1
|
Cömert C, Kjær-Sørensen K, Hansen J, Carlsen J, Just J, Meaney BF, Østergaard E, Luo Y, Oxvig C, Schmidt-Laursen L, Palmfeldt J, Fernandez-Guerra P, Bross P. HSP60 chaperone deficiency disrupts the mitochondrial matrix proteome and dysregulates cholesterol synthesis. Mol Metab 2024; 88:102009. [PMID: 39147275 PMCID: PMC11388177 DOI: 10.1016/j.molmet.2024.102009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
OBJECTIVE Mitochondrial proteostasis is critical for cellular function. The molecular chaperone HSP60 is essential for cell function and dysregulation of HSP60 expression has been implicated in cancer and diabetes. The few reported patients carrying HSP60 gene variants show neurodevelopmental delay and brain hypomyelination. Hsp60 interacts with more than 260 mitochondrial proteins but the mitochondrial proteins and functions affected by HSP60 deficiency are poorly characterized. METHODS We studied two model systems for HSP60 deficiency: (1) engineered HEK cells carrying an inducible dominant negative HSP60 mutant protein, (2) zebrafish HSP60 knockout larvae. Both systems were analyzed by RNASeq, proteomics, and targeted metabolomics, and several functional assays relevant for the respective model. In addition, skin fibroblasts from patients with disease-associated HSP60 variants were analyzed by proteomics. RESULTS We show that HSP60 deficiency leads to a differentially downregulated mitochondrial matrix proteome, transcriptional activation of stress responses, and dysregulated cholesterol biosynthesis. This leads to lipid accumulation in zebrafish knockout larvae. CONCLUSIONS Our data provide a compendium of the effects of HSP60 deficiency on the mitochondrial matrix proteome. We show that HSP60 is a master regulator and modulator of mitochondrial functions and metabolic pathways. HSP60 dysfunction also affects cellular metabolism and disrupts the integrated stress response. The effect on cholesterol synthesis explains the effect of HSP60 dysfunction on myelination observed in patients carrying genetic variants of HSP60.
Collapse
Affiliation(s)
- Cagla Cömert
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| | - Kasper Kjær-Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Brandon F Meaney
- Division of Neurology, Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Elsebet Østergaard
- Department of Clinical Genetics, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Paula Fernandez-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark; Molecular Endocrinology Unit, KMEB, Department of Endocrinology, Odense University Hospital, Odense, Denmark.
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
2
|
Mitz AR, Boccuto L, Thurm A. Evidence for common mechanisms of pathology between SHANK3 and other genes of Phelan-McDermid syndrome. Clin Genet 2024; 105:459-469. [PMID: 38414139 PMCID: PMC11025605 DOI: 10.1111/cge.14503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Chromosome 22q13.3 deletion (Phelan-McDermid) syndrome (PMS, OMIM 606232) is a rare genetic condition that impacts neurodevelopment. PMS most commonly results from heterozygous contiguous gene deletions that include the SHANK3 gene or likely pathogenic variants of SHANK3 (PMS-SHANK3 related). Rarely, chromosomal rearrangements that spare SHANK3 share the same general phenotype (PMS-SHANK3 unrelated). Very recent human and model system studies of genes that likely contribute to the PMS phenotype point to overlap in gene functions associated with neurodevelopment, synaptic formation, stress/inflammation and regulation of gene expression. In this review of recent findings, we describe the functional overlaps between SHANK3 and six partner genes of 22q13.3 (PLXNB2, BRD1, CELSR1, PHF21B, SULT4A1, and TCF20), which suggest a model that explains the commonality between PMS-SHANK3 related and PMS-SHANK3 unrelated classes of PMS. These genes are likely not the only contributors to neurodevelopmental impairments in the region, but they are the best documented to date. The review provides evidence for the overlapping and likely synergistic contributions of these genes to the PMS phenotype.
Collapse
Affiliation(s)
- Andrew R. Mitz
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Luigi Boccuto
- Healthcare Genetics and Genomics Interdisciplinary Doctoral Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, USA
| | - Audrey Thurm
- Neurodevelopmental and Behavioral Phenotyping Service, Office of the Clinical Director, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Shah S, Sarasua SM, Boccuto L, Dean BC, Wang L. Brain Gene Co-Expression Network Analysis Identifies 22q13 Region Genes Associated with Autism, Intellectual Disability, Seizures, Language Impairment, and Hypotonia. Genes (Basel) 2023; 14:1998. [PMID: 38002941 PMCID: PMC10671420 DOI: 10.3390/genes14111998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Phelan-McDermid syndrome (PMS) is a rare genetic neurodevelopmental disorder caused by 22q13 region deletions or SHANK3 gene variants. Deletions vary in size and can affect other genes in addition to SHANK3. PMS is characterized by autism spectrum disorder (ASD), intellectual disability (ID), developmental delays, seizures, speech delay, hypotonia, and minor dysmorphic features. It is challenging to determine individual gene contributions due to variability in deletion sizes and clinical features. We implemented a genomic data mining approach for identifying and prioritizing the candidate genes in the 22q13 region for five phenotypes: ASD, ID, seizures, language impairment, and hypotonia. Weighted gene co-expression networks were constructed using the BrainSpan transcriptome dataset of a human brain. Bioinformatic analyses of the co-expression modules allowed us to select specific candidate genes, including EP300, TCF20, RBX1, XPNPEP3, PMM1, SCO2, BRD1, and SHANK3, for the common neurological phenotypes of PMS. The findings help understand the disease mechanisms and may provide novel therapeutic targets for the precise treatment of PMS.
Collapse
Affiliation(s)
- Snehal Shah
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA; (S.S.); (L.B.)
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Sara M. Sarasua
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA; (S.S.); (L.B.)
| | - Luigi Boccuto
- Healthcare Genetics and Genomics, School of Nursing, Clemson University, Clemson, SC 29634, USA; (S.S.); (L.B.)
| | - Brian C. Dean
- School of Computing, Clemson University, Clemson, SC 29634, USA
| | - Liangjiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
- Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA
| |
Collapse
|
4
|
The psychiatric risk gene BRD1 modulates mitochondrial bioenergetics by transcriptional regulation. Transl Psychiatry 2022; 12:319. [PMID: 35941107 PMCID: PMC9359996 DOI: 10.1038/s41398-022-02053-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
Bromodomain containing 1 (BRD1) encodes an epigenetic regulator that controls the expression of genetic networks linked to mental illness. BRD1 is essential for normal brain development and its role in psychopathology has been demonstrated in genetic and preclinical studies. However, the neurobiology that bridges its molecular and neuropathological effects remains poorly explored. Here, using publicly available datasets, we find that BRD1 targets nuclear genes encoding mitochondrial proteins in cell lines and that modulation of BRD1 expression, irrespective of whether it is downregulation or upregulation of one or the other existing BRD1 isoforms (BRD1-L and BRD1-S), leads to distinct shifts in the expression profile of these genes. We further show that the expression of nuclear genes encoding mitochondrial proteins is negatively correlated with the expression of BRD1 mRNA during human brain development. In accordance, we identify the key gate-keeper of mitochondrial metabolism, Peroxisome proliferator-activated receptor (PPAR) among BRD1's co-transcription factors and provide evidence that BRD1 acts as a co-repressor of PPAR-mediated transcription. Lastly, when using quantitative PCR, mitochondria-targeted fluorescent probes, and the Seahorse XFe96 Analyzer, we demonstrate that modulation of BRD1 expression in cell lines alters mitochondrial physiology (mtDNA content and mitochondrial mass), metabolism (reducing power), and bioenergetics (among others, basal, maximal, and spare respiration) in an expression level- and isoform-dependent manner. Collectively, our data suggest that BRD1 is a transcriptional regulator of nuclear-encoded mitochondrial proteins and that disruption of BRD1's genomic actions alters mitochondrial functions. This may be the mechanism underlying the cellular and atrophic changes of neurons previously associated with BRD1 deficiency and suggests that mitochondrial dysfunction may be a possible link between genetic variation in BRD1 and psychopathology in humans.
Collapse
|
5
|
Zinc in Cognitive Impairment and Aging. Biomolecules 2022; 12:biom12071000. [PMID: 35883555 PMCID: PMC9312494 DOI: 10.3390/biom12071000] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023] Open
Abstract
Zinc, an essential micronutrient for life, was first discovered in 1869 and later found to be indispensable for the normal development of plants and for the normal growth of rats and birds. Zinc plays an important role in many physiological and pathological processes in normal mammalian brain development, especially in the development of the central nervous system. Zinc deficiency can lead to neurodegenerative diseases, mental abnormalities, sleep disorders, tumors, vascular diseases, and other pathological conditions, which can cause cognitive impairment and premature aging. This study aimed to review the important effects of zinc and zinc-associated proteins in cognitive impairment and aging, to reveal its molecular mechanism, and to highlight potential interventions for zinc-associated aging and cognitive impairments.
Collapse
|
6
|
Farrelly LA, Zheng S, Schrode N, Topol A, Bhanu NV, Bastle RM, Ramakrishnan A, Chan JC, Cetin B, Flaherty E, Shen L, Gleason K, Tamminga CA, Garcia BA, Li H, Brennand KJ, Maze I. Chromatin profiling in human neurons reveals aberrant roles for histone acetylation and BET family proteins in schizophrenia. Nat Commun 2022; 13:2195. [PMID: 35459277 PMCID: PMC9033776 DOI: 10.1038/s41467-022-29922-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia (SZ) is a psychiatric disorder with complex genetic risk dictated by interactions between hundreds of risk variants. Epigenetic factors, such as histone posttranslational modifications (PTMs), have been shown to play critical roles in many neurodevelopmental processes, and when perturbed may also contribute to the precipitation of disease. Here, we apply an unbiased proteomics approach to evaluate combinatorial histone PTMs in human induced pluripotent stem cell (hiPSC)-derived forebrain neurons from individuals with SZ. We observe hyperacetylation of H2A.Z and H4 in neurons derived from SZ cases, results that were confirmed in postmortem human brain. We demonstrate that the bromodomain and extraterminal (BET) protein, BRD4, is a bona fide 'reader' of H2A.Z acetylation, and further provide evidence that BET family protein inhibition ameliorates transcriptional abnormalities in patient-derived neurons. Thus, treatments aimed at alleviating BET protein interactions with hyperacetylated histones may aid in the prevention or treatment of SZ.
Collapse
Affiliation(s)
- Lorna A Farrelly
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Shuangping Zheng
- Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Nadine Schrode
- Department of Genetics and Genomic Sciences, Pamela Sklar Division of Psychiatric Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aaron Topol
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Natarajan V Bhanu
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ryan M Bastle
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Bulent Cetin
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Erin Flaherty
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Pamela Sklar Division of Psychiatric Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Kelly Gleason
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA
| | - Benjamin A Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Haitao Li
- Beijing Advanced Innovation Center for Structural Biology, MOE Key Laboratory of Protein Sciences, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Kristen J Brennand
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Pamela Sklar Division of Psychiatric Genomics, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Departments of Psychiatry and Genetics, Wu Tsai Institute, Yale School of Medicine, New Haven, CT, 065109, USA.
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Paternoster V, Edhager AV, Qvist P, Donskov JG, Shliaha P, Jensen ON, Mors O, Nielsen AL, Børglum AD, Palmfeldt J, Christensen JH. Inactivation of the Schizophrenia-associated BRD1 gene in Brain Causes Failure-to-thrive, Seizure Susceptibility and Abnormal Histone H3 Acetylation and N-tail Clipping. Mol Neurobiol 2021; 58:4495-4505. [PMID: 34056693 DOI: 10.1007/s12035-021-02432-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Genetic studies have repeatedly shown that the Bromodomain containing 1 gene, BRD1, is involved in determining mental health, and the importance of the BRD1 protein for normal brain function has been studied in both cell models and constitutive haploinsufficient Brd1+/- mice. Homozygosity for inactivated Brd1 alleles is lethal during embryonic development in mice. In order to further characterize the molecular functions of BRD1 in the brain, we have developed a novel Brd1 knockout mouse model (Brd1-/-) with bi-allelic conditional inactivation of Brd1 in the central nervous system. Brd1-/- mice were viable but smaller and with reduced muscle strength. They showed reduced exploratory behavior and increased sensitivity to pentylenetetrazole-induced seizures supporting the previously described GABAergic dysfunction in constitutive Brd1+/- mice. Because BRD1 takes part in protein complexes with histone binding and modifying functions, we investigated the effect of BRD1 depletion on the global histone modification pattern in mouse brain by mass spectrometry. We found decreased levels of histone H3 acetylation (H3K9ac, H3K14ac, and H3K18ac) and increased N-tail clipping in consequence of BRD1 depletion. Collectively, the presented results support that BRD1 controls gene expression at the epigenetic level by regulating histone H3 proteoforms in the brain.
Collapse
Affiliation(s)
- Veerle Paternoster
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Anders Valdemar Edhager
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Per Qvist
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Julie Grinderslev Donskov
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Pavel Shliaha
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole Nørregaard Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Psychosis Research Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Anders Lade Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Anders Dupont Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark.,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jane Hvarregaard Christensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark. .,Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark. .,Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Centre for Genomics and Personalized Medicine, CGPM, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
8
|
Ricciardello A, Tomaiuolo P, Persico AM. Genotype-phenotype correlation in Phelan-McDermid syndrome: A comprehensive review of chromosome 22q13 deleted genes. Am J Med Genet A 2021; 185:2211-2233. [PMID: 33949759 PMCID: PMC8251815 DOI: 10.1002/ajmg.a.62222] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 12/19/2022]
Abstract
Phelan‐McDermid syndrome (PMS, OMIM #606232), also known as chromosome 22q13 deletion syndrome, is a rare genetic disorder characterized by intellectual disability, hypotonia, delayed or absent speech, motor impairment, autism spectrum disorder, behavioral anomalies, and minor aspecific dysmorphic features. Haploinsufficiency of SHANK3, due to intragenic deletions or point mutations, is sufficient to cause many neurobehavioral features of PMS. However, several additional genes located within larger 22q13 deletions can contribute to the great interindividual variability observed in the PMS phenotype. This review summarizes the phenotypic contributions predicted for 213 genes distributed along the largest 22q13.2‐q13.33 terminal deletion detected in our sample of 63 PMS patients by array‐CGH analysis, spanning 9.08 Mb. Genes have been grouped into four categories: (1) genes causing human diseases with an autosomal dominant mechanism, or (2) with an autosomal recessive mechanism; (3) morphogenetically relevant genes, either involved in human diseases with additive co‐dominant, polygenic, and/or multifactorial mechanisms, or implicated in animal models but not yet documented in human pathology; (4) protein coding genes either functionally nonrelevant, with unknown function, or pathogenic through mechanisms other than haploinsufficiency; piRNAs, noncoding RNAs, miRNAs, novel transcripts and pseudogenes. Our aim is to understand genotype–phenotype correlations in PMS patients and to provide clinicians with a conceptual framework to promote evidence‐based genetic work‐ups, clinical assessments, and therapeutic interventions.
Collapse
Affiliation(s)
- Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Pasquale Tomaiuolo
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
10
|
ZFP804A mutant mice display sex-dependent schizophrenia-like behaviors. Mol Psychiatry 2021; 26:2514-2532. [PMID: 33303946 PMCID: PMC8440220 DOI: 10.1038/s41380-020-00972-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 10/20/2020] [Accepted: 11/24/2020] [Indexed: 12/22/2022]
Abstract
Genome-wide association studies uncovered the association of ZNF804A (Zinc-finger protein 804A) with schizophrenia (SZ). In vitro data have indicated that ZNF804A might exert its biological roles by regulating spine and neurite morphogenesis. However, no in vivo data are available for the role of ZNF804A in psychiatric disorders in general, SZ in particular. We generated ZFP804A mutant mice, and they showed deficits in contextual fear and spatial memory. We also observed the sensorimotor gating impairment, as revealed by the prepulse inhibition test, but only in female ZFP804A mutant mice from the age of 6 months. Notably, the PPI difference between the female mutant and control mice was no longer existed with the administration of Clozapine or after the ovariectomy. Hippocampal long-term potentiation was normal in both genders of the mutant mice. Long-term depression was absent in male mutants, but facilitated in the female mutants. Protein levels of hippocampal serotonin-6 receptor and GABAB1 receptor were increased, while those of cortical dopamine 2 receptor were decreased in the female mutants with no obvious changes in the male mutants. Moreover, the spine density was reduced in the cerebral cortex and hippocampus of the mutant mice. Knockdown of ZFP804A impaired the neurite morphogenesis of cortical and hippocampal neurons, while its overexpression enhanced neurite morphogenesis only in the cortical neurons in vitro. Our data collectively support the idea that ZFP804A/ZNF804A plays important roles in the cognitive functions and sensorimotor gating, and its dysfunction may contribute to SZ, particularly in the female patients.
Collapse
|
11
|
Li Z, Wang J, Ji Y, Song F. Expression Characteristics and Clinical Correlations of BRD1 in Colorectal Cancer Samples. Technol Cancer Res Treat 2021; 20:15330338211039678. [PMID: 34482774 PMCID: PMC8422826 DOI: 10.1177/15330338211039678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/27/2021] [Indexed: 01/21/2023] Open
Abstract
The incidence of colorectal cancer (CRC), as well as subsequent patient mortality, has increased in the last decade; an unhealthy diet is considered to be the leading cause. Previous studies have shown the potential of the bromodomain containing 1 (BRD1) gene as a therapeutic target for CRC based on its specificity; however, the genetic mode of action and expression in CRC cells are yet to be investigated. In this study, target genes were screened from single-cell transcriptome sequencing data, and the collected clinical specimens were subjected to immunohistochemistry (IHC) to identify the protein expression of target genes; the results were verified in the GSE17536 array set. Receiver operating characteristic curves (ROC) and overall survival (OS) were used to test target genes as biomarkers and independent predictive markers for CRC. Based on these results, BRD1 was screened as a target gene, and IHC results showed that BRD1 protein expression in CRC was higher than that in normal tissues and was significantly upregulated in poorly differentiated (PD) CRC. ROC analysis showed that the area under the curve in the collected clinical specimens and GSE17536 were 0.6062 and 0.6094, respectively. OS analysis showed that higher BRD1 protein expression was associated with a significantly shorter survival time. In conclusion, BRD1 expression was positively correlated with PD CRC and negatively correlated with OS, indicating that BRD1 could predict the differentiation state of CRC and may be a novel predictive biomarker.
Collapse
Affiliation(s)
- Zhou Li
- Molecular Medicine and Tumor Research Center, Chongqing Medical University, Chongqing, China
| | - Junjie Wang
- Southwest Hospital, First Affiliated Hospital of Army Military Medical University, Chongqing, China
| | - Yuzhu Ji
- Mianyang Central Hospital, Mianyang, Sichuan, China
| | - Fangzhou Song
- Molecular Medicine and Tumor Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Rajkumar AP, Qvist P, Donskov JG, Lazarus R, Pallesen J, Nava N, Winther G, Liebenberg N, Cour SHL, Paternoster V, Fryland T, Palmfeldt J, Fejgin K, Mørk A, Nyegaard M, Pakkenberg B, Didriksen M, Nyengaard JR, Wegener G, Mors O, Christensen JH, Børglum AD. Reduced Brd1 expression leads to reversible depression-like behaviors and gene-expression changes in female mice. Transl Psychiatry 2020; 10:239. [PMID: 32681022 PMCID: PMC7367888 DOI: 10.1038/s41398-020-00914-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/20/2020] [Accepted: 06/30/2020] [Indexed: 12/30/2022] Open
Abstract
The schizophrenia-associated gene, BRD1, encodes an epigenetic regulator in which chromatin interactome is enriched with genes implicated in mental health. Alterations in histone modifications and epigenetic regulation contribute to brain transcriptomic changes in affective disorders and preclinical data supports a role for BRD1 in psychopathology. However, the implication of BRD1 on affective pathology remains poorly understood. In this study, we assess affective behaviors and associated neurobiology in Brd1+/- mice along with their responses to Fluoxetine and Imipramine. This involves behavioral, neurostructural, and neurochemical characterizations along with regional cerebral gene expression profiling combined with integrative functional genomic analyses. We report behavioral changes in female Brd1+/- mice with translational value to depressive symptomatology that can be alleviated by the administration of antidepressant medications. Behavioral changes are accompanied by altered brain morphometry and imbalances in monoaminergic systems. In accordance, gene expression changes across brain tissues reveal altered neurotransmitter signaling and cluster in functional pathways associated with depression including 'Adrenergic-, GPCR-, cAMP-, and CREB/CREM-signaling'. Integrative gene expression analysis specifically links changes in amygdaloid intracellular signaling activity to the behavioral treatment response in Brd1+/- mice. Collectively, our study highlights the importance of BRD1 as a modulator of affective pathology and adds to our understanding of the molecular mechanisms underlying affective disorders and their treatment response.
Collapse
Affiliation(s)
- Anto P. Rajkumar
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark ,grid.4563.40000 0004 1936 8868Division of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, UK ,grid.13097.3c0000 0001 2322 6764Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King’s College London, London, UK
| | - Per Qvist
- IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark. .,Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark. .,Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark. .,Synaptic Transmission, H. Lundbeck A/S, Copenhagen, Denmark.
| | - Julie G. Donskov
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Ross Lazarus
- grid.1051.50000 0000 9760 5620Computational Biology, Baker IDI Heart and Diabetes institute, Melbourne, VIC Australia
| | - Jonatan Pallesen
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Nicoletta Nava
- grid.154185.c0000 0004 0512 597XTranslational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gudrun Winther
- grid.154185.c0000 0004 0512 597XTranslational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Nico Liebenberg
- grid.154185.c0000 0004 0512 597XTranslational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sanne H. la Cour
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Veerle Paternoster
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Tue Fryland
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Johan Palmfeldt
- grid.154185.c0000 0004 0512 597XResearch Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kim Fejgin
- grid.424580.f0000 0004 0476 7612Synaptic Transmission, H. Lundbeck A/S, Copenhagen, Denmark
| | - Arne Mørk
- grid.424580.f0000 0004 0476 7612Synaptic Transmission, H. Lundbeck A/S, Copenhagen, Denmark
| | - Mette Nyegaard
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Bente Pakkenberg
- grid.411702.10000 0000 9350 8874Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Michael Didriksen
- grid.424580.f0000 0004 0476 7612Synaptic Transmission, H. Lundbeck A/S, Copenhagen, Denmark
| | - Jens R. Nyengaard
- grid.7048.b0000 0001 1956 2722Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- grid.154185.c0000 0004 0512 597XTranslational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Mors
- grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark ,grid.154185.c0000 0004 0512 597XPsychosis Research Unit, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jane H. Christensen
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| | - Anders D. Børglum
- grid.452548.a0000 0000 9817 5300IPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Department of Biomedicine and Centre for Integrative Sequencing, iSEQ, Aarhus University, Aarhus, Denmark ,grid.7048.b0000 0001 1956 2722Center for Genomics and Personalized Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Polymorphism in the LASP1 gene promoter region alters cognitive functions of patients with schizophrenia. Sci Rep 2019; 9:18840. [PMID: 31827227 PMCID: PMC6906281 DOI: 10.1038/s41598-019-55414-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/22/2019] [Indexed: 11/08/2022] Open
Abstract
Schizophrenia's pathogenesis remains elusive. Cognitive dysfunction is the endophenotype and outcome predictor of schizophrenia. The LIM and SH3 domain protein (LASP1) protein, a component of CNS synapses and dendritic spines, has been related to the N-methyl-D-aspartate receptor (NMDAR) dysfunction hypothesis and schizophrenia. A single-nucleotide polymorphism (rs979607) in the LASP1 gene promoter region has been also implicated in schizophrenia susceptibility. The aim of this study was to investigate the role of the LASP1 rs979607 polymorphism in the cognitive functions of patients with schizophrenia. Two hundred and ninety-one Han Taiwanese patients with schizophrenia were recruited. Ten cognitive tests and two clinical rating scales were assessed. The scores of cognitive tests were standardized to T-scores. The genotyping of the LASP1 rs979607 polymorphism was performed using TaqMan assay. Among the 291 patients, 85 were C/C homozygotes of rs979607, 141 C/T heterozygotes, and 65 T/T homozygotes, which fitted the Hardy-Weinberg equilibrium. After adjusting age, gender, and education with general linear model, the C/C homozygotes performed better than C/T heterozygotes in overall composite score (p = 0.023), Category Fluency test (representing processing speed and semantic memory) (p = 0.045), and Wechsler Memory Scale (WMS)-III backward Spatial Span test (p = 0.025), albeit without correction for multiple comparisons for the latter two individual tests. To the best of our knowledge, this is the first study suggesting that the genetic variation of LASP1 may be associated with global cognitive function, category verbal fluency, and spatial working memory of patients with schizophrenia. The finding also lends support to the NMDAR dysfunction hypothesis of schizophrenia. More studies with longitudinal designs are warranted.
Collapse
|