1
|
Hanin A, Comi M, Sumida TS, Hafler DA. Cholesterol promotes IFNG mRNA expression in CD4 + effector/memory cells by SGK1 activation. Life Sci Alliance 2024; 7:e202402890. [PMID: 39366761 PMCID: PMC11452476 DOI: 10.26508/lsa.202402890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
IFNγ-secreting T cells are central for the maintenance of immune surveillance within the central nervous system (CNS). It was previously reported in healthy donors that the T-cell environment in the CNS induces distinct signatures related to cytotoxic capacity, CNS trafficking, tissue adaptation, and lipid homeostasis. These findings suggested that the CNS milieu consisting predominantly of lipids mediated the metabolic conditions leading to IFNγ-secreting brain CD4 T cells. Here, we demonstrate that the supplementation of CD4+CD45RO+CXCR3+ cells with cholesterol modulates their function and increases IFNG expression. The heightened IFNG expression was mediated by the activation of the serum/glucocorticoid-regulated kinase (SGK1). Inhibition of SGK1 by a specific enzymatic inhibitor significantly reduces the expression of IFNG Our results confirm the crucial role of lipids in maintaining T-cell homeostasis and demonstrate a putative role of environmental factors to induce effector responses in CD4+ effector/memory cells. These findings offer potential avenues for further research targeting lipid pathways to modulate inflammatory conditions.
Collapse
Affiliation(s)
- Aurélie Hanin
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Michela Comi
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tomokazu S Sumida
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Päeske L, Hinrikus H, Lass J, Põld T, Bachmann M. The Impact of the Natural Level of Blood Biochemicals on Electroencephalographic Markers in Healthy People. SENSORS (BASEL, SWITZERLAND) 2024; 24:7438. [PMID: 39685972 DOI: 10.3390/s24237438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
This study aims to investigate the association between the natural level of blood biomarkers and electroencephalographic (EEG) markers. Resting EEG theta, alpha (ABP), beta, and gamma frequency band powers were selected as linear EEG markers indicating the level of EEG power, and Higuchi's fractal dimension (HFD) as a nonlinear EEG complexity marker reflecting brain temporal dynamics. The impact of seven different blood biomarkers, i.e., glucose, protein, lipoprotein, HDL, LDL, C-reactive protein, and cystatin C, was investigated. The study was performed on a group of 52 healthy participants. The results of the current study show that one linear EEG marker, ABP, is correlated with protein. The nonlinear EEG marker (HFD) is correlated with protein, lipoprotein, C-reactive protein, and cystatin C. A positive correlation with linear EEG power markers and a negative correlation with the nonlinear complexity marker dominate in all brain areas. The results demonstrate that EEG complexity is more sensitive to the natural level of blood biomarkers than the level of EEG power. The reported novel findings demonstrate that the EEG markers of healthy people are influenced by the natural levels of their blood biomarkers related to their everyday dietary habits. This knowledge is useful in the interpretation of EEG signals and contributes to obtaining information about people quality of life and well-being.
Collapse
Affiliation(s)
- Laura Päeske
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Hiie Hinrikus
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Jaanus Lass
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Toomas Põld
- Meliva Medical Center, 10143 Tallinn, Estonia
| | - Maie Bachmann
- Department of Health Technologies, Tallinn University of Technology, 19086 Tallinn, Estonia
| |
Collapse
|
3
|
Wang W, Liu M, Liu F, Wang Z, Ye W, Li X. Causal associations of ischemic stroke, metabolic factors, and related medications with epilepsy: a Mendelian randomization study. Front Neurol 2024; 15:1464984. [PMID: 39606700 PMCID: PMC11598930 DOI: 10.3389/fneur.2024.1464984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background Earlier researches have demonstrated that ischemic stroke, metabolic factors, and associated medications may influence the risk of epilepsy. Nevertheless, the causality between these elements and epilepsy remains inconclusive. This study aims to examine whether ischemic stroke, metabolic factors, and related medications affect the overall risk of epilepsy. Methods We used single nucleotide polymorphisms associated with ischemic stroke, hypothyroidism, hypertension, blood glucose levels, high cholesterol, serum 25-Hydroxyvitamin D levels, testosterone, HMG CoA reductase inhibitors, and beta-blocking agents as instrumental variables in a Mendelian randomization technique to investigate causality with epilepsy. Multiple sensitivity methods were performed to evaluate pleiotropy and heterogeneity. Results The IVW analysis revealed positive associations between ischemic stroke (OR = 1.29; p = 0.020), hypothyroidism (OR = 1.05; p = 0.048), high blood pressure (OR = 1.10; p = 0.028), high cholesterol (OR = 1.10; p = 0.024), HMG CoA reductase inhibitors (OR = 1.19; p = 0.003), beta-blocking agents (OR = 1.20; p = 0.006), and the risk of epilepsy. Conversely, blood glucose levels (OR = 0.79; p = 0.009), serum 25-Hydroxyvitamin D levels (OR = 0.75; p = 0.020), and testosterone (OR = 0.62; p = 0.019) exhibited negative associations with the risk of epilepsy. Sensitivity analyses confirmed the robustness of these findings (p > 0.05). Conclusion Our research suggests that ischemic stroke, hypothyroidism, high blood pressure, high cholesterol, HMG CoA reductase inhibitors, and beta-blockers may increase the risk of epilepsy, whereas serum 25-Hydroxyvitamin D levels and blood glucose levels may reduce the risk.
Collapse
|
4
|
Popova EY, Kawasawa YI, Leung M, Barnstable CJ. Temporal changes in mouse hippocampus transcriptome after pilocarpine-induced seizures. Front Neurosci 2024; 18:1384805. [PMID: 39040630 PMCID: PMC11260795 DOI: 10.3389/fnins.2024.1384805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Status epilepticus (SE) is a seizure lasting more than 5 min that can have lethal consequences or lead to various neurological disorders, including epilepsy. Using a pilocarpine-induced SE model in mice we investigated temporal changes in the hippocampal transcriptome. Methods We performed mRNA-seq and microRNA-seq analyses at various times after drug treatment. Results At 1 h after the start of seizures, hippocampal cells upregulated transcription of immediate early genes and genes involved in the IGF-1, ERK/MAPK and RNA-PolII/transcription pathways. At 8 h, we observed changes in the expression of genes associated with oxidative stress, overall transcription downregulation, particularly for genes related to mitochondrial structure and function, initiation of a stress response through regulation of ribosome and translation/EIF2 signaling, and upregulation of an inflammatory response. During the middle of the latent period, 36 h, we identified upregulation of membrane components, cholesterol synthesis enzymes, channels, and extracellular matrix (ECM), as well as an increased inflammatory response. At the end of the latent period, 120 h, most changes in expression were in genes involved in ion transport, membrane channels, and synapses. Notably, we also elucidated the involvement of novel pathways, such as cholesterol biosynthesis pathways, iron/BMP/ferroptosis pathways, and circadian rhythms signaling in SE and epileptogenesis. Discussion These temporal changes in metabolic reactions indicate an immediate response to injury followed by recovery and regeneration. CREB was identified as the main upstream regulator. Overall, our data provide new insights into molecular functions and cellular processes involved at different stages of seizures and offer potential avenues for effective therapeutic strategies.
Collapse
Affiliation(s)
- Evgenya Y. Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Ming Leung
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Colin J. Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| |
Collapse
|
5
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 Variants Reveal Potential Association between GPR37L1 and Disorders of Anxiety and Migraine. J Neurosci 2024; 44:e1226232024. [PMID: 38569927 PMCID: PMC11089846 DOI: 10.1523/jneurosci.1226-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare G-protein-coupled receptor 37-like 1 (GPR37L1) genetic variants found among 51,289 whole-exome sequences from the DiscovEHR cohort. Rare GPR37L1 coding variants were binned according to predicted pathogenicity and analyzed by sequence kernel association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate mitogen-activated protein kinase (MAPK) signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared with the wild-type receptor. In addition to signaling changes, knock-out (KO) of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a KO mouse line lacking Gpr37l1 was generated. Although KO animals did not recapitulate an acute migraine phenotype, the loss of this receptor produced sex-specific changes in anxiety-related disorders often seen in chronic migraineurs. Collectively, these observations define the existence of rare GPR37L1 variants associated with neuropsychiatric conditions in the human population and identify the signaling changes contributing to pathological processes.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Andrea Cippitelli
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Yingcai Wang
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Oliver Pelletier
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Ridge Dershem
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Jianning Wei
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Lawrence Toll
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Bianca Fakhoury
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | - Gloria Brunori
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
| | | | - David J Carey
- Geisinger, Weis Center for Research, Danville, Pennsylvania
| | - Janet Robishaw
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida
- College of Veterinary Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
6
|
Hanin A, Chollet C, Demeret S, Di Meglio L, Castelli F, Navarro V. Metabolomic changes in adults with status epilepticus: A human case-control study. Epilepsia 2024; 65:929-943. [PMID: 38339978 DOI: 10.1111/epi.17899] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVE Status epilepticus (SE) is a life-threatening prolonged epileptic seizure that affects ~40 per 100 000 people yearly worldwide. The persistence of seizures may lead to excitotoxic processes, neuronal loss, and neuroinflammation, resulting in long-term neurocognitive and functional disabilities. A better understanding of the pathophysiological mechanisms underlying SE consequences is crucial for improving SE management and preventing secondary neuronal injury. METHODS We conducted a comprehensive untargeted metabolomic analysis, using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), on plasma and cerebrospinal fluid (CSF) samples from 78 adult patients with SE and 107 control patients without SE, including 29 with CSF for both groups. The metabolomic fingerprints were compared between patients with SE and controls. Metabolites with differences in relative abundances that could not be attributed to treatment or nutrition provided in the intensive care unit were isolated. Enrichment analysis was performed on these metabolites to identify the most affected pathways. RESULTS We identified 76 metabolites in the plasma and 37 in the CSF that exhibited differential expression in patients with SE compared to controls. The enrichment analysis revealed that metabolic dysregulations in patients with SE affected primarily amino acid metabolism (including glutamate, alanine, tryptophan, glycine, and serine metabolism), pyrimidine metabolism, and lipid homeostasis. Specifically, patients with SE had elevated levels of pyruvate, quinolinic acid, and keto butyric acid levels, along with lower levels of arginine, N-acetylaspartylglutamate (NAAG), tryptophan, uracil, and uridine. The tryptophan kynurenine pathway was identified as the most significantly altered in SE, resulting in the overproduction of quinolinic acid, an N-methyl-d-aspartate (NMDA) receptor agonist with pro-inflammatory properties. SIGNIFICANCE This study has identified several pathways that may play pivotal roles in SE consequences, such as the tryptophan kynurenine pathway. These findings offer novel perspectives for the development of neuroprotective therapeutics.
Collapse
Affiliation(s)
- Aurélie Hanin
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Céline Chollet
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Sophie Demeret
- AP-HP, Neuro-Intensive Care Unit, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Lucas Di Meglio
- AP-HP, Neuro-Intensive Care Unit, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Florence Castelli
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Vincent Navarro
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
- AP-HP, Epilepsy Unit and Clinical Neurophysiology Department, DMU Neurosciences, Hôpital de la Pitié-Salpêtrière, Paris, France
- Center of Reference for Rare Epilepsies, Epicare, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
7
|
Constantinescu CC, Brown T, Wang S, Yin W, Barret O, Jennings D, Tauscher J. Clinical Characterization of [ 18F]T-008, a Cholesterol 24-Hydroxylase PET Ligand: Dosimetry, Kinetic Modeling, Variability, and Soticlestat Occupancy. J Nucl Med 2023; 64:1972-1979. [PMID: 37770111 PMCID: PMC10690114 DOI: 10.2967/jnumed.123.265912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/18/2023] [Indexed: 10/03/2023] Open
Abstract
This series of studies characterized [18F]T-008, a PET radiotracer for imaging cholesterol 24-hydroxylase (CH24H), in healthy volunteers (ClinicalTrials.gov identifier NCT02497235). Assessments included radiation dosimetry, kinetic modeling, test-retest variability (TRT) evaluation, and a dose occupancy evaluation using soticlestat, a selective CH24H inhibitor. Soticlestat is currently in phase 3 development for the treatment of seizures in Dravet syndrome and Lennox-Gastaut syndrome. Methods: In the dosimetry study, 5 participants (3 men) underwent serial whole-body scans to estimate organ-absorbed doses and effective doses of [18F]T-008 using OLINDA/EXM 1.1. For the kinetic modeling and TRT study, 6 participants (all men) underwent two 210-min dynamic [18F]T-008 PET scans with arterial blood sampling. The regional total volume of distribution was estimated using a 1-tissue-compartment model, a 2-tissue-compartment model, and Logan graphic analysis. In the dose occupancy study, 11 participants (all men) underwent 120-min scans at baseline and 2 time points (peak and trough) after receiving single oral doses of soticlestat (50-600 mg). The relationship between effect-site soticlestat concentration and brain occupancy was evaluated with a specially developed pharmacokinetic model and a saturable maximal occupancy model. Results: The estimated mean whole-body effective dose was 0.0292 mSv/MBq (SD, 0.00147 mSv/MBq). [18F]T-008 entered the brain rapidly, with a distribution consistent with known CH24H distribution densities. The 2-tissue-compartment model and Logan graphic analysis best described the tracer kinetics. The mean TRT for estimating total volume of distribution was 7%-15%. Single doses of soticlestat in the range 50-600 mg resulted in occupancies of 64%-96% at 2 h and 11%-79% at 24 h. The estimated half-maximal effect-site concentration of soticlestat was 5.52 ng/mL. Conclusion: [18F]T-008 is a suitable PET radiotracer for quantitatively analyzing CH24H in the human brain. Using [18F]T-008 and PET, we demonstrated that soticlestat was brain-penetrant and established target engagement by displacing [18F]T-008 in a dose-dependent manner in the brain.
Collapse
Affiliation(s)
| | - Terry Brown
- Takeda Pharmaceutical Co. Ltd., Cambridge, Massachusetts
| | - Shining Wang
- Takeda Pharmaceutical Co. Ltd., Cambridge, Massachusetts
| | - Wei Yin
- Takeda Pharmaceutical Co. Ltd., Cambridge, Massachusetts
| | | | | | | |
Collapse
|
8
|
Breitwieser GE, Cippitelli A, Wang Y, Pelletier O, Dershem R, Wei J, Toll L, Fakhoury B, Brunori G, Metpally R, Carey DJ, Robishaw J. Rare GPR37L1 variants reveal potential roles in anxiety and migraine disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547546. [PMID: 37461723 PMCID: PMC10349990 DOI: 10.1101/2023.07.05.547546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
GPR37L1 is an orphan receptor that couples through heterotrimeric G-proteins to regulate physiological functions. Since its role in humans is not fully defined, we used an unbiased computational approach to assess the clinical significance of rare GPR37L1 genetic variants found among 51,289 whole exome sequences from the DiscovEHR cohort. Briefly, rare GPR37L1 coding variants were binned according to predicted pathogenicity, and analyzed by Sequence Kernel Association testing to reveal significant associations with disease diagnostic codes for epilepsy and migraine, among others. Since associations do not prove causality, rare GPR37L1 variants were then functionally analyzed in SK-N-MC cells to evaluate potential signaling differences and pathogenicity. Notably, receptor variants exhibited varying abilities to reduce cAMP levels, activate MAPK signaling, and/or upregulate receptor expression in response to the agonist prosaptide (TX14(A)), as compared to the wild-type receptor. In addition to signaling changes, knockout of GPR37L1 or expression of certain rare variants altered cellular cholesterol levels, which were also acutely regulated by administration of the agonist TX14(A) via activation of the MAPK pathway. Finally, to simulate the impact of rare nonsense variants found in the large patient cohort, a knockout (KO) mouse line lacking Gpr37L1 was generated, revealing loss of this receptor produced sex-specific changes implicated in migraine-related disorders. Collectively, these observations define the existence of rare GPR37L1 variants in the human population that are associated with neuropsychiatric conditions and identify the underlying signaling changes that are implicated in the in vivo actions of this receptor in pathological processes leading to anxiety and migraine. SIGNIFICANCE STATEMENT G-protein coupled receptors (GPCRs) represent a diverse group of membrane receptors that contribute to a wide range of diseases and serve as effective drug targets. However, a number of these receptors have no identified ligands or functions, i.e., orphan receptors. Over the past decade, advances have been made, but there is a need for identifying new strategies to reveal their roles in health and disease. Our results highlight the utility of rare variant analyses of orphan receptors for identifying human disease associations, coupled with functional analyses in relevant cellular and animal systems, to ultimately reveal their roles as novel drug targets for treatment of neurological disorders that lack wide-spread efficacy.
Collapse
|
9
|
Hanin A, Roussel D, Lecas S, Baudin P, Navarro V. Repurposing of cholesterol-lowering agents in status epilepticus: A neuroprotective effect of simvastatin. Epilepsy Behav 2023; 141:109133. [PMID: 36813661 DOI: 10.1016/j.yebeh.2023.109133] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
The increase of cholesterol synthesis after a status epilepticus may lead to excitotoxic processes, neuronal loss and favor the appearance of spontaneous epileptic seizures. Lowering cholesterol content could be a neuroprotective strategy. Here, we evaluated the protective effect of simvastatin administrated daily for 14 days, after the induction of a status epilepticus by intrahippocampal injection of kainic acid in mice. The results were compared to those obtained from mice showing a kainic acid-induced status epilepticus, treated daily with a saline solution, and from mice injected with a control phosphate-buffered solution without any status epilepticus. We first assessed the antiseizure effects of simvastatin by performing video-electroencephalographic recordings during the first three hours after kainic acid injection and continuously between the fifteenth and the thirty-first days. Mice treated with simvastatin had significantly fewer generalized seizures during the first three hours without a significant effect on generalized seizures after two weeks. There was a trend for fewer hippocampal electrographic seizures after two weeks. Secondly, we evaluated the neuroprotective and anti-inflammatory effects of simvastatin by measuring the fluorescence of neuronal and astrocyte markers on the thirtieth day after status onset. We found that simvastatin reduced CA1 reactive astrocytosis, demonstrated by a significant 37% decrease in GFAP-positive cells, and that simvastatin prevented the neuronal loss in CA1, demonstrated by a significant 42% increase in the NeuN-positive cells, as compared to the findings in mice with kainic acid-induced status epilepticus treated by a saline solution. Our study confirms the interest of cholesterol-lowering agents, and in particular simvastatin, in status epilepticus and paves the way for a clinical pilot study to prevent neurological sequelae after status epilepticus. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.
Collapse
Affiliation(s)
- Aurélie Hanin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; AP-HP, Hôpital de la Pitié-Salpêtrière, DMU Neurosciences 6, Epilepsy Unit and Clinical Neurophysiology Department, 47 Boulevard de l'Hôpital, 75013 Paris, France; Department of Neurology and Immunobiology, Yale University School of Medicine, 06511 New Haven, CT, USA.
| | - Delphine Roussel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Sarah Lecas
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Paul Baudin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | - Vincent Navarro
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France; AP-HP, Hôpital de la Pitié-Salpêtrière, DMU Neurosciences 6, Epilepsy Unit and Clinical Neurophysiology Department, 47 Boulevard de l'Hôpital, 75013 Paris, France; Centre de référence Epilepsies rares, Hôpital de la Pitié-Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| |
Collapse
|
10
|
Haider A, Zhao C, Wang L, Xiao Z, Rong J, Xia X, Chen Z, Pfister SK, Mast N, Yutuc E, Chen J, Li Y, Shao T, Warnock GI, Dawoud A, Connors TR, Oakley DH, Wei H, Wang J, Zheng Z, Xu H, Davenport AT, Daunais JB, Van RS, Shao Y, Wang Y, Zhang MR, Gebhard C, Pikuleva I, Levey AI, Griffiths WJ, Liang SH. Assessment of cholesterol homeostasis in the living human brain. Sci Transl Med 2022; 14:eadc9967. [PMID: 36197966 PMCID: PMC9581941 DOI: 10.1126/scitranslmed.adc9967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Alterations in brain cholesterol homeostasis have been broadly implicated in neurological disorders. Notwithstanding the complexity by which cholesterol biology is governed in the mammalian brain, excess neuronal cholesterol is primarily eliminated by metabolic clearance via cytochrome P450 46A1 (CYP46A1). No methods are currently available for visualizing cholesterol metabolism in the living human brain; therefore, a noninvasive technology that quantitatively measures the extent of brain cholesterol metabolism via CYP46A1 could broadly affect disease diagnosis and treatment options using targeted therapies. Here, we describe the development and testing of a CYP46A1-targeted positron emission tomography (PET) tracer, 18F-CHL-2205 (18F-Cholestify). Our data show that PET imaging readouts correlate with CYP46A1 protein expression and with the extent to which cholesterol is metabolized in the brain, as assessed by cross-species postmortem analyses of specimens from rodents, nonhuman primates, and humans. Proof of concept of in vivo efficacy is provided in the well-established 3xTg-AD murine model of Alzheimer's disease (AD), where we show that the probe is sensitive to differences in brain cholesterol metabolism between 3xTg-AD mice and control animals. Furthermore, our clinical observations point toward a considerably higher baseline brain cholesterol clearance via CYP46A1 in women, as compared to age-matched men. These findings illustrate the vast potential of assessing brain cholesterol metabolism using PET and establish PET as a sensitive tool for noninvasive assessment of brain cholesterol homeostasis in the clinic.
Collapse
Affiliation(s)
- Ahmed Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Chunyu Zhao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhiwei Xiao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Jian Rong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Xiaotian Xia
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Stefanie K. Pfister
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Eylan Yutuc
- Institute of Life Science, Swansea University Medical School, SA2 8PP Swansea, Wales, United Kingdom
| | - Jiahui Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Yinlong Li
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Geoffrey I. Warnock
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alyaa Dawoud
- Biochemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Theresa R. Connors
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Massachusetts Alzheimer’s Disease Research Center, Boston, MA 02129, USA
| | - Derek H. Oakley
- Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114-2696, USA
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129, USA
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jinghao Wang
- Department of Pharmacy, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhihua Zheng
- Guangdong Province Pharmaceutical Association, Guangzhou 510080, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - April T. Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, USA
| | - James B. Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, USA
| | - Richard S. Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, SA2 8PP Swansea, Wales, United Kingdom
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Irina Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Allan I. Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, SA2 8PP Swansea, Wales, United Kingdom
| | - Steven H. Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Emory University, Department of Radiology and Imaging Sciences, 1364 Clifton Rd, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Salamone A, Terrone G, Di Sapia R, Balosso S, Ravizza T, Beltrame L, Craparotta I, Mannarino L, Cominesi SR, Rizzi M, Pauletti A, Marchini S, Porcu L, Zimmer TS, Aronica E, During M, Abrahams B, Kondo S, Nishi T, Vezzani A. Cholesterol 24-hydroxylase is a novel pharmacological target for anti-ictogenic and disease modification effects in epilepsy. Neurobiol Dis 2022; 173:105835. [PMID: 35932989 DOI: 10.1016/j.nbd.2022.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 07/30/2022] [Indexed: 10/16/2022] Open
Abstract
Therapies for epilepsy mainly provide symptomatic control of seizures since most of the available drugs do not target disease mechanisms. Moreover, about one-third of patients fail to achieve seizure control. To address the clinical need for disease-modifying therapies, research should focus on targets which permit interventions finely balanced between optimal efficacy and safety. One potential candidate is the brain-specific enzyme cholesterol 24-hydroxylase. This enzyme converts cholesterol to 24S-hydroxycholesterol, a metabolite which among its biological roles modulates neuronal functions relevant for hyperexcitability underlying seizures. To study the role of cholesterol 24-hydroxylase in epileptogenesis, we administered soticlestat (TAK-935/OV935), a potent and selective brain-penetrant inhibitor of the enzyme, during the early disease phase in a mouse model of acquired epilepsy using a clinically relevant dose. During soticlestat treatment, the onset of epilepsy was delayed and the number of ensuing seizures was decreased by about 3-fold compared to vehicle-treated mice, as assessed by EEG monitoring. Notably, the therapeutic effect was maintained 6.5 weeks after drug wash-out when seizure number was reduced by about 4-fold and their duration by 2-fold. Soticlestat-treated mice showed neuroprotection of hippocampal CA1 neurons and hilar mossy cells as assessed by post-mortem brain histology. High throughput RNA-sequencing of hippocampal neurons and glia in mice treated with soticlestat during epileptogenesis showed that inhibition of cholesterol 24-hydroxylase did not directly affect the epileptogenic transcriptional network, but rather modulated a non-overlapping set of genes that might oppose the pathogenic mechanisms of the disease. In human temporal lobe epileptic foci, we determined that cholesterol 24-hydroxylase expression trends higher in neurons, similarly to epileptic mice, while the enzyme is ectopically induced in astrocytes compared to control specimens. Soticlestat reduced significantly the number of spontaneous seizures in chronic epileptic mice when was administered during established epilepsy. Data show that cholesterol 24-hydroxylase contributes to spontaneous seizures and is involved in disease progression, thus it represents a novel target for chronic seizures inhibition and disease-modification therapy in epilepsy.
Collapse
Affiliation(s)
- Alessia Salamone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Gaetano Terrone
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Rossella Di Sapia
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Silvia Balosso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Luca Beltrame
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Ilaria Craparotta
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Laura Mannarino
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Sara Raimondi Cominesi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Massimo Rizzi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Alberto Pauletti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Sergio Marchini
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Luca Porcu
- Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy
| | - Till S Zimmer
- Department of Neuropathology, Amsterdam UMC, 1105 Amsterdam, the Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam UMC, 1105 Amsterdam, the Netherlands; Stichting Epilepsie Instellingen Nederland (SEIN), 2103 Heemstede, the Netherlands
| | | | - Brett Abrahams
- Ovid Therapeutics, 10036 New York, NY, USA; Departments of Genetics and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 10461 Bronx, USA
| | - Shinichi Kondo
- Takeda Pharmaceutical Company Limited, 251-8555 Fujisawa, Japan
| | - Toshiya Nishi
- Takeda Pharmaceutical Company Limited, 251-8555 Fujisawa, Japan
| | - Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milano, Italy.
| |
Collapse
|
12
|
Clinico-biological markers for the prognosis of status epilepticus in adults. J Neurol 2022; 269:5868-5882. [PMID: 35768546 DOI: 10.1007/s00415-022-11199-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 10/17/2022]
Abstract
Prediction of mortality, functional outcome and recovery after status epilepticus (SE) is a challenge. Biological and clinical markers have been proposed to reflect the brain injury or to monitor critical ill patients' severity. The aim of this study was to characterize short-term and long-term prognostic factors for SE patients hospitalized in intensive care unit. Patient's outcome was assessed using the modified Rankin Scale at discharge and after 6-12 months. We first assessed the univariate prognosis significance of 51 clinical, demographic or biochemical markers. Next, we built multivariate clinico-biological models by combining most important factors. Statistical models' performances were compared to those of two previous published scales STESS and mSTESS. Eighty-one patients were enrolled. Thirty-five patients showed a steady state while 46 patients clinically worsened at discharge: 14 died, 14 had persistent disability at 6-12 months and 18 recovered. Logistic regression analysis revealed that clinical markers (SE refractoriness, SE duration, de novo SE) were significant independent predictors of worsening while lipids markers and progranulin better predicted mortality. The association of clinico-biological variables allowed to accurately predict worsening at discharge (AUC > 0.72), mortality at discharge (AUC 0.83) and recovery at long-term (AUC 0.89). Previous scales provided lower prediction for worsening (AUC 0.63, STESS; 0.53, mSTESS) and mortality (AUC 0.56, STESS; 0.62, mSTESS) (p < 0.001). We proposed new clinico-biological models with a strong discrimination power for prediction of short- and long-term outcome of hospitalized status epilepticus patients. Their implementation in electronic devices may enhance their clinical liability.
Collapse
|
13
|
Pikuleva IA. Targeting cytochrome P450 46A1 and brain cholesterol 24-hydroxylation to treat neurodegenerative diseases. EXPLORATION OF NEUROPROTECTIVE THERAPY 2021; 1:159-172. [PMID: 35156102 DOI: 10.37349/ent.2021.00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The brain cholesterol content is determined by the balance between the pathways of in situ biosynthesis and cholesterol elimination via 24-hydroxylation catalyzed by CYP46A1 (cytochrome P450 46A1). Both pathways are tightly coupled and determine the rate of brain cholesterol turnover. Evidence is accumulating that modulation of CYP46A1 activity by gene therapy or pharmacologic means could be beneficial in case neurodegenerative and other brain diseases and affect brain processes other than cholesterol biosynthesis and elimination. This minireview summarizes these other processes, most common of which include abnormal protein accumulation, memory and cognition, motor behavior, gene transcription, protein phosphorylation as well as autophagy and lysosomal processing. The unifying mechanisms, by which these processes could be affected by CYP46A targeting are also discussed.
Collapse
Affiliation(s)
- Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Martin E, Aigrot MS, Lamari F, Bachelin C, Lubetzki C, Nait Oumesmar B, Zalc B, Stankoff B. Teriflunomide Promotes Oligodendroglial 8,9-Unsaturated Sterol Accumulation and CNS Remyelination. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1091. [PMID: 34642237 PMCID: PMC8515201 DOI: 10.1212/nxi.0000000000001091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
Background and Objectives To test whether low concentrations of teriflunomide (TF) could promote remyelination, we investigate the effect of TF on oligodendrocyte in culture and on remyelination in vivo in 2 demyelinating models. Methods The effect of TF on oligodendrocyte precursor cell (OPC) proliferation and differentiation was assessed in vitro in glial cultures derived from neonatal mice and confirmed on fluorescence-activated cell sorting–sorted adult OPCs. The levels of the 8,9-unsaturated sterols lanosterol and zymosterol were quantified in TF- and sham-treated cultures. In vivo, TF was administered orally, and remyelination was assessed both in myelin basic protein–GFP-nitroreductase (Mbp:GFP-NTR) transgenic Xenopus laevis demyelinated by metronidazole and in adult mice demyelinated by lysolecithin. Results In cultures, low concentrations of TF down to 10 nM decreased OPC proliferation and increased their differentiation, an effect that was also detected on adult OPCs. Oligodendrocyte differentiation induced by TF was abrogated by the oxidosqualene cyclase inhibitor Ro 48-8071 and was mediated by the accumulation of zymosterol. In the demyelinated tadpole, TF enhanced the regeneration of mature oligodendrocytes up to 2.5-fold. In the mouse demyelinated spinal cord, TF promoted the differentiation of newly generated oligodendrocytes by a factor of 1.7-fold and significantly increased remyelination. Discussion TF enhances zymosterol accumulation in oligodendrocytes and CNS myelin repair, a beneficial off-target effect that should be investigated in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Elodie Martin
- From the Sorbonne Université, Paris Brain Institute, CNRS, Inserm (E.M., M.-S.A., C.B., C.L., B.N.O., B.Z., B.S.); Pitié-Salpêtrière Hospital, APHP (F.L., C.L.); and Saint Antoine Hospital, APHP (B.S.), Paris, France
| | - Marie-Stephane Aigrot
- From the Sorbonne Université, Paris Brain Institute, CNRS, Inserm (E.M., M.-S.A., C.B., C.L., B.N.O., B.Z., B.S.); Pitié-Salpêtrière Hospital, APHP (F.L., C.L.); and Saint Antoine Hospital, APHP (B.S.), Paris, France
| | - Foudil Lamari
- From the Sorbonne Université, Paris Brain Institute, CNRS, Inserm (E.M., M.-S.A., C.B., C.L., B.N.O., B.Z., B.S.); Pitié-Salpêtrière Hospital, APHP (F.L., C.L.); and Saint Antoine Hospital, APHP (B.S.), Paris, France
| | - Corinne Bachelin
- From the Sorbonne Université, Paris Brain Institute, CNRS, Inserm (E.M., M.-S.A., C.B., C.L., B.N.O., B.Z., B.S.); Pitié-Salpêtrière Hospital, APHP (F.L., C.L.); and Saint Antoine Hospital, APHP (B.S.), Paris, France
| | - Catherine Lubetzki
- From the Sorbonne Université, Paris Brain Institute, CNRS, Inserm (E.M., M.-S.A., C.B., C.L., B.N.O., B.Z., B.S.); Pitié-Salpêtrière Hospital, APHP (F.L., C.L.); and Saint Antoine Hospital, APHP (B.S.), Paris, France
| | - Brahim Nait Oumesmar
- From the Sorbonne Université, Paris Brain Institute, CNRS, Inserm (E.M., M.-S.A., C.B., C.L., B.N.O., B.Z., B.S.); Pitié-Salpêtrière Hospital, APHP (F.L., C.L.); and Saint Antoine Hospital, APHP (B.S.), Paris, France
| | - Bernard Zalc
- From the Sorbonne Université, Paris Brain Institute, CNRS, Inserm (E.M., M.-S.A., C.B., C.L., B.N.O., B.Z., B.S.); Pitié-Salpêtrière Hospital, APHP (F.L., C.L.); and Saint Antoine Hospital, APHP (B.S.), Paris, France
| | - Bruno Stankoff
- From the Sorbonne Université, Paris Brain Institute, CNRS, Inserm (E.M., M.-S.A., C.B., C.L., B.N.O., B.Z., B.S.); Pitié-Salpêtrière Hospital, APHP (F.L., C.L.); and Saint Antoine Hospital, APHP (B.S.), Paris, France.
| |
Collapse
|