research into the pathophysiology of Parkinson's disease (PD) is a fast-paced pursuit, with new findings about PD and other synucleinopathies being made each year. The involvement of various lysosomal proteins, such as TFEB, TMEM175, GBA, and LAMP1/2, marks the rising awareness about the importance of lysosomes in PD and other neurodegenerative disorders. This, along with recent developments regarding the involvement of microglia and the immune system in neurodegenerative diseases, has brought about a new era in neurodegeneration: the role of proinflammatory cytokines on the nervous system, and their downstream effects on mitochondria, lysosomal degradation, and autophagy. More effort is needed to understand the interplay between neuroimmunology and disease mechanisms, as many of the mechanisms remain enigmatic. α-synuclein, a key protein in PD and the main component of Lewy bodies, sits at the nexus between lysosomal degradation, autophagy, cellular stress, neuroimmunology, PD pathophysiology, and disease progression. This review revisits some fundamental knowledge about PD while capturing some of the latest trends in PD research, specifically as it relates to α-synuclein.
Collapse
Affiliation(s)
- Armin Bayati
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| | - Peter S McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill, University, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Ferrari V, Tedesco B, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Cornaggia L, Mohamed A, Patelli G, Piccolella M, Cristofani R, Crippa V, Galbiati M, Poletti A, Rusmini P. Lysosome quality control in health and neurodegenerative diseases. Cell Mol Biol Lett 2024; 29:116. [PMID: 39237893 PMCID: PMC11378602 DOI: 10.1186/s11658-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Lysosomes are acidic organelles involved in crucial intracellular functions, including the degradation of organelles and protein, membrane repair, phagocytosis, endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity and functionality, cells have developed a complex intracellular system, called lysosome quality control (LQC). Several stressors may affect the integrity of lysosomes, causing Lysosomal membrane permeabilization (LMP), in which membrane rupture results in the leakage of luminal hydrolase enzymes into the cytosol. After sensing the damage, LQC either activates lysosome repair, or induces the degradation of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give rise to deleterious consequences for cellular homeostasis. Specifically, the persistence of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular toxicity and death, thereby contributing to the pathogenesis of different disorders, including neurodegenerative diseases (NDs). Recently, several pieces of evidence have underlined the importance of the role of lysosomes in NDs. In this review, we describe the elements of the LQC system, how they cooperate to maintain lysosome homeostasis, and their implication in the pathogenesis of different NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Laura Cornaggia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Ali Mohamed
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Guglielmo Patelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy.
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| |
Collapse
|
9
|
Radbakhsh S, Kesharwani P, Sahebkar A. Therapeutic potential of curcumin in autophagy modulation: Insights into the role of transcription factor EB. Mutat Res 2024; 829:111879. [PMID: 39178722 DOI: 10.1016/j.mrfmmm.2024.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
Transcription factor EB (TFEB) is a basic Helix-Loop-Helix/Leucine Zipper (bHLHZip) class of DNA-binding proteins, which can control the expression of genes included in the autophagy-lysosomal pathway. TFEB regulates the autophagic flux by enhancing lysosome biogenesis, forming autophagosomes, and fusion with lysosomes, thereby facilitating cellular clearance of pathogenic protein structures. Curcumin is a natural polyphenolic molecule with pharmacological properties that make it a potential therapeutic candidate for a wide range of diseases. One of the important curcumin mechanisms of action includes modulation of autophagy through affecting various signaling components such as TFEB. This review discusses in vitro and in vivo evidence on the effects of curcumin on autophagy process via modulating TFEB activity in different disorders.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Xing H, Xu P, Ma Y, Li T, Zhang Y, Ding X, Liu L, Keerman M, Niu Q. TFEB ameliorates DEHP-induced neurotoxicity by activating GAL3/TRIM16 axis dependent lysophagy and alleviating lysosomal dysfunction. ENVIRONMENTAL TOXICOLOGY 2024; 39:3779-3789. [PMID: 38488668 DOI: 10.1002/tox.24221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 06/12/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer with known neurotoxic effects. However, the specific mechanism underlying this neurotoxicity remains unclear. This study aimed to investigate the role of lysosomal function and lysophagy in DEHP-induced neurotoxicity, with a particular focus on the regulatory role of Transcription factor EB (TFEB). To achieve this, we utilized in vitro models of DEHP-exposed SH-SY5Y cells and HT22 cells. Our findings revealed that DEHP exposure led to lysosomal damage and dysfunction. Moreover, we observed impaired autophagic degradation, characterized by elevated levels of LC3II and p62. DEHP treatment downregulated the expression of TFEB, GAL3, and TRIM16, while upregulating the expression of PARP. This led to the inhibition of GAL3/TRIM16 axis dependent lysophagy and ultimately excessive apoptosis in neuronal cells. Importantly, TFEB overexpression alleviated lysosomal dysfunction, activated lysophagy, and mitigated DEHP-induced apoptosis. Overall, our results suggest that DEHP induces not only lysosomal dysfunction, but also inhibits lysophagy through the suppression of GAL3/TRIM16 axis. Consequently, impaired clearance of damaged lysosomes occurs, culminating in neuronal apoptosis. Taken together, our findings highlight the critical role of TFEB in regulating lysophagy and lysosomal function. Furthermore, TFEB may serve as a potential therapeutic target for mitigating DEHP-induced neuronal toxicity.
Collapse
Affiliation(s)
- Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Tingting Li
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Yue Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Xueman Ding
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Li Liu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Mulatibieke Keerman
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, People's Republic of China
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the Xinjiang Production and Construction Corps, Shihezi, People's Republic of China
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), Shihezi, People's Republic of China
| |
Collapse
|
11
|
Siddiqui T, Bhatt LK. Emerging autophagic endo-lysosomal targets in the management of Parkinson's disease. Rev Neurol (Paris) 2024; 180:477-485. [PMID: 37586941 DOI: 10.1016/j.neurol.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
Synucleopathies, specifically Parkinson's disease, are still incurable and available therapeutic options are scarce and symptomatic. The autophagy-lysosomal-endosomal system is an indigenous mechanism to manage the proteome. Excess/misfolded protein accumulation activates this system, which degrades the undesired proteins via lysosomes. Cells also eliminate these proteins by releasing them into the extracellular space via exosomes. However, the sutophagy-lysosomal-endosomal system becomes unfunctional in Parkinson's disease and there is accumulation and spread of pathogenic alpha-synuclein. Neuronal degeneration results Owing to pathogenic alpha-synuclein. Thus, the autophagy-lysosomal-endosomal system could be a promising target for neuroprotection. In the present review, we discuss the autophagy-lysosomal-endosomal system as an emerging target for the management of Parkinson's disease. Modulation of these targets associated with the autophagy-lysosomal-endosomal system can aid in clearing pathogenic alpha-synuclein and prevent the degeneration of neurons.
Collapse
Affiliation(s)
- T Siddiqui
- Department of Pharmacology, SVKM's Doctor Bhanuben-Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India
| | - L K Bhatt
- Department of Pharmacology, SVKM's Doctor Bhanuben-Nanavati College of Pharmacy, Vile Parle (West), Mumbai, India.
| |
Collapse
|
12
|
Chen Q, Zhou Y, Yu M, Zhu S, Sun J, Du W, Chen Z, Tao J, Feng X, Zhang Q, Zhao Y. Transcription factor EB-mediated autophagy affects cell migration and inhibits apoptosis to promote endometriosis. Apoptosis 2024; 29:757-767. [PMID: 38358580 DOI: 10.1007/s10495-024-01939-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Autophagy has emerged as an important process of cell metabolism. With continuous in-depth research on autophagy, TFEB has been a key transcription factor regulating autophagy levels in recent years. Studies have established that TFEB regulates autophagy and apoptosis in various diseases. However, the relationship between TFEB and the pathogenesis of endometriosis remains unclear. This study aimed to investigate the effect of TFEB on the mechanism of endometriosis progression. The results showed that TFEB and autophagy-related protein LC3 are highly expressed in ectopic endometrium of patients with endometriosis, overexpression of TFEB in cultured human endometrial stromal cells (HESCs) by lentivirus not only promoted autophagy but also inhibited apoptosis. In addition, the migration and invasion ability of HESCs were enhanced by TFEB overexpression. Furthermore, inhibiting autophagy with specific inhibitors can attenuate migration and invasion of HESCs induced by TFEB. The rat models of endometriosis show that TFEB knockdown can suppress lesion growth in vivo. Our results suggest that autophagy may be involved in the progression mechanism of endometriosis, and the mechanism of autophagy disorder in endometriosis is probably related to TFEB. TFEB may be a key molecule in promoting endometriosis.
Collapse
Affiliation(s)
- Qiuyu Chen
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yi Zhou
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Mengqi Yu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Sennan Zhu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jindan Sun
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Wenzhuo Du
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ziqi Chen
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiayu Tao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xiao Feng
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China
| | - Qiong Zhang
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China.
| | - Yu Zhao
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 306 Hualongqiao Road, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
13
|
Xiao Q, Wang J, Tian Q, Tian N, Tian Q, He X, Wang Y, Dong Z. Uric Acid Mitigates Cognitive Deficits via TFEB-Mediated Microglial Autophagy in Mice Models of Alzheimer's Disease. Mol Neurobiol 2024; 61:3678-3696. [PMID: 38008888 DOI: 10.1007/s12035-023-03818-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Clinical trials have demonstrated the potential neuroprotective effects of uric acid (UA) in Alzheimer's disease (AD). However, the specific mechanism underlying the neuroprotective effect of UA remains unclear. In the present study, we investigated the neuroprotective effect and underlying mechanism of UA in AD mouse models. Various behavioral tests including an elevated plus maze, Barnes maze, and Morris water maze were conducted to evaluate the impact of UA on cognitive function in β-amyloid (Aβ) microinjection and APP23/PS45 double transgenic mice models of AD. Immunohistochemical staining was employed to visualize pathological changes in the brains of AD model mice. Western blotting and immunofluorescence techniques were used to assess levels of autophagy-related proteins and transcription factor EB (TFEB)-related signaling pathways. BV2 cells were used to investigate the association between UA and microglial autophagy. We reported that UA treatment significantly alleviated memory decline in Aβ-induced AD model mice and APP23/PS45 double transgenic AD model mice. Furthermore, UA activated microglia and upregulated the autophagy-related proteins such as LC3II/I ratio, Beclin-1, and LAMP1 in the hippocampus of AD model mice. Similarly, UA protected BV2 cells from Aβ toxicity by upregulating the expressions of Beclin-1, LAMP1, and the LC3II/I ratio, whereas genetic inhibition of TFEB completely abolished these protective effects. Our results indicate that UA may serve as a novel activator of TFEB to induce microglia autophagy and facilitate Aβ degradation, thereby improving cognitive function in AD model mice. Therefore, these findings suggest that UA may be a novel therapeutic agent for AD treatment.
Collapse
Affiliation(s)
- Qian Xiao
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaojiao Wang
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyun Tian
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Na Tian
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Tian
- Department of Geratology, Chongqing Key Laboratory of Neurology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xin He
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yutian Wang
- Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
14
|
Moors TE, Morella ML, Bertran-Cobo C, Geut H, Udayar V, Timmermans-Huisman E, Ingrassia AMT, Brevé JJP, Bol JGJM, Bonifati V, Jagasia R, van de Berg WDJ. Altered TFEB subcellular localization in nigral neurons of subjects with incidental, sporadic and GBA-related Lewy body diseases. Acta Neuropathol 2024; 147:67. [PMID: 38581586 PMCID: PMC10998821 DOI: 10.1007/s00401-024-02707-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 04/08/2024]
Abstract
Transcription factor EB (TFEB) is a master regulator of genes involved in the maintenance of autophagic and lysosomal homeostasis, processes which have been implicated in the pathogenesis of GBA-related and sporadic Parkinson's disease (PD), and dementia with Lewy bodies (DLB). TFEB activation results in its translocation from the cytosol to the nucleus. Here, we investigated TFEB subcellular localization and its relation to intracellular alpha-synuclein (aSyn) accumulation in post-mortem human brain of individuals with either incidental Lewy body disease (iLBD), GBA-related PD/DLB (GBA-PD/DLB) or sporadic PD/DLB (sPD/DLB), compared to control subjects. We analyzed nigral dopaminergic neurons using high-resolution confocal and stimulated emission depletion (STED) microscopy and semi-quantitatively scored the TFEB subcellular localization patterns. We observed reduced nuclear TFEB immunoreactivity in PD/DLB patients compared to controls, both in sporadic and GBA-related cases, as well as in iLBD cases. Nuclear depletion of TFEB was more pronounced in neurons with Ser129-phosphorylated (pSer129) aSyn accumulation in all groups. Importantly, we observed previously-unidentified TFEB-immunopositive perinuclear clusters in human dopaminergic neurons, which localized at the Golgi apparatus. These TFEB clusters were more frequently observed and more severe in iLBD, sPD/DLB and GBA-PD/DLB compared to controls, particularly in pSer129 aSyn-positive neurons, but also in neurons lacking detectable aSyn accumulation. In aSyn-negative cells, cytoplasmic TFEB clusters were more frequently observed in GBA-PD/DLB and iLBD patients, and correlated with reduced GBA enzymatic activity as well as increased Braak LB stage. Altered TFEB distribution was accompanied by a reduction in overall mRNA expression levels of selected TFEB-regulated genes, indicating a possible early dysfunction of lysosomal regulation. Overall, we observed cytoplasmic TFEB retention and accumulation at the Golgi in cells without apparent pSer129 aSyn accumulation in iLBD and PD/DLB patients. This suggests potential TFEB impairment at the early stages of cellular disease and underscores TFEB as a promising therapeutic target for synucleinopathies.
Collapse
Affiliation(s)
- Tim E Moors
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Martino L Morella
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Cesc Bertran-Cobo
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Hanneke Geut
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Vinod Udayar
- Roche Pharma Research and Early Development; Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Evelien Timmermans-Huisman
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Angela M T Ingrassia
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - John J P Brevé
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - John G J M Bol
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands
| | - Vincenzo Bonifati
- Erasmus MC, Department of Clinical Genetics, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ravi Jagasia
- Roche Pharma Research and Early Development; Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Wilma D J van de Berg
- Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam UMC, Vrije University, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Nagayach A, Wang C. Autophagy in neural stem cells and glia for brain health and diseases. Neural Regen Res 2024; 19:729-736. [PMID: 37843206 PMCID: PMC10664120 DOI: 10.4103/1673-5374.382227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/19/2023] [Accepted: 07/14/2023] [Indexed: 10/17/2023] Open
Abstract
Autophagy is a multifaceted cellular process that not only maintains the homeostatic and adaptive responses of the brain but is also dynamically involved in the regulation of neural cell generation, maturation, and survival. Autophagy facilities the utilization of energy and the microenvironment for developing neural stem cells. Autophagy arbitrates structural and functional remodeling during the cell differentiation process. Autophagy also plays an indispensable role in the maintenance of stemness and homeostasis in neural stem cells during essential brain physiology and also in the instigation and progression of diseases. Only recently, studies have begun to shed light on autophagy regulation in glia (microglia, astrocyte, and oligodendrocyte) in the brain. Glial cells have attained relatively less consideration despite their unquestioned influence on various aspects of neural development, synaptic function, brain metabolism, cellular debris clearing, and restoration of damaged or injured tissues. Thus, this review composes pertinent information regarding the involvement of autophagy in neural stem cells and glial regulation and the role of this connexion in normal brain functions, neurodevelopmental disorders, and neurodegenerative diseases. This review will provide insight into establishing a concrete strategic approach for investigating pathological mechanisms and developing therapies for brain diseases.
Collapse
Affiliation(s)
- Aarti Nagayach
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
16
|
Rakshe PS, Dutta BJ, Chib S, Maurya N, Singh S. Unveiling the interplay of AMPK/SIRT1/PGC-1α axis in brain health: Promising targets against aging and NDDs. Ageing Res Rev 2024; 96:102255. [PMID: 38490497 DOI: 10.1016/j.arr.2024.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
The escalating prevalence of neurodegenerative diseases (NDDs) within an aging global population presents a pressing challenge. The multifaceted pathophysiological mechanisms underlying these disorders, including oxidative stress, mitochondrial dysfunction, and neuroinflammation, remain complex and elusive. Among these, the AMPK/SIRT1/PGC-1α pathway emerges as a pivotal network implicated in neuroprotection against these destructive processes. This review sheds light on the potential therapeutic implications of targeting this axis, specifically emphasizing the promising role of flavonoids in mitigating NDD-related complications. Expanding beyond conventional pharmacological approaches, the exploration of non-pharmacological interventions such as exercise and calorie restriction (CR), coupled with the investigation of natural compounds, offers a beacon of hope. By strategically elucidating the intricate connections within these pathways, this review aims to pave the ways for novel multi-target agents and interventions, fostering a renewed optimism in the quest to combat and manage the debilitating impacts of NDDs on global health and well-being.
Collapse
Affiliation(s)
- Pratik Shankar Rakshe
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Bhaskar Jyoti Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Shivani Chib
- Department of Pharmacology, Central University of Punjab, Badal - Bathinda Rd, Ghudda, Punjab, India
| | - Niyogita Maurya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP), Zandaha Road, Hajipur, Bihar, India.
| |
Collapse
|
17
|
Zhou L, Xu R. Invertebrate genetic models of amyotrophic lateral sclerosis. Front Mol Neurosci 2024; 17:1328578. [PMID: 38500677 PMCID: PMC10944931 DOI: 10.3389/fnmol.2024.1328578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a common adult-onset neurodegenerative disease characterized by the progressive death of motor neurons in the cerebral cortex, brain stem, and spinal cord. The exact mechanisms underlying the pathogenesis of ALS remain unclear. The current consensus regarding the pathogenesis of ALS suggests that the interaction between genetic susceptibility and harmful environmental factors is a promising cause of ALS onset. The investigation of putative harmful environmental factors has been the subject of several ongoing studies, but the use of transgenic animal models to study ALS has provided valuable information on the onset of ALS. Here, we review the current common invertebrate genetic models used to study the pathology, pathophysiology, and pathogenesis of ALS. The considerations of the usage, advantages, disadvantages, costs, and availability of each invertebrate model will also be discussed.
Collapse
Affiliation(s)
- LiJun Zhou
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| | - RenShi Xu
- Department of Neurology, National Regional Center for Neurological Diseases, Clinical College of Nanchang Medical College, Jiangxi Provincial People's Hospital, First Affiliated Hospital of Nanchang Medical College, Xiangya Hospital of Central South University Jiangxi Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Bouchard EL, Meireles AM, Talbot WS. Oligodendrocyte development and myelin sheath formation are regulated by the antagonistic interaction between the Rag-Ragulator complex and TFEB. Glia 2024; 72:289-299. [PMID: 37767930 PMCID: PMC10841052 DOI: 10.1002/glia.24473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
Myelination by oligodendrocytes is critical for fast axonal conduction and for the support and survival of neurons in the central nervous system. Recent studies have emphasized that myelination is plastic and that new myelin is formed throughout life. Nonetheless, the mechanisms that regulate the number, length, and location of myelin sheaths formed by individual oligodendrocytes are incompletely understood. Previous work showed that the lysosomal transcription factor TFEB represses myelination by oligodendrocytes and that the RagA GTPase inhibits TFEB, but the step or steps of myelination in which TFEB plays a role have remained unclear. Here, we show that TFEB regulates oligodendrocyte differentiation and also controls the length of myelin sheaths formed by individual oligodendrocytes. In the dorsal spinal cord of tfeb mutants, individual oligodendrocytes produce myelin sheaths that are longer than those produced by wildtype cells. Transmission electron microscopy shows that there are more myelinated axons in the dorsal spinal cord of tfeb mutants than in wildtype animals, but no significant change in axon diameter. In contrast to tfeb mutants, oligodendrocytes in rraga mutants produce shorter myelin sheaths. The sheath length in rraga; tfeb double mutants is not significantly different from wildtype, consistent with the antagonistic interaction between RagA and TFEB. Finally, we find that the GTPase activating protein Flcn and the RagCa and RagCb GTPases are also necessary for myelination by oligodendrocytes. These findings demonstrate that TFEB coordinates myelin sheath length and number during myelin formation in the central nervous system.
Collapse
Affiliation(s)
- Ellen L. Bouchard
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ana M. Meireles
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William S. Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
19
|
Chen H, Yang X, Gao Y, Jiang H, Guo M, Zhou Y, Li C, Tan Y, Zhang Y, Xue W. Electroacupuncture ameliorates cognitive impairment in APP/PS1 mouse by modulating TFEB levels to relieve ALP dysfunction. Brain Res 2024; 1823:148683. [PMID: 37992796 DOI: 10.1016/j.brainres.2023.148683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Recently, the underlying mechanisms of acupuncture on the effects of Alzheimer's disease (AD) treatment have not been fully elucidated. Defects in ALP (autophagy-lysosomal pathway) and TFEB (transcription factor EB) play critical roles in AD. Our previous studies have demonstrated that electroacupuncture (EA) can ameliorate both β-amyloid (Aβ) pathology and cognitive function in APP/PS1 mice. However, the effects of EA on the expression of ALP and TFEB and their potential mechanisms require further investigation. Twenty-eight male APP/PS1 mice were randomly divided into Tg and Tg + EA groups, and 14 C57BL/6 mice served as the wild-type (WT) group. After 1 week of adaptation to the living environment, mice in the Tg + EA group were restrained in mouse bags and received manual acupuncture at Baihui (GV20) acupoint and EA stimulation at bilateral Yongquan (KI1) acupoints, using the same restraint method for WT and Tg groups. The intervention was applied for 15 min each time, every other day, lasting for six weeks. After intervention, the spatial learning and memory of the mice was assessed using the Morris water maze test. Hippocampal Aβ expression was detected by immunohistochemistry and ELISA. Transmission electron microscopy (TEM) was used to observe autophagic vacuoles and autolysosomes in the hippocampus. Immunofluorescence method was applied to examine the expression of TFEB in CA1 region of the hippocampus and the co-localization of CTSD or LAMP1 with Aβ. Western blot analysis was performed to evaluate the changes of LC3, p62, CTSD, LAMP1, TFEB and n-TFEB (nuclear TFEB) in the hippocampus. The findings of behavioral assessment indicated that EA alleviated the cognitive impairment of APP/PS1 mice. Compared with the WT group, the Tg group showed significant cognitive decline and abnormalities in ALP and TFEB function (P < 0.01 or P < 0.05). However, these abnormal changes were alleviated in the Tg + EA group (P < 0.01 or P < 0.05). The Tg group also showed more senile plaques and ALP dysfunction features, compared with the WT group, and these changes were alleviated by EA. In conclusion, this study highlights that EA ameliorated Aβ pathology-related cognitive impairments in the APP/PS1 model associated with ALP and TFEB dysfunction.
Collapse
Affiliation(s)
- Haotian Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaokun Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yushan Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mengwei Guo
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingyi Zhou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chenlu Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunxiang Tan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, China
| | - Yang Zhang
- Guangshui City Hospital of Traditional Chinese Medicine, 432700, China
| | - Weiguo Xue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
20
|
Griffin EN, Jucius T, Sim SE, Harris BS, Heinz S, Ackerman SL. RREB1 regulates neuronal proteostasis and the microtubule network. SCIENCE ADVANCES 2024; 10:eadh3929. [PMID: 38198538 PMCID: PMC10780896 DOI: 10.1126/sciadv.adh3929] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Transcription factors play vital roles in neuron development; however, little is known about the role of these proteins in maintaining neuronal homeostasis. Here, we show that the transcription factor RREB1 (Ras-responsive element-binding protein 1) is essential for neuron survival in the mammalian brain. A spontaneous mouse mutation causing loss of a nervous system-enriched Rreb1 transcript is associated with progressive loss of cerebellar Purkinje cells and ataxia. Analysis of chromatin immunoprecipitation and sequencing, along with RNA sequencing data revealed dysregulation of RREB1 targets associated with the microtubule cytoskeleton. In agreement with the known role of microtubules in dendritic development, dendritic complexity was disrupted in Rreb1-deficient neurons. Analysis of sequencing data also suggested that RREB1 plays a role in the endomembrane system. Mutant Purkinje cells had fewer numbers of autophagosomes and lysosomes and contained P62- and ubiquitin-positive inclusions. Together, these studies demonstrate that RREB1 functions to maintain the microtubule network and proteostasis in mammalian neurons.
Collapse
Affiliation(s)
- Emily N. Griffin
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thomas Jucius
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Su-Eon Sim
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Sven Heinz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan L. Ackerman
- Howard Hughes Medical Institute, Department of Cellular and Molecular Medicine, Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Chamoli M, Rane A, Foulger A, Chinta SJ, Shahmirzadi AA, Kumsta C, Nambiar DK, Hall D, Holcom A, Angeli S, Schmidt M, Pitteri S, Hansen M, Lithgow GJ, Andersen JK. A drug-like molecule engages nuclear hormone receptor DAF-12/FXR to regulate mitophagy and extend lifespan. NATURE AGING 2023; 3:1529-1543. [PMID: 37957360 PMCID: PMC10797806 DOI: 10.1038/s43587-023-00524-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Autophagy-lysosomal function is crucial for maintaining healthy lifespan and preventing age-related diseases. The transcription factor TFEB plays a key role in regulating this pathway. Decreased TFEB expression is associated with various age-related disorders, making it a promising therapeutic target. In this study, we screened a natural product library and discovered mitophagy-inducing coumarin (MIC), a benzocoumarin compound that enhances TFEB expression and lysosomal function. MIC robustly increases the lifespan of Caenorhabditis elegans in an HLH-30/TFEB-dependent and mitophagy-dependent manner involving DCT-1/BNIP3 while also preventing mitochondrial dysfunction in mammalian cells. Mechanistically, MIC acts by inhibiting ligand-induced activation of the nuclear hormone receptor DAF-12/FXR, which, in turn, induces mitophagy and extends lifespan. In conclusion, our study uncovers MIC as a promising drug-like molecule that enhances mitochondrial function and extends lifespan by targeting DAF-12/FXR. Furthermore, we discovered DAF-12/FXR as a previously unknown upstream regulator of HLH-30/TFEB and mitophagy.
Collapse
Affiliation(s)
| | - Anand Rane
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Anna Foulger
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Shankar J Chinta
- Buck Institute for Research on Aging, Novato, CA, USA
- Touro University California, Vallejo, CA, USA
| | - Azar Asadi Shahmirzadi
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Caroline Kumsta
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | - David Hall
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Angelina Holcom
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Minna Schmidt
- Buck Institute for Research on Aging, Novato, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | | | - Malene Hansen
- Buck Institute for Research on Aging, Novato, CA, USA
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | | | | |
Collapse
|
22
|
Gamache J, Gingerich D, Shwab EK, Barrera J, Garrett ME, Hume C, Crawford GE, Ashley-Koch AE, Chiba-Falek O. Integrative single-nucleus multi-omics analysis prioritizes candidate cis and trans regulatory networks and their target genes in Alzheimer's disease brains. Cell Biosci 2023; 13:185. [PMID: 37789374 PMCID: PMC10546724 DOI: 10.1186/s13578-023-01120-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND The genetic underpinnings of late-onset Alzheimer's disease (LOAD) are yet to be fully elucidated. Although numerous LOAD-associated loci have been discovered, the causal variants and their target genes remain largely unknown. Since the brain is composed of heterogenous cell subtypes, it is imperative to study the brain on a cell subtype specific level to explore the biological processes underlying LOAD. METHODS Here, we present the largest parallel single-nucleus (sn) multi-omics study to simultaneously profile gene expression (snRNA-seq) and chromatin accessibility (snATAC-seq) to date, using nuclei from 12 normal and 12 LOAD brains. We identified cell subtype clusters based on gene expression and chromatin accessibility profiles and characterized cell subtype-specific LOAD-associated differentially expressed genes (DEGs), differentially accessible peaks (DAPs) and cis co-accessibility networks (CCANs). RESULTS Integrative analysis defined disease-relevant CCANs in multiple cell subtypes and discovered LOAD-associated cell subtype-specific candidate cis regulatory elements (cCREs), their candidate target genes, and trans-interacting transcription factors (TFs), some of which, including ELK1, JUN, and SMAD4 in excitatory neurons, were also LOAD-DEGs. Finally, we focused on a subset of cell subtype-specific CCANs that overlap known LOAD-GWAS regions and catalogued putative functional SNPs changing the affinities of TF motifs within LOAD-cCREs linked to LOAD-DEGs, including APOE and MYO1E in a specific subtype of microglia and BIN1 in a subpopulation of oligodendrocytes. CONCLUSIONS To our knowledge, this study represents the most comprehensive systematic interrogation to date of regulatory networks and the impact of genetic variants on gene dysregulation in LOAD at a cell subtype resolution. Our findings reveal crosstalk between epigenetic, genomic, and transcriptomic determinants of LOAD pathogenesis and define catalogues of candidate genes, cCREs, and variants involved in LOAD genetic etiology and the cell subtypes in which they act to exert their pathogenic effects. Overall, these results suggest that cell subtype-specific cis-trans interactions between regulatory elements and TFs, and the genes dysregulated by these networks contribute to the development of LOAD.
Collapse
Affiliation(s)
- Julia Gamache
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Daniel Gingerich
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - E Keats Shwab
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Julio Barrera
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA
| | - Cordelia Hume
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
- Department of Pediatrics, Division of Medical Genetics, Duke University Medical Center, DUMC Box 3382, Durham, NC, 27708, USA.
- Center for Advanced Genomic Technologies, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, DUMC Box 104775, Durham, NC, 27701, USA.
- Department of Medicine, Duke University Medical Center, Durham, NC, 27708, USA.
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, DUMC Box 2900, Durham, NC, 27710, USA.
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.
| |
Collapse
|
23
|
Zoncu R, Perera RM. Emerging roles of the MiT/TFE factors in cancer. Trends Cancer 2023; 9:817-827. [PMID: 37400313 DOI: 10.1016/j.trecan.2023.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023]
Abstract
The microphthalmia/transcription factor E (MiT/TFE) transcription factors (TFs; TFEB, TFE3, MITF, and TFEC) play a central role in cellular catabolism and quality control and are subject to extensive layers of regulation that influence their localization, stability, and activity. Recent studies have highlighted a broader role for these TFs in driving diverse stress-adaptation pathways, which manifest in a context- and tissue-dependent manner. Several human cancers upregulate the MiT/TFE factors to survive extreme fluctuations in nutrients, energy, and pharmacological challenges. Emerging data suggest that reduced activity of the MiT/TFE factors can also promote tumorigenesis. Here, we outline recent findings relating to novel mechanisms of regulation and activity of MiT/TFE proteins across some of the most aggressive human cancers.
Collapse
Affiliation(s)
- Roberto Zoncu
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Rushika M Perera
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Lu E, Tang Y, Chen J, Al Mamun A, Feng Z, Cao L, Zhang X, Zhu Y, Mo T, Chun C, Zhang H, Du J, Jiang C, Xiao J. Stub1 ameliorates ER stress-induced neural cell apoptosis and promotes locomotor recovery through restoring autophagy flux after spinal cord injury. Exp Neurol 2023; 368:114495. [PMID: 37495008 DOI: 10.1016/j.expneurol.2023.114495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis and autophagy flux blockade significantly contribute to neuronal pathology of spinal cord injury (SCI). Yet, the molecular interplay between these two distinctive pathways in mediating the pathology of SCI remains largely unexplored. Currently, we aimed at exploring the crucial role of Stub1 in maintaining ER homeostasis and regulating autophagic flux after SCI. Our results demonstrate that Stub1 reduces ER stress induced neuronal apoptosis, promotes axonal regeneration, inhibits glial scar formation and fosters functional recovery by restoring autophagic flux following SCI. Stub1 enhances autophagic flux following SCI by alleviating the permeabilization of lysosomal membrane through activating TFEB. Importantly, we showed that Stub1 promotes the activation of TFEB by targeting HDAC2 for ubiquitination and degradation. Furthermore, the neuroprotective effect of Stub1 on SCI was abrogated by chloroquine administration, underscoring the essential role of Stub1-mediated enhancement of autophagic flux in its protective effects against SCI. Collectively, our data highlights the vital role of Stub1 in regulating ER stress and autophagy flux after SCI, and propose its potential as a promising target for neuroprotective interventions in SCI.
Collapse
Affiliation(s)
- Ermei Lu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Yingdan Tang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaojiao Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Abdullah Al Mamun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiyi Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Cao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, Zhejiang 315040, China
| | - Yunsen Zhu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China
| | - Tingting Mo
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China
| | - ChangJu Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Hongyu Zhang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiqing Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chang Jiang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China.
| | - Jian Xiao
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
25
|
Suárez-Carrillo A, Álvarez-Córdoba M, Romero-González A, Talaverón-Rey M, Povea-Cabello S, Cilleros-Holgado P, Piñero-Pérez R, Reche-López D, Gómez-Fernández D, Romero-Domínguez JM, Munuera-Cabeza M, Díaz A, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Antioxidants Prevent Iron Accumulation and Lipid Peroxidation, but Do Not Correct Autophagy Dysfunction or Mitochondrial Bioenergetics in Cellular Models of BPAN. Int J Mol Sci 2023; 24:14576. [PMID: 37834028 PMCID: PMC11340724 DOI: 10.3390/ijms241914576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) is a group of rare neurogenetic disorders frequently associated with iron accumulation in the basal nuclei of the brain. Among NBIA subtypes, β-propeller protein-associated neurodegeneration (BPAN) is associated with mutations in the autophagy gene WDR45. The aim of this study was to demonstrate the autophagic defects and secondary pathological consequences in cellular models derived from two patients harboring WDR45 mutations. Both protein and mRNA expression levels of WDR45 were decreased in patient-derived fibroblasts. In addition, the increase of LC3B upon treatments with autophagy inducers or inhibitors was lower in mutant cells compared to control cells, suggesting decreased autophagosome formation and impaired autophagic flux. A transmission electron microscopy (TEM) analysis showed mitochondrial vacuolization associated with the accumulation of lipofuscin-like aggregates containing undegraded material. Autophagy dysregulation was also associated with iron accumulation and lipid peroxidation. In addition, mutant fibroblasts showed altered mitochondrial bioenergetics. Antioxidants such as pantothenate, vitamin E and α-lipoic prevented lipid peroxidation and iron accumulation. However, antioxidants were not able to correct the expression levels of WDR45, neither the autophagy defect nor cell bioenergetics. Our study demonstrated that WDR45 mutations in BPAN cellular models impaired autophagy, iron metabolism and cell bioenergetics. Antioxidants partially improved cell physiopathology; however, autophagy and cell bioenergetics remained affected.
Collapse
Affiliation(s)
- Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| | - Antonio Díaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA;
- Institute for Aging Studies, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46100 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, ABD-CSIC-Universidad Pablo de Olavide, 41013 Sevilla, Spain; (A.S.-C.); (M.Á.-C.); (A.R.-G.); (M.T.-R.); (S.P.-C.); (P.C.-H.); (R.P.-P.); (D.R.-L.); (D.G.-F.); (J.M.R.-D.); (M.M.-C.)
| |
Collapse
|
26
|
Contreras PS, Puertollano R. TFEB. Curr Biol 2023; 33:R886-R888. [PMID: 37699340 DOI: 10.1016/j.cub.2023.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Contreras and Puertollano introduce TFEB, a transcription factor that orchestrates cellular responses to stress via mechanisms including upregulation of lysosome biogenesis and autophagy.
Collapse
Affiliation(s)
- Pablo S Contreras
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rosa Puertollano
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
27
|
Zhang L, Li Z, Zhang L, Qin Y, Yu D. Dissecting the multifaced function of transcription factor EB (TFEB) in human diseases: From molecular mechanism to pharmacological modulation. Biochem Pharmacol 2023; 215:115698. [PMID: 37482200 DOI: 10.1016/j.bcp.2023.115698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The transcription factor EB (TFEB) is a transcription factor of the MiT/TFE family that translocations from the cytoplasm to the nucleus in response to various stimuli, including lysosomal stress and nutrient starvation. By activating genes involved in lysosomal function, autophagy, and lipid metabolism, TFEB plays a crucial role in maintaining cellular homeostasis. Dysregulation of TFEB has been implicated in various diseases, including cancer, neurodegenerative diseases, metabolic diseases, cardiovascular diseases, infectious diseases, and inflammatory diseases. Therefore, modulating TFEB activity with agonists or inhibitors may have therapeutic potential. In this review, we reviewed the recently discovered regulatory mechanisms of TFEB and their impact on human diseases. Additionally, we also summarize the existing TFEB inhibitors and agonists (targeted and non-targeted) and discuss unresolved issues and future research directions in the field. In summary, this review sheds light on the crucial role of TFEB, which may pave the way for its translation from basic research to practical applications, bringing us closer to realizing the full potential of TFEB in various fields.
Collapse
Affiliation(s)
- Lijuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yuan Qin
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China; Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
28
|
Yang H, Tan JX. Lysosomal quality control: molecular mechanisms and therapeutic implications. Trends Cell Biol 2023; 33:749-764. [PMID: 36717330 PMCID: PMC10374877 DOI: 10.1016/j.tcb.2023.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
Lysosomes are essential catabolic organelles with an acidic lumen and dozens of hydrolytic enzymes. The detrimental consequences of lysosomal leakage have been well known since lysosomes were discovered during the 1950s. However, detailed knowledge of lysosomal quality control mechanisms has only emerged relatively recently. It is now clear that lysosomal leakage triggers multiple lysosomal quality control pathways that replace, remove, or directly repair damaged lysosomes. Here, we review how lysosomal damage is sensed and resolved in mammalian cells, with a focus on the molecular mechanisms underlying different lysosomal quality control pathways. We also discuss the clinical implications and therapeutic potential of these pathways.
Collapse
Affiliation(s)
- Haoxiang Yang
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA
| | - Jay Xiaojun Tan
- Aging Institute, University of Pittsburgh School of Medicine/University of Pittsburgh Medical Center, Pittsburgh, PA 15219, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| |
Collapse
|
29
|
Abokyi S, Ghartey-Kwansah G, Tse DYY. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev 2023; 89:101985. [PMID: 37321382 DOI: 10.1016/j.arr.2023.101985] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong SAR of China.
| |
Collapse
|
30
|
Han ST, Hirt A, Nicoli ER, Kono M, Toro C, Proia RL, Tifft CJ. Gene expression changes in Tay-Sachs disease begin early in fetal brain development. J Inherit Metab Dis 2023; 46:687-694. [PMID: 36700853 PMCID: PMC10329985 DOI: 10.1002/jimd.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Treatment of monogenic disorders has historically relied on symptomatic management with limited ability to target primary molecular deficits. However, recent advances in gene therapy and related technologies aim to correct these underlying deficiencies, raising the possibility of disease management or even prevention for diseases that can be treated pre-symptomatically. Tay-Sachs disease (TSD) would be one such candidate, however very little is known about the presymptomatic stage of TSD. To better understand the effects of TSD on brain development, we evaluated the transcriptomes of human fetal brain samples with biallelic pathogenic variants in HEXA. We identified dramatic changes in the transcriptome, suggesting a perturbation of normal development. We also observed a shift in the expression of the sphingolipid metabolic pathway away from production of the HEXA substrate, GM2 ganglioside, presumptively to compensate for dysfunction of the enzyme. However, we do not observe transcriptomic signatures of end-stage disease, suggesting that developmental perturbations precede neurodegeneration. To our knowledge, this is the first report of the relationship between fetal disease pathology in juvenile onset TSD and the analysis of gene expression in fetal TSD tissues. This study highlights the need to better understand the "pre-symptomatic" stage of disease to set realistic expectations for patients receiving early therapeutic intervention.
Collapse
Affiliation(s)
- Sangwoo T Han
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, USA
| | - Ashley Hirt
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, USA
| | - Elena-Raluca Nicoli
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, USA
| | - Mari Kono
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Camilo Toro
- NIH Undiagnosed Diseases Program, Common Fund, Office of the Director, National Institutes of Health, Bethesda MD, USA
| | - Richard L Proia
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda MD, USA
| | - Cynthia J Tifft
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda MD, USA
| |
Collapse
|
31
|
Pang P, Zhang X, Yuan J, Yan H, Yan D. Acrylamide interferes with autophagy and induces apoptosis in Neuro-2a cells by interfering with TFEB-regulated lysosomal function. Food Chem Toxicol 2023; 177:113818. [PMID: 37172712 DOI: 10.1016/j.fct.2023.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Acrylamide (ACR), a well-documented human neurotoxicant that is widely exists in starchy foods. More than 30% of human daily energy is provided by ACR-containing foods. Evidence indicated that ACR can induce apoptosis and inhibit autophagy, but the mechanisms are limited. Transcription Factor EB (TFEB) is a major transcriptional regulator of the autophagy-lysosomal biogenesis that regulates autophagy processes and cell degradation. Our study aimed to investigated the potential mechanisms of TFEB-regulated lysosomal function in ACR-caused autophagic flux inhibition and apoptosis in Neuro-2a cells. Our results found that ACR exposure inhibited the autophagic flux, as revealed by the elevated LC3-II/LC3-I and p62 levels and a notable increased autophagosomes. ACR exposure reduced the amounts of LAMP1 and mature cathepsin D and caused an accumulation of ubiquitinated proteins, which suggests lysosomal dysfunction. In addition, ACR increased cellular apoptosis via decreasing Bcl-2 expression, increasing Bax and cleaved caspase-3 expression, and raising the apoptotic rate. Interestingly, TFEB overexpression alleviated the ACR-induced lysosomal dysfunction, and then mitigated the autophagy flux inhibition and cellular apoptosis. On the other hand, TFEB knockdown exacerbated the ACR-induced lysosomal dysfunction, autophagy flux inhibition, and cellular apoptosis. These findings strongly suggested that TFEB- regulated lysosomal function is responsible for ACR-caused autophagic flux inhibition and apoptosis in Neuro-2a cells. The present study hopes to explore new sensitive indicators in the mechanism of ACR neurotoxicity and thus provide new targets for the prevention and treatment of ACR intoxication.
Collapse
Affiliation(s)
- Pengcheng Pang
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China; Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China
| | - Xing Zhang
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Jingping Yuan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China
| | - Hong Yan
- Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China
| | - Dandan Yan
- Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang-Road, Wuchang District, Wuhan, 430060, PR China; Department of Health Toxicology, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong-Road, Wuhan, 430030, PR China.
| |
Collapse
|
32
|
Li T, Jin M, Huang L, Zhang Y, Zong J, Shan H, Kang H, Xu M, Liu H, Zhao Y, Cao Q, Jiang J. Oxytetracycline-induced oxidative liver damage by disturbed mitochondrial dynamics and impaired enzyme antioxidants in largemouth bass (Micropterus salmoides). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106616. [PMID: 37348385 DOI: 10.1016/j.aquatox.2023.106616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Oxytetracycline (OTC), a commonly used tetracycline antibiotic in aquaculture, has been found to cause significant damage to the liver of largemouth bass (Micropterus salmoides). This study revealed that OTC can lead to severe histopathological damage, structural changes at the cellular level, and increased levels of reactive oxygen species (ROS) in M. salmoides. Meanwhile, OTC impairs the activities of antioxidant enzyme (such as T-SOD, CAT, GST, GR) by suppressing the activation of MAPK/Nrf2 pathway. OTC disrupts mitochondrial dynamics and mitophagy through via PINK1/Parkin pathway. The accumulation of damaged mitochondria, combined with the inhibition of the antioxidant enzyme system, contributes to elevated ROS levels and oxidative liver damage in M. salmoides. Further investigations demonstrated that an enzyme-treated soy protein (ETSP) dietary supplement can help maintain mitochondrial dynamic balance by inhibiting the PINK1/Parkin pathway and activate the MAPK/Nrf2 pathway to counteract oxidative damage. In summary, these findings highlight that exposure to OTC disrupts mitochondrial dynamics and inhibits the antioxidant enzyme system, ultimately exacerbating oxidative liver damage in M. salmoides. We propose the use of a dietary supplement as a preventive measure against OTC-related side effects, providing valuable insights into the mechanisms of antibiotic toxicity in aquatic environments.
Collapse
Affiliation(s)
- Tong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Jin
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lishi Huang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yupeng Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiali Zong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongying Shan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Man Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;.
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;.
| |
Collapse
|
33
|
Mubariz F, Saadin A, Lingenfelter N, Sarkar C, Banerjee A, Lipinski MM, Awad O. Deregulation of mTORC1-TFEB axis in human iPSC model of GBA1-associated Parkinson's disease. Front Neurosci 2023; 17:1152503. [PMID: 37332877 PMCID: PMC10272450 DOI: 10.3389/fnins.2023.1152503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Mutations in the GBA1 gene are the single most frequent genetic risk factor for Parkinson's disease (PD). Neurodegenerative changes in GBA1-associated PD have been linked to the defective lysosomal clearance of autophagic substrates and aggregate-prone proteins. To elucidate novel mechanisms contributing to proteinopathy in PD, we investigated the effect of GBA1 mutations on the transcription factor EB (TFEB), the master regulator of the autophagy-lysosomal pathway (ALP). Using PD patients' induced-pluripotent stem cells (iPSCs), we examined TFEB activity and regulation of the ALP in dopaminergic neuronal cultures generated from iPSC lines harboring heterozygous GBA1 mutations and the CRISPR/Cas9-corrected isogenic controls. Our data showed a significant decrease in TFEB transcriptional activity and attenuated expression of many genes in the CLEAR network in GBA1 mutant neurons, but not in the isogenic gene-corrected cells. In PD neurons, we also detected increased activity of the mammalian target of rapamycin complex1 (mTORC1), the main upstream negative regulator of TFEB. Increased mTORC1 activity resulted in excess TFEB phosphorylation and decreased nuclear translocation. Pharmacological mTOR inhibition restored TFEB activity, decreased ER stress and reduced α-synuclein accumulation, indicating improvement of neuronal protiostasis. Moreover, treatment with the lipid substrate reducing compound Genz-123346, decreased mTORC1 activity and increased TFEB expression in the mutant neurons, suggesting that mTORC1-TFEB alterations are linked to the lipid substrate accumulation. Our study unveils a new mechanism contributing to PD susceptibility by GBA1 mutations in which deregulation of the mTORC1-TFEB axis mediates ALP dysfunction and subsequent proteinopathy. It also indicates that pharmacological restoration of TFEB activity could be a promising therapeutic approach in GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Fahad Mubariz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Afsoon Saadin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholas Lingenfelter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chinmoy Sarkar
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marta M. Lipinski
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
34
|
Pizzimenti C, Fiorentino V, Franchina M, Martini M, Giuffrè G, Lentini M, Silvestris N, Di Pietro M, Fadda G, Tuccari G, Ieni A. Autophagic-Related Proteins in Brain Gliomas: Role, Mechanisms, and Targeting Agents. Cancers (Basel) 2023; 15:cancers15092622. [PMID: 37174088 PMCID: PMC10177137 DOI: 10.3390/cancers15092622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The present review focuses on the phenomenon of autophagy, a catabolic cellular process, which allows for the recycling of damaged organelles, macromolecules, and misfolded proteins. The different steps able to activate autophagy start with the formation of the autophagosome, mainly controlled by the action of several autophagy-related proteins. It is remarkable that autophagy may exert a double role as a tumour promoter and a tumour suppressor. Herein, we analyse the molecular mechanisms as well as the regulatory pathways of autophagy, mainly addressing their involvement in human astrocytic neoplasms. Moreover, the relationships between autophagy, the tumour immune microenvironment, and glioma stem cells are discussed. Finally, an excursus concerning autophagy-targeting agents is included in the present review in order to obtain additional information for the better treatment and management of therapy-resistant patients.
Collapse
Affiliation(s)
- Cristina Pizzimenti
- Translational Molecular Medicine and Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Vincenzo Fiorentino
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Mariausilia Franchina
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maurizio Martini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giuseppe Giuffrè
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Maria Lentini
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Nicola Silvestris
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Martina Di Pietro
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Oncology Section, University of Messina, 98125 Messina, Italy
| | - Guido Fadda
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Pathology Section, University of Messina, 98125 Messina, Italy
| |
Collapse
|
35
|
Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova GZ, Khlestkina MS, Maslov LN. Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis 2023; 28:55-80. [PMID: 36369366 DOI: 10.1007/s10495-022-01786-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
Abstract
Ischemia/reperfusion (I/R) of the heart leads to increased autophagic flux. Preconditioning stimulates autophagic flux by AMPK and PI3-kinase activation and mTOR inhibition. The cardioprotective effect of postconditioning is associated with activation of autophagy and increased activity of NO-synthase and AMPK. Oxidative stress stimulates autophagy in the heart during I/R. Superoxide radicals generated by NADPH-oxidase acts as a trigger for autophagy, possibly due to AMPK activation. There is reason to believe that AMPK, GSK-3β, PINK1, JNK, hexokinase II, MEK, PKCα, and ERK kinases stimulate autophagy, while mTOR, PKCδ, Akt, and PI3-kinase can inhibit autophagy in the heart during I/R. However, there is evidence that PI3-kinase could stimulate autophagy in ischemic preconditioning of the heart. It was found that transcription factors FoxO1, FoxO3, NF-κB, HIF-1α, TFEB, and Nrf-2 enhance autophagy in the heart in I/R. Transcriptional factors STAT1, STAT3, and p53 inhibit autophagy in I/R. MicroRNAs could stimulate and inhibit autophagy in the heart in I/R. Long noncoding RNAs regulate the viability and autophagy of cardiomyocytes in hypoxia/reoxygenation (H/R). Nitric oxide (NO) donors and endogenous NO could activate autophagy of cardiomyocytes. Activation of heme oxygenase-1 promotes cardiomyocyte tolerance to H/R and enhances autophagy. Hydrogen sulfide increases cardiac tolerance to I/R and inhibits apoptosis and autophagy via mTOR and PI3-kinase activation.
Collapse
Affiliation(s)
- Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alexander V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Nikita S Voronkov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012
| | - Feng Fu
- School of Basic Medicine, Fourth Military Medical University, No.169, West Changle Road, Xi'an, 710032, China
| | | | | | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, the Russian Academy of Sciences, Tomsk, Russia, 634012.
| |
Collapse
|
36
|
Carling PJ, Ryan BJ, McGuinness W, Kataria S, Humble SW, Milde S, Duce JA, Kapadia N, Zuercher WJ, Davis JB, Di Daniel E, Wade-Martins R. Multiparameter phenotypic screening for endogenous TFEB and TFE3 translocation identifies novel chemical series modulating lysosome function. Autophagy 2023; 19:692-705. [PMID: 35786165 PMCID: PMC9851200 DOI: 10.1080/15548627.2022.2095834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The accumulation of toxic protein aggregates in multiple neurodegenerative diseases is associated with defects in the macroautophagy/autophagy-lysosome pathway. The amelioration of disease phenotypes across multiple models of neurodegeneration can be achieved through modulating the master regulator of lysosome function, TFEB (transcription factor EB). Using a novel multi-parameter high-throughput screen for cytoplasmic:nuclear translocation of endogenous TFEB and the related transcription factor TFE3, we screened the Published Kinase Inhibitor Set 2 (PKIS2) library as proof of principle and to identify kinase regulators of TFEB and TFE3. Given that TFEB and TFE3 are responsive to cellular stress we have established assays for cellular toxicity and lysosomal function, critical to ensuring the identification of hit compounds with only positive effects on lysosome activity. In addition to AKT inhibitors which regulate TFEB localization, we identified a series of quinazoline-derivative compounds that induced TFEB and TFE3 translocation. A novel series of structurally-related analogs was developed, and several compounds induced TFEB and TFE3 translocation at higher potency than previously screened compounds. KINOMEscan and cell-based KiNativ kinase profiling revealed high binding for the PRKD (protein kinase D) family of kinases, suggesting good selectivity for these compounds. We describe and utilize a cellular target-validation platform using CRISPRi knockdown and orthogonal PRKD inhibitors to demonstrate that the activity of these compounds is independent of PRKD inhibition. The more potent analogs induced subsequent upregulation of the CLEAR gene network and cleared pathological HTT protein in a cellular model of proteinopathy, demonstrating their potential to alleviate neurodegeneration-relevant phenotypes. Abbreviations: AD: Alzheimer disease; AK: adenylate kinase; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; HD: Huntington disease; PD: Parkinson disease; PKIS2: Published Kinase Inhibitor Set 2; PRKD: protein kinase D; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Phillippa J Carling
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Brent J Ryan
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - William McGuinness
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Shikha Kataria
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Stewart W Humble
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD USA
| | - Stefan Milde
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge
| | - James A Duce
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge
| | - Nirav Kapadia
- Structural Genomics Consortium, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - John B Davis
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Elena Di Daniel
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| |
Collapse
|
37
|
Xu SW, Zhang YJ, Liu WM, Zhang XF, Wang Y, Xiang SY, Su JC, Liu ZB. Cigarette smoke extract-induced inflammatory response via inhibition of the TFEB-mediated autophagy in NR8383 cells. Exp Lung Res 2023:1-10. [PMID: 36636918 DOI: 10.1080/01902148.2022.2164674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Objective: Chronic pulmonary inflammation caused by long-term smoking is the core pathology of COPD. Alveolar macrophages (AMs) are involved in the pulmonary inflammation of COPD. The accumulation of damaged materials caused by impaired autophagy triggers inflammatory response in macrophages. As a key transcription regulator, transcription factor EB (TFEB) activates the transcription of target genes related autophagy and lysosome by binding to promoters, whereas it is unclarified for the relationship between inflammatory response induced by cigarette smoke extract (CSE) and TFEB-mediated autophagy. Thus, we investigated the role of TFEB-mediated autophagy in inflammatory response induced by CSE in NR8383 cells, and to explore its potential mechanism. Methods: Based on cell viability and autophagy, cells treated with 20% concentration of CSE for 24 h were selected for further studies. Cells were divided into control group, chloroquine (CQ, the autophagy inhibitor) group, CSE group, CSE + rapamycin (the autophagy inducer) group and CSE + fisetin (the TFEB inducer) group. The levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 in supernatant were detected by ELISA kits. The protein expressions were tested by western blot. The intensity of fluorescence of Lysosome-associated membrane protein 1 (LAMP1) and TFEB was detected by immunofluorescence. Lyso-Tracker Red staining was applied to detect the lysosome environment. Results: CSE inhibited the cell viability, increased the contents of TNF-α, IL-1β, IL-6, the ratio of LC3II/I, and the level of P62 protein. Besides, CSE decreased the fluorescence intensity of LAMP1 protein and Lyso-Tracker Red staining, as well as the ratio of nucleus/cytosol of TFEB protein. Activating autophagy with rapamycin alleviated CSE-induced inflammatory response. The activation of TFEB via fisetin alleviated CSE-induced autophagy impairment and lysosomal dysfunction, thus alleviated inflammatory response in NR8383 cells. Conclusion: CSE-induced inflammatory response in NR8383 cells, which may be related to the inhibition of TFEB-mediated autophagy.
Collapse
Affiliation(s)
- Shu-Wen Xu
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yu-Jie Zhang
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wen-Mei Liu
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xin-Fang Zhang
- Physiology Department, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yuan Wang
- Physiology Department, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Shui-Ying Xiang
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing-Chao Su
- Physiology Department, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Zi-Bing Liu
- College of Acupuncture and Tuina, Anhui University of Chinese Medicine, Hefei, Anhui, China.,Physiology Department, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
38
|
Gebrie A. Transcription factor EB as a key molecular factor in human health and its implication in diseases. SAGE Open Med 2023; 11:20503121231157209. [PMID: 36891126 PMCID: PMC9986912 DOI: 10.1177/20503121231157209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/27/2023] [Indexed: 03/07/2023] Open
Abstract
Transcription factor EB, as a component of the microphthalmia family of transcription factors, has been demonstrated to be a key controller of autophagy-lysosomal biogenesis. Transcription factor EB is activated by stressors such as nutrition and deprivation of growth factors, hypoxia, lysosomal stress, and mitochondrial injury. To achieve the ultimate functional state, it is controlled in a variety of modes, such as in its rate of transcription, post-transcriptional control, and post-translational alterations. Due to its versatile role in numerous signaling pathways, including the Wnt, calcium, AKT, and mammalian target of rapamycin complex 1 signaling pathways, transcription factor EB-originally identified to be an oncogene-is now well acknowledged as a regulator of a wide range of physiological systems, including autophagy-lysosomal biogenesis, response to stress, metabolism, and energy homeostasis. The well-known and recently identified roles of transcription factor EB suggest that this protein might play a central role in signaling networks in a number of non-communicable illnesses, such as cancer, cardiovascular disorders, drug resistance mechanisms, immunological disease, and tissue growth. The important developments in transcription factor EB research since its first description are described in this review. This review helps to advance transcription factor EB from fundamental research into therapeutic and regenerative applications by shedding light on how important a role it plays in human health and disease at the molecular level.
Collapse
Affiliation(s)
- Alemu Gebrie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
39
|
Wei S, Leng B, Yan G. Targeting autophagy process in center nervous trauma. Front Neurosci 2023; 17:1128087. [PMID: 36950126 PMCID: PMC10025323 DOI: 10.3389/fnins.2023.1128087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The central nervous system (CNS) is the primary regulator of physiological activity, and when CNS is compromised, its physical functions are affected. Spinal cord injury (SCI) and traumatic brain injury (TBI) are common trauma in CNS that are difficult to recover from, with a higher global disability and mortality rate. Autophagy is familiar to almost all researchers due to its role in regulating the degradation and recycling of cellular defective or incorrect proteins and toxic components, maintaining body balance and regulating cell health and function. Emerging evidence suggests it has a broad and long-lasting impact on pathophysiological process such as oxidative stress, inflammation, apoptosis, and angiogenesis, involving the alteration of autophagy marker expression and function recovery. Changes in autophagy level are considered a potential therapeutic strategy and have shown promising results in preclinical studies for neuroprotection following traumatic brain injury. However, the relationship between upward or downward autophagy and functional recovery following SCI or TBI is debatable. This article reviews the regulation and role of autophagy in repairing CNS trauma and the intervention effects of autophagy-targeted therapeutic agents to find more and better treatment options for SCI and TBI patients.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, China
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bing Leng
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Genquan Yan
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Genquan Yan,
| |
Collapse
|
40
|
Mächtel R, Boros FA, Dobert JP, Arnold P, Zunke F. From Lysosomal Storage Disorders to Parkinson's Disease - Challenges and Opportunities. J Mol Biol 2022:167932. [PMID: 36572237 DOI: 10.1016/j.jmb.2022.167932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lysosomes are specialized organelles with an acidic pH that act as recycling hubs for intracellular and extracellular components. They harbour numerous different hydrolytic enzymes to degrade substrates like proteins, peptides, and glycolipids. Reduced catalytic activity of lysosomal enzymes can cause the accumulation of these substrates and loss of lysosomal integrity, resulting in lysosomal dysfunction and lysosomal storage disorders (LSDs). Post-mitotic cells, such as neurons, seem to be highly sensitive to damages induced by lysosomal dysfunction, thus LSDs often manifest with neurological symptoms. Interestingly, some LSDs and Parkinson's disease (PD) share common cellular pathomechanisms, suggesting convergence of aetiology of the two disease types. This is further underlined by genetic associations of several lysosomal genes involved in LSDs with PD. The increasing number of lysosome-associated genetic risk factors for PD makes it necessary to understand functions and interactions of lysosomal proteins/enzymes both in health and disease, thereby holding the potential to identify new therapeutic targets. In this review, we highlight genetic and mechanistic interactions between the complex lysosomal network, LSDs and PD, and elaborate on methodical challenges in lysosomal research.
Collapse
Affiliation(s)
- Rebecca Mächtel
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | | | - Jan Philipp Dobert
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friederike Zunke
- Department of Molecular Neurology, University Clinics Erlangen, Erlangen, Germany.
| |
Collapse
|
41
|
Jorge-Oliva M, Smits JFM, Wiersma VI, Hoozemans JJM, Scheper W. Granulovacuolar degeneration bodies are independently induced by tau and α-synuclein pathology. Alzheimers Res Ther 2022; 14:187. [PMID: 36517915 PMCID: PMC9749177 DOI: 10.1186/s13195-022-01128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/21/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Granulovacuolar degeneration bodies (GVBs) are intracellular vesicular structures that commonly accompany pathological tau accumulations in neurons of patients with tauopathies. Recently, we developed the first model for GVBs in primary neurons, that requires exogenous tau seeds to elicit tau aggregation. This model allowed the identification of GVBs as proteolytically active lysosomes induced by tau pathology. GVBs selectively accumulate cargo in a dense core, that shows differential and inconsistent immunopositivity for (phosphorylated) tau epitopes. Despite the strong evidence connecting GVBs to tau pathology, these structures have been reported in neurons without apparent pathology in brain tissue of tauopathy patients. Additionally, GVBs and putative GVBs have also been reported in the brain of patients with non-tau proteinopathies. Here, we investigated the connection between pathological protein assemblies and GVBs in more detail. METHODS This study combined newly developed primary neuron models for tau and α-synuclein pathology with observations in human brain tissue from tauopathy and Parkinson's disease patients. Immunolabeling and imaging techniques were employed for extensive characterisation of pathological proteins and GVBs. Quantitative data were obtained by high-content automated microscopy as well as single-cell analysis of confocal images. RESULTS Employing a novel seed-independent neuronal tau/GVB model, we show that in the context of tauopathy, GVBs are inseparably associated with the presence of cytosolic pathological tau and that intracellular tau aggregation precedes GVB formation, strengthening the causal relationship between pathological accumulation of tau and GVBs. We also report that GVBs are inseparably associated with pathological tau at the single-cell level in the hippocampus of tauopathy patients. Paradoxically, we demonstrate the presence of GVBs in the substantia nigra of Parkinson's disease patients and in a primary neuron model for α-synuclein pathology. GVBs in this newly developed α-synuclein/GVB model are induced in the absence of cytosolic pathological tau accumulations. GVBs in the context of tau or α-synuclein pathology showed similar immunoreactivity for different phosphorylated tau epitopes. The phosphorylated tau immunoreactivity signature of GVBs is therefore independent of the presence of cytosolic tau pathology. CONCLUSION Our data identify the emergence of GVBs as a more generalised response to cytosolic protein pathology.
Collapse
Affiliation(s)
- Marta Jorge-Oliva
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Jasper F. M. Smits
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Vera I. Wiersma
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands ,grid.509540.d0000 0004 6880 3010Department of Human Genetics, Amsterdam UMC location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Jeroen J. M. Hoozemans
- grid.509540.d0000 0004 6880 3010Department of Pathology, Amsterdam UMC location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands ,grid.484519.5Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Wiep Scheper
- grid.12380.380000 0004 1754 9227Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Faculty of Science, Vrije Universiteit (VU), De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands ,grid.509540.d0000 0004 6880 3010Department of Human Genetics, Amsterdam UMC location Vrije Universiteit, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands ,grid.484519.5Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
43
|
Casey AE, Liu W, Hein LK, Sargeant TJ, Pederson SM, Mäkinen VP. Transcriptional targets of senataxin and E2 promoter binding factors are associated with neuro-degenerative pathways during increased autophagic flux. Sci Rep 2022; 12:17665. [PMID: 36271102 PMCID: PMC9587291 DOI: 10.1038/s41598-022-21617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an intracellular recycling process that degrades harmful molecules and enables survival during starvation, with implications for diseases including dementia, cancer and atherosclerosis. Previous studies demonstrate how a limited number of transcription factors (TFs) can increase autophagy. However, this knowledge has not resulted in translation into therapy, thus, to gain understanding of more suitable targets, we utilized a systems biology approach. We induced autophagy by amino acid starvation and mTOR inhibition in HeLa, HEK 293 and SH-SY5Y cells and measured temporal gene expression using RNA-seq. We observed 456 differentially expressed genes due to starvation and 285 genes due to mTOR inhibition (PFDR < 0.05 in every cell line). Pathway analyses implicated Alzheimer's and Parkinson's diseases (PFDR ≤ 0.024 in SH-SY5Y and HeLa) and amyotrophic lateral sclerosis (ALS, PFDR < 0.05 in mTOR inhibition experiments). Differential expression of the Senataxin (SETX) target gene set was predicted to activate multiple neurodegenerative pathways (PFDR ≤ 0.04). In the SH-SY5Y cells of neuronal origin, the E2F transcription family was predicted to activate Alzheimer's disease pathway (PFDR ≤ 0.0065). These exploratory analyses suggest that SETX and E2F may mediate transcriptional regulation of autophagy and further investigations into their possible role in neuro-degeneration are warranted.
Collapse
Affiliation(s)
- Aaron E. Casey
- grid.430453.50000 0004 0565 2606Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000 Australia ,grid.1026.50000 0000 8994 5086Australian Centre for Precision Health, Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Wenjun Liu
- grid.1010.00000 0004 1936 7304Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Leanne K. Hein
- grid.430453.50000 0004 0565 2606Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Timothy J. Sargeant
- grid.430453.50000 0004 0565 2606Lysosomal Health in Ageing, Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephen M. Pederson
- grid.1010.00000 0004 1936 7304Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Ville-Petteri Mäkinen
- grid.430453.50000 0004 0565 2606Computational and Systems Biology Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000 Australia ,grid.1026.50000 0000 8994 5086Australian Centre for Precision Health, Cancer Research Institute, University of South Australia, Adelaide, Australia ,grid.10858.340000 0001 0941 4873Computational Medicine, Faculty of Medicine, University of Oulu, Oulu, Finland ,grid.10858.340000 0001 0941 4873Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
44
|
Jiao F, Zhou B, Meng L. The regulatory mechanism and therapeutic potential of transcription factor EB in neurodegenerative diseases. CNS Neurosci Ther 2022; 29:37-59. [PMID: 36184826 PMCID: PMC9804079 DOI: 10.1111/cns.13985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023] Open
Abstract
The autophagy-lysosomal pathway (ALP) is involved in the degradation of protein aggregates and damaged organelles. Transcription factor EB (TFEB), a major regulator of ALP, has emerged as a leading factor in addressing neurodegenerative disease pathology, including Alzheimer's disease (AD), Parkinson's disease (PD), PolyQ diseases, and Amyotrophic lateral sclerosis (ALS). In this review, we delineate the regulation of TFEB expression and its functions in ALP. Dysfunctions of TFEB and its role in the pathogenesis of several neurodegenerative diseases are reviewed. We summarize the protective effects and molecular mechanisms of some TFEB-targeted agonists in neurodegenerative diseases. We also offer our perspective on analyzing the pros and cons of these agonists in the treatment of neurodegenerative diseases from the perspective of drug development. More studies on the regulatory mechanisms of TFEB in other biological processes will aid our understanding of the application of TFEB-targeted therapy in neurodegeneration.
Collapse
Affiliation(s)
- Fengjuan Jiao
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| | - Bojie Zhou
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| | - Lingyan Meng
- School of Mental HealthJining Medical UniversityJiningChina,Shandong Key Laboratory of Behavioral Medicine, School of Mental HealthJining Medical UniversityJiningChina
| |
Collapse
|
45
|
Fernández-Calle R, Konings SC, Frontiñán-Rubio J, García-Revilla J, Camprubí-Ferrer L, Svensson M, Martinson I, Boza-Serrano A, Venero JL, Nielsen HM, Gouras GK, Deierborg T. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Mol Neurodegener 2022; 17:62. [PMID: 36153580 PMCID: PMC9509584 DOI: 10.1186/s13024-022-00566-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-β plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-β load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.
Collapse
Affiliation(s)
- Rosalía Fernández-Calle
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Sabine C. Konings
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Javier Frontiñán-Rubio
- Oxidative Stress and Neurodegeneration Group, Faculty of Medicine, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Juan García-Revilla
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Lluís Camprubí-Ferrer
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Martina Svensson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Isak Martinson
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luís Venero
- Departamento de Bioquímica Y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Henrietta M. Nielsen
- Department of Biochemistry and Biophysics at, Stockholm University, Stockholm, Sweden
| | - Gunnar K. Gouras
- Department of Experimental Medical Science, Experimental Dementia Research Unit, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Experimental Neuroinflammation Laboratory, Lund University, Lund, Sweden
| |
Collapse
|
46
|
Brandi E, Torres-Garcia L, Svanbergsson A, Haikal C, Liu D, Li W, Li JY. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front Aging Neurosci 2022; 14:910988. [PMID: 36092814 PMCID: PMC9459169 DOI: 10.3389/fnagi.2022.910988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia cells are the macrophage population within the central nervous system, which acts as the first line of the immune defense. These cells present a high level of heterogeneity among different brain regions regarding morphology, cell density, transcriptomes, and expression of different inflammatory mediators. This region-specific heterogeneity may lead to different neuroinflammatory responses, influencing the regional involvement in several neurodegenerative diseases. In this study, we aimed to evaluate microglial response in 16 brain regions. We compared different aspects of the microglial response, such as the extension of their morphological changes, sensitivity, and ability to convert an acute inflammatory response to a chronic one. Then, we investigated the synaptic alterations followed by acute and chronic inflammation in substantia nigra. Moreover, we estimated the effect of partial ablation of fractalkine CX3C receptor 1 (CX3CR1) on microglial response. In the end, we briefly investigated astrocytic heterogeneity and activation. To evaluate microglial response in different brain regions and under the same stimulus, we induced a systemic inflammatory reaction through a single intraperitoneal (i.p.) injection of lipopolysaccharides (LPS). We performed our study using C57BL6 and CX3CR1+/GFP mice to investigate microglial response in different regions and the impact of CX3CR1 partial ablation. We conducted a topographic study quantifying microglia alterations in 16 brain regions through immunohistochemical examination and computational image analysis. Assessing Iba1-immunopositive profiles and the density of the microglia cells, we have observed significant differences in region-specific responses of microglia populations in all parameters considered. Our results underline the peculiar microglial inflammation in the substantia nigra pars reticulata (SNpr). Here and in concomitance with the acute inflammatory response, we observed a transient decrease of dopaminergic dendrites and an alteration of the striato-nigral projections. Additionally, we found a significant decrease in microglia response and the absence of chronic inflammation in CX3CR1+/GFP mice compared to the wild-type ones, suggesting the CX3C axis as a possible pharmacological target against neuroinflammation induced by an increase of systemic tumor necrosis factor-alpha (TNFα) or/and LPS. Finally, we investigated astrocytic heterogeneity in this model. We observed different distribution and morphology of GFAP-positive astrocytes, a heterogeneous response under inflammatory conditions, and a decrease in their activation in CX3CR1 partially ablated mice compared with C57BL6 mice. Altogether, our data confirm that microglia and astrocytes heterogeneity lead to a region-specific inflammatory response in presence of a systemic TNFα or/and LPS treatment.
Collapse
Affiliation(s)
- Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Di Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
- *Correspondence: Jia-Yi Li, ,
| |
Collapse
|
47
|
Gu Z, Cao H, Zuo C, Huang Y, Miao J, Song Y, Yang Y, Zhu L, Wang F. TFEB in Alzheimer's disease: From molecular mechanisms to therapeutic implications. Neurobiol Dis 2022; 173:105855. [PMID: 36031168 DOI: 10.1016/j.nbd.2022.105855] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022] Open
Abstract
Alzheimer's disease (AD), an age-dependent neurodegenerative disorder, is the most prevalent neurodegenerative disease worldwide. The primary pathological hallmarks of AD are the deposition of β-amyloid plaques and neurofibrillary tangles. Autophagy, a pathway of clearing damaged organelles, macromolecular aggregates, and long-lived proteins via lysosomal degradation, has emerged as critical for proteostasis in the central nervous system (CNS). Studies have demonstrated that defective autophagy is strongly implicated in AD pathogenesis. Transcription factor EB (TFEB), a master transcriptional regulator of autophagy, enhances the expression of related genes that control autophagosome formation, lysosome function, and autophagic flux. The study of TFEB has greatly increased over the last decade, and the dysfunction of TFEB has been reported to be strongly associated with the pathogenesis of many neurodegenerative disorders, including AD. Here, we delineate the basic understanding of TFEB dysregulation involved in AD pathogenesis, highlighting the existing work that has been conducted on TFEB-mediated autophagy in neurons and other nonneuronal cells in the CNS. Additionally, we summarize the small molecule compounds that target TFEB-regulated autophagy involved in AD therapy. Our review may yield new insights into therapeutic approaches by targeting TFEB and provide a broadly applicable basis for the clinical treatment of AD.
Collapse
Affiliation(s)
- Zhongya Gu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Jinfeng Miao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Yuyan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Liudi Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China
| | - Furong Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
48
|
Hakiminia B, Alikiaii B, Khorvash F, Mousavi S. Oxidative stress and mitochondrial dysfunction following traumatic brain injury: From mechanistic view to targeted therapeutic opportunities. Fundam Clin Pharmacol 2022; 36:612-662. [PMID: 35118714 DOI: 10.1111/fcp.12767] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is one of the most prevalent causes of permanent physical and cognitive disabilities. TBI pathology results from primary insults and a multi-mechanistic biochemical process, termed as secondary brain injury. Currently, there are no pharmacological agents for definitive treatment of patients with TBI. This article is presented with the purpose of reviewing molecular mechanisms of TBI pathology, as well as potential strategies and agents against pathological pathways. In this review article, materials were obtained by searching PubMed, Scopus, Elsevier, Web of Science, and Google Scholar. This search was considered without time limitation. Evidence indicates that oxidative stress and mitochondrial dysfunction are two key mediators of the secondary injury cascade in TBI pathology. TBI-induced oxidative damage results in the structural and functional impairments of cellular and subcellular components, such as mitochondria. Impairments of mitochondrial electron transfer chain and mitochondrial membrane potential result in a vicious cycle of free radical formation and cell apoptosis. The results of some preclinical and clinical studies, evaluating mitochondria-targeted therapies, such as mitochondria-targeted antioxidants and compounds with pleiotropic effects after TBI, are promising. As a proposed strategy in recent years, mitochondria-targeted multipotential therapy is a new hope, waiting to be confirmed. Moreover, based on the available findings, biologics, such as stem cell-based therapy and transplantation of mitochondria are novel potential strategies for the treatment of TBI; however, more studies are needed to clearly confirm the safety and efficacy of these strategies.
Collapse
Affiliation(s)
- Bahareh Hakiminia
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Babak Alikiaii
- Department of Anesthesiology and Intensive Care, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
49
|
Pupyshev AB, Klyushnik TP, Akopyan AA, Singh SK, Tikhonova MA. Disaccharide Trehalose in Experimental Therapies for Neurodegenerative Disorders: Molecular Targets and Translational Potential. Pharmacol Res 2022; 183:106373. [PMID: 35907433 DOI: 10.1016/j.phrs.2022.106373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Induction of autophagy is a prospective approach to the treatment of neurodegeneration. In the recent decade, trehalose attracted special attention. It is an autophagy inducer with negligible adverse effects and is approved for use in humans according to FDA requirements. Trehalose has a therapeutic effect in various experimental models of diseases. This glucose disaccharide with a flexible α-1-1'-glycosidic bond has unique properties: induction of mTOR-independent autophagy (with kinase AMPK as the main target) and a chaperone-like effect on proteins imparting them natural spatial structure. Thus, it can reduce the accumulation of neurotoxic aberrant/misfolded proteins. Trehalose has an anti-inflammatory effect and inhibits detrimental oxidative stress partially owing to the enhancement of endogenous antioxidant defense represented by the Nrf2 protein. The disaccharide activates lysosome and autophagosome biogenesis pathways through the protein factors TFEB and FOXO1. Here we review various mechanisms of the neuroprotective action of trehalose and touch on the possibility of pleiotropic effects. Current knowledge about specific features of trehalose pharmacodynamics is discussed. The neuroprotective effects of trehalose in animal models of major neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases are examined too. Attention is given to translational transition to clinical trials of this drug, especially oral and parenteral routes of administration. Besides, the possibility of enhancing the therapeutic benefit via a combination of mTOR-dependent and mTOR-independent autophagy inducers is analyzed. In general, trehalose appears to be a promising multitarget tool for the inhibition of experimental neurodegeneration and requires thorough investigation of its clinical capabilities.
Collapse
Affiliation(s)
- Alexander B Pupyshev
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Tatyana P Klyushnik
- Mental Health Research Center, Kashirskoye shosse 34, Moscow 115522, Russia.
| | - Anna A Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Krishna Bhawan, 594 Kha/123, Shahinoor Colony, Nilmatha, Uttar Pradesh, Lucknow 226002, India.
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
50
|
Gomez-Sintes R, Xin Q, Jimenez-Loygorri JI, McCabe M, Diaz A, Garner TP, Cotto-Rios XM, Wu Y, Dong S, Reynolds CA, Patel B, de la Villa P, Macian F, Boya P, Gavathiotis E, Cuervo AM. Targeting retinoic acid receptor alpha-corepressor interaction activates chaperone-mediated autophagy and protects against retinal degeneration. Nat Commun 2022; 13:4220. [PMID: 35864098 PMCID: PMC9304322 DOI: 10.1038/s41467-022-31869-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Chaperone-mediated autophagy activity, essential in the cellular defense against proteotoxicity, declines with age, and preventing this decline in experimental genetic models has proven beneficial. Here, we have identified the mechanism of action of selective chaperone-mediated autophagy activators previously developed by our group and have leveraged that information to generate orally bioavailable chaperone-mediated autophagy activators with favorable brain exposure. Chaperone-mediated autophagy activating molecules stabilize the interaction between retinoic acid receptor alpha - a known endogenous inhibitor of chaperone-mediated autophagy - and its co-repressor, nuclear receptor corepressor 1, resulting in changes of a discrete subset of the retinoic acid receptor alpha transcriptional program that leads to selective chaperone-mediated autophagy activation. Chaperone-mediated autophagy activators molecules activate this pathway in vivo and ameliorate retinal degeneration in a retinitis pigmentosa mouse model. Our findings reveal a mechanism for pharmacological targeting of chaperone-mediated autophagy activation and suggest a therapeutic strategy for retinal degeneration.
Collapse
Affiliation(s)
- Raquel Gomez-Sintes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Qisheng Xin
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Juan Ignacio Jimenez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| | - Mericka McCabe
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Thomas P Garner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xiomaris M Cotto-Rios
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yang Wu
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Shuxian Dong
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Cara A Reynolds
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Bindi Patel
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Pedro de la Villa
- Department; of System Biology, Universidad de Alcalá, Madrid, Spain and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, 28801, Spain
| | - Fernando Macian
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain.
| | - Evripidis Gavathiotis
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Institute for Aging Studies of the Department of Medicine of the Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|