1
|
Nepal MR, Shah S, Kang KT. Dual roles of myeloid-derived suppressor cells in various diseases: a review. Arch Pharm Res 2024; 47:597-616. [PMID: 39008186 DOI: 10.1007/s12272-024-01504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that originate from bone marrow stem cells. In pathological conditions, such as autoimmune disorders, allergies, infections, and cancer, normal myelopoiesis is altered to facilitate the formation of MDSCs. MDSCs were first shown to promote cancer initiation and progression by immunosuppression with the assistance of various chemokines and cytokines. Recently, various studies have demonstrated that MDSCs play two distinct roles depending on the physiological and pathological conditions. MDSCs have protective roles in autoimmune disorders (such as uveoretinitis, multiple sclerosis, rheumatoid arthritis, ankylosing spondylitis, type 1 diabetes, autoimmune hepatitis, inflammatory bowel disease, alopecia areata, and systemic lupus erythematosus), allergies, and organ transplantation. However, they play negative roles in infections and various cancers. Several immunosuppressive functions and mechanisms of MDSCs have been determined in different disease conditions. This review comprehensively discusses the associations between MDSCs and various pathological conditions and briefly describes therapeutic approaches.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Sajita Shah
- College of Pharmacy, Duksung Women's University, Seoul, South Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea
- The Comprehensive Cancer Center, Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Kyu-Tae Kang
- College of Pharmacy, Duksung Women's University, Seoul, South Korea.
- Duksung Innovative Drug Center, Duksung Women's University, Seoul, South Korea.
| |
Collapse
|
2
|
Jiang Q, Duan J, Van Kaer L, Yang G. The Role of Myeloid-Derived Suppressor Cells in Multiple Sclerosis and Its Animal Model. Aging Dis 2024; 15:1329-1343. [PMID: 37307825 PMCID: PMC11081146 DOI: 10.14336/ad.2023.0323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 06/14/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous cell population that consists of mostly immature myeloid cells, are immunoregulatory cells mainly characterized by their suppressive functions. Emerging findings have revealed the involvement of MDSCs in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). MS is an autoimmune and degenerative disease of the central nervous system characterized by demyelination, axon loss, and inflammation. Studies have reported accumulation of MDSCs in inflamed tissues and lymphoid organs of MS patients and EAE mice, and these cells display dual functions in EAE. However, the contribution of MDSCs to MS/EAE pathogenesis remains unclear. This review aims to summarize our current understanding of MDSC subsets and their possible roles in MS/EAE pathogenesis. We also discuss the potential utility and associated obstacles in employing MDSCs as biomarkers and cell-based therapies for MS.
Collapse
Affiliation(s)
- Qianling Jiang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China.
| |
Collapse
|
3
|
Camacho-Toledano C, Machín-Díaz I, Lebrón-Galán R, González-Mayorga A, Palomares FJ, Serrano MC, Clemente D. Graphene oxide films as a novel tool for the modulation of myeloid-derived suppressor cell activity in the context of multiple sclerosis. NANOSCALE 2024; 16:7515-7531. [PMID: 38498071 DOI: 10.1039/d3nr05351b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Despite the pharmacological arsenal approved for Multiple Sclerosis (MS), there are treatment-reluctant patients for whom cell therapy appears as the only therapeutic alternative. Myeloid-derived suppressor cells (MDSCs) are immature cells of the innate immunity able to control the immune response and to promote oligodendroglial differentiation in the MS animal model experimental autoimmune encephalomyelitis (EAE). However, when isolated and cultured for cell therapy purposes, MDSCs lose their beneficial immunomodulatory properties. To prevent this important drawback, culture devices need to be designed so that MDSCs maintain a state of immaturity and immunosuppressive function similar to that exerted in the donor organism. With this aim, we select graphene oxide (GO) as a promising candidate as it has been described as a biocompatible nanomaterial with the capacity to biologically modulate different cell types, yet its immunoactive potential has been poorly explored to date. In this work, we have fabricated GO films with two distintive redox and roughness properties and explore their impact in MDSC culture right after isolation. Our results show that MDSCs isolated from immune organs of EAE mice maintain an immature phenotype and highly immunosuppressive activity on T lymphocytes after being cultured on highly-reduced GO films (rGO200) compared to those grown on conventional glass coverslips. This immunomodulation effect is depleted when MDSCs are exposed to slightly rougher and more oxidized GO substrates (rGO90), in which cells experience a significant reduction in cell size associated with the activation of apoptosis. Taken together, the exposure of MDSCs to GO substrates with different redox state and roughness is presented as a good strategy to control MDSC activity in vitro. The versatility of GO nanomaterials in regards to the impact of their physico-chemical properties in immunomodulation opens the door to their selective therapeutic potential for pathologies where MDSCs need to be enhanced (MS) or inhibited (cancer).
Collapse
Affiliation(s)
- Celia Camacho-Toledano
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
| | - Isabel Machín-Díaz
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
| | - Rafael Lebrón-Galán
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
| | - Ankor González-Mayorga
- Laboratory of Interfaces for Neural Repair, Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071- Toledo, Spain
| | - Francisco J Palomares
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la Cruz 3, 28049-Madrid, Spain.
| | - Diego Clemente
- Neuroimmune-Repair Group, Hospital Nacional de Parapléjicos (HNP), SESCAM, Finca La Peraleda s/n, 45071-Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029-Madrid, Spain
- Design and development of biomaterials for neural regeneration, HNP, Associated Unit to CSIC through ICMM, Finca La Peraleda s/n, 45071-Toledo, Spain
| |
Collapse
|
4
|
Tamberi L, Belloni A, Pugnaloni A, Rippo MR, Olivieri F, Procopio AD, Bronte G. The Influence of Myeloid-Derived Suppressor Cell Expansion in Neuroinflammation and Neurodegenerative Diseases. Cells 2024; 13:643. [PMID: 38607083 PMCID: PMC11011419 DOI: 10.3390/cells13070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
The neuro-immune axis has a crucial function both during physiological and pathological conditions. Among the immune cells, myeloid-derived suppressor cells (MDSCs) exert a pivotal role in regulating the immune response in many pathological conditions, influencing neuroinflammation and neurodegenerative disease progression. In chronic neuroinflammation, MDSCs could lead to exacerbation of the inflammatory state and eventually participate in the impairment of cognitive functions. To have a complete overview of the role of MDSCs in neurodegenerative diseases, research on PubMed for articles using a combination of terms made with Boolean operators was performed. According to the search strategy, 80 papers were retrieved. Among these, 44 papers met the eligibility criteria. The two subtypes of MDSCs, monocytic and polymorphonuclear MDSCs, behave differently in these diseases. The initial MDSC proliferation is fundamental for attenuating inflammation in Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), but not in amyotrophic lateral sclerosis (ALS), where MDSC expansion leads to exacerbation of the disease. Moreover, the accumulation of MDSC subtypes in distinct organs changes during the disease. The proliferation of MDSC subtypes occurs at different disease stages and can influence the progression of each neurodegenerative disorder differently.
Collapse
Affiliation(s)
- Lorenza Tamberi
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Alessia Belloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Armanda Pugnaloni
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| | - Giuseppe Bronte
- Department of Clinical and Molecular Sciences (DISCLIMO), Polytechnic University of Marche, 60121 Ancona, Italy; (L.T.); (A.P.); (M.R.R.); (F.O.); (A.D.P.); (G.B.)
- Clinic of Laboratory and Precision Medicine, National Institute of Health and Sciences on Ageing (IRCCS INRCA), 60124 Ancona, Italy
| |
Collapse
|
5
|
Zhou F, Huang L, Li S, Yang W, Chen F, Cai Z, Liu X, Xu W, Lehto V, Lächelt U, Huang R, Shi Y, Lammers T, Tao W, Xu ZP, Wagner E, Xu Z, Yu H. From structural design to delivery: mRNA therapeutics for cancer immunotherapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20210146. [PMID: 38855617 PMCID: PMC11022630 DOI: 10.1002/exp.20210146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/15/2023] [Indexed: 06/11/2024]
Abstract
mRNA therapeutics have emerged as powerful tools for cancer immunotherapy in accordance with their superiority in expressing all sequence-known proteins in vivo. In particular, with a small dosage of delivered mRNA, antigen-presenting cells (APCs) can synthesize mutant neo-antigens and multi-antigens and present epitopes to T lymphocytes to elicit antitumor effects. In addition, expressing receptors like chimeric antigen receptor (CAR), T-cell receptor (TCR), CD134, and immune-modulating factors including cytokines, interferons, and antibodies in specific cells can enhance immunological response against tumors. With the maturation of in vitro transcription (IVT) technology, large-scale and pure mRNA encoding specific proteins can be synthesized quickly. However, the clinical translation of mRNA-based anticancer strategies is restricted by delivering mRNA into target organs or cells and the inadequate endosomal escape efficiency of mRNA. Recently, there have been some advances in mRNA-based cancer immunotherapy, which can be roughly classified as modifications of the mRNA structure and the development of delivery systems, especially the lipid nanoparticle platforms. In this review, the latest strategies for overcoming the limitations of mRNA-based cancer immunotherapies and the recent advances in delivering mRNA into specific organs and cells are summarized. Challenges and opportunities for clinical applications of mRNA-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Feng Zhou
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lujia Huang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Shiqin Li
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Wenfang Yang
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
| | - Fangmin Chen
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouChina
| | - Wujun Xu
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Vesa‐Pekka Lehto
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Ulrich Lächelt
- Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| | - Rongqin Huang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug DeliveryMinistry of Education, Fudan UniversityShanghaiChina
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachenGermany
| | - Wei Tao
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Zhi Ping Xu
- Institute of Biomedical Health Technology and Engineering and Institute of Systems and Physical BiologyShenzhen Bay LaboratoryShenzhenChina
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for NanoscienceLudwig‐Maximilians‐UniversitätMunichGermany
| | - Zhiai Xu
- School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
| | - Haijun Yu
- State Key Laboratory of Chemical Biology and Center of Pharmaceutics, Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
6
|
Xiong X, Zhang Y, Wen Y. Diverse functions of myeloid-derived suppressor cells in autoimmune diseases. Immunol Res 2024; 72:34-49. [PMID: 37733169 PMCID: PMC10811123 DOI: 10.1007/s12026-023-09421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
Since myeloid-derived suppressor cells (MDSCs) were found suppressing immune responses in cancer and other pathological conditions, subsequent researchers have pinned their hopes on the suppressive function against immune damage in autoimmune diseases. However, recent studies have found key distinctions of MDSC immune effects in cancer and autoimmunity. These include not only suppression and immune tolerance, but MDSCs also possess pro-inflammatory effects and exacerbate immune disorders during autoimmunity, while promoting T cell proliferation, inducing Th17 cell differentiation, releasing pro-inflammatory cytokines, and causing direct tissue damage. Additionally, MDSCs could interact with surrounding cells to directly cause tissue damage or repair, sometimes even as an inflammatory indicator in line with disease severity. These diverse manifestations could be partially attributed to the heterogeneity of MDSCs, but not all. The different disease types, disease states, and cytokine profiles alter the diverse phenotypes and functions of MDSCs, thus leading to the impairment or obversion of MDSC suppression. In this review, we summarize the functions of MDSCs in several autoimmune diseases and attempt to elucidate the mechanisms behind their actions.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
Zanghì A, Di Filippo PS, Avolio C, D’Amico E. Myeloid-derived Suppressor Cells and Multiple Sclerosis. Curr Neuropharmacol 2024; 23:36-57. [PMID: 38988152 PMCID: PMC11519824 DOI: 10.2174/1570159x22999240710142942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 07/12/2024] Open
Abstract
Myeloid-Derived Suppressor Cells (MDSCs) are a heterogeneous population of immature myeloid cells that play important roles in maintaining immune homeostasis and regulating immune responses. MDSCs can be divided into two main subsets based on their surface markers and functional properties: granulocytic MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs). Recently greatest attention has been paid to innate immunity in Multiple Sclerosis (MS), so the aim of our review is to provide an overview of the main characteristics of MDSCs in MS and its preclinical model by discussing the most recent data available. The immunosuppressive functions of MDSCs can be dysregulated in MS, leading to an exacerbation of the autoimmune response and disease progression. Antigen-specific peptide immunotherapy, which aims to restore tolerance while avoiding the use of non-specific immunosuppressive drugs, is a promising approach for autoimmune diseases, but the cellular mechanisms behind successful therapy remain poorly understood. Therefore, targeting MDSCs could be a promising therapeutic approach for MS. Various strategies for modulating MDSCs have been investigated, including the use of pharmacological agents, biological agents, and adoptive transfer of exogenous MDSCs. However, it remained unclear whether MDSCs display any therapeutic potential in MS and how this therapy could modulate different aspects of the disease. Collectively, all the described studies revealed a pivotal role for MDSCs in the regulation of MS.
Collapse
Affiliation(s)
- Aurora Zanghì
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Emanuele D’Amico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
8
|
Barriola S, Delgado-García LM, Cartas-Cejudo P, Iñigo-Marco I, Fernández-Irigoyen J, Santamaría E, López-Mascaraque L. Orosomucoid-1 Arises as a Shared Altered Protein in Two Models of Multiple Sclerosis. Neuroscience 2023; 535:203-217. [PMID: 37949310 DOI: 10.1016/j.neuroscience.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Multiple sclerosis (MS) is a complex autoimmune and neurodegenerative disorder that affects the central nervous system (CNS). It is characterized by a heterogeneous disease course involving demyelination and inflammation. In this study, we utilized two distinct animal models, cuprizone (CPZ)-induced demyelination and experimental autoimmune encephalomyelitis (EAE), to replicate various aspects of the disease. We aimed to investigate the differential CNS responses by examining the proteomic profiles of EAE mice during the peak disease (15 days post-induction) and cuprizone-fed mice during the acute phase (38 days). Specifically, we focused on two different regions of the CNS: the dorsal cortex (Cx) and the entire spinal cord (SC). Our findings revealed varied glial, synaptic, dendritic, mitochondrial, and inflammatory responses within these regions for each model. Notably, we identified a single protein, Orosomucoid-1 (Orm1), also known as Alpha-1-acid glycoprotein 1 (AGP1), that consistently exhibited alterations in both models and regions. This study provides insights into the similarities and differences in the responses of these regions in two distinct demyelinating models.
Collapse
Affiliation(s)
- Sonsoles Barriola
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Ph.D. Program in Neuroscience, Autónoma de Madrid University-Cajal Institute, Madrid 28029, Spain
| | - Lina María Delgado-García
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain; Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo UNIFESP, São Paulo 04039032, Brazil
| | - Paz Cartas-Cejudo
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Ignacio Iñigo-Marco
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IDISNA, Pamplona 31008, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas-CSIC, Madrid 28002, Spain.
| |
Collapse
|
9
|
Bekić M, Tomić S. Myeloid-derived suppressor cells in the therapy of autoimmune diseases. Eur J Immunol 2023; 53:e2250345. [PMID: 37748117 DOI: 10.1002/eji.202250345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are well recognized as critical factors in the pathology of tumors. However, their roles in autoimmune diseases are still unclear, which hampers the development of efficient immunotherapies. The role of different MDSCs subsets in multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and systemic lupus erythematosus displayed different mechanisms of immune suppression, and several studies pointed to MDSCs' capacity to induce T-helper (Th)17 cells and tissue damage. These results also suggested that MDSCs could be present in different functional states and utilize different mechanisms for controlling the activity of T and B cells. Therefore, various therapeutic strategies should be employed to restore homeostasis in autoimmune diseases. The therapies harnessing MDSCs could be designed either as cell therapy or rely on the expansion and activation of MDSCs in vivo, or their depletion. Cumulatively, MDSCs are inevitable players in autoimmunity, and rational approaches in developing therapies are required to avoid the adverse effects of MDSCs and harness their suppressive mechanisms to improve the overall efficacy of autoimmunity therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| |
Collapse
|
10
|
Ortega MC, Lebrón-Galán R, Machín-Díaz I, Naughton M, Pérez-Molina I, García-Arocha J, Garcia-Dominguez JM, Goicoechea-Briceño H, Vila-Del Sol V, Quintanero-Casero V, García-Montero R, Galán V, Calahorra L, Camacho-Toledano C, Martínez-Ginés ML, Fitzgerald DC, Clemente D. Central and peripheral myeloid-derived suppressor cell-like cells are closely related to the clinical severity of multiple sclerosis. Acta Neuropathol 2023; 146:263-282. [PMID: 37243699 PMCID: PMC10329064 DOI: 10.1007/s00401-023-02593-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/10/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
Multiple sclerosis (MS) is a highly heterogeneous demyelinating disease of the central nervous system (CNS) that needs for reliable biomarkers to foresee disease severity. Recently, myeloid-derived suppressor cells (MDSCs) have emerged as an immune cell population with an important role in MS. The monocytic-MDSCs (M-MDSCs) share the phenotype with Ly-6Chi-cells in the MS animal model, experimental autoimmune encephalomyelitis (EAE), and have been retrospectively related to the severity of the clinical course in the EAE. However, no data are available about the presence of M-MDSCs in the CNS of MS patients or its relation with the future disease aggressiveness. In this work, we show for the first time cells exhibiting all the bona-fide phenotypical markers of M-MDSCs associated with MS lesions, whose abundance in these areas appears to be directly correlated with longer disease duration in primary progressive MS patients. Moreover, we show that blood immunosuppressive Ly-6Chi-cells are strongly related to the future severity of EAE disease course. We found that a higher abundance of Ly-6Chi-cells at the onset of the EAE clinical course is associated with a milder disease course and less tissue damage. In parallel, we determined that the abundance of M-MDSCs in blood samples from untreated MS patients at their first relapse is inversely correlated with the Expanded Disability Status Scale (EDSS) at baseline and after a 1-year follow-up. In summary, our data point to M-MDSC load as a factor to be considered for future studies focused on the prediction of disease severity in EAE and MS.
Collapse
Affiliation(s)
- María Cristina Ortega
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Isabel Machín-Díaz
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Michelle Naughton
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, Northern Ireland, UK
| | - Inmaculada Pérez-Molina
- Departamento de Neurología, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007, Toledo, Spain
| | - Jennifer García-Arocha
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Jose Manuel Garcia-Dominguez
- Departamento de Neurología, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Haydee Goicoechea-Briceño
- Departamento de Neurología, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Virginia Vila-Del Sol
- Servicio de Citometría de Flujo, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Víctor Quintanero-Casero
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Rosa García-Montero
- Departamento de Neurología, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007, Toledo, Spain
| | - Victoria Galán
- Departamento de Neurología, Hospital Universitario de Toledo, Av. del Río Guadiana, 45007, Toledo, Spain
| | - Leticia Calahorra
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
| | - Celia Camacho-Toledano
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - María Luisa Martínez-Ginés
- Departamento de Neurología, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo 46, 28007, Madrid, Spain
| | - Denise C Fitzgerald
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Rd, Belfast, BT9 7BL, Northern Ireland, UK
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, SESCAM, Finca "La Peraleda" s/n, 45071, Toledo, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, c/Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| |
Collapse
|
11
|
Wang Q, Chen YY, Yang ZC, Yuan HJ, Dong YW, Miao Q, Li YQ, Wang J, Yu JZ, Xiao BG, Ma CG. Grape Seed Extract Attenuates Demyelination in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Inflammatory Response of Immune Cells. Chin J Integr Med 2023; 29:394-404. [PMID: 36607588 DOI: 10.1007/s11655-022-3587-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action. METHODS This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively. RESULTS GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05). CONCLUSION GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.
Collapse
Affiliation(s)
- Qing Wang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yang-Yang Chen
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Zhi-Chao Yang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Hai-Jun Yuan
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yi-Wei Dong
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Qiang Miao
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Yan-Qing Li
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China
| | - Jing Wang
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Department of Neurology, the First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Jie-Zhong Yu
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, 037009, China.,Department of Neurology, Datong Fifth People's Hospital, Datong, Shanxi Province, 037009, China
| | - Bao-Guo Xiao
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.,Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200000, China
| | - Cun-Gen Ma
- Research Center of Neurobiology, the Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China. .,Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, 037009, China.
| |
Collapse
|
12
|
Camacho-Toledano C, Machín-Díaz I, Calahorra L, Cabañas-Cotillas M, Otaegui D, Castillo-Triviño T, Villar LM, Costa-Frossard L, Comabella M, Midaglia L, García-Domínguez JM, García-Arocha J, Ortega MC, Clemente D. Peripheral myeloid-derived suppressor cells are good biomarkers of the efficacy of fingolimod in multiple sclerosis. J Neuroinflammation 2022; 19:277. [PMCID: PMC9675277 DOI: 10.1186/s12974-022-02635-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background The increasing number of treatments that are now available to manage patients with multiple sclerosis (MS) highlights the need to develop biomarkers that can be used within the framework of individualized medicine. Fingolimod is a disease-modifying treatment that belongs to the sphingosine-1-phosphate receptor modulators. In addition to inhibiting T cell egress from lymph nodes, fingolimod promotes the immunosuppressive activity of myeloid-derived suppressor cells (MDSCs), whose monocytic subset (M-MDSCs) can be used as a biomarker of disease severity, as well as the degree of demyelination and extent of axonal damage in the experimental autoimmune encephalomyelitis (EAE) model of MS. In the present study, we have assessed whether the abundance of circulating M-MDSCs may represent a useful biomarker of fingolimod efficacy in EAE and in the clinical context of MS patients. Methods Treatment with vehicle or fingolimod was orally administered to EAE mice for 14 days in an individualized manner, starting the day when each mouse began to develop clinical signs. Peripheral blood from EAE mice was collected previous to treatment and human peripheral blood mononuclear cells (PBMCs) were collected from fingolimod to treat MS patients’ peripheral blood. In both cases, M-MDSCs abundance was analyzed by flow cytometry and its relationship with the future clinical affectation of each individual animal or patient was assessed. Results Fingolimod-treated animals presented a milder EAE course with less demyelination and axonal damage, although a few animals did not respond well to treatment and they invariably had fewer M-MDSCs prior to initiating the treatment. Remarkably, M-MDSC abundance was also found to be an important and specific parameter to distinguish EAE mice prone to better fingolimod efficacy. Finally, in a translational effort, M-MDSCs were quantified in MS patients at baseline and correlated with different clinical parameters after 12 months of fingolimod treatment. M-MDSCs at baseline were highly representative of a good therapeutic response to fingolimod, i.e., patients who met at least two of the criteria used to define non-evidence of disease activity-3 (NEDA-3) 12 months after treatment. Conclusion Our data indicate that M-MDSCs might be a useful predictive biomarker of the response of MS patients to fingolimod. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02635-3.
Collapse
Affiliation(s)
- Celia Camacho-Toledano
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Isabel Machín-Díaz
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Leticia Calahorra
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - María Cabañas-Cotillas
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - David Otaegui
- grid.432380.eMultiple Sclerosis Unit, Biodonostia Health Institute, 20014 Donostia-San Sebastián, Spain
| | - Tamara Castillo-Triviño
- grid.432380.eMultiple Sclerosis Unit, Biodonostia Health Institute, 20014 Donostia-San Sebastián, Spain ,grid.414651.30000 0000 9920 5292Neurology Department, Hospital Universitario Donostia, San Sebastián, Spain
| | - Luisa María Villar
- grid.411347.40000 0000 9248 5770Immunology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Lucienne Costa-Frossard
- grid.411347.40000 0000 9248 5770Immunology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain ,grid.411347.40000 0000 9248 5770Multiple Sclerosis Unit, Neurology, Ramón y Cajal University Hospital, Madrid, Spain
| | - Manuel Comabella
- grid.411083.f0000 0001 0675 8654Neurology-Neuroimmunology Service, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luciana Midaglia
- grid.411083.f0000 0001 0675 8654Neurology-Neuroimmunology Service, Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d’Hebron, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Manuel García-Domínguez
- grid.410526.40000 0001 0277 7938Multiple Sclerosis Unit, Department of Neurology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Jennifer García-Arocha
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - María Cristina Ortega
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Diego Clemente
- grid.414883.20000 0004 1767 1847Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| |
Collapse
|
13
|
Targeting Signaling Pathway Downstream of RIG-I/MAVS in the CNS Stimulates Production of Endogenous Type I IFN and Suppresses EAE. Int J Mol Sci 2022; 23:ijms231911292. [PMID: 36232593 PMCID: PMC9570082 DOI: 10.3390/ijms231911292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Type I interferons (IFN), including IFNβ, play a protective role in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Type I IFNs are induced by the stimulation of innate signaling, including via cytoplasmic RIG-I-like receptors. In the present study, we investigated the potential effect of a chimeric protein containing the key domain of RIG-I signaling in the production of CNS endogenous IFNβ and asked whether this would exert a therapeutic effect against EAE. We intrathecally administered an adeno-associated virus vector (AAV) encoding a fusion protein comprising RIG-I 2CARD domains (C) and the first 200 amino acids of mitochondrial antiviral-signaling protein (MAVS) (M) (AAV-CM). In vivo imaging in IFNβ/luciferase reporter mice revealed that a single intrathecal injection of AAV-CM resulted in dose-dependent and sustained IFNβ expression within the CNS. IFNβ expression was significantly increased for 7 days. Immunofluorescent staining in IFNβ-YFP reporter mice revealed extraparenchymal CD45+ cells, choroid plexus, and astrocytes as sources of IFNβ. Moreover, intrathecal administration of AAV-CM at the onset of EAE induced the suppression of EAE, which was IFN-I-dependent. These findings suggest that accessing the signaling pathway downstream of RIG-I represents a promising therapeutic strategy for inflammatory CNS diseases, such as MS.
Collapse
|
14
|
Manenti S, Orrico M, Masciocchi S, Mandelli A, Finardi A, Furlan R. PD-1/PD-L Axis in Neuroinflammation: New Insights. Front Neurol 2022; 13:877936. [PMID: 35756927 PMCID: PMC9222696 DOI: 10.3389/fneur.2022.877936] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/29/2022] [Indexed: 12/27/2022] Open
Abstract
The approval of immune checkpoint inhibitors (ICIs) by the Food and Drug Administration (FDA) led to an improvement in the treatment of several types of cancer. The main targets of these drugs are cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death protein-1/programmed death-ligand 1 pathway (PD-1/PD-L1), which are important inhibitory molecules for the immune system. Besides being generally safer than common chemotherapy, the use of ICIs has been associated with several immune-related adverse effects (irAEs). Although rare, neurological adverse effects are reported within the irAEs in clinical trials, particularly in patients treated with anti-PD-1 antibodies or a combination of both anti-CTLA-4 and PD-1 drugs. The observations obtained from clinical trials suggest that the PD-1 axis may play a remarkable role in the regulation of neuroinflammation. Moreover, numerous studies in preclinical models have demonstrated the involvement of PD-1 in several neurological disorders. However, a comprehensive understanding of these cellular mechanisms remains elusive. Our review aims to summarize the most recent evidence concerning the regulation of neuroinflammation through PD-1/PD-L signaling, focusing on cell populations that are involved in this pathway.
Collapse
Affiliation(s)
- Susanna Manenti
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Mario Orrico
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Masciocchi
- Neuroimmunology Laboratory and Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
15
|
Calahorra L, Camacho-Toledano C, Serrano-Regal MP, Ortega MC, Clemente D. Regulatory Cells in Multiple Sclerosis: From Blood to Brain. Biomedicines 2022; 10:335. [PMID: 35203544 PMCID: PMC8961785 DOI: 10.3390/biomedicines10020335] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune, and neurodegenerative disease of the central nervous system (CNS) that affects myelin. The etiology of MS is unclear, although a variety of environmental and genetic factors are thought to increase the risk of developing the disease. Historically, T cells were considered to be the orchestrators of MS pathogenesis, but evidence has since accumulated implicating B lymphocytes and innate immune cells in the inflammation, demyelination, and axonal damage associated with MS disease progression. However, more recently the importance of the protective role of immunoregulatory cells in MS has become increasingly evident, such as that of myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) and B (Breg) cells, or CD56bright natural killer cells. In this review, we will focus on how peripheral regulatory cells implicated in innate and adaptive immune responses are involved in the physiopathology of MS. Moreover, we will discuss how these cells are thought to act and contribute to MS histopathology, also addressing their promising role as promoters of successful remyelination within the CNS. Finally, we will analyze how understanding these protective mechanisms may be crucial in the search for potential therapies for MS.
Collapse
Affiliation(s)
| | | | | | | | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain; (L.C.); (C.C.-T.); (M.P.S.-R.); (M.C.O.)
| |
Collapse
|
16
|
Del Pilar C, Lebrón-Galán R, Pérez-Martín E, Pérez-Revuelta L, Ávila-Zarza CA, Alonso JR, Clemente D, Weruaga E, Díaz D. The Selective Loss of Purkinje Cells Induces Specific Peripheral Immune Alterations. Front Cell Neurosci 2021; 15:773696. [PMID: 34916910 PMCID: PMC8671039 DOI: 10.3389/fncel.2021.773696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
The progression of neurodegenerative diseases is reciprocally associated with impairments in peripheral immune responses. We investigated different contexts of selective neurodegeneration to identify specific alterations of peripheral immune cells and, at the same time, discover potential biomarkers associated to this pathological condition. Consequently, a model of human cerebellar degeneration and ataxia -the Purkinje Cell Degeneration (PCD) mouse- has been employed, as it allows the study of different processes of selective neuronal death in the same animal, i.e., Purkinje cells in the cerebellum and mitral cells in the olfactory bulb. Infiltrated leukocytes were studied in both brain areas and compared with those from other standardized neuroinflammatory models obtained by administering either gamma radiation or lipopolysaccharide. Moreover, both myeloid and lymphoid splenic populations were analyzed by flow cytometry, focusing on markers of functional maturity and antigen presentation. The severity and type of neural damage and inflammation affected immune cell infiltration. Leukocytes were more numerous in the cerebellum of PCD mice, being located predominantly within those cerebellar layers mostly affected by neurodegeneration, in a completely different manner than the typical models of induced neuroinflammation. Furthermore, the milder degeneration of the olfactory bulb did not foster leukocyte attraction. Concerning the splenic analysis, in PCD mice we found: (1) a decreased percentage of several myeloid cell subsets, and (2) a reduced mean fluorescence intensity in those myeloid markers related to both antigen presentation and functional maturity. In conclusion, the selective degeneration of Purkinje cells triggers a specific effect on peripheral immune cells, fostering both attraction and functional changes. This fact endorses the employment of peripheral immune cell populations as concrete biomarkers for monitoring different neuronal death processes.
Collapse
Affiliation(s)
- Carlos Del Pilar
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Ester Pérez-Martín
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Laura Pérez-Revuelta
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - Carmelo Antonio Ávila-Zarza
- IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Applied Statistics Group, Department of Statistics, Universidad de Salamanca, Salamanca, Spain
| | - José Ramón Alonso
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain.,Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Toledo, Spain.,SESCAM (Servicio de Salud de Castile-La-Mancha), Castilla-La Mancha, Spain
| | - Eduardo Weruaga
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| | - David Díaz
- INCyL, Institute for Neuroscience of Castile and Leon, Universidad de Salamanca, Salamanca, Spain.,IBSAL, Institute of Biomedical Research of Salamanca, Salamanca, Spain
| |
Collapse
|
17
|
Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol 2021; 21:485-498. [PMID: 33526920 PMCID: PMC7849958 DOI: 10.1038/s41577-020-00490-y] [Citation(s) in RCA: 995] [Impact Index Per Article: 248.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2020] [Indexed: 01/30/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They are implicated in the regulation of immune responses in many pathological conditions and are closely associated with poor clinical outcomes in cancer. Recent studies have indicated key distinctions between MDSCs and classical neutrophils and monocytes, and, in this Review, we discuss new data on the major genomic and metabolic characteristics of MDSCs. We explain how these characteristics shape MDSC function and could facilitate therapeutic targeting of these cells, particularly in cancer and in autoimmune diseases. Additionally, we briefly discuss emerging data on MDSC involvement in pregnancy, neonatal biology and COVID-19.
Collapse
Affiliation(s)
- Filippo Veglia
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | |
Collapse
|
18
|
Gharagozloo M, Smith MD, Sotirchos ES, Jin J, Meyers K, Taylor M, Garton T, Bannon R, Lord HN, Dawson TM, Dawson VL, Lee S, Calabresi PA. Therapeutic Potential of a Novel Glucagon-like Peptide-1 Receptor Agonist, NLY01, in Experimental Autoimmune Encephalomyelitis. Neurotherapeutics 2021; 18:1834-1848. [PMID: 34260042 PMCID: PMC8608955 DOI: 10.1007/s13311-021-01088-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS), characterized by demyelination, gliosis, and neurodegeneration. While the currently available disease-modifying therapies effectively suppress the immune attack on the CNS, there are no therapies to date that directly mitigate neurodegeneration. Glucagon-like peptide-1 (GLP-1) is a small peptide hormone that maintains glucose homeostasis. A novel GLP-1 receptor (GLP-1R) agonist, NLY01, was recently shown to have neuroprotective effects in the animal models of Parkinson's disease and is now in a phase 2 clinical trial. In this study, we investigated the therapeutic potential of NLY01 in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Our data show that NLY01 delays the onset and attenuates the severity of EAE in a prevention paradigm, when given before disease onset. NLY01 inhibits the activation of immune cells in the spleen and reduces their trafficking into the CNS. In addition, we show that NLY01 suppresses the production of chemokines that are involved in leukocyte recruitment to the site of inflammation. The anti-inflammatory effect of NLY01 at the early stage of EAE may block the expression of the genes associated with neurotoxic astrocytes in the optic nerves, thereby preventing retinal ganglion cell (RGC) loss in the progressive stage of EAE. In the therapeutic paradigm, NLY01 significantly decreases the clinical score and second attack in a model of relapsing-remitting EAE. GLP-1R agonists may have dual efficacy in MS by suppressing peripheral and CNS inflammation, thereby limiting neuronal loss.
Collapse
Affiliation(s)
| | | | | | - Jing Jin
- Department of Neurology, Johns Hopkins, Baltimore, MD, USA
| | - Keya Meyers
- Department of Neurology, Johns Hopkins, Baltimore, MD, USA
| | | | - Thomas Garton
- Department of Neurology, Johns Hopkins, Baltimore, MD, USA
| | - Riley Bannon
- Department of Neurology, Johns Hopkins, Baltimore, MD, USA
| | | | - Ted M Dawson
- Department of Neurology, Johns Hopkins, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Department of Neurology, Johns Hopkins, Baltimore, MD, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Peter A Calabresi
- Department of Neurology, Johns Hopkins, Baltimore, MD, USA.
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins Hospital, 600 N. Wolfe St, Baltimore, MD, 21287, USA.
| |
Collapse
|
19
|
Dieu RS, Wais V, Sørensen MZ, Marczynska J, Dubik M, Kavan S, Thomassen M, Burton M, Kruse T, Khorooshi R, Owens T. Central Nervous System-Endogenous TLR7 and TLR9 Induce Different Immune Responses and Effects on Experimental Autoimmune Encephalomyelitis. Front Neurosci 2021; 15:685645. [PMID: 34211367 PMCID: PMC8241214 DOI: 10.3389/fnins.2021.685645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Innate receptors, including Toll like receptors (TLRs), are implicated in pathogenesis of CNS inflammatory diseases such as multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). TLR response to pathogens or endogenous signals includes production of immunoregulatory mediators. One of these, interferon (IFN)β, a Type I IFN, plays a protective role in MS and EAE. We have previously shown that intrathecal administration of selected TLR ligands induced IFNβ and infiltration of blood-derived myeloid cells into the central nervous system (CNS), and suppressed EAE in mice. We have now extended these studies to evaluate a potential therapeutic role for CNS-endogenous TLR7 and TLR9. Intrathecal application of Imiquimod (TLR7 ligand) or CpG oligonucleotide (TLR9 ligand) into CNS of otherwise unmanipulated mice induced IFNβ expression, with greater magnitude in response to CpG. CD45+ cells in the meninges were identified as source of IFNβ. Intrathecal CpG induced infiltration of monocytes, neutrophils, CD4+ T cells and NK cells whereas Imiquimod did not recruit blood-derived CD45+ cells. CpG, but not Imiquimod, had a beneficial effect on EAE, when given at time of disease onset. This therapeutic effect of CpG on EAE was not seen in mice lacking the Type I IFN receptor. In mice with EAE treated with CpG, the proportion of monocytes was significantly increased in the CNS. Infiltrating cells were predominantly localized to spinal cord meninges and demyelination was significantly reduced compared to non-treated mice with EAE. Our findings show that TLR7 and TLR9 signaling induce distinct inflammatory responses in the CNS with different outcome in EAE and point to recruitment of blood-derived cells and IFNβ induction as possible mechanistic links between TLR9 stimulation and amelioration of EAE. The protective role of TLR9 signaling in the CNS may have application in treatment of diseases such as MS.
Collapse
Affiliation(s)
- Ruthe Storgaard Dieu
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Vian Wais
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Michael Zaucha Sørensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Joanna Marczynska
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Magdalena Dubik
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Stephanie Kavan
- Department of Clinical Genetics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mark Burton
- Department of Clinical Genetics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torben Kruse
- Department of Clinical Genetics, Odense University Hospital, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Reza Khorooshi
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Trevor Owens
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Ge Y, Cheng D, Jia Q, Xiong H, Zhang J. Mechanisms Underlying the Role of Myeloid-Derived Suppressor Cells in Clinical Diseases: Good or Bad. Immune Netw 2021; 21:e21. [PMID: 34277111 PMCID: PMC8263212 DOI: 10.4110/in.2021.21.e21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have strong immunosuppressive activity and are morphologically similar to conventional monocytes and granulocytes. The development and classification of these cells have, however, been controversial. The activation network of MDSCs is relatively complex, and their mechanism of action is poorly understood, creating an avenue for further research. In recent years, MDSCs have been found to play an important role in immune regulation and in effectively inhibiting the activity of effector lymphocytes. Under certain conditions, particularly in the case of tissue damage or inflammation, MDSCs play a leading role in the immune response of the central nervous system. In cancer, however, this can lead to tumor immune evasion and the development of related diseases. Under cancerous conditions, tumors often alter bone marrow formation, thus affecting progenitor cell differentiation, and ultimately, MDSC accumulation. MDSCs are important contributors to tumor progression and play a key role in promoting tumor growth and metastasis, and even reduce the efficacy of immunotherapy. Currently, a number of studies have demonstrated that MDSCs play a key regulatory role in many clinical diseases. In light of these studies, this review discusses the origin of MDSCs, the mechanisms underlying their activation, their role in a variety of clinical diseases, and their function in immune response regulation.
Collapse
Affiliation(s)
- Yongtong Ge
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Dalei Cheng
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Qingzhi Jia
- Affiliated Hospital of Jining Medical College, Jining Medical University, Jining 272067, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, China
| |
Collapse
|
21
|
Alvarez-Vergara MI, Rosales-Nieves AE, March-Diaz R, Rodriguez-Perinan G, Lara-Ureña N, Ortega-de San Luis C, Sanchez-Garcia MA, Martin-Bornez M, Gómez-Gálvez P, Vicente-Munuera P, Fernandez-Gomez B, Marchena MA, Bullones-Bolanos AS, Davila JC, Gonzalez-Martinez R, Trillo-Contreras JL, Sanchez-Hidalgo AC, Del Toro R, Scholl FG, Herrera E, Trepel M, Körbelin J, Escudero LM, Villadiego J, Echevarria M, de Castro F, Gutierrez A, Rabano A, Vitorica J, Pascual A. Non-productive angiogenesis disassembles Aß plaque-associated blood vessels. Nat Commun 2021; 12:3098. [PMID: 34035282 PMCID: PMC8149638 DOI: 10.1038/s41467-021-23337-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/20/2021] [Indexed: 01/05/2023] Open
Abstract
The human Alzheimer's disease (AD) brain accumulates angiogenic markers but paradoxically, the cerebral microvasculature is reduced around Aß plaques. Here we demonstrate that angiogenesis is started near Aß plaques in both AD mouse models and human AD samples. However, endothelial cells express the molecular signature of non-productive angiogenesis (NPA) and accumulate, around Aß plaques, a tip cell marker and IB4 reactive vascular anomalies with reduced NOTCH activity. Notably, NPA induction by endothelial loss of presenilin, whose mutations cause familial AD and which activity has been shown to decrease with age, produced a similar vascular phenotype in the absence of Aß pathology. We also show that Aß plaque-associated NPA locally disassembles blood vessels, leaving behind vascular scars, and that microglial phagocytosis contributes to the local loss of endothelial cells. These results define the role of NPA and microglia in local blood vessel disassembly and highlight the vascular component of presenilin loss of function in AD.
Collapse
Affiliation(s)
- Maria I Alvarez-Vergara
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Alicia E Rosales-Nieves
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rosana March-Diaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Guiomar Rodriguez-Perinan
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Nieves Lara-Ureña
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Clara Ortega-de San Luis
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College of Dublin, D2, Dublin, Ireland
| | - Manuel A Sanchez-Garcia
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Miguel Martin-Bornez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Pablo Vicente-Munuera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Miguel A Marchena
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
- Departamento de Medicina, Facultad de Ciencias, Biomédicas y de la Salud, Universidad Europea de Madrid, Villaviciosa de Odón, Spain
| | - Andrea S Bullones-Bolanos
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jose C Davila
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain
| | - Rocio Gonzalez-Martinez
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Jose L Trillo-Contreras
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Ana C Sanchez-Hidalgo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Raquel Del Toro
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Eloisa Herrera
- Instituto de Neurociencias de Alicante, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | - Martin Trepel
- Augsburg Medical Center, Department of Hematology and Oncology, Augsburg, Germany
| | - Jakob Körbelin
- Section of Pneumology, Department of Oncology, Hematology and Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Department of Biología Celular, Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Villadiego
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Miriam Echevarria
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Fisiología Médica y Biofisica, Universidad de Sevilla, Seville, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Madrid, Spain
| | - Antonia Gutierrez
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga (IBIMA), Universidad de Malaga, Malaga, Spain
| | | | - Javier Vitorica
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Department of Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
22
|
van Wigcheren GF, Roelofs D, Figdor CG, Flórez-Grau G. Three distinct tolerogenic CD14 + myeloid cell types to actively manage autoimmune disease: Opportunities and challenges. J Autoimmun 2021; 120:102645. [PMID: 33901801 DOI: 10.1016/j.jaut.2021.102645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/18/2023]
Abstract
Current treatment for patients with autoimmune disorders including rheumatoid arthritis, multiple sclerosis and type 1 diabetes, often consists of long-term drug regimens that broadly dampen immune responses. These non-specific treatments are frequently associated with severe side effects creating an urgent need for safer and more effective therapy to promote peripheral tolerance in autoimmune diseases. Cell-based immunotherapy may offer an encouraging alternative, where tolerogenic CD14+ myeloid cells are infused to inhibit autoreactive effector cells. In this review, we compared in depth three promising tolerogenic CD14+ candidates for the treatment of autoimmune disease: 1) tolerogenic dendritic cells, 2) monocytic myeloid-derived suppressor cells and 3) CD14+ type 2 conventional dendritic cells. TolDC-based therapy has entered clinical testing whereas evidence from the latter two cell types m-MDSCs and CD14+ cDC2s is predominantly coming from cancer immunology research. These three cell types have distinct cellular properties and immunosuppressive mechanisms offering unique opportunities to be explored. However, these cells differ in stage of development towards immunotherapy each facing additional hurdles. Therefore, we speculate on the potential benefits and risks of these cell types as novel cell-based immunotherapies to control autoimmune disease in patients.
Collapse
Affiliation(s)
- Glenn F van Wigcheren
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands; Oncode Institute, the Netherlands
| | - Daphne Roelofs
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands; Oncode Institute, the Netherlands.
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| |
Collapse
|
23
|
Candadai AA, Liu F, Fouda AY, Alfarhan M, Palani CD, Xu Z, Caldwell RB, Narayanan SP. Deletion of arginase 2 attenuates neuroinflammation in an experimental model of optic neuritis. PLoS One 2021; 16:e0247901. [PMID: 33735314 PMCID: PMC7971528 DOI: 10.1371/journal.pone.0247901] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Vision impairment due to optic neuritis (ON) is one of the major clinical presentations in Multiple Sclerosis (MS) and is characterized by inflammation and degeneration of the optic nerve and retina. Currently available treatments are only partially effective and have a limited impact on the neuroinflammatory pathology of the disease. A recent study from our laboratory highlighted the beneficial effect of arginase 2 (A2) deletion in suppressing retinal neurodegeneration and inflammation in an experimental model of MS. Utilizing the same model, the present study investigated the impact of A2 deficiency on MS-induced optic neuritis. Experimental autoimmune encephalomyelitis (EAE) was induced in wild-type (WT) and A2 knockout (A2-/-) mice. EAE-induced cellular infiltration, as well as activation of microglia and macrophages, were reduced in A2-/- optic nerves. Axonal degeneration and demyelination seen in EAE optic nerves were observed to be reduced with A2 deletion. Further, the lack of A2 significantly ameliorated astrogliosis induced by EAE. In conclusion, our findings demonstrate a critical involvement of arginase 2 in mediating neuroinflammation in optic neuritis and suggest the potential of A2 blockade as a targeted therapy for MS-induced optic neuritis.
Collapse
Affiliation(s)
- Amritha A. Candadai
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Fang Liu
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Abdelrahman Y. Fouda
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Moaddey Alfarhan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
| | - Chithra D. Palani
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Zhimin Xu
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
| | - Ruth B. Caldwell
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| | - S. Priya Narayanan
- Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA, United States of America
- Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States of America
- Charlie Norwood VA Medical Center, Augusta, GA, United States of America
- Vascular Biology Center, Augusta University, Augusta, GA, United States of America
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States of America
| |
Collapse
|
24
|
Hélie P, Camacho-Toledano C, Lesec L, Seillier C, Miralles AJ, Ortega MC, Guérit S, Lebas H, Bardou I, Vila-Del Sol V, Vivien D, Le Mauff B, Clemente D, Docagne F, Toutirais O. Tissue plasminogen activator worsens experimental autoimmune encephalomyelitis by complementary actions on lymphoid and myeloid cell responses. J Neuroinflammation 2021; 18:52. [PMID: 33610187 PMCID: PMC7897384 DOI: 10.1186/s12974-021-02102-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/03/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Tissue plasminogen activator (tPA) is a serine protease involved in fibrinolysis. It is released by endothelial cells, but also expressed by neurons and glial cells in the central nervous system (CNS). Interestingly, this enzyme also contributes to pathological processes in the CNS such as neuroinflammation by activating microglia and increasing blood-brain barrier permeability. Nevertheless, its role in the control of adaptive and innate immune response remains poorly understood. METHODS tPA effects on myeloid and lymphoid cell response were studied in vivo in the mouse model of multiple sclerosis experimental autoimmune encephalomyelitis and in vitro in splenocytes. RESULTS tPA-/- animals exhibited less severe experimental autoimmune encephalomyelitis than their wild-type counterparts. This was accompanied by a reduction in both lymphoid and myeloid cell populations in the spinal cord parenchyma. In parallel, tPA increased T cell activation and proliferation, as well as cytokine production by a protease-dependent mechanism and via plasmin generation. In addition, tPA directly raised the expression of MHC-II and the co-stimulatory molecules CD80 and CD86 at the surface of dendritic cells and macrophages by a direct action dependent of the activation of epidermal growth factor receptor. CONCLUSIONS Our study provides new insights into the mechanisms responsible for the harmful functions of tPA in multiple sclerosis and its animal models: tPA promotes the proliferation and activation of both lymphoid and myeloid populations by distinct, though complementary, mechanisms.
Collapse
Affiliation(s)
- Pauline Hélie
- UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, Caen, France
- Present address: Theodor Kocher Institute, University of Bern, Freiestrasse 1, CH-3012, Bern, Switzerland
| | - Celia Camacho-Toledano
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Léonie Lesec
- UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, Caen, France
| | - Célia Seillier
- UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, Caen, France
| | - Antonio J Miralles
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Maria Cristina Ortega
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Sylvaine Guérit
- UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, Caen, France
| | - Héloïse Lebas
- UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, Caen, France
| | - Isabelle Bardou
- UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, Caen, France
| | | | - Denis Vivien
- UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, Caen, France
- Department of Clinical Research, Caen University Hospital, CHU, Caen, France
| | - Brigitte Le Mauff
- UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, Caen, France
- Department of Immunology and Immunopathology, Caen University Hospital, CHU, Caen, France
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Fabian Docagne
- UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, Caen, France.
| | - Olivier Toutirais
- UNICAEN, INSERM, GIP Cyceron, Institut Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Normandie Univ, Caen, France
- Department of Immunology and Immunopathology, Caen University Hospital, CHU, Caen, France
| |
Collapse
|
25
|
Melero-Jerez C, Fernández-Gómez B, Lebrón-Galán R, Ortega MC, Sánchez-de Lara I, Ojalvo AC, Clemente D, de Castro F. Myeloid-derived suppressor cells support remyelination in a murine model of multiple sclerosis by promoting oligodendrocyte precursor cell survival, proliferation, and differentiation. Glia 2020; 69:905-924. [PMID: 33217041 PMCID: PMC7894183 DOI: 10.1002/glia.23936] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
The most frequent variant of multiple sclerosis (MS) is the relapsing–remitting form, characterized by symptomatic phases followed by periods of total/partial recovery. Hence, it is possible that these patients can benefit from endogenous agents that control the inflammatory process and favor spontaneous remyelination. In this context, there is increasing interest in the role of myeloid‐derived suppressor cells (MDSCs) during the clinical course of experimental autoimmune encephalomyelitis (EAE). MDSCs speed up infiltrated T‐cell anergy and apoptosis. In different animal models of MS, a milder disease course is related to higher presence/density of MDSCs in the periphery, and smaller demyelinated lesions in the central nervous system (CNS). These observations lead us to wonder whether MDSCs might not only exert an anti‐inflammatory effect but might also have direct influence on oligodendrocyte precursor cells (OPCs) and remyelination. In the present work, we reveal for the first time the relationship between OPCs and MDSCs in EAE, relationship that is guided by the distance from the inflammatory core. We describe the effects of MDSCs on survival, proliferation, as well as potent promoters of OPC differentiation toward mature phenotypes. We show for the first time that osteopontin is remarkably present in the analyzed secretome of MDSCs. The ablation of this cue from MDSCs‐secretome demonstrates that osteopontin is the main MDSC effector on these oligodendroglial cells. These data highlight a crucial pathogenic interaction between innate immunity and the CNS, opening ways to develop MDSC‐ and/or osteopontin‐based therapies to promote effective myelin preservation and repair in MS patients.
Collapse
Affiliation(s)
- Carolina Melero-Jerez
- Instituto Cajal-CSIC, Madrid, Spain.,Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | | | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Maria Cristina Ortega
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Irene Sánchez-de Lara
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Ana Cristina Ojalvo
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos-SESCAM, Toledo, Spain
| | | |
Collapse
|
26
|
Owens T, Benmamar-Badel A, Wlodarczyk A, Marczynska J, Mørch MT, Dubik M, Arengoth DS, Asgari N, Webster G, Khorooshi R. Protective roles for myeloid cells in neuroinflammation. Scand J Immunol 2020; 92:e12963. [PMID: 32851668 DOI: 10.1111/sji.12963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022]
Abstract
Myeloid cells represent the major cellular component of innate immune responses. Myeloid cells include monocytes and macrophages, granulocytes (neutrophils, basophils and eosinophils) and dendritic cells (DC). The role of myeloid cells has been broadly described both in physiological and in pathological conditions. All tissues or organs are equipped with resident myeloid cells, such as parenchymal microglia in the brain, which contribute to maintaining homeostasis. Moreover, in case of infection or tissue damage, other myeloid cells such as monocytes or granulocytes (especially neutrophils) can be recruited from the circulation, at first to promote inflammation and later to participate in repair and regeneration. This review aims to address the regulatory roles of myeloid cells in inflammatory diseases of the central nervous system (CNS), with a particular focus on recent work showing induction of suppressive function via stimulation of innate signalling in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE).
Collapse
Affiliation(s)
- Trevor Owens
- Neurobiology Research, Institute of Molecular Medicine, and BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense C, Denmark
| | - Anouk Benmamar-Badel
- Neurobiology Research, Institute of Molecular Medicine, and BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense C, Denmark.,Department of Neurology, Slagelse Hospital, Slagelse, Denmark
| | - Agnieszka Wlodarczyk
- Neurobiology Research, Institute of Molecular Medicine, and BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense C, Denmark
| | - Joanna Marczynska
- Neurobiology Research, Institute of Molecular Medicine, and BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense C, Denmark
| | - Marlene T Mørch
- Neurobiology Research, Institute of Molecular Medicine, and BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense C, Denmark
| | - Magdalena Dubik
- Neurobiology Research, Institute of Molecular Medicine, and BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense C, Denmark
| | - Dina S Arengoth
- Neurobiology Research, Institute of Molecular Medicine, and BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense C, Denmark
| | - Nasrin Asgari
- Neurobiology Research, Institute of Molecular Medicine, and BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense C, Denmark.,Department of Neurology, Slagelse Hospital, Slagelse, Denmark
| | - Gill Webster
- Innate Immunotherapeutics, Auckland, New Zealand
| | - Reza Khorooshi
- Neurobiology Research, Institute of Molecular Medicine, and BRIDGE, Brain Research - Inter-Disciplinary Guided Excellence, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
27
|
Type I IFN signaling in T regulatory cells modulates chemokine production and myeloid derived suppressor cells trafficking during EAE. J Autoimmun 2020; 115:102525. [PMID: 32709481 DOI: 10.1016/j.jaut.2020.102525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 01/18/2023]
Abstract
Interferon-β has therapeutic efficacy in Multiple Sclerosis by reducing disease exacerbations and delaying relapses. Previous studies have suggested that the effects of type I IFN in Experimental Autoimmune Encephalomyelitis (EAE) in mice were targeted to myeloid cells. We used mice with a conditional deletion (cKO) of the type I IFN receptor (IFNAR) in T regulatory (Treg) cells to dissect the role of IFN signaling on Tregs. cKO mice developed severe EAE with an earlier onset than control mice. Although Treg cells from cKO mice were more activated, the activation status and effector cytokine production of CD4+Foxp3- T cells in the draining lymph nodes (dLN) was similar in WT and cKO mice during the priming phase. Production of chemokines (CCL8, CCL9, CCL22) by CD4+Foxp3- T cells and LN resident cells from cKO mice was suppressed. Suppression of chemokine production was accompanied by a substantial reduction of myeloid derived suppressor cells (MDSCs) in the dLN of cKO mice, while generation of MDSCs and recruitment to peripheral organs was comparable. This study demonstrates that signaling by type I IFNs in Tregs reduces their capacity to suppress chemokine production, with resultant alteration of the entire microenvironment of draining lymph nodes leading to enhancement of MDSC homing, and beneficial effects on disease outcome.
Collapse
|
28
|
Melero-Jerez C, Alonso-Gómez A, Moñivas E, Lebrón-Galán R, Machín-Díaz I, de Castro F, Clemente D. The proportion of myeloid-derived suppressor cells in the spleen is related to the severity of the clinical course and tissue damage extent in a murine model of multiple sclerosis. Neurobiol Dis 2020; 140:104869. [PMID: 32278882 DOI: 10.1016/j.nbd.2020.104869] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/28/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple Sclerosis (MS) is the second cause of paraplegia among young adults, after all types of CNS traumatic lesions. In its most frequent relapsing-remitting form, the severity of the disease course is very heterogeneous, and its reliable evaluation remains a key issue for clinicians. Myeloid-Derived sSuppressor Cells (MDSCs) are immature myeloid cells that suppress the inflammatory response, a phenomenon related to the resolution or recovery of the clinical symptoms associated with experimental autoimmune encephalomyelitis (EAE), the most common model for MS. Here, we establish the severity index as a new parameter for the clinical assessment in EAE. It is derived from the relationship between the maximal clinical score and the time elapsed since disease onset. Moreover, we relate this new index with several histopathological hallmarks in EAE and with the peripheral content of MDSCs. Based on this new parameter, we show that the splenic MDSC content is related to the evolution of the clinical course of EAE, ranging from mild to severe. Indeed, when the severity index indicates a severe disease course, EAE mice display more intense lymphocyte infiltration, demyelination and axonal damage. A direct correlation was drawn between the MDSC population in the peripheral immune system, and the preservation of myelin and axons, which was also correlated with T cell apoptosis within the CNS (being these cells the main target for MDSC suppression). The data presented clearly indicated that the severity index is a suitable tool to analyze disease severity in EAE. Moreover, our data suggest a clear relationship between circulating MDSC enrichment and disease outcome, opening new perspectives for the future targeting of this population as an indicator of MS severity.
Collapse
Affiliation(s)
- Carolina Melero-Jerez
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain
| | - Aitana Alonso-Gómez
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Esther Moñivas
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Isabel Machín-Díaz
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002 Madrid, Spain.
| | - Diego Clemente
- Grupo de Neuroinmuno-Reparación, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
29
|
Dysthe M, Parihar R. Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:117-140. [PMID: 32036608 DOI: 10.1007/978-3-030-35723-8_8] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Ruiz F, Vigne S, Pot C. Resolution of inflammation during multiple sclerosis. Semin Immunopathol 2019; 41:711-726. [PMID: 31732775 PMCID: PMC6881249 DOI: 10.1007/s00281-019-00765-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Multiple sclerosis (MS) is a frequent autoimmune demyelinating disease of the central nervous system (CNS). There are three clinical forms described: relapsing-remitting multiple sclerosis (RRMS), the most common initial presentation (85%) among which, if not treated, about half will transform, into the secondary progressive multiple sclerosis (SPMS) and the primary progressive MS (PPMS) (15%) that is directly progressive without superimposed clinical relapses. Inflammation is present in all subsets of MS. The relapsing/remitting form could represent itself a particular interest for the study of inflammation resolution even though it remains incomplete in MS. Successful resolution of acute inflammation is a highly regulated process and dependent on mechanisms engaged early in the inflammatory response that are scarcely studied in MS. Moreover, recent classes of disease-modifying treatment (DMTs) that are effective against RRMS act by re-establishing the inflammatory imbalance, taking advantage of the pre-existing endogenous suppressor. In this review, we will discuss the active role of regulatory immune cells in inflammation resolution as well as the role of tissue and non-hematopoietic cells as contributors to inflammation resolution. Finally, we will explore how DMTs, more specifically induction therapies, impact the resolution of inflammation during MS.
Collapse
Affiliation(s)
- F Ruiz
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - S Vigne
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - C Pot
- Laboratories of Neuroimmunology, Neuroscience Research Center and Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|