1
|
Li AY, Iv M. Conventional and Advanced Imaging Techniques in Post-treatment Glioma Imaging. FRONTIERS IN RADIOLOGY 2022; 2:883293. [PMID: 37492665 PMCID: PMC10365131 DOI: 10.3389/fradi.2022.883293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/06/2022] [Indexed: 07/27/2023]
Abstract
Despite decades of advancement in the diagnosis and therapy of gliomas, the most malignant primary brain tumors, the overall survival rate is still dismal, and their post-treatment imaging appearance remains very challenging to interpret. Since the limitations of conventional magnetic resonance imaging (MRI) in the distinction between recurrence and treatment effect have been recognized, a variety of advanced MR and functional imaging techniques including diffusion-weighted imaging (DWI), diffusion tensor imaging (DTI), perfusion-weighted imaging (PWI), MR spectroscopy (MRS), as well as a variety of radiotracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) have been investigated for this indication along with voxel-based and more quantitative analytical methods in recent years. Machine learning and radiomics approaches in recent years have shown promise in distinguishing between recurrence and treatment effect as well as improving prognostication in a malignancy with a very short life expectancy. This review provides a comprehensive overview of the conventional and advanced imaging techniques with the potential to differentiate recurrence from treatment effect and includes updates in the state-of-the-art in advanced imaging with a brief overview of emerging experimental techniques. A series of representative cases are provided to illustrate the synthesis of conventional and advanced imaging with the clinical context which informs the radiologic evaluation of gliomas in the post-treatment setting.
Collapse
Affiliation(s)
- Anna Y. Li
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| | - Michael Iv
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
2
|
Maudsley AA, Andronesi OC, Barker PB, Bizzi A, Bogner W, Henning A, Nelson SJ, Posse S, Shungu DC, Soher BJ. Advanced magnetic resonance spectroscopic neuroimaging: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4309. [PMID: 32350978 PMCID: PMC7606742 DOI: 10.1002/nbm.4309] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 02/01/2020] [Accepted: 03/10/2020] [Indexed: 05/04/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) offers considerable promise for monitoring metabolic alterations associated with disease or injury; however, to date, these methods have not had a significant impact on clinical care, and their use remains largely confined to the research community and a limited number of clinical sites. The MRSI methods currently implemented on clinical MRI instruments have remained essentially unchanged for two decades, with only incremental improvements in sequence implementation. During this time, a number of technological developments have taken place that have already greatly benefited the quality of MRSI measurements within the research community and which promise to bring advanced MRSI studies to the point where the technique becomes a true imaging modality, while making the traditional review of individual spectra a secondary requirement. Furthermore, the increasing use of biomedical MR spectroscopy studies has indicated clinical areas where advanced MRSI methods can provide valuable information for clinical care. In light of this rapidly changing technological environment and growing understanding of the value of MRSI studies for biomedical studies, this article presents a consensus from a group of experts in the field that reviews the state-of-the-art for clinical proton MRSI studies of the human brain, recommends minimal standards for further development of vendor-provided MRSI implementations, and identifies areas which need further technical development.
Collapse
Affiliation(s)
- Andrew A Maudsley
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ovidiu C Andronesi
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, Massachusetts
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, and the Kennedy Krieger Institute, F.M. Kirby Center for Functional Brain Imaging, Baltimore, Maryland
| | - Alberto Bizzi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Anke Henning
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sarah J Nelson
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Stefan Posse
- Department of Neurology, University of New Mexico, Albuquerque, New Mexico
| | - Dikoma C Shungu
- Department of Neuroradiology, Weill Cornell Medical College, New York, New York
| | - Brian J Soher
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
3
|
Song J, Kadaba P, Kravitz A, Hormigo A, Friedman J, Belani P, Hadjipanayis C, Ellingson BM, Nael K. Multiparametric MRI for early identification of therapeutic response in recurrent glioblastoma treated with immune checkpoint inhibitors. Neuro Oncol 2021; 22:1658-1666. [PMID: 32193547 DOI: 10.1093/neuonc/noaa066] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Physiologic changes quantified by diffusion and perfusion MRI have shown utility in predicting treatment response in glioblastoma (GBM) patients treated with cytotoxic therapies. We aimed to investigate whether quantitative changes in diffusion and perfusion after treatment by immune checkpoint inhibitors (ICIs) would determine 6-month progression-free survival (PFS6) in patients with recurrent GBM. METHODS Inclusion criteria for this retrospective study were: (i) diagnosis of recurrent GBM treated with ICIs and (ii) availability of diffusion and perfusion in pre and post ICI MRI (iii) at ≥6 months follow-up from treatment. After co-registration, mean values of the relative apparent diffusion coefficient (rADC), Ktrans (volume transfer constant), Ve (extravascular extracellular space volume) and Vp (plasma volume), and relative cerebral blood volume (rCBV) were calculated from a volume-of-interest of the enhancing tumor. Final assignment of stable/improved versus progressive disease was determined on 6-month follow-up using modified Response Assessment in Neuro-Oncology criteria. RESULTS Out of 19 patients who met inclusion criteria and follow-up (mean ± SD: 7.8 ± 1.4 mo), 12 were determined to have tumor progression, while 7 had treatment response after 6 months of ICI treatment. Only interval change of rADC was suggestive of treatment response. Patients with treatment response (6/7: 86%) had interval increased rADC, while 11/12 (92%) with tumor progression had decreased rADC (P = 0.001). Interval change in rCBV, Ktrans, Vp, and Ve were not indicative of treatment response within 6 months. CONCLUSIONS In patients with recurrent GBM, interval change in rADC is promising in assessing treatment response versus progression within the first 6 months following ICI treatment. KEY POINTS • In recurrent GBM treated with ICIs, interval change in rADC suggests early treatment response.• Interval change in rADC can be used as an imaging biomarker to determine PFS6.• Interval change in MR perfusion and permeability measures do not suggest ICI treatment response.
Collapse
Affiliation(s)
- Joseph Song
- Icahn School of Medicine at Mount Sinai, Department of Radiology (Neuroimaging Advanced and Exploratory Lab), New York, New York
| | - Priyanka Kadaba
- Icahn School of Medicine at Mount Sinai, Department of Radiology (Neuroimaging Advanced and Exploratory Lab), New York, New York
| | - Amanda Kravitz
- Icahn School of Medicine at Mount Sinai, Department of Radiology (Neuroimaging Advanced and Exploratory Lab), New York, New York
| | - Adilia Hormigo
- Department of Neurology, Medicine (Div Hem Onc), The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joshua Friedman
- Department of Neurology, Medicine (Div Hem Onc), The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Puneet Belani
- Icahn School of Medicine at Mount Sinai, Department of Radiology (Neuroimaging Advanced and Exploratory Lab), New York, New York
| | | | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kambiz Nael
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
4
|
Gatson NTN, Makary M, Bross SP, Vadakara J, Maiers T, Mongelluzzo GJ, Leese EN, Brimley C, Fonkem E, Mahadevan A, Sarkar A, Panikkar R. Case series review of neuroradiologic changes associated with immune checkpoint inhibitor therapy. Neurooncol Pract 2020; 8:247-258. [PMID: 34055372 DOI: 10.1093/nop/npaa079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
While immuno-oncotherapy (IO) has significantly improved outcomes in the treatment of systemic cancers, various neurological complications have accompanied these therapies. Treatment with immune checkpoint inhibitors (ICIs) risks multi-organ autoimmune inflammatory responses with gastrointestinal, dermatologic, and endocrine complications being the most common types of complications. Despite some evidence that these therapies are effective to treat central nervous system (CNS) tumors, there are a significant range of related neurological side effects due to ICIs. Neuroradiologic changes associated with ICIs are commonly misdiagnosed as progression and might limit treatment or otherwise impact patient care. Here, we provide a radiologic case series review restricted to neurological complications attributed to ICIs, anti-CTLA-4, and PD-L-1/PD-1 inhibitors. We report the first case series dedicated to the review of CNS/PNS radiologic changes secondary to ICI therapy in cancer patients. We provide a brief case synopsis with neuroimaging followed by an annotated review of the literature relevant to each case. We present a series of neuroradiological findings including nonspecific parenchymal and encephalitic, hypophyseal, neural (cranial and peripheral), meningeal, cavity-associated, and cranial osseous changes seen in association with the use of ICIs. Misdiagnosis of radiologic abnormalities secondary to neurological immune-related adverse events can impact patient treatment regimens and clinical outcomes. Rapid recognition of various neuroradiologic changes associated with ICI therapy can improve patient tolerance and adherence to cancer therapies.
Collapse
Affiliation(s)
- Na Tosha N Gatson
- Cancer Institute, Geisinger Medical Center, Danville, PA, USA.,Neuroscience Institute, Geisinger Medical Center, Danville, PA, USA.,School of Medicine, Geisinger Commonwealth School of Medicine, Scranton, PA, USA.,Banner MD Anderson Cancer Center, Neuro-Oncology Division, Phoenix, AZ, USA
| | - Mina Makary
- Cancer Institute, Geisinger Medical Center, Danville, PA, USA
| | - Shane P Bross
- Neuroscience Institute, Geisinger Medical Center, Danville, PA, USA.,School of Medicine, Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Joseph Vadakara
- Cancer Institute, Geisinger Medical Center, Danville, PA, USA
| | - Tristan Maiers
- Enterprise Pharmacy, Geisinger Medical Center, Danville, PA, USA
| | | | - Erika N Leese
- Neuroscience Institute, Geisinger Medical Center, Danville, PA, USA
| | - Cameron Brimley
- Department of Neurosurgery, Geisinger Medical Center, Danville, PA, USA
| | - Ekokobe Fonkem
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Anand Mahadevan
- Department of Radiation Oncology, Geisinger Medical Center, Danville, PA, USA
| | - Atom Sarkar
- Department of Neurosurgery, Global Neurosciences Institute, Drexel University School of Medicine, Philadelphia, PA, USA
| | - Rajiv Panikkar
- Cancer Institute, Geisinger Medical Center, Danville, PA, USA
| |
Collapse
|
5
|
Yu Y, Ma Y, Sun M, Jiang W, Yuan T, Tong D. Meta-analysis of the diagnostic performance of diffusion magnetic resonance imaging with apparent diffusion coefficient measurements for differentiating glioma recurrence from pseudoprogression. Medicine (Baltimore) 2020; 99:e20270. [PMID: 32501974 PMCID: PMC7306328 DOI: 10.1097/md.0000000000020270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/13/2020] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE The accurate differentiation of glioma recurrence from pseudoprogression (PSP) after therapy remains a considerable clinical challenge. Several studies have shown that diffusion magnetic resonance imaging (MRI) has potential value in distinguishing these 2 outcomes. The current meta-analysis examined the diagnostic accuracy of diffusion MRI with the apparent diffusion coefficient (ADC) in the differentiation of glioma recurrence from PSP. METHOD PubMed, Embase, Cochrane Library, and Chinese Biomedical databases were reviewed to identify studies that fulfilled our inclusion/exclusion criteria and were published on or before May 5, 2019. Threshold effects; heterogeneity; pooled sensitivity (SENS), specificity, positive likelihood ratio, and negative likelihood ratio; and diagnostic odds ratio were calculated. The overall diagnostic usefulness of diffusion MRI-derived ADC values was assessed by calculating the area under the curve (AUC) following summary receiver operating characteristic (SROC) analysis. RESULTS Six eligible studies examined a total of 214 patients. Calculation of pooled values indicated the SENS was 0.95 (95% confidence interval [CI] = 0.89-0.98), specificity was 0.83 (95% CI = 0.72-0.91), positive likelihood ratio was 4.82 (95% CI = 2.93-7.93), negative likelihood ratio was 0.08 (95% CI = 0.04-0.17), and diagnostic odds ratio was 59.63 (95% CI = 22.63-157.37). The SROC AUC was 0.9322. Publication bias was not significant, and SENS analysis indicated the results were relatively stable. CONCLUSIONS Our meta-analysis indicated that diffusion MRI with quantitative ADC is an effective approach for differentiation of glioma recurrence from PSP, and can be used as an auxiliary tool to diagnose glioma progression.
Collapse
Affiliation(s)
| | | | - Mengyao Sun
- Department of Internal Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | | | | | | |
Collapse
|
6
|
Garbow JR, Tsien CI, Beeman SC. Preclinical MRI: Studies of the irradiated brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 292:73-81. [PMID: 29705034 PMCID: PMC6029718 DOI: 10.1016/j.jmr.2018.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/20/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Radiation therapy (RT) plays a central role in the treatment of primary brain tumors. However, despite recent advances in RT treatment, local recurrences following therapy remain common. Radiation necrosis (RN) is a severe, late complication of radiation therapy in the brain. RN is a serious clinical problem often associated with devastating neurologic complications. Therapeutic strategies, including neuroprotectants, have been described, but have not been widely translated in routine clinical use. We have developed a mouse model that recapitulates all of the major pathologic features of late-onset RN for the purposes of characterizing the basic pathogenesis of RN, identifying non-invasive (imaging) biomarkers of RN that might allow for the radiologic discernment of tumor and RN, systematic testing of tumor and RN therapeutics, and exploring the complex interplay between RN pathogenesis and tumor recurrence. Herein, we describe the fundamental clinical challenges associated with RN and the progress made towards addressing these challenges by combining our novel mouse model of late-onset RN and magnetic resonance imaging (MRI). MRI techniques discussed include conventional T1- and T2-weighted imaging, diffusion-weighted imaging, magnetization transfer, and measures of tissue oxygenation. Studies of RN mitigation and neuroprotection are described, including the use of anti-VEGF antibodies, and inhibitors of GSK-3β, HIF-1α, and CXCR4. We conclude with some future perspectives on the irradiated brain and the study and treatment of recurrent tumor growing in an irradiated tumor microenvironment.
Collapse
Affiliation(s)
- Joel R Garbow
- Department of Radiology, Washington University, Saint Louis, MO, United States; The Alvin J. Siteman Cancer Center, Washington University, Saint Louis, MO, United States.
| | - Christina I Tsien
- Department of Radiation Oncology, Washington University, Saint Louis, MO, United States
| | - Scott C Beeman
- Department of Radiology, Washington University, Saint Louis, MO, United States
| |
Collapse
|
7
|
Ranjan S, Quezado M, Garren N, Boris L, Siegel C, Lopes Abath Neto O, Theeler BJ, Park DM, Nduom E, Zaghloul KA, Gilbert MR, Wu J. Clinical decision making in the era of immunotherapy for high grade-glioma: report of four cases. BMC Cancer 2018; 18:239. [PMID: 29490632 PMCID: PMC5831705 DOI: 10.1186/s12885-018-4131-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/14/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICPIs) are being investigated in clinical trials for patients with glioblastoma. While these therapies hold great promise, management of the patients receiving such treatment can be complicated due to the challenges in recognizing immune-related adverse events caused by checkpoint inhibitor treatment. Brain imaging changes that are the consequence of an inflammatory response may be misinterpreted as disease progression leading to inappropriate premature cessation of treatment. The aim of this study was to, by way of a series of cases, underscore the challenges in determining the nature of contrast-enhancing masses that develop during the treatment of patients with glioblastoma treated with ICPIs. CASE PRESENTATION We reviewed the clinical course and management of 4 patients on ICPIs who developed signs of tumor progression on imaging. These findings were examined in the context of Immunotherapy Response Assessment in Neuro-Oncology (iRANO) guidelines. Although all 4 patients had very similar imaging findings, 2 of the 4 patients were later found to have intense inflammatory changes (pseudoprogression) by pathologic examination. CONCLUSIONS A high index of suspicion for pseudoprogression needs to be maintained when a patient with brain tumor on immunotherapy presents with worsening in an area of a pre-existing tumor or a new lesion in brain. Our findings strongly suggest that pathological diagnosis remains the gold standard for distinguishing tumor progression from pseudoprogression in patients receiving immunotherapy. There is a large unmet need to develop reliable non-invasive imaging diagnostic techniques. TRIAL REGISTRATION ClinicalTrials.gov NCT02311920. Registered 8 December 2014.
Collapse
Affiliation(s)
- Surabhi Ranjan
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| | - Martha Quezado
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Nancy Garren
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| | - Lisa Boris
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick, Frederick, MD 21702 USA
| | - Christine Siegel
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., NCI Campus at Frederick, Frederick, MD 21702 USA
| | - Osorio Lopes Abath Neto
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA
| | - Brett J. Theeler
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
- Department of Neurology and John P. Murtha Cancer Center, Walter Reed National Military Medical Center, Bethesda, MD 20889 USA
| | - Deric M. Park
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| | - Edjah Nduom
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA
| | - Kareem A. Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892 USA
| |
Collapse
|
8
|
Nandu H, Wen PY, Huang RY. Imaging in neuro-oncology. Ther Adv Neurol Disord 2018; 11:1756286418759865. [PMID: 29511385 PMCID: PMC5833173 DOI: 10.1177/1756286418759865] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Imaging plays several key roles in managing brain tumors, including diagnosis, prognosis, and treatment response assessment. Ongoing challenges remain as new therapies emerge and there are urgent needs to find accurate and clinically feasible methods to noninvasively evaluate brain tumors before and after treatment. This review aims to provide an overview of several advanced imaging modalities including magnetic resonance imaging and positron emission tomography (PET), including advances in new PET agents, and summarize several key areas of their applications, including improving the accuracy of diagnosis and addressing the challenging clinical problems such as evaluation of pseudoprogression and anti-angiogenic therapy, and rising challenges of imaging with immunotherapy.
Collapse
Affiliation(s)
- Hari Nandu
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02445, USA
| |
Collapse
|
9
|
Abstract
INTRODUCTION Initial diagnostics and follow-up of gliomas is usually based on contrast-enhanced MRI. However, the capacity of standard MRI to differentiate neoplastic tissue from posttherapeutic effects such as pseudoprogression is limited. Advanced neuroimaging methods may provide relevant additional information, which allow for a more accurate diagnosis especially in clinically equivocal situations. This review article focuses predominantly on PET using radiolabeled amino acids and advanced MRI techniques such as perfusion-weighted imaging (PWI) and summarizes the efforts of these methods regarding the identification of pseudoprogression after glioma therapy. Areas covered: The current literature on pseudoprogression in the field of brain tumors, with a focus on gliomas is summarized. A literature search was performed using the terms 'pseudoprogression', 'temozolomide', 'glioblastoma', 'PET', 'PWI', 'radiochemotherapy', and derivations thereof. Expert commentary: The present literature provides strong evidence that PWI MRI and amino acid PET can be of great value by providing valuable additional diagnostic information in order to overcome the diagnostic challenge of pseudoprogression. Despite various obstacles such as the still limited availability of amino acid PET and the lack of standardization of PWI, the diagnostic improvement probably results in relevant benefits for brain tumor patients and justifies a more widespread use of these diagnostic tools.
Collapse
Affiliation(s)
- Norbert Galldiks
- a Department of Neurology , University of Cologne , Cologne , Germany.,b Institute of Neuroscience and Medicine , Forschungszentrum Jülich , Jülich , Germany.,c Center of Integrated Oncology (CIO) , Universities of Cologne and Bonn , Cologne , Germany
| | - Martin Kocher
- d Department of Radiation Oncology , University of Cologne , Cologne , Germany
| | - Karl-Josef Langen
- b Institute of Neuroscience and Medicine , Forschungszentrum Jülich , Jülich , Germany.,e Department of Nuclear Medicine , University of Aachen , Aachen , Germany
| |
Collapse
|
10
|
Okuma C, Fernández R. EVALUACIÓN DE GLIOMAS POR TÉCNICAS AVANZADAS DE RESONANCIA MAGNÉTICA. REVISTA MÉDICA CLÍNICA LAS CONDES 2017. [DOI: 10.1016/j.rmclc.2017.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Huang RY, Wen PY. Response Assessment in Neuro-Oncology Criteria and Clinical Endpoints. Magn Reson Imaging Clin N Am 2016; 24:705-718. [PMID: 27742111 DOI: 10.1016/j.mric.2016.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Response Assessment in Neuro-Oncology (RANO) Working Group is an international multidisciplinary group whose goal is to improve response criteria and define endpoints for neuro-oncology trials. The RANO criteria for high-grade gliomas attempt to address the issues of pseudoprogression, pseudoresponse, and nonenhancing tumor progression. Incorporation of advanced MR imaging may eventually help improve the ability of these criteria to define enhancing and nonenhancing disease better. The RANO group has also developed criteria for neurologic response and evaluation of patients receiving immunologic therapies. RANO criteria have been developed for brain metastases and are in progress for meningiomas, leptomeningeal disease, spinal tumors, and pediatric tumors.
Collapse
Affiliation(s)
- Raymond Y Huang
- Division of Neuroradiology, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Patrick Y Wen
- Division of Neuro-Oncology, Department of Neurology, Center for Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
12
|
Khan MN, Sharma AM, Pitz M, Loewen SK, Quon H, Poulin A, Essig M. High-grade glioma management and response assessment-recent advances and current challenges. ACTA ACUST UNITED AC 2016; 23:e383-91. [PMID: 27536188 DOI: 10.3747/co.23.3082] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The management of high-grade gliomas (hggs) is complex and ever-evolving. The standard of care for the treatment of hggs consists of surgery, chemotherapy, and radiotherapy. However, treatment options are influenced by multiple factors such as patient age and performance status, extent of tumour resection, biomarker profile, and tumour histology and grade. Follow-up cranial magnetic resonance imaging (mri) to differentiate treatment response from treatment effect can be challenging and affects clinical decision-making. An assortment of advanced radiologic techniques-including perfusion imaging with dynamic susceptibility contrast mri, dynamic contrast-enhanced mri, diffusion-weighted imaging, proton spectroscopy, mri subtraction imaging, and amino acid radiotracer imaging-can now incorporate novel physiologic data, providing new methods to help characterize tumour progression, pseudoprogression, and pseudoresponse. In the present review, we provide an overview of current treatment options for hgg and summarize recent advances and challenges in imaging technology.
Collapse
Affiliation(s)
- M N Khan
- Department of Radiology, University of Manitoba, Winnipeg, MB
| | - A M Sharma
- Department of Radiology, University of Manitoba, Winnipeg, MB;; Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB
| | - M Pitz
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB;; Department of Haematology and Medical Oncology, University of Manitoba, Winnipeg, MB
| | - S K Loewen
- Department of Radiology, University of Manitoba, Winnipeg, MB;; Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB
| | - H Quon
- Department of Radiology, University of Manitoba, Winnipeg, MB;; Department of Radiation Oncology, CancerCare Manitoba, Winnipeg, MB
| | - A Poulin
- Department of Radiology, University of Manitoba, Winnipeg, MB;; Department of Radiology, Laval University, Quebec City, QC
| | - M Essig
- Department of Radiology, University of Manitoba, Winnipeg, MB
| |
Collapse
|
13
|
Guisado DI, Singh R, Minkowitz S, Zhou Z, Haque S, Peck KK, Young RJ, Tsiouris AJ, Souweidane MM, Thakur SB. A Novel Methodology for Applying Multivoxel MR Spectroscopy to Evaluate Convection-Enhanced Drug Delivery in Diffuse Intrinsic Pontine Gliomas. AJNR Am J Neuroradiol 2016; 37:1367-73. [PMID: 26939629 DOI: 10.3174/ajnr.a4713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 01/05/2016] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Diffuse intrinsic pontine gliomas are inoperable high-grade gliomas with a median survival of less than 1 year. Convection-enhanced delivery is a promising local drug-delivery technique that can bypass the BBB in diffuse intrinsic pontine glioma treatment. Evaluating tumor response is critical in the assessment of convection-enhanced delivery of treatment. We proposed to determine the potential of 3D multivoxel (1)H-MR spectroscopy to evaluate convection-enhanced delivery treatment effect in these tumors. MATERIALS AND METHODS We prospectively analyzed 3D multivoxel (1)H-MR spectroscopy data for 6 patients with nonprogressive diffuse intrinsic pontine gliomas who received convection-enhanced delivery treatment of a therapeutic antibody (Phase I clinical trial NCT01502917). To compare changes in the metabolite ratios with time, we tracked the metabolite ratios Cho/Cr and Cho/NAA at several ROIs: normal white matter, tumor within the convection-enhanced delivery infusion site, tumor outside of the infused area, and the tumor average. RESULTS There was a comparative decrease in both Cho/Cr and Cho/NAA metabolite ratios at the tumor convection-enhanced delivery site versus tumor outside the infused area. We used MR spectroscopy voxels with dominant white matter as a reference. The difference between changes in metabolite ratios became more prominent with increasing time after convection-enhanced delivery treatment. CONCLUSIONS The comparative change in metabolite ratios between the convection-enhanced delivery site and the tumor site outside the infused area suggests that multivoxel (1)H-MR spectroscopy, in combination with other imaging modalities, may provide a clinical tool to accurately evaluate local tumor response after convection-enhanced delivery treatment.
Collapse
Affiliation(s)
- D I Guisado
- From the Weill Medical College of Cornell University (D.I.G., R.S.), New York, NY
| | - R Singh
- From the Weill Medical College of Cornell University (D.I.G., R.S.), New York, NY
| | | | - Z Zhou
- Neurological Surgery (Z.Z., M.M.S.), Weill Medical College of Cornell University, New York, New York
| | - S Haque
- Departments of Radiology (S.H., K.K.P., R.J.Y., S.B.T.)
| | - K K Peck
- Departments of Radiology (S.H., K.K.P., R.J.Y., S.B.T.) Medical Physics (K.K.P., S.B.T.), Memorial Sloan Kettering Cancer Center, New York, New York
| | - R J Young
- Departments of Radiology (S.H., K.K.P., R.J.Y., S.B.T.)
| | | | - M M Souweidane
- Neurological Surgery (Z.Z., M.M.S.), Weill Medical College of Cornell University, New York, New York Neurosurgery (M.M.S.)
| | - S B Thakur
- Departments of Radiology (S.H., K.K.P., R.J.Y., S.B.T.) Medical Physics (K.K.P., S.B.T.), Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
14
|
Glucose-corrected standardized uptake value in the differentiation of high-grade glioma versus post-treatment changes. Nucl Med Commun 2016; 36:573-81. [PMID: 25714806 PMCID: PMC4422715 DOI: 10.1097/mnm.0000000000000288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Standardized uptake values (SUVs) of fluorine-18 fluorodeoxyglucose PET (18F-FDG PET) are used widely to differentiate residual or recurrent high-grade gliomas from post-treatment changes in patients with brain tumors. The aim of this study is to assess the accuracy of SUV corrected by blood glucose level (SUVgluc) compared with various quantitative methods in this role. Materials and methods In 55 patients with dynamic 18F-FDG PET scans, there were 97 glioma lesions: glioblastoma (n=60), grade III gliomas (n=22), grade III or IV gliomas (n=6), grade I/II (n=7), and prebiopsy lesions (n=2). The final actual diagnosis was made on the basis of pathology (n=33) and clinical outcome (n=64). Dynamic 18F-FDG PET scans were processed to generate parametric images of SUVgluc, SUVmax, and glucose metabolic rate (GMR). Lesion to cerebellum ratios (SUVRc) and contralateral white matter ratios (SUVRw) were also measured. The SUVgluc was calculated as SUVmax×blood glucose level/100. Results Using the thresholds of SUVmax>4.6, SUVRc>0.9, SUVRw>1.8, SUVgluc>4.3, and GMR>12.2 μmol/min/100 g to represent positivity for viable tumors, the accuracies were the same for the SUVgluc and SUVRw (80%) and were higher than the conventional SUVmax (72%). The area under the receiver operating characteristic curve for the SUVgluc (0.8933) was better than that for the SUVmax (0.8266) (P<0.01) and was similar to those of the GMR (0.8622), SUVRc (0.8606), and SUVRw (0.8981). Conclusion These results suggest that SUVgluc may aid in the differentiation of residual or recurrent high-grade tumor from post-treatment changes in patients with abnormal blood glucose levels. The simplicity of the SUVgluc avoids the complexity of kinetic analysis or the requirement of a reference tissue.
Collapse
|
15
|
Wu A, Lim M. Issues to Consider in Designing Immunotherapy Clinical Trials for Glioblastoma Management. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jct.2016.78060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Gehring MP, Kipper F, Nicoletti NF, Sperotto ND, Zanin R, Tamajusuku ASK, Flores DG, Meurer L, Roesler R, Filho AB, Lenz G, Campos MM, Morrone FB. P2X7 receptor as predictor gene for glioma radiosensitivity and median survival. Int J Biochem Cell Biol 2015; 68:92-100. [PMID: 26358881 DOI: 10.1016/j.biocel.2015.09.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
Glioblastoma multiforme (GBM) is considered the most lethal intracranial tumor and the median survival time is approximately 14 months. Although some glioma cells present radioresistance, radiotherapy has been the mainstay of therapy for patients with malignant glioma. The activation of P2X7 receptor (P2X7R) is responsible for ATP-induced death in various cell types. In this study, we analyzed the importance of ATP-P2X7R pathway in the radiotherapy response P2X7R silenced cell lines, in vivo and human tumor samples. Both glioma cell lines used in this study present a functional P2X7R and the P2X7R silencing reduced P2X7R pore activity by ethidium bromide uptake. Gamma radiation (2Gy) treatment reduced cell number in a P2X7R-dependent way, since both P2X7R antagonist and P2X7R silencing blocked the cell cytotoxicity caused by irradiation after 24h. The activation of P2X7R is time-dependent, as EtBr uptake significantly increased after 24h of irradiation. The radiotherapy plus ATP incubation significantly increased annexin V incorporation, compared with radiotherapy alone, suggesting that ATP acts synergistically with radiotherapy. Of note, GL261 P2X7R silenced-bearing mice failed in respond to radiotherapy (8Gy) and GL261 WT-bearing mice, that constitutively express P2X7R, presented a significant reduction in tumor volume after radiotherapy, showing in vivo that functional P2X7R expression is essential for an efficient radiotherapy response in gliomas. We also showed that a high P2X7R expression is a good prognostic factor for glioma radiosensitivity and survival probability in humans. Our data revealed the relevance of P2X7R expression in glioma cells to a successful radiotherapy response, and shed new light on this receptor as a useful predictor of the sensitivity of cancer patients to radiotherapy and median survival.
Collapse
Affiliation(s)
- Marina P Gehring
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Franciele Kipper
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Natália F Nicoletti
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Nathalia D Sperotto
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Rafael Zanin
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Alessandra S K Tamajusuku
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Debora G Flores
- Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Porto Alegre, RS, Brazil.
| | - Luise Meurer
- Departamento de Patologia, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, 90420-010 Porto Alegre, RS, Brazil.
| | - Rafael Roesler
- Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, UFRGS, Porto Alegre, RS, Brazil; Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), UFRGS, Porto Alegre, RS, Brazil; National Institute for Translational Medicine, Rua Sarmento Leite, 500, Sala 202, 90050-170 Porto Alegre, RS, Brazil.
| | - Aroldo B Filho
- Serviço de Radioterapia, Hospital São Lucas da PUCRS, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Guido Lenz
- Laboratório de Sinalização e Plasticidade Celular, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre, RS, Brazil.
| | - Maria M Campos
- PUCRS, Instituto de Toxicologia e Farmacologia e Faculdade de Odontologia, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| | - Fernanda B Morrone
- PUCRS, Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Farmacologia Aplicada, Av. Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Ceschin R, Kurland BF, Abberbock SR, Ellingson BM, Okada H, Jakacki RI, Pollack IF, Panigrahy A. Parametric Response Mapping of Apparent Diffusion Coefficient as an Imaging Biomarker to Distinguish Pseudoprogression from True Tumor Progression in Peptide-Based Vaccine Therapy for Pediatric Diffuse Intrinsic Pontine Glioma. AJNR Am J Neuroradiol 2015; 36:2170-6. [PMID: 26338910 DOI: 10.3174/ajnr.a4428] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/05/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Immune response to cancer therapy may result in pseudoprogression, which can only be identified retrospectively and may disrupt an effective therapy. This study assesses whether serial parametric response mapping (a voxel-by-voxel method of image analysis also known as functional diffusion mapping) analysis of ADC measurements following peptide-based vaccination may help prospectively distinguish progression from pseudoprogression in pediatric patients with diffuse intrinsic pontine gliomas. MATERIALS AND METHODS From 2009 to 2012, 21 children, 4-18 years of age, with diffuse intrinsic pontine gliomas were enrolled in a serial peptide-based vaccination protocol following radiation therapy. DWI was acquired before immunotherapy and at 6-week intervals during vaccine treatment. Pseudoprogression was identified retrospectively on the basis of clinical and radiographic findings, excluding DWI. Parametric response mapping was used to analyze 96 scans, comparing ADC measures at multiple time points (from the first vaccine to up to 12 weeks after the vaccine was halted) with prevaccine baseline values. Log-transformed fractional increased ADC, fractional decreased ADC, and parametric response mapping ratio (fractional increased ADC/fractional decreased ADC) were compared between patients with and without pseudoprogression, by using generalized estimating equations with inverse weighting by cluster size. RESULTS Median survival was 13.1 months from diagnosis (range, 6.4-24.9 months). Four of 21 children (19%) were assessed as experiencing pseudoprogression. Patients with pseudoprogression had higher fitted average log-transformed parametric response mapping ratios (P = .01) and fractional decreased ADCs (P = .0004), compared with patients without pseudoprogression. CONCLUSIONS Serial parametric response mapping of ADC, performed at multiple time points of therapy, may distinguish pseudoprogression from true progression in patients with diffuse intrinsic pontine gliomas treated with peptide-based vaccination.
Collapse
Affiliation(s)
- R Ceschin
- From the Departments of Radiology (R.C., A.P.) Biomedical Informatics (R.C., A.P.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Departments of Radiology (R.C., A.P.)
| | - B F Kurland
- Children's Hospital of Pittsburgh, University of Pittsburgh Cancer Institute (B.F.K., S.R.A., H.O., R.I.J., I.F.P., A.P.) Department of Biostatistics, Graduate School of Public Health (B.F.K.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | - S R Abberbock
- Children's Hospital of Pittsburgh, University of Pittsburgh Cancer Institute (B.F.K., S.R.A., H.O., R.I.J., I.F.P., A.P.)
| | - B M Ellingson
- Department of Radiological Sciences (B.M.E.), University of California, Los Angeles, Los Angeles, California
| | - H Okada
- Surgery (H.O.) Neurosurgery (H.O., I.F.P.) Immunology (H.O.) Children's Hospital of Pittsburgh, University of Pittsburgh Cancer Institute (B.F.K., S.R.A., H.O., R.I.J., I.F.P., A.P.)
| | - R I Jakacki
- Pediatrics (R.I.J.) Pediatrics (R.I.J.) Children's Hospital of Pittsburgh, University of Pittsburgh Cancer Institute (B.F.K., S.R.A., H.O., R.I.J., I.F.P., A.P.)
| | - I F Pollack
- Neurosurgery (H.O., I.F.P.) Neurosurgery (I.F.P.) Children's Hospital of Pittsburgh, University of Pittsburgh Cancer Institute (B.F.K., S.R.A., H.O., R.I.J., I.F.P., A.P.)
| | - A Panigrahy
- From the Departments of Radiology (R.C., A.P.) Biomedical Informatics (R.C., A.P.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania Departments of Radiology (R.C., A.P.) Children's Hospital of Pittsburgh, University of Pittsburgh Cancer Institute (B.F.K., S.R.A., H.O., R.I.J., I.F.P., A.P.)
| |
Collapse
|
18
|
Huang RY, Neagu MR, Reardon DA, Wen PY. Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response. Front Neurol 2015; 6:33. [PMID: 25755649 PMCID: PMC4337341 DOI: 10.3389/fneur.2015.00033] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/09/2015] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma, the most common malignant primary brain tumor in adults is a devastating diagnosis with an average survival of 14–16 months using the current standard of care treatment. The determination of treatment response and clinical decision making is based on the accuracy of radiographic assessment. Notwithstanding, challenges exist in the neuroimaging evaluation of patients undergoing treatment for malignant glioma. Differentiating treatment response from tumor progression is problematic and currently combines long-term follow-up using standard magnetic resonance imaging (MRI), with clinical status and corticosteroid-dependency assessments. In the clinical trial setting, treatment with gene therapy, vaccines, immunotherapy, and targeted biologicals similarly produces MRI changes mimicking disease progression. A neuroimaging method to clearly distinguish between pseudoprogression and tumor progression has unfortunately not been found to date. With the incorporation of antiangiogenic therapies, a further pitfall in imaging interpretation is pseudoresponse. The Macdonald criteria that correlate tumor burden with contrast-enhanced imaging proved insufficient and misleading in the context of rapid blood–brain barrier normalization following antiangiogenic treatment that is not accompanied by expected survival benefit. Even improved criteria, such as the RANO criteria, which incorporate non-enhancing disease, clinical status, and need for corticosteroid use, fall short of definitively distinguishing tumor progression, pseudoresponse, and pseudoprogression. This review focuses on advanced imaging techniques including perfusion MRI, diffusion MRI, MR spectroscopy, and new positron emission tomography imaging tracers. The relevant image analysis algorithms and interpretation methods of these promising techniques are discussed in the context of determining response and progression during treatment of glioblastoma both in the standard of care and in clinical trial context.
Collapse
Affiliation(s)
- Raymond Y Huang
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center , Boston, MA , USA
| | - Martha R Neagu
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center , Boston, MA , USA
| | - David A Reardon
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center , Boston, MA , USA
| | - Patrick Y Wen
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center , Boston, MA , USA
| |
Collapse
|
19
|
Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M, Reifenberger G, Kebir S, Dorn F, Blau T, Herrlinger U, Hau P, Ruge MI, Kocher M, Goldbrunner R, Fink GR, Drzezga A, Schmidt M, Langen KJ. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging 2014; 42:685-95. [PMID: 25411133 DOI: 10.1007/s00259-014-2959-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The follow-up of glioblastoma patients after radiochemotherapy with conventional MRI can be difficult since reactive alterations to the blood-brain barrier with contrast enhancement may mimic tumour progression (i.e. pseudoprogression, PsP). The aim of this study was to assess the clinical value of O-(2-(18)F-fluoroethyl)-L-tyrosine ((18)F-FET) PET in the differentiation of PsP and early tumour progression (EP) after radiochemotherapy of glioblastoma. METHODS A group of 22 glioblastoma patients with new contrast-enhancing lesions or lesions showing increased enhancement (>25 %) on standard MRI within the first 12 weeks after completion of radiochemotherapy with concomitant temozolomide (median 7 weeks) were additionally examined using amino acid PET with (18)F-FET. Maximum and mean tumour-to-brain ratios (TBRmax, TBRmean) were determined. (18)F-FET uptake kinetic parameters (i.e. patterns of time-activity curves, TAC) were also evaluated. Classification as PsP or EP was based on the clinical course (no treatment change at least for 6 months), follow-up MR imaging and/or histopathological findings. Imaging results were also related to overall survival (OS). RESULTS PsP was confirmed in 11 of the 22 patients. In patients with PsP, (18)F-FET uptake was significantly lower than in patients with EP (TBRmax 1.9 ± 0.4 vs. 2.8 ± 0.5, TBRmean 1.8 ± 0.2 vs. 2.3 ± 0.3; both P < 0.001) and presence of MGMT promoter methylation was significantly more frequent (P = 0.05). Furthermore, a TAC type II or III was more frequently present in patients with EP (P = 0.04). Receiver operating characteristic analysis showed that the optimal (18)F-FET TBRmax cut-off value for identifying PsP was 2.3 (sensitivity 100 %, specificity 91 %, accuracy 96 %, AUC 0.94 ± 0.06; P < 0.001). Univariate survival analysis showed that a TBRmax <2.3 predicted a significantly longer OS (median OS 23 vs. 12 months; P = 0.046). CONCLUSION (18)F-FET PET may facilitate the diagnosis of PsP following radiochemotherapy of glioblastoma.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University of Cologne, Cologne, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Diffusion tensor histogram analysis of pediatric diffuse intrinsic pontine glioma. BIOMED RESEARCH INTERNATIONAL 2014; 2014:647356. [PMID: 25006580 PMCID: PMC4071985 DOI: 10.1155/2014/647356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/24/2014] [Indexed: 11/18/2022]
Abstract
Purpose. To evaluate tumor structure in children with diffuse intrinsic pontine glioma (DIPG) using histogram analyses of mean diffusivity (MD), determine potential treatment and corticosteroid-related effects on MD, and monitor changes in MD distributions over time. Materials and Methods. DTI was performed on a 1.5T GE scanner. Regions of interest included the entire FLAIR-defined tumor. MD data were used to calculate histograms. Patterns in MD distributions were evaluated and fitted using a two-normal mixture model. Treatment-related effects were evaluated using the R2 statistic for linear mixed models and Cox proportional hazards models. Results. 12 patients with DIPG underwent one or more DTI exams. MD histogram distributions varied among patients. Over time, histogram peaks became shorter and broader (P = 0.0443). Two-normal mixture fitting revealed large lower curve proportions that were not associated with treatment response or outcome. Corticosteroid use affected MD histograms and was strongly associated with larger, sharper peaks (R2 = 0.51, P = 0.0028). Conclusions. MD histograms of pediatric DIPG show significant interpatient and intratumoral differences and quantifiable changes in tumor structure over time. Corticosteroids greatly affected MD and must be considered a confounding factor when interpreting MD results in the context of treatment response.
Collapse
|
21
|
Shevtsov MA, Pozdnyakov AV, Mikhrina AL, Yakovleva LY, Nikolaev BP, Dobrodumov AV, Komarova EY, Meshalkina DA, Ischenko AM, Pitkin E, Guzhova IV, Margulis BA. Effective immunotherapy of rat glioblastoma with prolonged intratumoral delivery of exogenous heat shock protein Hsp70. Int J Cancer 2014; 135:2118-28. [PMID: 24691976 DOI: 10.1002/ijc.28858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 02/18/2014] [Indexed: 12/14/2022]
Abstract
Chaperone Hsp70 can activate adaptive immunity suggesting its possible application as an antitumor vaccine. To assess the therapeutic capacity of Hsp70 we administered purified chaperone into a C6 glioblastoma brain tumor and explored the viability and tumor size as well as interferon gamma (IFNγ) production and cytotoxicity of lymphocytes in the treated animals. Targeted intratumoral injection of Hsp70 resulted in its distribution within the area of glioblastoma, and caused significant inhibition of tumor progression as confirmed by magnetic resonance imaging. The delay in tumor growth corresponded to the prolonged survival of tumor-bearing animals of up to 31 days versus 20 days in control. Continuous administration of Hsp70 with an osmotic pump increased survival even further (39 days). Therapeutic efficacy was associated with infiltration to glioblastoma of NK cells (Ly-6c+) and T lymphocytes (CD3+, CD4+ and CD8+) as well as with an increase in the activity of NK cells (granzyme B production) and CD8+ T lymphocytes as shown by IFNγ ELISPOT assay. Furthermore, we found that Hsp70 treatment caused concomitantly, with a tenfold elevated IFNγ production, an increase in anti-C6 tumor cytotoxicity of lymphocytes. In conclusion, continuous intratumoral delivery of Hsp70 demonstrates high therapeutic potential and therefore could be applied in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Maxim A Shevtsov
- Laboratory of Cell Protection Mechanisms, Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Histopathological correlates with survival in reoperated glioblastomas. J Neurooncol 2013; 113:485-93. [PMID: 23666202 DOI: 10.1007/s11060-013-1141-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/28/2013] [Indexed: 01/15/2023]
Abstract
The addition of concomitant and adjuvant chemotherapy to radiation therapy after surgical resection has increased significantly the survival of patients with glioblastoma (GB). In conjunction, there has been an increasing fraction of patients who present with new enlarged areas of contrast enhancement and edema on post-treatment imaging that improve without further treatment. It remains to be established how this phenomenon, commonly termed pseudoprogression, can be distinguished from true tumor recurrence defined as the histological presence of active high-grade tumor, as well as its prognostic significance. Data for over 500 patients undergoing surgery for recurrent GB were reviewed. Pathological specimens were categorized as those that contained active high-grade glioma in any amount, and those that did not. Patient survival was compared between these two groups, and independent associations were assessed using Cox proportionate hazards regression analysis. 59 patients met the study criteria including complete pathological and follow-up data. Mean age was 53 ± 11 years. Median survival from suspected recurrence and initial diagnosis were 8 [5-14] and 20 [12-30] months. Seventeen patients (29 %) had no evidence of active high-grade tumor and 42 (71 %) had at least focal active high-grade glioma. Pathologic pseudoprogression at re-operation (p = 0.03) and gross total resection (p = 0.01) were independently associated with survival. The histopathological features defined here and used to assess the tumor at reoperation were independently associated with survival. These findings may be important in designing treatment strategies and clinical trial endpoints for patients with GB.
Collapse
|
23
|
Verma N, Cowperthwaite MC, Burnett MG, Markey MK. Differentiating tumor recurrence from treatment necrosis: a review of neuro-oncologic imaging strategies. Neuro Oncol 2013; 15:515-34. [PMID: 23325863 DOI: 10.1093/neuonc/nos307] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Differentiating treatment-induced necrosis from tumor recurrence is a central challenge in neuro-oncology. These 2 very different outcomes after brain tumor treatment often appear similarly on routine follow-up imaging studies. They may even manifest with similar clinical symptoms, further confounding an already difficult process for physicians attempting to characterize a new contrast-enhancing lesion appearing on a patient's follow-up imaging. Distinguishing treatment necrosis from tumor recurrence is crucial for diagnosis and treatment planning, and therefore, much effort has been put forth to develop noninvasive methods to differentiate between these disparate outcomes. In this article, we review the latest developments and key findings from research studies exploring the efficacy of structural and functional imaging modalities for differentiating treatment necrosis from tumor recurrence. We discuss the possibility of computational approaches to investigate the usefulness of fine-grained imaging characteristics that are difficult to observe through visual inspection of images. We also propose a flexible treatment-planning algorithm that incorporates advanced functional imaging techniques when indicated by the patient's routine follow-up images and clinical condition.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
24
|
Steffen-Smith EA, Venzon DJ, Bent RS, Hipp SJ, Warren KE. Single- and multivoxel proton spectroscopy in pediatric patients with diffuse intrinsic pontine glioma. Int J Radiat Oncol Biol Phys 2012; 84:774-9. [PMID: 22445531 PMCID: PMC3386374 DOI: 10.1016/j.ijrobp.2012.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/03/2012] [Accepted: 01/08/2012] [Indexed: 11/15/2022]
Abstract
PURPOSE To determine the feasibility of two magnetic resonance spectroscopy (MRS) techniques for treating pediatric patients with diffuse intrinsic pontine gliomas (DIPGs) and to evaluate the relationship of metabolic profiles determined by each technique. Utility of each technique for improving patient management is also discussed. METHODS AND MATERIALS Children with DIPG (n = 36) were evaluated using single-voxel spectroscopy (SVS) and magnetic resonance spectroscopic imaging (MRSI) during the same imaging session. Patients were followed longitudinally (n = 150 total studies). Technical feasibility was defined by sufficient water and lipid suppression for detection of metabolites. Correlation of metabolic data obtained by SVS and MRSI was determined using the Spearman rank method. Metabolite ratios, including choline:N-acetyl-aspartate (Cho:NAA) and Cho:creatine (Cho:Cr), were obtained from SVS and MRSI. RESULTS SVS and MRSI acquisitions were feasible in >90% of studies. Maximum Cho:NAA and Cho:Cr from MRSI analysis were strongly associated with Cho:NAA and Cho:Cr obtained by SVS (r = 0.67 and 0.76, respectively). MRSI Cho:NAA values were more heterogeneous than Cho:Cr values within the same lesion, and a strong linear relationship between the range and maximum Cho:NAA values was observed. CONCLUSIONS SVS and MRSI acquisitions were feasible, with a strong correlation in metabolic data. Both techniques may improve diagnostic evaluation and management of DIPG. SVS is recommended for global assessment of tumor metabolism before and after therapy. MRSI showed heterogeneous patterns of metabolic activity within these tumors and is recommended for planning and monitoring targeted therapies and evaluating nearby tissue for tumor invasion.
Collapse
Affiliation(s)
- Emilie A. Steffen-Smith
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | - David J. Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robyn S. Bent
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD
| | - Sean J. Hipp
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD
- Walter Reed National Military Medical Center, Department of Pediatrics, Bethesda, MD
- Uniformed Services University of the Health Sciences, Department of Pediatrics, Bethesda, MD
| | - Katherine E. Warren
- Pediatric Oncology Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
25
|
Negretti L, Blanchard P, Couanet D, Kieffer V, Goma G, Habrand JL, Dhermain F, Valteau-Couanet D, Grill J, Dufour C. Pseudoprogression after high-dose busulfan-thiotepa with autologous stem cell transplantation and radiation therapy in children with brain tumors: Impact on survival. Neuro Oncol 2012; 14:1413-21. [PMID: 23042716 DOI: 10.1093/neuonc/nos212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Children with a brain tumor treated with high-dose busulfan-thiotepa with autologous stem cell transplantation (ASCT) and radiation therapy (RT) often experience radiographic changes during follow-up. The purpose of the study was to identify the incidence, time course, risk factors, and clinical outcome of this complication. From May 1988 through May 2007, 110 patients (median age, 3.6 years; range, 1 month to 15.3 years) with a brain tumor had received 1 course of high-dose busulfan-thiotepa with stem cell rescue, followed or preceded by RT as part of their treatment. All MRI follow-up examinations were systematically reviewed. Twenty-three patients (21%) developed neuroradiological abnormalities at a median time of 9.2 months (range, 5.6-17.3 months) after ASCT. All contrast-enhancing lesions appeared in patients who had received RT after ASCT and were localized inside the 50-55Gy isodoses. They disappeared in 14 of 23 patients after a median time of 8 months (range, 3-17 months), leaving microcalcifications in some cases. The presence of MRI abnormalities was an independent prognostic factor for overall survival in the multivariate analysis (hazard ratio, 0.12; 95% confidence interval [CI], 0.04-0.33), with a 5-year overall survival rate of 84% among patients with MRI abnormalities (95% CI, 62-94), compared with 27% (95% CI, 19-37) among those without lesions. MRI-detectable pseudoprogression is a common early finding in children treated with high-dose busulfan-thiotepa followed by radiation therapy and is correlated with a better outcome.
Collapse
Affiliation(s)
- Laura Negretti
- Department of Radiation Oncology, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hipp SJ, Steffen-Smith EA, Patronas N, Herscovitch P, Solomon JM, Bent RS, Steinberg SM, Warren KE. Molecular imaging of pediatric brain tumors: comparison of tumor metabolism using ¹⁸F-FDG-PET and MRSI. J Neurooncol 2012; 109:521-7. [PMID: 22760419 DOI: 10.1007/s11060-012-0918-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/19/2012] [Indexed: 01/21/2023]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) and (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) are non-invasive imaging techniques routinely used to evaluate tumor malignancy in adults with brain tumors. We compared the metabolic activity of pediatric brain tumors using FDG-PET and MRSI. Children (n = 37) diagnosed with a primary brain tumor underwent FDG-PET and MRSI within two weeks of each other. Tumor metabolism was classified as inactive, active or highly active using the maximum choline:N-acetyl-asparate (Cho:NAA) on MRSI and the highest tumor uptake on FDG-PET. A voxel-wise comparison was used to evaluate the area with the greatest abnormal metabolism. Agreement between methods was assessed using the percent agreement and the kappa statistic (κ). Pediatric brain tumors were metabolically heterogeneous on FDG-PET and MRSI studies. Active tumor metabolism was observed more frequently using MRSI compared to FDG-PET, and agreement in tumor classification was weak (κ = 0.16, p = 0.12), with 42 % agreement (95 % CI = 25-61 %). Voxel-wise comparison for identifying the area of greatest metabolic activity showed overlap in the majority (62 %) of studies, though exact agreement between techniques was low (29.4 %, 95 % CI = 15.1-47.5 %). These results indicate that FDG-PET and MRSI detect similar but not always identical regions of tumor activity, and there is little agreement in the degree of tumor metabolic activity between the two techniques.
Collapse
Affiliation(s)
- Sean J Hipp
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Alkonyi B, Barger GR, Mittal S, Muzik O, Chugani DC, Bahl G, Robinette NL, Kupsky WJ, Chakraborty PK, Juhász C. Accurate differentiation of recurrent gliomas from radiation injury by kinetic analysis of α-11C-methyl-L-tryptophan PET. J Nucl Med 2012; 53:1058-64. [PMID: 22653792 DOI: 10.2967/jnumed.111.097881] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
UNLABELLED PET of amino acid transport and metabolism may be more accurate than conventional neuroimaging in differentiating recurrent gliomas from radiation-induced tissue changes. α-(11)C-methyl-l-tryptophan ((11)C-AMT) is an amino acid PET tracer that is not incorporated into proteins but accumulates in gliomas, mainly because of tumoral transport and metabolism via the immunomodulatory kynurenine pathway. The aim of this study was to evaluate the usefulness of (11)C-AMT PET supplemented by tracer kinetic analysis for distinguishing recurrent gliomas from radiation injury. METHODS Twenty-two (11)C-AMT PET scans were obtained in adult patients who presented with a lesion suggestive of tumor recurrence on conventional MRI 1-6 y (mean, 3 y) after resection and postsurgical radiation of a World Health Organization grade II-IV glioma. Lesional standardized uptake values were calculated, as well as lesion-to-contralateral cortex ratios and 2 kinetic (11)C-AMT PET parameters (volume of distribution [VD], characterizing tracer transport, and unidirectional uptake rate [K]). Tumor was differentiated from radiation-injured tissue by histopathology (n = 13) or 1-y clinical and MRI follow-up (n = 9). Accuracy of tumor detection by PET variables was assessed by receiver-operating-characteristic analysis. RESULTS All (11)C-AMT PET parameters were higher in tumors (n = 12) than in radiation injury (n = 10) (P ≤ 0.012 in all comparisons). The lesion-to-cortex K-ratio most accurately identified tumor recurrence, with highly significant differences both in the whole group (P < 0.0001) and in lesions with histologic verification (P = 0.006); the area under the receiver-operating-characteristic curve was 0.99. A lesion-to-cortex K-ratio threshold of 1.39 (i.e., a 39% increase) correctly differentiated tumors from radiation injury in all but 1 case (100% sensitivity and 91% specificity). In tumors that were high-grade initially (n = 15), a higher lesion-to-cortex K-ratio threshold completely separated recurrent tumors (all K-ratios ≥ 1.70) from radiation injury (all K-ratios < 1.50) (100% sensitivity and specificity). CONCLUSION Kinetic analysis of dynamic (11)C-AMT PET images may accurately differentiate between recurrent World Health Organization grade II-IV infiltrating gliomas and radiation injury. Separation of unidirectional uptake rates from transport can enhance the differentiating accuracy of (11)C-AMT PET. Applying the same approach to other amino acid PET tracers might also improve their ability to differentiate recurrent gliomas from radiation injury.
Collapse
Affiliation(s)
- Bálint Alkonyi
- PET Center, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu Y, Lu W. Recent advances in brain tumor-targeted nano-drug delivery systems. Expert Opin Drug Deliv 2012; 9:671-86. [DOI: 10.1517/17425247.2012.682726] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Abstract
The standard of care for newly diagnosed malignant glioblastoma entails postoperative radiotherapy and adjuvant chemotherapy with temozolomide. There has been an increase in the incidence of enhancing and progressive lesions seen on magnetic resonance imaging (MRI) following treatment. Conventional MRI with gadolinium contrast is unable to distinguish between the effects of treatment and actual tumor recurrence. New modalities have provided additional information for distinguishing treatment effects from tumor progression but are not 100% sensitive or specific in diagnosing progression. Novel radiographic or nonradiographic biomarkers with sensitivity and specificity verified in large randomized clinical trials are needed to detect progression.
Collapse
Affiliation(s)
- Arman Jahangiri
- Department of Neurological Surgery, University of California at San Francisco, 505 Parnassus Avenue, Room M779, San Francisco, CA, USA
| | | |
Collapse
|
30
|
Steffen-Smith EA, Shih JH, Hipp SJ, Bent R, Warren KE. Proton magnetic resonance spectroscopy predicts survival in children with diffuse intrinsic pontine glioma. J Neurooncol 2011; 105:365-73. [PMID: 21567301 PMCID: PMC3199333 DOI: 10.1007/s11060-011-0601-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Patients with diffuse intrinsic pontine glioma (DIPG) face a grim prognosis with limited treatment options. Many patients will enroll on investigational trials though the role of chemotherapy or immunotherapy is unclear. Radiographic changes on conventional MRI are used to evaluate tumor response and progression, but are not predictive of outcome in these patients. More sensitive measures of tumor biology are needed to improve patient management. We evaluated changes in magnetic resonance spectroscopy (MRS) biomarkers in patients with DIPG. Thirty-eight patients were enrolled prospectively on an IRB-approved protocol, which included standard MRI, single voxel spectroscopy (SVS) and multi-slice multi-voxel spectroscopy (MRSI). Scans were performed at multiple time points during each patient's clinical course, with a total of 142 scans. The prognostic values of Choline:N-acetylaspartate (Cho:NAA), Cho:Creatine (Cho:Cr) and the presence of lactate and lipids (+Lac/Lip) were evaluated. Cho:NAA and variance in Cho:NAA values among different voxels within a tumor were each predictive of shorter survival. This prospective study shows that MRS can be used to identify high-risk patients and monitor changes in tumor metabolism, which may reflect changes in tumor behavior.
Collapse
Affiliation(s)
- Emilie A. Steffen-Smith
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD
| | - Joanna H. Shih
- Biometric Research Branch, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD
| | - Sean J. Hipp
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD
- Walter Reed Army Medical Center, Department of Pediatrics, Washington, DC
- Uniformed Services University of the Health Sciences, Department of Pediatrics, Bethesda, MD
| | - Robyn Bent
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD
| | - Katherine E. Warren
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD
| |
Collapse
|
31
|
Okada H, Pollack IF. Do we need novel radiologic response criteria for brain tumor immunotherapy? Expert Rev Neurother 2011; 11:619-22. [PMID: 21539483 DOI: 10.1586/ern.11.49] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Sanghera P, Rampling R, Haylock B, Jefferies S, McBain C, Rees JH, Soh C, Whittle IR. The concepts, diagnosis and management of early imaging changes after therapy for glioblastomas. Clin Oncol (R Coll Radiol) 2011; 24:216-27. [PMID: 21783349 DOI: 10.1016/j.clon.2011.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 03/31/2011] [Accepted: 04/24/2011] [Indexed: 10/18/2022]
Abstract
Since postoperative radiotherapy plus concomitant temozolomide followed by adjuvant temozolomide has become standard treatment for glioblastoma, the phenomenon of early post-treatment enlargement of the imaged tumour volume, usually without clinical deterioration, has become widely recognised. The term pseudoprogression has been used to describe a poorly understood pathophysiological process. In this review, the pathophysiological concepts, relevance, diagnosis and management of patients with 'pseudoprogression' and 'pseudoresponse' are discussed. Guidelines are given with respect to radiological imaging modality, mode and frequency. Further biological and clinical insights into these phenomena require carefully designed prospective studies.
Collapse
Affiliation(s)
- P Sanghera
- Hall-Edwards Radiotherapy Research Group, Queen Elizabeth Hospital, Birmingham, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yang I, Han SJ, Sughrue ME, Tihan T, Parsa AT. Immune cell infiltrate differences in pilocytic astrocytoma and glioblastoma: evidence of distinct immunological microenvironments that reflect tumor biology. J Neurosurg 2011; 115:505-11. [PMID: 21663411 DOI: 10.3171/2011.4.jns101172] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECT The tumor microenvironment in astrocytomas is composed of a variety of cell types, including infiltrative inflammatory cells that are dynamic in nature, potentially reflecting tumor biology. In this paper the authors demonstrate that characterization of the intratumoral inflammatory infiltrate can distinguish high-grade glioblastoma from low-grade pilocytic astrocytoma. METHODS Tumor specimens from ninety-one patients with either glioblastoma or pilocytic astrocytoma were analyzed at the University of California, San Francisco. A systematic neuropathology analysis was performed. All tissue was collected at the time of the initial surgery prior to adjuvant treatment. Immune cell infiltrate not associated with necrosis or hemorrhage was analyzed on serial 4-μm sections. Analysis was performed for 10 consecutive hpfs and in 3 separate regions (total 30 × 0.237 mm(2)). Using immunohistochemistry for markers of infiltrating cytotoxic T cells (CD8), natural killer cells (CD56), and macrophages (CD68), the inflammatory infiltrates in these tumors were graded quantitatively and classified based on microanatomical location (perivascular vs intratumoral). Control markers included CD3, CD20, and human leukocyte antigen. RESULTS Glioblastomas exhibited significantly higher perivascular (CD8) T-cell infiltration than pilocytic astrocytomas (62% vs 29%, p = 0.0005). Perivascular (49%) and intratumoral (89%; p = 0.004) CD56-positive cells were more commonly associated with glioblastoma. The CD68-positive cells also were more prevalent in the perivascular and intratumoral space in glioblastoma. In the intratumoral space, all glioblastomas exhibited CD68-positive cells compared with 86% of pilocytic astrocytomas (p = 0.0014). Perivascularly, CD68-positive infiltrate was also more prevalent in glioblastoma when compared with pilocytic astrocytoma (97% vs 86%, respectively; p = 0.0003). The CD3-positive, CD20-positive, and human leukocyte antigen-positive infiltrates did not differ between glioblastoma and pilocytic astrocytoma. CONCLUSIONS This analysis suggests a significantly distinct immune profile in the microenvironment of high-grade glioblastoma versus low-grade pilocytic astrocytoma. This difference in tumor microenvironment may reflect an important difference in the tumor biology of glioblastoma.
Collapse
Affiliation(s)
- Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
34
|
Hickey MJ, Malone CC, Erickson KL, Jadus MR, Prins RM, Liau LM, Kruse CA. Cellular and vaccine therapeutic approaches for gliomas. J Transl Med 2010; 8:100. [PMID: 20946667 PMCID: PMC2964608 DOI: 10.1186/1479-5876-8-100] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/14/2010] [Indexed: 12/25/2022] Open
Abstract
Despite new additions to the standard of care therapy for high grade primary malignant brain tumors, the prognosis for patients with this disease is still poor. A small contingent of clinical researchers are focusing their efforts on testing the safety, feasibility and efficacy of experimental active and passive immunotherapy approaches for gliomas and are primarily conducting Phase I and II clinical trials. Few trials have advanced to the Phase III arena. Here we provide an overview of the cellular therapies and vaccine trials currently open for patient accrual obtained from a search of http://www.clinicaltrials.gov. The search was refined with terms that would identify the Phase I, II and III immunotherapy trials open for adult glioma patient accrual in the United States. From the list, those that are currently open for patient accrual are discussed in this review. A variety of adoptive immunotherapy trials using ex vivo activated effector cell preparations, cell-based and non-cell-based vaccines, and several combination passive and active immunotherapy approaches are discussed.
Collapse
Affiliation(s)
- Michelle J Hickey
- The Joan S, Holmes Memorial Biotherapeutics Research Laboratory, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|