1
|
Bruckhaus AA, Asifriyaz T, Kriukova K, O'Brien TJ, Agoston DV, Staba RJ, Jones NC, Moshé SL, Galanopoulou AS, Duncan D. Exploring multimodal biomarker candidates of post-traumatic epilepsy following moderate to severe traumatic brain injury: A systematic review and meta-analysis. Epilepsia 2025; 66:6-32. [PMID: 39530841 DOI: 10.1111/epi.18131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
This review systematically analyzes potential biomarker candidates for post-traumatic epilepsy (PTE) in humans who have experienced moderate to severe traumatic brain injury (TBI). Focusing on biomarkers across biofluid-based protein, genetic, neuroimaging, and neurophysiological categories, this review distinguishes between TBI patients who develop PTE and those who do not. The review adheres to established methodologies outlined in the Cochrane Handbook for Systematic Reviews of Interventions. Data presentation follows the Meta-analyses of Observational Studies (MOOSE) and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Medline, Embase, and Web of Science were systematically searched and yielded 7538 records, of which 18 met inclusion criteria (moderate-severe TBI in humans, follow-up of at least 6 months, and no prior history of epilepsy). The review aggregates data from 15 cohort and 3 case-control studies (risk of bias was assessed using the Newcastle-Ottawa Scale). Statistically significant biomarkers were identified, with neurophysiological biomarkers showing the strongest effect size in a two-study meta-analysis. PTE, a severe long-term outcome of TBI affecting 2% to 53% of individuals with TBI, lacks validated biomarkers for forecasting development, crucial for designing preventive clinical trials. A multimodal approach, integrating biofluid-based protein, genetic, neuroimaging, and neurophysiological data, offers a promising strategy to enhance the predictability of PTE development and, potentially, its treatment. The study's protocol is registered in the International Prospective Register of Systematic Reviews PROSPERO (Registration ID: CRD42023470245).
Collapse
Affiliation(s)
- Alexander A Bruckhaus
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Tuba Asifriyaz
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Kseniia Kriukova
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| | - Terence J O'Brien
- Department of Neuroscience, The School of Translational Medicine, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Denes V Agoston
- Department of Anatomy, Physiology and Genetics, School of Medicine, USU, Bethesda, Maryland, USA
| | - Richard J Staba
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Nigel C Jones
- Department of Neuroscience, The School of Translational Medicine, The Alfred Centre, Monash University, Melbourne, Victoria, Australia
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Dominick P Purpura Department of Neuroscience and Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Isabelle Rapin Division of Child Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Simard JM, Tosun C, Tsymbalyuk O, Moyer M, Keledjian K, Tsymbalyuk N, Olaniran A, Evans M, Langbein J, Khan Z, Kreinbrink M, Ciryam P, Stokum JA, Jha RM, Ksendzovsky A, Gerzanich V. A Mouse Model of Temporal Lobe Contusion. J Neurotrauma 2025; 42:143-160. [PMID: 39302058 DOI: 10.1089/neu.2024.0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Trauma to the brain can induce a contusion characterized by a discrete intracerebral or diffuse interstitial hemorrhage. In humans, "computed tomography-positive," that is, hemorrhagic, temporal lobe contusions (tlCont) have unique sequelae. TlCont confers significantly increased odds for moderate or worse disability and the inability to return to baseline work capacity compared to intra-axial injuries in other locations. Patients with tlCont are at elevated risks of memory dysfunction, anxiety, and post-traumatic epilepsy due to involvement of neuroanatomical structures unique to the temporal lobe including the amygdala, hippocampus, and ento-/perirhinal cortex. Because of the relative inaccessibility of the temporal lobe in rodents, no preclinical model of tlCont has been described, impeding progress in elucidating the specific pathophysiology unique to tlCont. Here, we present a minimally invasive mouse model of tlCont with the contusion characterized by a traumatic interstitial hemorrhage. Mortality was low and sensorimotor deficits (beam walk, accelerating rotarod) resolved completely within 3-5 days. However, significant deficits in memory (novel object recognition, Morris water maze) and anxiety (elevated plus maze) persisted at 14-35 days and nonconvulsive electroencephalographic seizures and spiking were significantly increased in the hippocampus at 7-21 days. Immunohistochemistry showed widespread astrogliosis and microgliosis, bilateral hippocampal sclerosis, bilateral loss of hippocampal and cortical inhibitory parvalbumin neurons, and evidence of interhemispheric connectional diaschisis involving the fiber bundle in the ventral corpus callosum that connects temporal lobe structures. This model may be useful to advance our understanding of the unique features of tlCont in humans.
Collapse
Affiliation(s)
- J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mitchell Moyer
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Natalya Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Adedayo Olaniran
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Madison Evans
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jenna Langbein
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ziam Khan
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Matthew Kreinbrink
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Prajwal Ciryam
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program in Trauma, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jesse A Stokum
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruchira M Jha
- Department of Neurology, Barrow Neurological Institute and St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Villena-Rueda BE, Kajitani GS, Ota VK, Honorato-Mauer J, Santoro ML, Bugiga AVG, Rosa JS, Asprino PF, Meneghetti P, Torrecilhas AC, Intasqui P, Bertolla RP, Foresti ML, da Graça Naffah-Mazzacoratti M, de Moraes Mello LEA, Belangero SI. miR-9-5p is Downregulated in Serum Extracellular Vesicles of Patients Treated with Biperiden After Traumatic Brain Injury. Mol Neurobiol 2024; 61:9595-9607. [PMID: 38664300 DOI: 10.1007/s12035-024-04194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/19/2024] [Indexed: 10/23/2024]
Abstract
Traumatic brain injury (TBI) is a prevalent and debilitating condition, which often leads to the development of post-traumatic epilepsy (PTE), a condition that yet lacks preventive strategies. Biperiden, an anticholinergic drug, is a promising candidate that has shown efficacy in murine models of PTE. MicroRNAs (miRNAs), small regulatory RNAs, can help in understanding the biological basis of PTE and act as TBI- and PTE-relevant biomarkers that can be detected peripherally, as they are present in extracellular vesicles (EVs) that cross the blood-brain barrier. This study aimed to investigate miRNAs in serum EVs from patients with TBI, and their association with biperiden treatment and PTE. Blood samples of 37 TBI patients were collected 10 days after trauma and treatment initiation in a double-blind clinical trial. A total of 18 patients received biperiden, with three subjects developing PTE, and 19 received placebo, with two developing PTE. Serum EVs were characterized by size distribution and protein profiling, followed by high-throughput sequencing of the EV miRNome. Differential expression analysis revealed no significant differences in miRNA expression between TBI patients with and without PTE. Interestingly, miR-9-5p displayed decreased expression in biperiden-treated patients compared to the placebo group. This miRNA regulates genes enriched in stress response pathways, including axonogenesis and neuronal death, relevant to both PTE and TBI. These findings indicate that biperiden may alter miR-9-5p expression in serum EVs, which may play a role in TBI resolution.
Collapse
Affiliation(s)
- Beatriz Enguidanos Villena-Rueda
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Gustavo Satoru Kajitani
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Vanessa Kiyomi Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Jessica Honorato-Mauer
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Marcos Leite Santoro
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Molecular Biology Division, Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Amanda Victória Gomes Bugiga
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Joice Santos Rosa
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | - Paula Meneghetti
- Laboratório de Imunologia Celular E Bioquímica de Fungos E Protozoários, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular E Bioquímica de Fungos E Protozoários, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Department of Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Paula Intasqui
- Human Reproduction Section, Division of Urology, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Human Reproduction Section, Division of Urology, Department of Surgery, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Maira Licia Foresti
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Instituto D'Or de Pesquisa E Ensino (IDOR), São Paulo, Brazil
| | | | - Luiz Eugênio Araújo de Moraes Mello
- Department of Physiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
- Instituto D'Or de Pesquisa E Ensino (IDOR), São Paulo, Brazil
| | - Sintia Iole Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu, 740, Vila Clementino, São Paulo, - 04023900, Brazil.
- LiNC - Laboratory of Integrative Neuroscience, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil.
| |
Collapse
|
4
|
Klein P, Kaminski RM, Koepp M, Löscher W. New epilepsy therapies in development. Nat Rev Drug Discov 2024; 23:682-708. [PMID: 39039153 DOI: 10.1038/s41573-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/24/2024]
Abstract
Epilepsy is a common brain disorder, characterized by spontaneous recurrent seizures, with associated neuropsychiatric and cognitive comorbidities and increased mortality. Although people at risk can often be identified, interventions to prevent the development of the disorder are not available. Moreover, in at least 30% of patients, epilepsy cannot be controlled by current antiseizure medications (ASMs). As a result of considerable progress in epilepsy genetics and the development of novel disease models, drug screening technologies and innovative therapeutic modalities over the past 10 years, more than 200 novel epilepsy therapies are currently in the preclinical or clinical pipeline, including many treatments that act by new mechanisms. Assisted by diagnostic and predictive biomarkers, the treatment of epilepsy is undergoing paradigm shifts from symptom-only ASMs to disease prevention, and from broad trial-and-error treatments for seizures in general to mechanism-based treatments for specific epilepsy syndromes. In this Review, we assess recent progress in ASM development and outline future directions for the development of new therapies for the treatment and prevention of epilepsy.
Collapse
Affiliation(s)
- Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA.
| | | | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab., NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
5
|
Pyrzowski J, Kałas M, Mazurkiewicz-Bełdzińska M, Siemiński M. EEG biomarkers for the prediction of post-traumatic epilepsy - a systematic review of an emerging field. Seizure 2024; 119:71-77. [PMID: 38796954 DOI: 10.1016/j.seizure.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) is often followed by post-traumatic epilepsy (PTE), a condition often difficult to treat and leading to a substantial decline in quality of life as well as increased long-term mortality. The latent period between TBI and the emergence of spontaneous recurrent seizures provides an opportunity for pharmacological intervention to prevent epileptogenesis. Biomarkers capable of predicting PTE development are urgently needed to facilitate clinical trials of putative anti-epileptogenic drugs. EEG is a widely available and flexible diagnostic modality that plays a fundamental role in epileptology. We systematically review the advances in the field of the discovery of EEG biomarkers for the prediction of PTE in humans. Despite recent progress, the field faces several challenges including short observation periods, a focus on early post-injury monitoring, difficulties in translating findings from animal models to scalp EEG, and emerging evidence indicating the importance of assessing altered background scalp EEG activity alongside epileptiform activity using quantitative EEG methods while also considering sleep abnormalities in future studies.
Collapse
Affiliation(s)
- Jan Pyrzowski
- Department of Emergency Medicine, Medical University of Gdańsk, Gdańsk, Poland.
| | - Maria Kałas
- Department of Emergency Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Mariusz Siemiński
- Department of Emergency Medicine, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
6
|
Sødal HF, Nordseth T, Rasmussen AJO, Rosseland LA, Stenehjem JS, Gran JM, Helseth E, Taubøll E. Risk of epilepsy after traumatic brain injury: a nationwide Norwegian matched cohort study. Front Neurol 2024; 15:1411692. [PMID: 38903174 PMCID: PMC11188468 DOI: 10.3389/fneur.2024.1411692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
Background Post-traumatic epilepsy (PTE) is a well-known complication of traumatic brain injury (TBI). Although several risk factors have been identified, prediction of PTE is difficult. Changing demographics and advances in TBI treatment may affect the risk of PTE. Our aim was to provide an up-to-date estimate of the incidence of PTE by linking multiple nationwide registers. Methods Patients with TBI admitted to hospital 2015-2018 were identified in the Norwegian Trauma Registry and matched to trauma-free controls on sex and birth year according to a matched cohort design. They were followed up for epilepsy in nationwide registers 2015-2020. Cumulative incidence of epilepsy in TBI patients and controls was estimated taking competing risks into account. Analyses stratified by the Abbreviated Injury Scale (AIS) severity score, Glasgow Coma Scale score and age were conducted for the TBI group. Occurrence of PTE in different injury types was visualized using UpSet plots. Results In total, 8,660 patients and 84,024 controls were included in the study. Of the patients, 3,029 (35%) had moderate to severe TBI. The cumulative incidence of epilepsy in the TBI group was 3.1% (95% Confidence Interval [CI] 2.8-3.5%) after 2 years and 4.0% (3.6-4.5%) after 5 years. Corresponding cumulative incidences in the control group were 0.2% (95% CI 0.2-0.3%) and 0.5% (0.5-0.6%). The highest incidence was observed in patients with severe TBI according to AIS (11.8% [95% CI 9.7-14.4%] after 2 years and 13.2% [10.8-16.0%] after 5 years) and in patients >40 years of age. Conclusion Patients with TBI have significantly higher risk of developing epilepsy compared to population controls. However, PTE incidence following moderate-severe TBI was notably lower than what has been reported in several previously published studies.
Collapse
Affiliation(s)
- Hild Flatmark Sødal
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- ERGO – Epilepsy Research Group of Oslo, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Trond Nordseth
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Department of Anesthesia and Intensive Care Medicine, St. Olav Hospital, Trondheim, Norway
| | - Anders Johan Orland Rasmussen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Anaesthesia, Innlandet Hospital Trust, Hamar, Norway
| | - Leiv Arne Rosseland
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Jo Steinson Stenehjem
- Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Research, Cancer Registry of Norway, Oslo, Norway
| | - Jon Michael Gran
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Eirik Helseth
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Erik Taubøll
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- ERGO – Epilepsy Research Group of Oslo, Department of Neurology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Chen Y, Cappucci SP, Kim JA. Prognostic Implications of Early Prediction in Posttraumatic Epilepsy. Semin Neurol 2024; 44:333-341. [PMID: 38621706 DOI: 10.1055/s-0044-1785502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Posttraumatic epilepsy (PTE) is a complication of traumatic brain injury that can increase morbidity, but predicting which patients may develop PTE remains a challenge. Much work has been done to identify a variety of risk factors and biomarkers, or a combination thereof, for patients at highest risk of PTE. However, several issues have hampered progress toward fully adapted PTE models. Such issues include the need for models that are well-validated, cost-effective, and account for competing outcomes like death. Additionally, while an accurate PTE prediction model can provide quantitative prognostic information, how such information is communicated to inform shared decision-making and treatment strategies requires consideration of an individual patient's clinical trajectory and unique values, especially given the current absence of direct anti-epileptogenic treatments. Future work exploring approaches integrating individualized communication of prediction model results are needed.
Collapse
Affiliation(s)
- Yilun Chen
- Department of Neurology, Yale University, New Haven, Connecticut
| | | | - Jennifer A Kim
- Department of Neurology, Yale University, New Haven, Connecticut
| |
Collapse
|
8
|
Pease M, Mittal A, Merkaj S, Okonkwo DO, Gonzalez-Martinez JA, Elmer J, Liou WS, Pingue V, Hammond FM, Abramovici S, Castellano J, Barot N. Early Seizure Prophylaxis in Mild and Moderate Traumatic Brain Injury: A Systematic Review and Meta-Analysis. JAMA Neurol 2024; 81:507-514. [PMID: 38587858 PMCID: PMC11002778 DOI: 10.1001/jamaneurol.2024.0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/06/2024] [Indexed: 04/09/2024]
Abstract
Importance Guidelines recommend seizure prophylaxis for early posttraumatic seizures (PTS) after severe traumatic brain injury (TBI). Use of antiseizure medications for early seizure prophylaxis after mild or moderate TBI remains controversial. Objective To determine the association between seizure prophylaxis and risk reduction for early PTS in mild and moderate TBI. Data Sources PubMed, Google Scholar, and Web of Science (January 1, 1991, to April 18, 2023) were systematically searched. Study Selection Observational studies of adult patients presenting to trauma centers in high-income countries with mild (Glasgow Coma Scale [GCS], 13-15) and moderate (GCS, 9-12) TBI comparing rates of early PTS among patients with seizure prophylaxis with those without seizure prophylaxis. Data Extraction and Synthesis The Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) reporting guidelines were used. Two authors independently reviewed all titles and abstracts, and 3 authors reviewed final studies for inclusion. A meta-analysis was performed using a random-effects model with absolute risk reduction. Main Outcome Measures The main outcome was absolute risk reduction of early PTS, defined as seizures within 7 days of initial injury, in patients with mild or moderate TBI receiving seizure prophylaxis in the first week after injury. A secondary analysis was performed in patients with only mild TBI. Results A total of 64 full articles were reviewed after screening; 8 studies (including 5637 patients) were included for the mild and moderate TBI analysis, and 5 studies (including 3803 patients) were included for the mild TBI analysis. The absolute risk reduction of seizure prophylaxis for early PTS in mild to moderate TBI (GCS, 9-15) was 0.6% (95% CI, 0.1%-1.2%; P = .02). The absolute risk reduction for mild TBI alone was similar 0.6% (95% CI, 0.01%-1.2%; P = .04). The number needed to treat to prevent 1 seizure was 167 patients. Conclusion and Relevance Seizure prophylaxis after mild and moderate TBI was associated with a small but statistically significant reduced risk of early posttraumatic seizures after mild and moderate TBI. The small absolute risk reduction and low prevalence of early seizures should be weighed against potential acute risks of antiseizure medications as well as the risk of inappropriate continuation beyond 7 days.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis
| | - Adi Mittal
- University of Pittsburgh Medical School, Pittsburgh, Pennsylvania
| | - Sara Merkaj
- Yale University Medical School, New Haven, Connecticut
| | - David O. Okonkwo
- Department of Neurological Surgery, UPMC Healthcare System, Pittsburgh, Pennsylvania
| | | | - Jonathan Elmer
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Wen-Shyong Liou
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Valeria Pingue
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabiltation and Spinal Unit of the Institute of Pavia, Pavia, Italy
| | - Flora M. Hammond
- Department of Physical Medicine and Rehabilitation, Indiana University School of Medicine, Indianapolis
| | - Sergiu Abramovici
- Department of Neurology, Indiana University School of Medicine, Indianapolis
| | - James Castellano
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Niravkumar Barot
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
9
|
Pease M, Gupta K, Moshé SL, Correa DJ, Galanopoulou AS, Okonkwo DO, Gonzalez-Martinez J, Shutter L, Diaz-Arrastia R, Castellano JF. Insights into epileptogenesis from post-traumatic epilepsy. Nat Rev Neurol 2024; 20:298-312. [PMID: 38570704 DOI: 10.1038/s41582-024-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Post-traumatic epilepsy (PTE) accounts for 5% of all epilepsies. The incidence of PTE after traumatic brain injury (TBI) depends on the severity of injury, approaching one in three in groups with the most severe injuries. The repeated seizures that characterize PTE impair neurological recovery and increase the risk of poor outcomes after TBI. Given this high risk of recurrent seizures and the relatively short latency period for their development after injury, PTE serves as a model disease to understand human epileptogenesis and trial novel anti-epileptogenic therapies. Epileptogenesis is the process whereby previously normal brain tissue becomes prone to recurrent abnormal electrical activity, ultimately resulting in seizures. In this Review, we describe the clinical course of PTE and highlight promising research into epileptogenesis and treatment using animal models of PTE. Clinical, imaging, EEG and fluid biomarkers are being developed to aid the identification of patients at high risk of PTE who might benefit from anti-epileptogenic therapies. Studies in preclinical models of PTE have identified tractable pathways and novel therapeutic strategies that can potentially prevent epilepsy, which remain to be validated in humans. In addition to improving outcomes after TBI, advances in PTE research are likely to provide therapeutic insights that are relevant to all epilepsies.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurosurgery, Indiana University, Bloomington, IN, USA.
| | - Kunal Gupta
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Solomon L Moshé
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
- Department of Paediatrics, Albert Einstein College of Medicine, New York, NY, USA
| | - Daniel J Correa
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Aristea S Galanopoulou
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lori Shutter
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | |
Collapse
|
10
|
Græsholt-Knudsen T, Rask CU, Lucas S, Bech BH. Exploratory assessment of parental physical disease categories as predictors of documented physical child abuse. Eur J Pediatr 2024; 183:663-675. [PMID: 37955746 PMCID: PMC10912441 DOI: 10.1007/s00431-023-05317-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Improved prediction of physical child abuse could aid in developing preventive measures. Parental physical disease has been tested previously as a predictor of documented physical child abuse but in broad categories and with differing results. No prior studies have tested clinically recognizable categories of parental disease in a high-powered dataset. Using Danish registries, data on children and their parents from the years 1997-2018 were used to explore several parental physical disease categories' associations with documented physical child abuse. For each disease category, survival analysis using pseudovalues was applied. When a parent of a child was diagnosed or received medication that qualified for a category, this family and five comparison families not in this disease category were included, creating separate cohorts for each category of disease. Multiple analyses used samples drawn from 2,705,770 children. Estimates were produced for 32 categories of physical diseases. Using Bonferroni-corrected confidence intervals (CIc), ischemic heart disease showed a relative risk (RR) of 1.44 (CIc 1.13-1.84); peripheral artery occlusive disease, RR 1.39 (CIc 1.01-1.90); stroke, RR 1.19 (1.01-1.41); chronic pulmonary disease, RR 1.33 (CIc 1.18-1.51); ulcer/chronic gastritis, RR 1.27 (CIc 1.08-1.49); painful condition, 1.17 (CIc 1.00-1.37); epilepsy, RR 1.24 (CIc 1.00-1.52); and unspecific somatic symptoms, RR 1.37 (CIc 1.21-1.55). Unspecific somatic symptoms were present in 71.87% of families at some point during the study period. CONCLUSION Most parental physical disease categories did not show statistically significant associations, but some showed predictive ability. Further research is needed to explore preventive potential. WHAT IS KNOWN • Few and broad categories of parental physical disease have been examined as risk factors for severe physical child abuse; no prior study has used several categories as predictors. WHAT IS NEW • Unspecific symptoms, ischemic heart disease, peripheral artery occlusive disease, stroke, chronic pulmonary disease, stomach ulcer/chronic gastritis, painful condition, and epilepsy all showed to be potential predictors, with unspecific symptoms being the most prevalent.
Collapse
Affiliation(s)
- Troels Græsholt-Knudsen
- Research Unit for Mental Public Health, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus C, Denmark.
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Charlotte Ulrikka Rask
- Department of Child and Adolescent Psychiatry, Aarhus University Hospital Psychiatry, Palle Juul Jensens Boulevard 175, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Olof Palmes Allé 43, 8200, Aarhus N, Denmark
| | - Steven Lucas
- Department of Women's and Children's Health, Uppsala University, Akademiska Sjukhuset, 751 85, Uppsala, Sweden
| | - Bodil Hammer Bech
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000, Aarhus C, Denmark
| |
Collapse
|
11
|
Baye ND, Baye FD, Teshome AA, Ayenew AA, Mulu AT, Abebe EC, Muche ZT. Incidence and predictors of early posttraumatic seizures among patients with moderate or severe traumatic brain injury in Northwest Ethiopia: an institution-based prospective study. BMC Neurol 2024; 24:41. [PMID: 38267853 PMCID: PMC10807119 DOI: 10.1186/s12883-024-03536-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Early posttraumatic seizure (PTS) is a well-known complication of traumatic brain injury (TBI) that can induce the development of secondary brain injuries, including increased intracranial pressure, brain death, and metabolic crisis which may result in worse outcomes. It is also a well-recognized risk factor for the development of late post-traumatic seizure and epilepsy. This study was aimed to assess the incidence and predictors of PTS among patients with moderate or severe TBI admitted to Debre Tabor Comprehensive Specialized Hospital, Northwest Ethiopia. METHODS AND SETTING An institutional-based prospective follow-up study was conducted on 402 patients with TBI admitted to the neurologic unit from June 1, 2022 to January 30, 2023. A systematic sampling technique was employed. The incidence rate of occurrence of early PTS was calculated. Both bivariable and multivariable Cox proportional hazard regression was performed. The strength of the association was measured using adjusted hazard ratios with a 95% confidence interval and p-values < 0.05. RESULTS The incidence rate of early PTS was 2.7 per 100 person-days observation. Early PTS was observed in 17.7% of TBI patients. Age 75 and above (AHR = 2.85, 95%CI: 1.58-5.39), severe TBI (AHR = 2.06, 95%CI: 1.03-3.71), epidural hematoma (AHR = 2.4, 95% CI: 1.28-4.57), brain contusion (AHR = 2.6, 95%CI: 1.07-4.09), surgical intervention (AHR = 1.7, 95%CI: 1.03-3.82), posttraumatic amnesia (AHR = 1.99, 95%CI: 1.08-3.48), history of comorbidities (AHR = 1.56, 95%CI: 1.08-3.86), and history of alcohol abuse (AHR = 3.1, 95%CI: 1.89-5.23) were potential predictors of early PTS. CONCLUSION The incidence of early PTS was high. Since, early PTS can worsen secondary brain damage, knowing the predictors helps to provide an effective management plan for patients likely to develop early PTS and improve their outcome.
Collapse
Affiliation(s)
- Nega Dagnew Baye
- Department of Biomedical Sciences, College of Health Sciences, Debre Tabor University, P.O. Box:272, Debretabor, Ethiopia.
| | - Fikadie Dagnew Baye
- Department of Pediatrics and Child Health, College of Health Sciences, Debre Tabor University, Debretabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Biomedical Sciences, College of Health Sciences, Debre Tabor University, P.O. Box:272, Debretabor, Ethiopia
| | - Atalo Agimas Ayenew
- Department of Biomedical Sciences, College of Health Sciences, Debre Tabor University, P.O. Box:272, Debretabor, Ethiopia
| | - Anmut Tilahun Mulu
- Department of Biomedical Sciences, College of Health Sciences, Debre Tabor University, P.O. Box:272, Debretabor, Ethiopia
| | - Endeshaw Chekol Abebe
- Department of Biomedical Sciences, College of Health Sciences, Debre Tabor University, P.O. Box:272, Debretabor, Ethiopia
| | - Zelalem Tilahun Muche
- Department of Biomedical Sciences, College of Health Sciences, Debre Tabor University, P.O. Box:272, Debretabor, Ethiopia
| |
Collapse
|
12
|
Locskai LF, Alyenbaawi H, Allison WT. Antiepileptic Drugs as Potential Dementia Prophylactics Following Traumatic Brain Injury. Annu Rev Pharmacol Toxicol 2024; 64:577-598. [PMID: 37788493 DOI: 10.1146/annurev-pharmtox-051921-013930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Seizures and other forms of neurovolatility are emerging as druggable prodromal mechanisms that link traumatic brain injury (TBI) to the progression of later dementias. TBI neurotrauma has both acute and long-term impacts on health, and TBI is a leading risk factor for dementias, including chronic traumatic encephalopathy and Alzheimer's disease. Treatment of TBI already considers acute management of posttraumatic seizures and epilepsy, and impressive efforts have optimized regimens of antiepileptic drugs (AEDs) toward that goal. Here we consider that expanding these management strategies could determine which AED regimens best prevent dementia progression in TBI patients. Challenges with this prophylactic strategy include the potential consequences of prolonged AED treatment and that a large subset of patients are refractory to available AEDs. Addressing these challenges is warranted because the management of seizure activity following TBI offers a rare opportunity to prevent the onset or progression of devastating dementias.
Collapse
Affiliation(s)
- Laszlo F Locskai
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
| | - Hadeel Alyenbaawi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - W Ted Allison
- Centre for Prions and Protein Folding Diseases and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada;
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
13
|
Vespa P. Seizures After Acute Subdural Hemorrhage: Call for More Monitoring. Crit Care Med 2023; 51:1839-1840. [PMID: 37971343 DOI: 10.1097/ccm.0000000000006047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Affiliation(s)
- Paul Vespa
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine, UCLA, Los Angeles, CA
| |
Collapse
|
14
|
Fawcett J, Davis S, Manford M. Further advances in epilepsy. J Neurol 2023; 270:5655-5670. [PMID: 37458794 DOI: 10.1007/s00415-023-11860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 10/15/2023]
Abstract
In 2017, one of us reviewed advances in epilepsy (Manford in J Neurol 264:1811-1824, 2017). The current paper brings that review up to date and gives a slight change in emphasis. Once again, the story is of evolution rather than revolution. In recognition that most of our current medications act on neurotransmitters or ion channels, and not on the underlying changes in connectivity and pathways, they have been renamed as antiseizure (ASM) medications rather than antiepileptic drugs. Cenobamate is the one newly licensed medication for broader use in focal epilepsy but there have been a number of developments for specific disorders. We review new players and look forward to new developments in the light of evolving underlying science. We look at teratogenicity; old villains and new concerns in which clinicians play a vital role in explaining and balancing the risks. Medical treatment of status epilepticus, long without evidence, has benefitted from high-quality trials to inform practice; like buses, several arriving at once. Surgical treatment continues to be refined with improvements in the pre-surgical evaluation of patients, especially with new imaging techniques. Alternatives including stereotactic radiotherapy have received further focus and targets for palliative stimulation techniques have grown in number. Individuals' autonomy and quality of life continue to be the subject of research with refinement of what clinicians can do to help persons with epilepsy (PWE) achieve control. This includes seizure management but extends to broader considerations of human empowerment, needs and desires, which may be aided by emerging technologies such as seizure detection devices. The role of specialist nurses in improving that quality has been reinforced by specific endorsement from the International League against Epilepsy (ILAE).
Collapse
Affiliation(s)
- Joanna Fawcett
- Department of Neurology, Royal United Hospital, Bath, UK
| | - Sarah Davis
- Department of Neurology, Royal United Hospital, Bath, UK
| | - Mark Manford
- Department of Neurology, Royal United Hospital, Bath, UK.
| |
Collapse
|
15
|
Vasilieva AA, Timechko EE, Lysova KD, Paramonova AI, Yakimov AM, Kantimirova EA, Dmitrenko DV. MicroRNAs as Potential Biomarkers of Post-Traumatic Epileptogenesis: A Systematic Review. Int J Mol Sci 2023; 24:15366. [PMID: 37895044 PMCID: PMC10607802 DOI: 10.3390/ijms242015366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Structural or post-traumatic epilepsy often develops after brain tissue damage caused by traumatic brain injury, stroke, infectious diseases of the brain, etc. Most often, between the initiating event and epilepsy, there is a period without seizures-a latent period. At this time, the process of restructuring of neural networks begins, leading to the formation of epileptiform activity, called epileptogenesis. The prediction of the development of the epileptogenic process is currently an urgent and difficult task. MicroRNAs are inexpensive and minimally invasive biomarkers of biological and pathological processes. The aim of this study is to evaluate the predictive ability of microRNAs to detect the risk of epileptogenesis. In this study, we conducted a systematic search on the MDPI, PubMed, ScienceDirect, and Web of Science platforms. We analyzed publications that studied the aberrant expression of circulating microRNAs in epilepsy, traumatic brain injury, and ischemic stroke in order to search for microRNAs-potential biomarkers for predicting epileptogenesis. Thus, 31 manuscripts examining biomarkers of epilepsy, 19 manuscripts examining biomarkers of traumatic brain injury, and 48 manuscripts examining biomarkers of ischemic stroke based on circulating miRNAs were analyzed. Three miRNAs were studied: miR-21, miR-181a, and miR-155. The findings showed that miR-21 and miR-155 are associated with cell proliferation and apoptosis, and miR-181a is associated with protein modifications. These miRNAs are not strictly specific, but they are involved in processes that may be indirectly associated with epileptogenesis. Also, these microRNAs may be of interest when they are studied in a cohort with each other and with other microRNAs. To further study the microRNA-based biomarkers of epileptogenesis, many factors must be taken into account: the time of sampling, the type of biological fluid, and other nuances. Currently, there is a need for more in-depth and prolonged studies of epileptogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Diana V. Dmitrenko
- Department of Medical Genetics and Clinical Neurophysiology of Postgraduate Education, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (A.A.V.); (E.E.T.); (K.D.L.); (A.I.P.)
| |
Collapse
|
16
|
Kajevu N, Lipponen A, Andrade P, Bañuelos I, Puhakka N, Hämäläinen E, Natunen T, Hiltunen M, Pitkänen A. Treatment of Status Epilepticus after Traumatic Brain Injury Using an Antiseizure Drug Combined with a Tissue Recovery Enhancer Revealed by Systems Biology. Int J Mol Sci 2023; 24:14049. [PMID: 37762352 PMCID: PMC10531083 DOI: 10.3390/ijms241814049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
We tested a hypothesis that in silico-discovered compounds targeting traumatic brain injury (TBI)-induced transcriptomics dysregulations will mitigate TBI-induced molecular pathology and augment the effect of co-administered antiseizure treatment, thereby alleviating functional impairment. In silico bioinformatic analysis revealed five compounds substantially affecting TBI-induced transcriptomics regulation, including calpain inhibitor, chlorpromazine, geldanamycin, tranylcypromine, and trichostatin A (TSA). In vitro exposure of neuronal-BV2-microglial co-cultures to compounds revealed that TSA had the best overall neuroprotective, antioxidative, and anti-inflammatory effects. In vivo assessment in a rat TBI model revealed that TSA as a monotherapy (1 mg/kg/d) or in combination with the antiseizure drug levetiracetam (LEV 150 mg/kg/d) mildly mitigated the increase in plasma levels of the neurofilament subunit pNF-H and cortical lesion area. The percentage of rats with seizures during 0-72 h post-injury was reduced in the following order: TBI-vehicle 80%, TBI-TSA (1 mg/kg) 86%, TBI-LEV (54 mg/kg) 50%, TBI-LEV (150 mg/kg) 40% (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 30% (p < 0.05). Cumulative seizure duration was reduced in the following order: TBI-vehicle 727 ± 688 s, TBI-TSA 898 ± 937 s, TBI-LEV (54 mg/kg) 358 ± 715 s, TBI-LEV (150 mg/kg) 42 ± 64 (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 109 ± 282 s (p < 0.05). This first preclinical intervention study on post-TBI acute seizures shows that a combination therapy with the tissue recovery enhancer TSA and LEV was safe but exhibited no clear benefit over LEV monotherapy on antiseizure efficacy. A longer follow-up is needed to confirm the possible beneficial effects of LEV monotherapy and combination therapy with TSA on chronic post-TBI structural and functional outcomes, including epileptogenesis.
Collapse
Affiliation(s)
- Natallie Kajevu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, 70701 Kuopio, Finland
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ivette Bañuelos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Elina Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
17
|
Fang M, Liu W, Tuo J, Liu M, Li F, Zhang L, Yu C, Xu Z. Advances in understanding the pathogenesis of post-traumatic epilepsy: a literature review. Front Neurol 2023; 14:1141434. [PMID: 37638179 PMCID: PMC10449544 DOI: 10.3389/fneur.2023.1141434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Severe head trauma can lead to seizures. Persistent epileptic seizures and their progression are associated with the severity of trauma. Although case reports have revealed that early use of anti-seizure drugs after trauma can prevent epilepsy, clinical case-control studies have failed to confirm this phenomenon. To date, many brain trauma models have been used to study the correlation between post-traumatic seizures and related changes in neural circuit function. According to these studies, neuronal and glial responses are activated immediately after brain trauma, usually leading to significant cell loss in injured brain regions. Over time, long-term changes in neural circuit tissues, especially in the neocortex and hippocampus, lead to an imbalance between excitatory and inhibitory neurotransmission and an increased risk of spontaneous seizures. These changes include alterations in inhibitory interneurons and the formation of new, over-recurrent excitatory synaptic connections. In this study, we review the progress of research related to post-traumatic epilepsy to better understand the mechanisms underlying the initiation and development of post-traumatic seizures and to provide theoretical references for the clinical treatment of post-traumatic seizures.
Collapse
Affiliation(s)
- Mingzhu Fang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Sichuan Provincial People’s Hospital Medical Group Chuantou Xichang Hospital, Xichang, China
| | - Wanyu Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jinmei Tuo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Mei Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Fangjing Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lijia Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
18
|
Pease M, Elmer J, Shahabadi AZ, Mallela AN, Ruiz-Rodriguez JF, Sexton D, Barot N, Gonzalez-Martinez JA, Shutter L, Okonkwo DO, Castellano JF. Predicting posttraumatic epilepsy using admission electroencephalography after severe traumatic brain injury. Epilepsia 2023; 64:1842-1852. [PMID: 37073101 PMCID: PMC11293840 DOI: 10.1111/epi.17622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/20/2023]
Abstract
OBJECTIVE Posttraumatic epilepsy (PTE) develops in as many as one third of severe traumatic brain injury (TBI) patients, often years after injury. Analysis of early electroencephalographic (EEG) features, by both standardized visual interpretation (viEEG) and quantitative EEG (qEEG) analysis, may aid early identification of patients at high risk for PTE. METHODS We performed a case-control study using a prospective database of severe TBI patients treated at a single center from 2011 to 2018. We identified patients who survived 2 years postinjury and matched patients with PTE to those without using age and admission Glasgow Coma Scale score. A neuropsychologist recorded outcomes at 1 year using the Expanded Glasgow Outcomes Scale (GOSE). All patients underwent continuous EEG for 3-5 days. A board-certified epileptologist, blinded to outcomes, described viEEG features using standardized descriptions. We extracted 14 qEEG features from an early 5-min epoch, described them using qualitative statistics, then developed two multivariable models to predict long-term risk of PTE (random forest and logistic regression). RESULTS We identified 27 patients with and 35 without PTE. GOSE scores were similar at 1 year (p = .93). The median time to onset of PTE was 7.2 months posttrauma (interquartile range = 2.2-22.2 months). None of the viEEG features was different between the groups. On qEEG, the PTE cohort had higher spectral power in the delta frequencies, more power variance in the delta and theta frequencies, and higher peak envelope (all p < .01). Using random forest, combining qEEG and clinical features produced an area under the curve of .76. Using logistic regression, increases in the delta:theta power ratio (odds ratio [OR] = 1.3, p < .01) and peak envelope (OR = 1.1, p < .01) predicted risk for PTE. SIGNIFICANCE In a cohort of severe TBI patients, acute phase EEG features may predict PTE. Predictive models, as applied to this study, may help identify patients at high risk for PTE, assist early clinical management, and guide patient selection for clinical trials.
Collapse
Affiliation(s)
- Matthew Pease
- Department of Neurological Surgery, University of Pittsburgh Medical Center Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Jonathan Elmer
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ameneh Zare Shahabadi
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Arka N. Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center Healthcare System, Pittsburgh, Pennsylvania, USA
| | | | - Daniel Sexton
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Niravkumar Barot
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jorge A. Gonzalez-Martinez
- Department of Neurological Surgery, University of Pittsburgh Medical Center Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Lori Shutter
- Department of Neurological Surgery, University of Pittsburgh Medical Center Healthcare System, Pittsburgh, Pennsylvania, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Critical Care, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - David O. Okonkwo
- Department of Neurological Surgery, University of Pittsburgh Medical Center Healthcare System, Pittsburgh, Pennsylvania, USA
| | - James F. Castellano
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Saletti PG, Mowrey WB, Liu W, Li Q, McCullough J, Aniceto R, Lin I, Eklund M, Casillas‐Espinosa PM, Ali I, Santana‐Gomez C, Coles L, Shultz SR, Jones N, Staba R, O'Brien TJ, Moshé SL, Agoston DV, Galanopoulou AS. Early preclinical plasma protein biomarkers of brain trauma are influenced by early seizures and levetiracetam. Epilepsia Open 2023; 8:586-608. [PMID: 37026764 PMCID: PMC10235584 DOI: 10.1002/epi4.12738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
OBJECTIVE We used the lateral fluid percussion injury (LFPI) model of moderate-to-severe traumatic brain injury (TBI) to identify early plasma biomarkers predicting injury, early post-traumatic seizures or neuromotor functional recovery (neuroscores), considering the effect of levetiracetam, which is commonly given after severe TBI. METHODS Adult male Sprague-Dawley rats underwent left parietal LFPI, received levetiracetam (200 mg/kg bolus, 200 mg/kg/day subcutaneously for 7 days [7d]) or vehicle post-LFPI, and were continuously video-EEG recorded (n = 14/group). Sham (craniotomy only, n = 6), and naïve controls (n = 10) were also used. Neuroscores and plasma collection were done at 2d or 7d post-LFPI or equivalent timepoints in sham/naïve. Plasma protein biomarker levels were determined by reverse phase protein microarray and classified according to injury severity (LFPI vs. sham/control), levetiracetam treatment, early seizures, and 2d-to-7d neuroscore recovery, using machine learning. RESULTS Low 2d plasma levels of Thr231 -phosphorylated tau protein (pTAU-Thr231 ) and S100B combined (ROC AUC = 0.7790) predicted prior craniotomy surgery (diagnostic biomarker). Levetiracetam-treated LFPI rats were differentiated from vehicle treated by the 2d-HMGB1, 2d-pTAU-Thr231 , and 2d-UCHL1 plasma levels combined (ROC AUC = 0.9394) (pharmacodynamic biomarker). Levetiracetam prevented the seizure effects on two biomarkers that predicted early seizures only among vehicle-treated LFPI rats: pTAU-Thr231 (ROC AUC = 1) and UCHL1 (ROC AUC = 0.8333) (prognostic biomarker of early seizures among vehicle-treated LFPI rats). Levetiracetam-resistant early seizures were predicted by high 2d-IFNγ plasma levels (ROC AUC = 0.8750) (response biomarker). 2d-to-7d neuroscore recovery was best predicted by higher 2d-S100B, lower 2d-HMGB1, and 2d-to-7d increase in HMGB1 or decrease in TNF (P < 0.05) (prognostic biomarkers). SIGNIFICANCE Antiseizure medications and early seizures need to be considered in the interpretation of early post-traumatic biomarkers.
Collapse
Affiliation(s)
- Patricia G. Saletti
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Wenzhu B. Mowrey
- Department of Epidemiology & Population HealthAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Wei Liu
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Qianyun Li
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Jesse McCullough
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Roxanne Aniceto
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - I‐Hsuan Lin
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Michael Eklund
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Pablo M. Casillas‐Espinosa
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | - Idrish Ali
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | | | - Lisa Coles
- University of Minnesota Twin CitiesMinneapolisMinnesotaUSA
| | - Sandy R. Shultz
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | - Nigel Jones
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | | | - Terence J. O'Brien
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
- Department of MedicineThe University of MelbourneParkvilleVictoriaAustralia
- Department of NeurologyAlfred HealthMelbourneVictoriaAustralia
| | - Solomon L. Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
- Department of PediatricsAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Denes V. Agoston
- Department of Anatomy, Physiology and GeneticsUniformed Services UniversityBethesdaMarylandUSA
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental EpilepsyAlbert Einstein College of MedicineBronxNew YorkUSA
- Isabelle Rapin Division of Child NeurologyAlbert Einstein College of MedicineBronxNew YorkUSA
- Dominick P Purpura Department of NeuroscienceAlbert Einstein College of MedicineBronxNew YorkUSA
| | | |
Collapse
|
20
|
Pease M, Mallela AN, Elmer J, Okonkwo DO, Shutter L, Barot N, Gonzalez-Martinez J, Castellano JF. Association of Posttraumatic Epilepsy With Long-term Functional Outcomes in Individuals With Severe Traumatic Brain Injury. Neurology 2023; 100:e1967-e1975. [PMID: 36948595 PMCID: PMC10186228 DOI: 10.1212/wnl.0000000000207183] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/27/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Nearly one-third of patients with severe traumatic brain injury (TBI) develop posttraumatic epilepsy (PTE). The relationship between PTE and long-term outcomes is unknown. We tested whether, after controlling for injury severity and age, PTE is associated with worse functional outcomes after severe TBI. METHODS We performed a retrospective analysis of a prospective database of patients with severe TBI treated from 2002 through 2018 at a single level 1 trauma center. Glasgow Outcome Scale (GOS) was collected at 3, 6, 12, and 24 months postinjury. We used repeated-measures logistic regression predicting GOS, dichotomized as favorable (GOS 4-5) and unfavorable (GOS 1-3), and a separate logistic model predicting mortality at 2 years. We used predictors as defined by the International Mission for Prognosis and Analysis of Clinical Trials in TBI (IMPACT) base model (i.e., age, pupil reactivity, and GCS motor score), PTE status, and time. RESULTS Of 392 patients who survived to discharge, 98 (25%) developed PTE. The proportion of patients with favorable outcomes at 3 months did not differ between those with and without PTE (23% [95% Confidence Interval [CI]: 15%-34%] vs 32% [95% CI: 27%-39%]; p = 0.11) but was significantly lower at 6 (33% [95% CI: 23%-44%] vs 46%; [95% CI: 39%-52%] p = 0.03), 12 (41% [95% CI: 30%-52%] vs 54% [95% CI: 47%-61%]; p = 0.03), and 24 months (40% [95% CI: 47%-61%] vs 55% [95% CI: 47%-63%]; p = 0.04). This was driven by higher rates of GOS 2 (vegetative) and 3 (severe disability) outcomes in the PTE group. By 2 years, the incidence of GOS 2 or 3 was double in the PTE group (46% [95% CI: 34%-59%]) compared with that in the non-PTE group (21% [95% CI: 16%-28%]; p < 0.001), while mortality was similar (14% [95% CI: 7%-25%] vs 23% [95% CI: 17%-30%]; p = 0.28). In multivariate analysis, patients with PTE had lower odds of favorable outcome (odds radio [OR] 0.1; 95% CI: 0.1-0.4; p < 0.001), but not mortality (OR 0.9; 95% CI: 0.1-1.9; p = 0.46). DISCUSSION Posttraumatic epilepsy is associated with impaired recovery from severe TBI and poor functional outcomes. Early screening and treatment of PTE may improve patient outcomes.
Collapse
Affiliation(s)
- Matthew Pease
- From the Departments of Neurosurgery (M.P., A.N., D.O.O., J.G-M.), Neurology (J.E., L.S., N.B., J.F.C.), Critical Care (J.E., L.S.), and Emergency Medicine (J.E.), University of Pittsburgh Medical Center, PA.
| | - Arka N Mallela
- From the Departments of Neurosurgery (M.P., A.N., D.O.O., J.G-M.), Neurology (J.E., L.S., N.B., J.F.C.), Critical Care (J.E., L.S.), and Emergency Medicine (J.E.), University of Pittsburgh Medical Center, PA
| | - Jonathan Elmer
- From the Departments of Neurosurgery (M.P., A.N., D.O.O., J.G-M.), Neurology (J.E., L.S., N.B., J.F.C.), Critical Care (J.E., L.S.), and Emergency Medicine (J.E.), University of Pittsburgh Medical Center, PA
| | - David O Okonkwo
- From the Departments of Neurosurgery (M.P., A.N., D.O.O., J.G-M.), Neurology (J.E., L.S., N.B., J.F.C.), Critical Care (J.E., L.S.), and Emergency Medicine (J.E.), University of Pittsburgh Medical Center, PA
| | - Lori Shutter
- From the Departments of Neurosurgery (M.P., A.N., D.O.O., J.G-M.), Neurology (J.E., L.S., N.B., J.F.C.), Critical Care (J.E., L.S.), and Emergency Medicine (J.E.), University of Pittsburgh Medical Center, PA
| | - Niravkumar Barot
- From the Departments of Neurosurgery (M.P., A.N., D.O.O., J.G-M.), Neurology (J.E., L.S., N.B., J.F.C.), Critical Care (J.E., L.S.), and Emergency Medicine (J.E.), University of Pittsburgh Medical Center, PA
| | - Jorge Gonzalez-Martinez
- From the Departments of Neurosurgery (M.P., A.N., D.O.O., J.G-M.), Neurology (J.E., L.S., N.B., J.F.C.), Critical Care (J.E., L.S.), and Emergency Medicine (J.E.), University of Pittsburgh Medical Center, PA
| | - James F Castellano
- From the Departments of Neurosurgery (M.P., A.N., D.O.O., J.G-M.), Neurology (J.E., L.S., N.B., J.F.C.), Critical Care (J.E., L.S.), and Emergency Medicine (J.E.), University of Pittsburgh Medical Center, PA
| |
Collapse
|
21
|
Bennett A, Garner R, Morris MD, La Rocca M, Barisano G, Cua R, Loon J, Alba C, Carbone P, Gao S, Pantoja A, Khan A, Nouaili N, Vespa P, Toga AW, Duncan D. Manual lesion segmentations for traumatic brain injury characterization. FRONTIERS IN NEUROIMAGING 2023; 2:1068591. [PMID: 37554636 PMCID: PMC10406209 DOI: 10.3389/fnimg.2023.1068591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/17/2023] [Indexed: 08/10/2023]
Abstract
Traumatic brain injury (TBI) often results in heterogenous lesions that can be visualized through various neuroimaging techniques, such as magnetic resonance imaging (MRI). However, injury burden varies greatly between patients and structural deformations often impact usability of available analytic algorithms. Therefore, it is difficult to segment lesions automatically and accurately in TBI cohorts. Mislabeled lesions will ultimately lead to inaccurate findings regarding imaging biomarkers. Therefore, manual segmentation is currently considered the gold standard as this produces more accurate masks than existing automated algorithms. These masks can provide important lesion phenotype data including location, volume, and intensity, among others. There has been a recent push to investigate the correlation between these characteristics and the onset of post traumatic epilepsy (PTE), a disabling consequence of TBI. One motivation of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is to identify reliable imaging biomarkers of PTE. Here, we report the protocol and importance of our manual segmentation process in patients with moderate-severe TBI enrolled in EpiBioS4Rx. Through these methods, we have generated a dataset of 127 validated lesion segmentation masks for TBI patients. These ground-truths can be used for robust PTE biomarker analyses, including optimization of multimodal MRI analysis via inclusion of lesioned tissue labels. Moreover, our protocol allows for analysis of the refinement process. Though tedious, the methods reported in this work are necessary to create reliable data for effective training of future machine-learning based lesion segmentation methods in TBI patients and subsequent PTE analyses.
Collapse
Affiliation(s)
- Alexis Bennett
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Rachael Garner
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael D. Morris
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Marianna La Rocca
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Dipartimento Interateneo di Fisica “M. Merlin”, Università degli studi di Bari “A. Moro”, Bari, Italy
| | - Giuseppe Barisano
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ruskin Cua
- USC Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jordan Loon
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Celina Alba
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Patrick Carbone
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Shawn Gao
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Asenat Pantoja
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Azrin Khan
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Noor Nouaili
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Paul Vespa
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Arthur W. Toga
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Dominique Duncan
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
22
|
Chen Y, Li S, Ge W, Jing J, Chen HY, Doherty D, Herman A, Kaleem S, Ding K, Osman G, Swisher CB, Smith C, Maciel CB, Alkhachroum A, Lee JW, Dhakar MB, Gilmore EJ, Sivaraju A, Hirsch LJ, Omay SB, Blumenfeld H, Sheth KN, Struck AF, Edlow BL, Westover MB, Kim JA. Quantitative epileptiform burden and electroencephalography background features predict post-traumatic epilepsy. J Neurol Neurosurg Psychiatry 2023; 94:245-249. [PMID: 36241423 PMCID: PMC9931627 DOI: 10.1136/jnnp-2022-329542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Post-traumatic epilepsy (PTE) is a severe complication of traumatic brain injury (TBI). Electroencephalography aids early post-traumatic seizure diagnosis, but its optimal utility for PTE prediction remains unknown. We aim to evaluate the contribution of quantitative electroencephalograms to predict first-year PTE (PTE1). METHODS We performed a multicentre, retrospective case-control study of patients with TBI. 63 PTE1 patients were matched with 63 non-PTE1 patients by admission Glasgow Coma Scale score, age and sex. We evaluated the association of quantitative electroencephalography features with PTE1 using logistic regressions and examined their predictive value relative to TBI mechanism and CT abnormalities. RESULTS In the matched cohort (n=126), greater epileptiform burden, suppression burden and beta variability were associated with 4.6 times higher PTE1 risk based on multivariable logistic regression analysis (area under the receiver operating characteristic curve, AUC (95% CI) 0.69 (0.60 to 0.78)). Among 116 (92%) patients with available CT reports, adding quantitative electroencephalography features to a combined mechanism and CT model improved performance (AUC (95% CI), 0.71 (0.61 to 0.80) vs 0.61 (0.51 to 0.72)). CONCLUSIONS Epileptiform and spectral characteristics enhance covariates identified on TBI admission and CT abnormalities in PTE1 prediction. Future trials should incorporate quantitative electroencephalography features to validate this enhancement of PTE risk stratification models.
Collapse
Affiliation(s)
- Yilun Chen
- Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Songlu Li
- Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wendong Ge
- Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jin Jing
- Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hsin Yi Chen
- Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Daniel Doherty
- Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Alison Herman
- Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Safa Kaleem
- Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kan Ding
- Neurology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | | - Christa B Swisher
- Neurology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christine Smith
- Neurology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Carolina B Maciel
- Neurology, Yale School of Medicine, New Haven, Connecticut, USA
- Neurology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ayham Alkhachroum
- Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Neurology, Jackson Memorial Hospital, Miami, Florida, USA
| | - Jong Woo Lee
- Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Monica B Dhakar
- Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Emily J Gilmore
- Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | - Sacit B Omay
- Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hal Blumenfeld
- Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kevin N Sheth
- Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aaron F Struck
- Neurology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
- Neurology, William S Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Brian L Edlow
- Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Jennifer A Kim
- Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Oey NE, Tan PT, Pande SD. Young Age, Liver Dysfunction, and Neurostimulant Use as Independent Risk Factors for Post-Traumatic Seizures: A Multiracial Single-Center Experience. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2301. [PMID: 36767668 PMCID: PMC9915627 DOI: 10.3390/ijerph20032301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
We aimed to determine the potentially modifiable risk factors that are predictive of post-traumatic brain injury seizures in relation to the severity of initial injury, neurosurgical interventions, neurostimulant use, and comorbidities. This retrospective study was conducted on traumatic brain injury (TBI) patients admitted to a single center from March 2008 to October 2017. We recruited 151 patients from a multiracial background with TBI, of which the data from 141 patients were analyzed, as 10 were excluded due to incomplete follow-up records or a past history of seizures. Of the remaining 141 patients, 33 (24.4%) patients developed seizures during long-term follow up post-TBI. Young age, presence of cerebral contusion, Indian race, low Glasgow Coma Scale (GCS) scores on admission, and use of neurostimulant medications were associated with increased risk of seizures. In conclusion, due to increased risk of seizures, younger TBI patients, as well as patients with low GCS on admission, cerebral contusions on brain imaging, and those who received neurostimulants or neurosurgical interventions should be monitored for post-TBI seizures. While it is possible that these findings may be explained by the differing mechanisms of injury in younger vs. older patients, the finding that patients on neurostimulants had an increased risk of seizures will need to be investigated in future studies.
Collapse
Affiliation(s)
| | - Pei Ting Tan
- Department of Rehabilitation Medicine, Changi General Hospital, Singapore 529889, Singapore
| | | |
Collapse
|
24
|
Baker TL, Uboldi AD, Tonkin CJ, Wright DK, Vo A, Wilson T, Mychasiuk R, McDonald SJ, Semple BD, Sun M, Shultz SR. Pre-existing Toxoplasma gondii infection increases susceptibility to pentylenetetrazol-induced seizures independent of traumatic brain injury in mice. Front Mol Neurosci 2023; 15:1079097. [PMID: 36683847 PMCID: PMC9849700 DOI: 10.3389/fnmol.2022.1079097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI), and neuroinflammation is implicated in increased seizure susceptibility and epileptogenesis. However, how common clinical factors, such as infection, may modify neuroinflammation and PTE development has been understudied. The neurotropic parasite, Toxoplasma gondii (T. gondii) incurably infects one-third of the world's population. Thus, many TBI patients have a pre-existing T. gondii infection at the time of injury. T. gondii infection results in chronic low-grade inflammation and altered signaling pathways within the brain, and preliminary clinical evidence suggest that it may be a risk factor for epilepsy. Despite this, no studies have considered how a pre-existing T. gondii infection may alter the development of PTE. Methods This study aimed to provide insight into this knowledge gap by assessing how a pre-existing T. gondii infection alters susceptibility to, and severity of, pentylenetetrazol (PTZ)-induced seizures (i.e., a surrogate marker of epileptogenesis/PTE) at a chronic stage of TBI recovery. We hypothesized that T. gondii will increase the likelihood and severity of seizures following PTZ administration, and that this would occur in the presence of intensified neuroinflammation. To test this, 6-week old male and female C57BL/6 Jax mice were intraperitoneally injected with 50,000 T. gondii tachyzoites or with the PBS vehicle only. At 12-weeks old, mice either received a severe TBI via controlled cortical impact or sham injury. At 18-weeks post-injury, mice were administered 40 mg/kg PTZ and video-recorded for evaluation of seizure susceptibility. Fresh cortical tissue was then collected for gene expression analyses. Results Although no synergistic effects were evident between infection and TBI, chronic T. gondii infection alone had robust effects on the PTZ-seizure response and gene expression of markers related to inflammatory, oxidative stress, and glutamatergic pathways. In addition to this, females were more susceptible to PTZ-induced seizures than males. While TBI did not impact PTZ responses, injury effects were evident at the molecular level. Discussion Our data suggests that a pre-existing T. gondii infection is an important modifier of seizure susceptibility independent of brain injury, and considerable attention should be directed toward delineating the mechanisms underlying this pro-epileptogenic factor.
Collapse
Affiliation(s)
- Tamara L. Baker
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alessandro D. Uboldi
- Division of Infectious Disease and Immune Defense, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Christopher J. Tonkin
- Division of Infectious Disease and Immune Defense, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - David K. Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Anh Vo
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Trevor Wilson
- Monash Health Translation Precinct, Monash University, Melbourne, VIC, Australia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bridgette D. Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Mujun Sun
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia,Health Sciences, Vancouver Island University, Nanaimo, BC, Canada,*Correspondence: Sandy R. Shultz,
| |
Collapse
|
25
|
Rauchman SH, Zubair A, Jacob B, Rauchman D, Pinkhasov A, Placantonakis DG, Reiss AB. Traumatic brain injury: Mechanisms, manifestations, and visual sequelae. Front Neurosci 2023; 17:1090672. [PMID: 36908792 PMCID: PMC9995859 DOI: 10.3389/fnins.2023.1090672] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Traumatic brain injury (TBI) results when external physical forces impact the head with sufficient intensity to cause damage to the brain. TBI can be mild, moderate, or severe and may have long-term consequences including visual difficulties, cognitive deficits, headache, pain, sleep disturbances, and post-traumatic epilepsy. Disruption of the normal functioning of the brain leads to a cascade of effects with molecular and anatomical changes, persistent neuronal hyperexcitation, neuroinflammation, and neuronal loss. Destructive processes that occur at the cellular and molecular level lead to inflammation, oxidative stress, calcium dysregulation, and apoptosis. Vascular damage, ischemia and loss of blood brain barrier integrity contribute to destruction of brain tissue. This review focuses on the cellular damage incited during TBI and the frequently life-altering lasting effects of this destruction on vision, cognition, balance, and sleep. The wide range of visual complaints associated with TBI are addressed and repair processes where there is potential for intervention and neuronal preservation are highlighted.
Collapse
Affiliation(s)
| | - Aarij Zubair
- NYU Long Island School of Medicine, Mineola, NY, United States
| | - Benna Jacob
- NYU Long Island School of Medicine, Mineola, NY, United States
| | - Danielle Rauchman
- Department of Neuroscience, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Aaron Pinkhasov
- NYU Long Island School of Medicine, Mineola, NY, United States
| | | | - Allison B Reiss
- NYU Long Island School of Medicine, Mineola, NY, United States
| |
Collapse
|
26
|
Shultz SR, Shah AD, Huang C, Dill LK, Schittenhelm RB, Morganti-Kossmann MC, Semple BD. Temporal proteomics of human cerebrospinal fluid after severe traumatic brain injury. J Neuroinflammation 2022; 19:291. [PMID: 36482407 PMCID: PMC9730674 DOI: 10.1186/s12974-022-02654-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The pathophysiology of traumatic brain injury (TBI) requires further characterization to fully elucidate changes in molecular pathways. Cerebrospinal fluid (CSF) provides a rich repository of brain-associated proteins. In this retrospective observational study, we implemented high-resolution mass spectrometry to evaluate changes to the CSF proteome after severe TBI. 91 CSF samples were analyzed with mass spectrometry, collected from 16 patients with severe TBI (mean 32 yrs; 81% male) on day 0, 1, 2, 4, 7 and/or 10 post-injury (8-16 samples/timepoint) and compared to CSF obtained from 11 non-injured controls. We quantified 1152 proteins with mass spectrometry, of which approximately 80% were associated with CSF. 1083 proteins were differentially regulated after TBI compared to control samples. The most highly-upregulated proteins at each timepoint included neutrophil elastase, myeloperoxidase, cathepsin G, matrix metalloproteinase-8, and S100 calcium-binding proteins A8, A9 and A12-all proteins involved in neutrophil activation, recruitment, and degranulation. Pathway enrichment analysis confirmed the robust upregulation of proteins associated with innate immune responses. Conversely, downregulated pathways included those involved in nervous system development, and several proteins not previously identified after TBI such as testican-1 and latrophilin-1. We also identified 7 proteins (GM2A, Calsyntenin 1, FAT2, GANAB, Lumican, NPTX1, SFRP2) positively associated with an unfavorable outcome at 6 months post-injury. Together, these findings highlight the robust innate immune response that occurs after severe TBI, supporting future studies to target neutrophil-related processes. In addition, the novel proteins we identified to be differentially regulated by severe TBI warrant further investigation as potential biomarkers of brain damage or therapeutic targets.
Collapse
Affiliation(s)
- Sandy R. Shultz
- grid.1002.30000 0004 1936 7857Department of Neuroscience, Monash University, Melbourne, VIC Australia ,grid.267362.40000 0004 0432 5259Alfred Health, Prahran, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC Australia ,grid.267756.70000 0001 2183 6550Health and Human Services, Vancouver Island University, Nanaimo, Canada
| | - Anup D. Shah
- grid.1002.30000 0004 1936 7857Monash Proteomics and Metabolomics Facility, Monash University, Clayton, VIC Australia ,grid.1002.30000 0004 1936 7857Monash Bioinformatics Platform, Monash University, Clayton, VIC Australia
| | - Cheng Huang
- grid.1002.30000 0004 1936 7857Monash Proteomics and Metabolomics Facility, Monash University, Clayton, VIC Australia
| | - Larissa K. Dill
- grid.1002.30000 0004 1936 7857Department of Neuroscience, Monash University, Melbourne, VIC Australia ,grid.267362.40000 0004 0432 5259Alfred Health, Prahran, VIC Australia ,grid.482226.80000 0004 0437 5686The Perron Institute for Neurological and Translational Science, Nedlands, WA 6009 Australia
| | - Ralf B. Schittenhelm
- grid.1002.30000 0004 1936 7857Monash Proteomics and Metabolomics Facility, Monash University, Clayton, VIC Australia
| | - M. Cristina Morganti-Kossmann
- grid.1002.30000 0004 1936 7857Department of Epidemiology & Preventive Medicine, Monash University, Prahran, VIC Australia ,grid.427785.b0000 0001 0664 3531Department of Child Health, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ USA ,grid.134563.60000 0001 2168 186XUniversity of Arizona College of Medicine, Phoenix, AZ USA
| | - Bridgette D. Semple
- grid.1002.30000 0004 1936 7857Department of Neuroscience, Monash University, Melbourne, VIC Australia ,grid.267362.40000 0004 0432 5259Alfred Health, Prahran, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
27
|
Establishment and validation of PTE prediction model in patients with cerebral contusion. Sci Rep 2022; 12:20574. [PMID: 36446999 PMCID: PMC9708650 DOI: 10.1038/s41598-022-24824-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is an important cause of poor prognosis in patients with cerebral contusions. The primary purpose of this study is to evaluate the high-risk factors of PTE by summarizing and analyzing the baseline data, laboratory examination, and imaging features of patients with a cerebral contusion, and then developing a Nomogram prediction model and validating it. This study included 457 patients diagnosed with cerebral contusion who met the inclusion criteria from November 2016 to November 2019 at the Qinghai Provincial People's Hospital. All patients were assessed for seizure activity seven days after injury. Univariate analysis was used to determine the risk factors for PTE. Significant risk factors in univariate analysis were selected for binary logistic regression analysis. P < 0.05 was statistically significant. Based on the binary logistic regression analysis results, the prediction scoring system of PTE is established by Nomogram, and the line chart model is drawn. Finally, external validation was performed on 457 participants to assess its performance. Univariate and binary logistic regression analyses were performed using SPSS software, and the independent predictors significantly associated with PTE were screened as Contusion site, Chronic alcohol use, Contusion volume, Skull fracture, Subdural hematoma (SDH), Glasgow coma scale (GCS) score, and Non late post-traumatic seizure (Non-LPTS). Based on this, a Nomogram model was developed. The prediction accuracy of our scoring system was C-index = 98.29%. The confidence interval of the C-index was 97.28% ~ 99.30%. Internal validation showed that the calibration plot of this model was close to the ideal line. This study developed and verified a highly accurate Nomogram model, which can be used to individualize PTE prediction in patients with a cerebral contusion. It can identify individuals at high risk of PTE and help us pay attention to prevention in advance. The model has a low cost and is easy to be popularized in the clinic. This model still has some limitations and deficiencies, which need to be verified and improved by future large-sample and multicenter prospective studies.
Collapse
|
28
|
Sødal HF, Storvig G, Tverdal C, Robinson H, Helseth E, Taubøll E. Early post-traumatic seizures in hospitalized patients with traumatic brain injury. Acta Neurol Scand 2022; 146:485-491. [PMID: 35833266 PMCID: PMC9796016 DOI: 10.1111/ane.13670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/06/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Early post-traumatic seizures (EPTS) are a well-known complication of traumatic brain injury (TBI). EPTS increase the risk of secondary brain injury and may cause significant challenges during the period of critical care. Routine use of prophylactic anti-seizure medication is controversial due to conflicting reports on efficacy and risk of adverse effects. The purpose of this study was to expand the understanding of EPTS by examining incidence and risk factors in hospitalized patients with TBI. MATERIAL & METHODS Adult patients with TBI and evidence of intracranial injury admitted to Oslo University Hospital between 2015 and 2019 were identified from the Oslo TBI Registry - Neurosurgery. Demographic and clinical data including occurrence of seizures were retrieved from the registry. The patients did not receive routine seizure prophylaxis. Univariate and multivariable logistic regression analyses were used to investigate risk factors associated with EPTS. RESULTS 103 of 1827 patients (5.6%) had new-onset seizures within the first week after TBI. The following factors were in multivariable analyses associated with EPTS; alcohol abuse (odds ratio [OR] 3.6, 95% CI 2.3-5.7, p < .001), moderate and severe brain injury (OR 2.2, 95% CI 1.3-3.8, p = .004 and OR 2.1, 95% CI 1.2-3.6, p = .012), brain contusion (OR 1.6, 95% CI 1.0-2.4, p = .046) and subdural hematoma (OR 1.6, 95% CI 1.0-2.6, p = .052). CONCLUSION In our material, EPTS occurred in 5.6% of hospital-admitted TBI-patients. Alcohol abuse was the most significant risk factor, followed by moderate and severe brain injury. The results of this study contribute to the discussion about preventive treatment of EPTS in certain risk groups.
Collapse
Affiliation(s)
- Hild Flatmark Sødal
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of NeurologyOslo University HospitalOsloNorway
| | - Gøril Storvig
- Institute of Health and Society, Faculty of MedicineUniversity of OsloOsloNorway,Department of Psychology, Faculty of Social and Educational SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Cathrine Tverdal
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of NeurosurgeryOslo University HospitalOsloNorway
| | | | - Eirik Helseth
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of NeurosurgeryOslo University HospitalOsloNorway
| | - Erik Taubøll
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway,Department of NeurologyOslo University HospitalOsloNorway
| |
Collapse
|
29
|
Pease M, Gonzalez-Martinez J, Puccio A, Nwachuku E, Castellano JF, Okonkwo DO, Elmer J. Risk Factors and Incidence of Epilepsy after Severe Traumatic Brain Injury. Ann Neurol 2022; 92:663-669. [PMID: 35713346 PMCID: PMC9489614 DOI: 10.1002/ana.26443] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022]
Abstract
We determined the incidence of post-traumatic epilepsy after severe traumatic brain injury. Of 392 patients surviving to discharge, cumulative incidence of post-traumatic epilepsy was 25% at 5 years and 32% at 15 years, an increase compared with historical reports. Among patients with one late seizure (>7 days post-trauma), the risk of seizure recurrence was 62% after 1 year and 82% at 10 years. Competing hazards regression identified age, decompressive hemicraniectomy, and intracranial infection as independent predictors of post-traumatic epilepsy. Patients with severe traumatic brain injury and a single late post-traumatic seizure will likely require long-term antiseizure medicines. ANN NEUROL 2022;92:663-669.
Collapse
Affiliation(s)
- Matthew Pease
- University of Pittsburgh Medical Center, Department of Neurosurgery
| | | | - Ava Puccio
- University of Pittsburgh Medical Center, Department of Neurosurgery
| | - Enyinna Nwachuku
- University of Pittsburgh Medical Center, Department of Neurosurgery
| | | | - David O. Okonkwo
- University of Pittsburgh Medical Center, Department of Neurosurgery
| | - Jonathan Elmer
- University of Pittsburgh Medical Center, Department of Neurology
- University of Pittsburgh Medical Center, Department of Critical Care
- University of Pittsburgh Medical Center, Department of Emergency Medicine
| |
Collapse
|
30
|
MRI-Guided Electrode Implantation for Chronic Intracerebral Recordings in a Rat Model of Post-Traumatic Epilepsy-Challenges and Gains. Biomedicines 2022; 10:biomedicines10092295. [PMID: 36140398 PMCID: PMC9496327 DOI: 10.3390/biomedicines10092295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/09/2022] [Indexed: 02/08/2023] Open
Abstract
Brain atrophy induced by traumatic brain injury (TBI) progresses in parallel with epileptogenesis over time, and thus accurate placement of intracerebral electrodes to monitor seizure initiation and spread at the chronic postinjury phase is challenging. We evaluated in adult male Sprague Dawley rats whether adjusting atlas-based electrode coordinates on the basis of magnetic resonance imaging (MRI) increases electrode placement accuracy and the effect of chronic electrode implantations on TBI-induced brain atrophy. One group of rats (EEG cohort) was implanted with two intracortical (anterior and posterior) and a hippocampal electrode right after TBI to target coordinates calculated using a rat brain atlas. Another group (MRI cohort) was implanted with the same electrodes, but using T2-weighted MRI to adjust the planned atlas-based 3D coordinates of each electrode. Histological analysis revealed that the anterior cortical electrode was in the cortex in 83% (25% in targeted layer V) of the EEG cohort and 76% (31%) of the MRI cohort. The posterior cortical electrode was in the cortex in 40% of the EEG cohort and 60% of the MRI cohort. Without MRI-guided adjustment of electrode tip coordinates, 58% of the posterior cortical electrodes in the MRI cohort will be in the lesion cavity, as revealed by simulated electrode placement on histological images. The hippocampal electrode was accurately placed in 82% of the EEG cohort and 86% of the MRI cohort. Misplacement of intracortical electrodes related to their rostral shift due to TBI-induced cortical and hippocampal atrophy and caudal retraction of the brain, and was more severe ipsilaterally than contralaterally (p < 0.001). Total lesion area in cortical subfields targeted by the electrodes (primary somatosensory cortex, visual cortex) was similar between cohorts (p > 0.05). MRI-guided adjustment of coordinates for electrodes improved the success rate of intracortical electrode tip placement nearly to that at the acute postinjury phase (68% vs. 62%), particularly in the posterior brain, which exhibited the most severe postinjury atrophy. Overall, MRI-guided electrode implantation improved the quality and interpretation of the origin of EEG-recorded signals.
Collapse
|
31
|
Yu T, Liu X, Sun L, Lv R, Wu J, Wang Q. Risk factors for Drug-resistant Epilepsy (DRE) and a nomogram model to predict DRE development in post-traumatic epilepsy patients. CNS Neurosci Ther 2022; 28:1557-1567. [PMID: 35822252 PMCID: PMC9437227 DOI: 10.1111/cns.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives To identify factors affecting the development of drug‐resistant epilepsy (DRE), and establish a reliable nomogram to predict DRE development in post‐traumatic epilepsy (PTE) patients. Methods This study conducted a retrospective clinical analysis in patients with PTE who visited the Epilepsy Center, Beijing Tiantan Hospital from January 2013 to December 2018. All participants were followed up for at least 3 years, and the development of DRE was assessed. Data from January 2013 to December 2017 were used as development dataset for model building. Those independent predictors of DRE were included in the final multivariable logistic regression, and a derived nomogram was built. Data from January 2018 to December 2018 were used as validation dataset for internal validation. Results Complete clinical information was available for 2830 PTE patients (development dataset: 2023; validation dataset: 807), of which 21.06% (n = 596) developed DRE. Among all parameters of interest including gender, age at PTE, family history, severity of traumatic brain injury (TBI), single or multiple injuries, lesion location, post‐TBI treatments, acute seizures, PTE latency, seizure type, status epilepticus (SE), and electroencephalogram (EEG) findings, four predictors showed independent effect on DRE, they were age at PTE, seizure type, SE, and EEG findings. A model incorporating these four variables was created, and a nomogram to calculate the probability of DRE using the coefficients of the model was developed. The C‐index of the predictive model and the validation was 0.662 and 0.690, respectively. The goodness‐of‐fit test indicated good calibration for model development and validation (p = 0.272, 0.572). Conclusions The proposed nomogram achieved significant potential for clinical utility in the prediction of DRE among PTE patients. The risk of DRE for individual PTE patients can be estimated by using this nomogram, and identified high‐risk patients might benefit from non‐pharmacological therapies at an early stage.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiao Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ruijuan Lv
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Yu T, Liu X, Sun L, Lv R, Wu J, Wang Q. Predicting Global Functional Outcomes Among Post-traumatic Epilepsy Patients After Moderate-to-Severe Traumatic Brain Injury: Development of a Prognostic Model. Front Neurol 2022; 13:874491. [PMID: 35711257 PMCID: PMC9197334 DOI: 10.3389/fneur.2022.874491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/20/2022] [Indexed: 11/16/2022] Open
Abstract
Objective The development of post-traumatic epilepsy (PTE) following traumatic brain injury (TBI) is associated with unfavorable functional outcomes, and the global function of PTE patients might change dynamically overtime. Predicting the long-term functional outcomes of patients with PTE may help to develop accurate rehabilitation programs and improve their quality of life. Based on this, the objective of this study is to use clinical data to derive and validate a model for predicting the functional outcomes of patients with PTE after moderate-to-severe TBI. Methods This study retrospectively analyzed 721 patients with PTE after moderate-to-severe TBI in the Epilepsy Centre, Beijing Tiantan Hospital, from January 2013 to December 2018. All patients had favorable global function as indicated by the Glasgow Outcome Scale-Extended (GOSE) at the time of their first late post-traumatic seizure (PTS) onset, and the 5-year global function after the first late PTS onset was chosen as the principal outcome of interest. To identify possible predictors for the global functional outcomes, univariate and multivariate logistic regression techniques were used. A prognostic model was established using these identified predictors, the internal validation with the bootstrapping method was performed, and the model was then visualized as a graphical score chart. Results The 5-year global functional outcome of 98 (13.59%) patients was unfavorable, and the temporal lobe lesion was found as the strongest predictor of unfavorable outcomes. The final prognostic model also included the following other predictors: gender, age at TBI, multiple injuries, the severity of TBI, and latency of PTE. Discrimination was satisfactory with C-statistic of 0.754 (0.707 – 0.800), the goodness-of-fit test indicated good calibration (P = 0.137), and the C-statistic was 0.726 for internal validation. A graphical score chart was also constructed to provide the probability of an unfavorable 5-year global functional outcomes more readily. Conclusions Clearer treatment strategies are essential to help ameliorate the global functional outcomes of patients with PTE. Our proposed prognostic model has significant potential to be used in the clinic for predicting global functional outcomes among patients with PTE after moderate-to-severe TBI.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiao Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ruijuan Lv
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Lolk K, Dreier JW, Sun Y, Christensen J. Perinatal adversities and risk of epilepsy after traumatic brain injury: A Danish nationwide cohort study. Acta Neurol Scand 2022; 145:721-729. [PMID: 35243615 PMCID: PMC9311430 DOI: 10.1111/ane.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
Objectives Traumatic brain injury (TBI) and perinatal adversities such as low gestational age at birth, low birth weight, low Apgar, and being born small for gestational age are well‐established risk factors for epilepsy. We examined whether perinatal adversities modified the risk of epilepsy after TBI in a nationwide cohort study of Danish singletons born from 1982 to 2011. Materials and Methods We categorized perinatal adversities as a composite measure of preterm delivery, low birth weight, low Apgar score, or being born small for gestational age. Cox regression and competing risk regression were used to estimate the risk of epilepsy after TBI according to such perinatal adversities. The study included 1,715,095 singletons (51.1% males). The mean age at end of follow‐up was 19.3 years (Interquartile range [IQR] = 12.1–26.3). During follow‐up, 85,636 persons (58.2% males) sustained a TBI and 18,064 developed epilepsy (50.7% males), of whom 1329 persons had a preceding TBI. Results The hazard ratio (HR) of epilepsy in persons with perinatal adversities was 1.19 (95% confidence interval [CI] 1.15–1.24), compared to persons without. The HR of epilepsy in persons with TBI was 2.31 (95% CI 2.18–2.45) compared to persons without TBI, but this risk was not modified by perinatal adversities (p = 0.2460). Conclusions Perinatal adversities and TBI both increased the risk of epilepsy, but the risk of epilepsy after TBI was not modified by these perinatal adversities.
Collapse
Affiliation(s)
- Kasper Lolk
- Department of Economics and Business Economics National Centre for Register‐Based Research Aarhus BSS Aarhus University Aarhus Denmark
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Centre for Integrated Register‐Based Research CIRRAU Aarhus University Aarhus Denmark
| | - Julie W. Dreier
- Department of Economics and Business Economics National Centre for Register‐Based Research Aarhus BSS Aarhus University Aarhus Denmark
- Centre for Integrated Register‐Based Research CIRRAU Aarhus University Aarhus Denmark
| | - Yuelian Sun
- Department of Economics and Business Economics National Centre for Register‐Based Research Aarhus BSS Aarhus University Aarhus Denmark
- Department of Neurology Aarhus University Hospital Aarhus Denmark
- Department of Clinical Epidemiology Aarhus University Denmark
| | - Jakob Christensen
- Department of Economics and Business Economics National Centre for Register‐Based Research Aarhus BSS Aarhus University Aarhus Denmark
- Department of Neurology Aarhus University Hospital Aarhus Denmark
| |
Collapse
|
34
|
Dohm-Hansen S, Donoso F, Lucassen PJ, Clarke G, Nolan YM. The gut microbiome and adult hippocampal neurogenesis: A new focal point for epilepsy? Neurobiol Dis 2022; 170:105746. [DOI: 10.1016/j.nbd.2022.105746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
|
35
|
Gugger JJ, Diaz-Arrastia R. The Frontier of Electrophysiologic Monitoring in Acute Brain Injury. Neurocrit Care 2022; 37:3-4. [PMID: 35488170 DOI: 10.1007/s12028-022-01500-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Affiliation(s)
- James J Gugger
- Department of Neurology, University of Pennsylvania Perelman School of Medicine Penn Presbyterian Medical Center, Andrew Mutch Bldg., Room 409 51 North 39th St.,, Philadelphia, PA, 19104, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania Perelman School of Medicine Penn Presbyterian Medical Center, Andrew Mutch Bldg., Room 409 51 North 39th St.,, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Laing J, Gabbe B, Chen Z, Perucca P, Kwan P, O’Brien TJ. Risk Factors and Prognosis of Early Posttraumatic Seizures in Moderate to Severe Traumatic Brain Injury. JAMA Neurol 2022; 79:334-341. [PMID: 35188950 PMCID: PMC8861899 DOI: 10.1001/jamaneurol.2021.5420] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
IMPORTANCE Early posttraumatic seizures (EPS) that may occur following a traumatic brain injury (TBI) are associated with poorer outcomes and development of posttraumatic epilepsy (PTE). OBJECTIVE To evaluate risk factors for EPS, associated morbidity and mortality, and contribution to PTE. DESIGN, SETTING, AND PARTICIPANTS Data were collected from an Australian registry-based cohort study of adults (age ≥18 years) with moderate to severe TBI from January 2005 to December 2019, with 2-year follow-up. The statewide trauma registry, conducted on an opt-out basis in Victoria (population 6.5 million), had 15 152 patients with moderate to severe TBI identified via Abbreviated Injury Scale (AIS) head severity score, with an opt-out rate less than 0.5% (opt-out n = 136). MAIN OUTCOMES AND MEASURES EPS were identified via International Statistical Classification of Diseases, Tenth Revision, Australian Modification (ICD-10-AM) codes recorded after the acute admission. Outcome measures also included in-hospital metrics, 2-year outcomes including PTE, and post-discharge mortality. Adaptive least absolute shrinkage and selection operator (LASSO) regression was used to build a prediction model for risk factors of EPS. RESULTS Among the 15 152 participants (10 457 [69%] male; median [IQR] age, 60 [35-79] y), 416 (2.7%) were identified with EPS, including 27 (0.2%) with status epilepticus. Significant risk factors on multivariable analysis for developing EPS were younger age, higher Charlson Comorbidity Index, TBI sustained from a low fall, subdural hemorrhage, subarachnoid hemorrhage, higher Injury Severity Score, and greater head injury severity, measured using the AIS and Glasgow Coma Score. After adjustment for confounders, EPS were associated with increased ICU admission and ICU length of stay, ventilation and duration, hospital length of stay, and discharge to inpatient rehabilitation rather than home, but not in-hospital mortality. Outcomes in TBI admission survivors at 24 months, including mortality (relative risk [RR] = 2.14; 95% CI, 1.32-3.46; P = .002), development of PTE (RR = 2.91; 95% CI, 2.22-3.81; P < .001), and use of antiseizure medications (RR = 2.44; 95% CI, 1.98-3.02; P < .001), were poorer for cases with EPS after adjustment for confounders. The prediction model for EPS had an area under the receiver operating characteristic curve of 0.72 (95% CI, 0.66-0.79), sensitivity of 66%, and specificity of 73% in the validation set. DISCUSSION We identified important risk factors for EPS following moderate to severe TBI. Early posttraumatic seizures were associated with longer ICU and hospital admissions, ICU ventilation, and poorer 24-month outcomes including mortality and development of PTE.
Collapse
Affiliation(s)
- Joshua Laing
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia,Epilepsy Unit, Alfred Hospital, Melbourne, Victoria, Australia,Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia,Department of Neurology, Peninsula Health, Melbourne, Victoria, Australia
| | - Belinda Gabbe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia,Health Data Research UK, Swansea University, Swansea, United Kingdom
| | - Zhibin Chen
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia,Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia,Epilepsy Unit, Alfred Hospital, Melbourne, Victoria, Australia,Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia,Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia,Comprehensive Epilepsy Program, Austin Health, Melbourne, Victoria, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia,Epilepsy Unit, Alfred Hospital, Melbourne, Victoria, Australia,Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia,Epilepsy Unit, Alfred Hospital, Melbourne, Victoria, Australia,Departments of Medicine and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
37
|
Golub VM, Reddy DS. Post-Traumatic Epilepsy and Comorbidities: Advanced Models, Molecular Mechanisms, Biomarkers, and Novel Therapeutic Interventions. Pharmacol Rev 2022; 74:387-438. [PMID: 35302046 PMCID: PMC8973512 DOI: 10.1124/pharmrev.121.000375] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most devastating long-term, network consequences of traumatic brain injury (TBI). There is currently no approved treatment that can prevent onset of spontaneous seizures associated with brain injury, and many cases of PTE are refractory to antiseizure medications. Post-traumatic epileptogenesis is an enduring process by which a normal brain exhibits hypersynchronous excitability after a head injury incident. Understanding the neural networks and molecular pathologies involved in epileptogenesis are key to preventing its development or modifying disease progression. In this article, we describe a critical appraisal of the current state of PTE research with an emphasis on experimental models, molecular mechanisms of post-traumatic epileptogenesis, potential biomarkers, and the burden of PTE-associated comorbidities. The goal of epilepsy research is to identify new therapeutic strategies that can prevent PTE development or interrupt the epileptogenic process and relieve associated neuropsychiatric comorbidities. Therefore, we also describe current preclinical and clinical data on the treatment of PTE sequelae. Differences in injury patterns, latency period, and biomarkers are outlined in the context of animal model validation, pathophysiology, seizure frequency, and behavior. Improving TBI recovery and preventing seizure onset are complex and challenging tasks; however, much progress has been made within this decade demonstrating disease modifying, anti-inflammatory, and neuroprotective strategies, suggesting this goal is pragmatic. Our understanding of PTE is continuously evolving, and improved preclinical models allow for accelerated testing of critically needed novel therapeutic interventions in military and civilian persons at high risk for PTE and its devastating comorbidities.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
38
|
Akrami H, Leahy R, Irimia A, Kim P, Heck C, Joshi A. Neuroanatomic Markers of Posttraumatic Epilepsy Based on MR Imaging and Machine Learning. AJNR Am J Neuroradiol 2022; 43:347-353. [PMID: 35210268 PMCID: PMC8910810 DOI: 10.3174/ajnr.a7436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/01/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Although posttraumatic epilepsy is a common complication of traumatic brain injury, the relationship between these conditions is unclear and early posttraumatic epilepsy detection and prevention remain major unmet clinical challenges. This study aimed to identify imaging biomarkers that predict posttraumatic epilepsy among survivors of traumatic brain injury on the basis of an MR imaging data set. MATERIALS AND METHODS We performed tensor-based morphometry to analyze brain-shape changes associated with traumatic brain injury and to derive imaging features for statistical group comparison. Additionally, machine learning was used to identify structural anomalies associated with brain lesions. Automatically generated brain lesion maps were used to identify brain regions where lesion load may indicate an increased incidence of posttraumatic epilepsy. We used 138 non-posttraumatic epilepsy subjects for training the machine learning method. Validation of lesion delineation was performed on 15 subjects. Group analysis of the relationship between traumatic brain injury and posttraumatic epilepsy was performed on an independent set of 74 subjects (37 subjects with and 37 randomly selected subjects without epilepsy). RESULTS We observed significant F-statistics related to tensor-based morphometry analysis at voxels close to the pial surface, which may indicate group differences in the locations of edema, hematoma, or hemorrhage. The results of the F-test on lesion data showed significant differences between groups in both the left and right temporal lobes. We also saw significant differences in the right occipital lobe and cerebellum. CONCLUSIONS Statistical analysis suggests that lesions in the temporal lobes, cerebellum, and the right occipital lobe are associated with an increased posttraumatic epilepsy incidence.
Collapse
Affiliation(s)
- H. Akrami
- From the Department of Biomedical Engineering (H.A., A.I.)
| | - R.M. Leahy
- Ming Hsieh Department of Electrical and Computer Engineering (R.M.L., A.A.J.)
| | - A. Irimia
- From the Department of Biomedical Engineering (H.A., A.I.),Leonard Davis School of Gerontology (A.I.)
| | - P.E. Kim
- Departments of Radiology (P.E.K.)
| | - C.N. Heck
- Neurology (C.N.H.), University of Southern California, Los Angeles, California
| | - A.A. Joshi
- Ming Hsieh Department of Electrical and Computer Engineering (R.M.L., A.A.J.)
| |
Collapse
|
39
|
Gugger JJ, Diaz-Arrastia R. Early Posttraumatic Seizures-Putting Things in Perspective. JAMA Neurol 2022; 79:325-326. [PMID: 35188948 DOI: 10.1001/jamaneurol.2021.5419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- James J Gugger
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia
| |
Collapse
|
40
|
Foreman B, Lee H, Okonkwo DO, Strong AJ, Pahl C, Shutter LA, Dreier JP, Ngwenya LB, Hartings JA. The Relationship Between Seizures and Spreading Depolarizations in Patients with Severe Traumatic Brain Injury. Neurocrit Care 2022; 37:31-48. [PMID: 35174446 DOI: 10.1007/s12028-022-01441-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Both seizures and spreading depolarizations (SDs) are commonly detected using electrocorticography (ECoG) after severe traumatic brain injury (TBI). A close relationship between seizures and SDs has been described, but the implications of detecting either or both remain unclear. We sought to characterize the relationship between these two phenomena and their clinical significance. METHODS We performed a post hoc analysis of a prospective observational clinical study of patients with severe TBI requiring neurosurgery at five academic neurotrauma centers. A subdural electrode array was placed intraoperatively and ECoG was recorded during intensive care. SDs, seizures, and high-frequency background characteristics were quantified offline using published standards and terminology. The primary outcome was the Glasgow Outcome Scale-Extended score at 6 months post injury. RESULTS There were 138 patients with valid ECoG recordings; the mean age was 47 ± 19 years, and 104 (75%) were men. Overall, 2,219 ECoG-detected seizures occurred in 38 of 138 (28%) patients in a bimodal pattern, with peak incidences at 1.7-1.8 days and 3.8-4.0 days post injury. Seizures detected on scalp electroencephalography (EEG) were diagnosed by standard clinical care in only 18 of 138 (13%). Of 15 patients with ECoG-detected seizures and contemporaneous scalp EEG, seven (47%) had no definite scalp EEG correlate. ECoG-detected seizures were significantly associated with the severity and number of SDs, which occurred in 83 of 138 (60%) of patients. Temporal interactions were observed in 17 of 24 (70.8%) patients with both ECoG-detected seizures and SDs. After controlling for known prognostic covariates and the presence of SDs, seizures detected on either ECoG or scalp EEG did not have an independent association with 6-month functional outcome but portended worse outcome among those with clustered or isoelectric SDs. CONCLUSIONS In patients with severe TBI requiring neurosurgery, seizures were half as common as SDs. Seizures would have gone undetected without ECoG monitoring in 20% of patients. Although seizures alone did not influence 6-month functional outcomes in this cohort, they were independently associated with electrographic worsening and a lack of motor improvement following surgery. Temporal interactions between ECoG-detected seizures and SDs were common and held prognostic implications. Together, seizures and SDs may occur along a dynamic continuum of factors critical to the development of secondary brain injury. ECoG provides information integral to the clinical management of patients with TBI.
Collapse
Affiliation(s)
- Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA. .,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.
| | - Hyunjo Lee
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA.,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA
| | - David O Okonkwo
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Clemens Pahl
- Department of Intensive Care Medicine, King's College Hospital, London, UK
| | - Lori A Shutter
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine and Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Laura B Ngwenya
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA.,Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Jed A Hartings
- Collaborative for Research on Acute Neurological Injuries, University of Cincinnati, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
41
|
Sharma R, Casillas-Espinosa PM, Dill LK, Rewell SSJ, Hudson MR, O'Brien TJ, Shultz SR, Semple BD. Pediatric traumatic brain injury and a subsequent transient immune challenge independently influenced chronic outcomes in male mice. Brain Behav Immun 2022; 100:29-47. [PMID: 34808288 DOI: 10.1016/j.bbi.2021.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) is a major contributor to death and disability worldwide. Children are at particularly high risk of both sustaining a TBI and experiencing serious long-term consequences, such as cognitive deficits, mental health problems and post-traumatic epilepsy. Severe TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization post-TBI. Yet the potential chronic impact of such acute infections following pediatric TBI remains unclear. In this study, we hypothesized that a peripheral immune challenge, such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen inflammatory, neurobehavioral, and seizure outcomes after experimental pediatric TBI. To test this, three-week old male C57Bl/6J mice received a moderate controlled cortical impact or sham surgery, followed by 1 mg/kg i.p. LPS (or 0.9% saline vehicle) at 4 days TBI. Mice were randomized to four groups; sham-saline, sham-LPS, TBI-saline or TBI-LPS (n = 15/group). Reduced general activity and increased anxiety-like behavior were observed within 24 h in LPS-treated mice, indicating a transient sickness response. LPS-treated mice also exhibited a reduction in body weights, which persisted chronically. From 2 months post-injury, mice underwent a battery of tests for sensorimotor, cognitive, and psychosocial behaviors. TBI resulted in hyperactivity and spatial memory deficits, independent of LPS; whereas LPS resulted in subtle deficits in spatial memory retention. At 5 months post-injury, video-electroencephalographic recordings were obtained to evaluate both spontaneous seizure activity as well as the evoked seizure response to pentylenetetrazol (PTZ). TBI increased susceptibility to PTZ-evoked seizures; whereas LPS appeared to increase the incidence of spontaneous seizures. Post-mortem analyses found that TBI, but not LPS, resulted in robust glial reactivity and loss of cortical volume. A TBI × LPS interaction in hippocampal volume suggested that TBI-LPS mice had a subtle increase in ipsilateral hippocampus tissue loss; however, this was not reflected in neuronal cell counts. Both TBI and LPS independently had modest effects on chronic hippocampal gene expression. Together, contrary to our hypothesis, we observed minimal synergy between TBI and LPS. Instead, pediatric TBI and a subsequent transient immune challenge independently influenced chronic outcomes. These findings have implications for future preclinical modeling as well as acute post-injury patient management.
Collapse
Affiliation(s)
- Rishabh Sharma
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Larissa K Dill
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Sarah S J Rewell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia; Department of Neurology, Alfred Health, Prahran, VIC, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
42
|
Golub VM, Reddy DS. Contusion brain damage in mice for modelling of post-traumatic epilepsy with contralateral hippocampus sclerosis: Comprehensive and longitudinal characterization of spontaneous seizures, neuropathology, and neuropsychiatric comorbidities. Exp Neurol 2021; 348:113946. [PMID: 34896334 DOI: 10.1016/j.expneurol.2021.113946] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/12/2021] [Accepted: 12/04/2021] [Indexed: 02/03/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of acquired epilepsy referred to as post-traumatic epilepsy (PTE), characterized by spontaneous recurrent seizures (SRS) that start in the months or years following TBI. There is a critical need to develop small animal models for advancing the neurotherapeutics of PTE, which accounts for 20% of all acquired epilepsy cases. Despite many previous attempts, there are few PTE models with demonstrated consistency or longitudinal incidence of SRS, a critical feature for creating models for investigation of novel therapeutics for preventing PTE. Over the past few years, we have made in-depth updates and several advances to our mouse model of TBI in which SRS consistently occurs upon 24/7 monitoring for 4 months. Here, we show that an advanced cortical contusion damage in mice elicits a chronic state of PTE with SRS and robust epileptiform activity, along with cognitive comorbidities. We observed SRS in 33% and 87% of moderate and severe injury cohorts, respectively. Though incidence was higher in the severe cohort, moderate injury elicited a robust epileptogenesis. Progressive neuronal damage, neurodegeneration, and inflammation signals were evident in many brain regions; comorbid behavior and cognitive deficits were observed for up to 4-months. SRS onset was correlated with the inception of interneuron loss after TBI. Contralateral hippocampal sclerosis was unique and well correlated with SRS, confirming a potential network basis for epileptogenesis. Collectively, this mouse model exhibits a number of hallmark TBI sequelae reminiscent of human PTE. This model provides a vital tool for probing molecular pathological mechanisms and therapeutic interventions for post-traumatic epileptogenesis. SIGNIFICANCE STATEMENT: TBI is a leading cause of post-traumatic epilepsy (PTE). Despite many attempts to create PTE in animals, success has been limited due to a lack of consistent spontaneous "epileptic" seizures after TBI. We present a comprehensive phenotype of PTE after contusion brain injury in mice, which exhibits robust spontaneous seizures along with neuronal loss, inflammation, and cognitive dysfunction. Our broad profiling of a TBI mouse reveals features of progressive, long-lasting epileptic activity, unique contralateral hippocampal sclerosis, and comorbid mood and memory deficits. The PTE mouse shows a striking consistency in recapitulating major pathological sequelae of human PTE. This mouse model will be helpful in assessing mechanisms and interventions for TBI-induced epilepsy and mood dysfunction.
Collapse
Affiliation(s)
- Victoria M Golub
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA.
| |
Collapse
|
43
|
La Rocca M, Barisano G, Bennett A, Garner R, Engel J, Gilmore EJ, McArthur DL, Rosenthal E, Stanis J, Vespa P, Willyerd F, Zimmermann LL, Toga AW, Duncan D. Distribution and volume analysis of early hemorrhagic contusions by MRI after traumatic brain injury: a preliminary report of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). Brain Imaging Behav 2021; 15:2804-2812. [PMID: 34985618 PMCID: PMC9433738 DOI: 10.1007/s11682-021-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 01/07/2023]
Abstract
Traumatic brain injury (TBI) can produce heterogeneous injury patterns including a variety of hemorrhagic and non-hemorrhagic lesions. The impact of lesion size, location, and interaction between total number and location of contusions may influence the occurrence of seizures after TBI. We report our methodologic approach to this question in this preliminary report of the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx). We describe lesion identification and segmentation of hemorrhagic contusions by early posttraumatic magnetic resonance imaging (MRI). We describe the preliminary methods of manual lesion segmentation in an initial cohort of 32 TBI patients from the EpiBioS4Rx cohort and the preliminary association of hemorrhagic contusion and edema location and volume to seizure incidence.
Collapse
Affiliation(s)
- Marianna La Rocca
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Giuseppe Barisano
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexis Bennett
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rachael Garner
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jerome Engel
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emily J. Gilmore
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT, USA
| | - David L. McArthur
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric Rosenthal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James Stanis
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paul Vespa
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | | | - Arthur W. Toga
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dominique Duncan
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
44
|
Zhan J, Ma Y, Zhao D, Li Z, Tan H, Wang X, Liu H, Yang T. Knowledge atlas of post-traumatic epilepsy research: Based on citespace visualization analysis. Epilepsy Res 2021; 178:106790. [PMID: 34798493 DOI: 10.1016/j.eplepsyres.2021.106790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/15/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023]
Abstract
The mechanism of posttraumatic epilepsy (PTE) is complicated and the treatment and prognostic effects are not satisfactory. In this study, CiteSpace and VOSviewer are used to analyze the literature related to PTE (January 2000-June 2020). The aspects of the cooperative network (author, institution, and country), keywords co-occurrence, document co-citation clustering, and journal dual-map overlay were analyzed, and the atlas was constructed. The United States, Finland, and other research institutions have frequently published PTE-related articles, thus having richer research results. The relevant research was mostly published in journals, such as Journal of Neurotrauma, Journal of Neuroscience, Brain Research, Neurobiology of Disease. Quantitative diffusion MRI plays a critical role in PTE research. The study on the susceptibility to seizures and the underlying mechanism of PTE received different degrees of attention. The present study provided an in-depth understanding of the research foundation, relevant research results, the current research frontiers, and the main research focus in the PTE field. Herein, we briefly discussed relevant key articles and also provided ideas for future research directions.
Collapse
Affiliation(s)
- Jingjing Zhan
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Yixun Ma
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Dong Zhao
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Zheng Li
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Huachao Tan
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Xu Wang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China
| | - Hongxia Liu
- China University of Political Science and Law, The Institute for Digital Technology and Law (IDTL), China; The CUPL Scientometrics and Evaluation Center of Rule of Law, China.
| | - Tiantong Yang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Ministry of Education, Beijing, China; Collaborative Innovation Center of Judicial Civilization, Beijing, China.
| |
Collapse
|
45
|
Suppression of Electrographic Seizures Is Associated with Amelioration of QTc Interval Prolongation in Patients with Traumatic Brain Injury. J Clin Med 2021; 10:jcm10225374. [PMID: 34830656 PMCID: PMC8622115 DOI: 10.3390/jcm10225374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/01/2021] [Accepted: 11/16/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction: Disorders in electroencephalography (EEG) are commonly noted in patients with traumatic brain injury (TBI) and may be associated with electrocardiographic disturbances. Electrographic seizures (ESz) are the most common features in these patients. This study aimed to explore the relationship between ESz and possible changes in QTc interval and spatial QRS-T angle both during ESz and after ESz resolution. Methods: Adult patients with TBI were studied. Surface 12-lead ECGs were recorded using a Cardiax device during ESz events and 15 min after their effective suppression using barbiturate infusion. The ESz events were diagnosed using Masimo Root or bispectral index (BIS) devices. Results: Of the 348 patients considered for possible inclusion, ESz were noted in 72, with ECG being recorded in 21. Prolonged QTc was noted during ESz but significantly ameliorated after ESz suppression (540.19 ± 60.68 ms vs. 478.67 ± 38.52 ms, p < 0.001). The spatial QRS-T angle was comparable during ESz and after treatment. Regional cerebral oximetry increased following ESz suppression (from 58.4% ± 6.2 to 60.5% ± 4.2 (p < 0.01) and from 58.2% ± 7.2 to 60.8% ± 4.8 (p < 0.05) in the left and right hemispheres, respectively). Conclusion: QTc interval prolongation occurs during ESz events in TBI patients but both it and regional cerebral oximetry are improved after suppression of seizures.
Collapse
|
46
|
Cho SJ, Park E, Baker A, Reid AY. Post-Traumatic Epilepsy in Zebrafish Is Drug-Resistant and Impairs Cognitive Function. J Neurotrauma 2021; 38:3174-3183. [PMID: 34409844 DOI: 10.1089/neu.2021.0156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Post-traumatic epilepsy (PTE) is acquired epilepsy after traumatic brain injury (TBI). Despite the availability of more than 20 antiseizure medications (ASMs), there is no way at present to prevent epileptogenesis in TBI survivors, and many cases of PTE become drug-resistant. Importantly, the adverse effects of ASMs can significantly affect patients' quality of life. Mammalian models are commonly used for studying refractory PTE, but are expensive and laborious. Zebrafish models have become popular for studying epilepsy, but most focus on larvae, and there have been no reports to date of pharmacological screening in an adult zebrafish model of acquired epilepsy. Valid animal models are critical for understanding PTE and for developing novel therapeutics. The aim of the present study was to characterize the cognitive impairments of a zebrafish model of TBI that leads to the development of PTE. Using combined behavioral and electrophysiological approaches, we also characterized the pharmacological effects of the most commonly used ASMs to manage PTE (valproate, carbamazepine, and phenytoin). Zebrafish with PTE exhibited impairments in learning and memory, difficulty in decision making, and reduced social preference. Valproate and carbamazepine had a limited protective effect against behavioral seizures, and all three drugs failed to significantly reduce electrographical seizures. The negative impacts of TBI and ASMs in zebrafish parallel those observed in other animals, making the zebrafish model of PTE a promising high-throughput model of refractory and drug-resistant epilepsy.
Collapse
Affiliation(s)
- Sung-Joon Cho
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Collaborative Program in Neuroscience, Departments of University of Toronto, Toronto, Ontario, Canada.,Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Eugene Park
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andrew Baker
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.,Anesthesia and Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Aylin Y Reid
- Division of Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Wang X, Zhong J, Lei T, Chen D, Wang H, Zhu L, Chu S, Liu L. An Artificial Neural Network Prediction Model for Posttraumatic Epilepsy: Retrospective Cohort Study. J Med Internet Res 2021; 23:e25090. [PMID: 34420931 PMCID: PMC8414301 DOI: 10.2196/25090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/14/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023] Open
Abstract
Background Posttraumatic epilepsy (PTE) is a common sequela after traumatic brain injury (TBI), and identifying high-risk patients with PTE is necessary for their better treatment. Although artificial neural network (ANN) prediction models have been reported and are superior to traditional models, the ANN prediction model for PTE is lacking. Objective We aim to train and validate an ANN model to anticipate the risks of PTE. Methods The training cohort was TBI patients registered at West China Hospital. We used a 5-fold cross-validation approach to train and test the ANN model to avoid overfitting; 21 independent variables were used as input neurons in the ANN models, using a back-propagation algorithm to minimize the loss function. Finally, we obtained sensitivity, specificity, and accuracy of each ANN model from the 5 rounds of cross-validation and compared the accuracy with a nomogram prediction model built in our previous work based on the same population. In addition, we evaluated the performance of the model using patients registered at Chengdu Shang Jin Nan Fu Hospital (testing cohort 1) and Sichuan Provincial People’s Hospital (testing cohort 2) between January 1, 2013, and March 1, 2015. Results For the training cohort, we enrolled 1301 TBI patients from January 1, 2011, to December 31, 2017. The prevalence of PTE was 12.8% (166/1301, 95% CI 10.9%-14.6%). Of the TBI patients registered in testing cohort 1, PTE prevalence was 10.5% (44/421, 95% CI 7.5%-13.4%). Of the TBI patients registered in testing cohort 2, PTE prevalence was 6.1% (25/413, 95% CI 3.7%-8.4%). The results of the ANN model show that, the area under the receiver operating characteristic curve in the training cohort was 0.907 (95% CI 0.889-0.924), testing cohort 1 was 0.867 (95% CI 0.842-0.893), and testing cohort 2 was 0.859 (95% CI 0.826-0.890). Second, the average accuracy of the training cohort was 0.557 (95% CI 0.510-0.620), with 0.470 (95% CI 0.414-0.526) in testing cohort 1 and 0.344 (95% CI 0.287-0.401) in testing cohort 2. In addition, sensitivity, specificity, positive predictive values and negative predictors in the training cohort (testing cohort 1 and testing cohort 2) were 0.80 (0.83 and 0.80), 0.86 (0.80 and 0.84), 91% (85% and 78%), and 86% (80% and 83%), respectively. When calibrating this ANN model, Brier scored 0.121 in testing cohort 1 and 0.127 in testing cohort 2. Compared with the nomogram model, the ANN prediction model had a higher accuracy (P=.01). Conclusions This study shows that the ANN model can predict the risk of PTE and is superior to the risk estimated based on traditional statistical methods. However, the calibration of the model is a bit poor, and we need to calibrate it on a large sample size set and further improve the model.
Collapse
Affiliation(s)
- Xueping Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Zhong
- Department of Ophthalmology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Ting Lei
- Department of Neurosurgery, Shang Jin Nan Fu Hospital of West China Hospital, Sichuan University, Chengdu, China
| | - Deng Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Haijiao Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lina Zhu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Shanshan Chu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Yu T, Liu X, Sun L, Wu J, Wang Q. Clinical characteristics of post-traumatic epilepsy and the factors affecting the latency of PTE. BMC Neurol 2021; 21:301. [PMID: 34348691 PMCID: PMC8340486 DOI: 10.1186/s12883-021-02273-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/09/2021] [Indexed: 11/26/2022] Open
Abstract
Objectives To summarize the clinical characteristics of post-traumatic epilepsy (PTE), and to identify the factors affecting the latency of PTE after traumatic brain injury (TBI). Methods We conducted a retrospective clinical analysis in patients with PTE who visited the outpatient Department of Epilepsy, Beijing Tiantan Hospital from January 2013 to December 2018. The clinical characteristics, including gender, age distribution, seizure type, and latency were summarized. Factors affecting the latency of PTE were evaluated using Kaplan-Meier curves and Cox proportional hazard regression analysis. Results Complete clinical information was available for 2862 subjects, of which 78.48% were males. The mean age at TBI was 21.4 ± 15.1 years and peaked in the 0 to 12-year-old and 15 to 27-year-old groups. Generalized onset seizure was the most frequent seizure type (72.82% of patients). Approximately 19.95% PTE patients developed drug-resistant epilepsy. The latency of PTE ranged from 8 days to 20 years, with a median of 24.0 (IQR, 5.0–84.0) months. The Kaplan-Meier curves demonstrated that gender, age at TBI, severity of TBI, multiple craniocerebral injuries, post-TBI treatments, acute seizures, and residual disability were associated with PTE latency. The Cox regression model indicated that age ≥ 18 years old, severe TBI with multiple surgical operations, acute seizures, and residual disability were risk factors for shorter PTE latency. Conclusions PTE is more common in males than females, and peaked in the 0 to 12-year-old and 15 to 27-year-old groups. Generalized onset seizure was the most common seizure type and 19.95% of participants developed drug-resistant epilepsy. Patients aged ≥18 years old, who suffered severe TBI followed by multiple surgical operations, experienced acute seizures, or with residual disabilities had shorter PTE latency.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, P. R. China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, P. R. China
| | - Xiao Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, P. R. China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, P. R. China
| | - Lei Sun
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, P. R. China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, P. R. China
| | - Jianping Wu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, P. R. China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, P. R. China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, P. R. China
| | - Qun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, P. R. China. .,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, P. R. China. .,Beijing Institute for Brain Disorders, Beijing, 100069, P. R. China.
| |
Collapse
|
49
|
French JA, Bebin M, Dichter MA, Engel J, Hartman AL, Jóźwiak S, Klein P, McNamara J, Twyman R, Vespa P. Antiepileptogenesis and disease modification: Clinical and regulatory issues. Epilepsia Open 2021; 6:483-492. [PMID: 34270884 PMCID: PMC8408600 DOI: 10.1002/epi4.12526] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
This is a summary report of clinical and regulatory issues discussed at the 2018 NINDS workshop, entitled “Accelerating Therapies for Antiepileptogenesis and Disease Modification.” The intent of the workshop was to optimize and accelerate development of therapies for antiepileptogenesis (AEG) and disease modification in the epilepsies. The working group discussed nomenclature for antiepileptogenic therapies, subdividing them into “antiepileptogenic therapies” and “disease modifying therapies,” both of which are urgently needed. We use the example of traumatic brain injury to explain issues and complexities in designing a trial for disease‐preventing antiepileptogenic therapies, including identifying timing of intervention, selecting the appropriate dose, and the need for biomarkers. We discuss the recent trials of vigabatrin to prevent onset and modify epilepsy outcome in children with tuberous sclerosis (Epistop and PreVeNT). We describe a potential approach to a disease modification trial in adults, using patients with temporal lobe epilepsy. Finally, we discuss regulatory hurdles for antiepileptogenesis and disease‐modifying trials.
Collapse
Affiliation(s)
| | - Martina Bebin
- UAB School of Medicine and UAB Epilepsy Center, Birmingham, AL, USA
| | | | - Jerome Engel
- David Geffen School of Medicine at, UCLA and the Brain Research Institute, Los Angeles, CA, USA
| | - Adam L Hartman
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke/NIH, Bethesda, MD, USA
| | - Sergiusz Jóźwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| | - James McNamara
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA
| | | | - Paul Vespa
- Departments of Neurology and Neurosurgery, David Geffen School of Medicine UCLA, Los Angeles, CA, USA
| |
Collapse
|
50
|
Manninen E, Chary K, Lapinlampi N, Andrade P, Paananen T, Sierra A, Tohka J, Gröhn O, Pitkänen A. Acute thalamic damage as a prognostic biomarker for post-traumatic epileptogenesis. Epilepsia 2021; 62:1852-1864. [PMID: 34245005 DOI: 10.1111/epi.16986] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To identify magnetic resonance imaging (MRI) biomarkers for post-traumatic epilepsy. METHODS The EPITARGET (Targets and biomarkers for antiepileptogenesis, epitarget.eu) animal cohort completing T2 relaxation and diffusion tensor MRI follow-up and 1-month-long video-electroencephalography monitoring included 98 male Sprague-Dawley rats with traumatic brain injury and 18 controls. T2 imaging was performed on day (D) 2, D7, and D21 and diffusion tensor imaging (DTI) on D7 and D21 using a 7-Tesla Bruker PharmaScan MRI scanner. The mean and standard deviation (SD) of the T2 relaxation rate, multiple diffusivity measures, and diffusion anisotropy at each time-point within the ventroposterolateral and ventroposteromedial thalamus were used as predictor variables in multi-variable logistic regression models to distinguish rats with and without epilepsy. RESULTS Twenty-nine percent (28/98) of the rats with traumatic brain injury (TBI) developed epilepsy. The best-performing logistic regression model utilized the D2 and D7 T2 relaxation time as well as the D7 diffusion tensor data. The model distinguished rats with and without epilepsy (Bonferroni-corrected p-value < .001) with a cross-validated concordance statistic of 0.74 (95% confidence interval [CI] 0.60-0.84). In a cross-validated classification test, the model exhibited 54% sensitivity and 91% specificity, enriching the epilepsy rate within the study population from the expected 29% to 71%. A model using the D2 T2 data only resulted in a 73% enriched epilepsy rate (regression p-value .007, cross-validated concordance 0.70, 95% CI 0.56-0.80, sensitivity 29%, specificity 96%). SIGNIFICANCE An MRI parameter set reporting on acute and subacute neuropathologic changes common to experimental and human TBI presents a diagnostic biomarker for post-traumatic epileptogenesis. Significant enrichment of the study population was achieved even when using a single time-point measurement, producing an expected epilepsy rate of 73%.
Collapse
Affiliation(s)
- Eppu Manninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Karthik Chary
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Niina Lapinlampi
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Paananen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jussi Tohka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|