1
|
Moussavi-Harami SF, Cleary SJ, Magnen M, Seo Y, Conrad C, English BC, Qiu L, Wang KM, Abram CL, Lowell CA, Looney MR. Loss of neutrophil Shp1 produces hemorrhagic and lethal acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595575. [PMID: 38854059 PMCID: PMC11160570 DOI: 10.1101/2024.05.23.595575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The acute respiratory distress syndrome (ARDS) is associated with significant morbidity and mortality and neutrophils are critical to its pathogenesis. Neutrophil activation is closely regulated by inhibitory tyrosine phosphatases including Src homology region 2 domain containing phosphatase-1 (Shp1). Here, we report that loss of neutrophil Shp1 in mice produced hyperinflammation and lethal pulmonary hemorrhage in sterile inflammation and pathogen-induced models of acute lung injury (ALI) through a Syk kinase-dependent mechanism. We observed large intravascular neutrophil clusters, perivascular inflammation, and excessive neutrophil extracellular traps in neutrophil-specific Shp1 knockout mice suggesting an underlying mechanism for the observed pulmonary hemorrhage. Targeted immunomodulation through the administration of a Shp1 activator (SC43) reduced agonist-induced reactive oxygen species in vitro and ameliorated ALI-induced alveolar neutrophilia and NETs in vivo. We propose that the pharmacologic activation of Shp1 has the potential to fine-tune neutrophil hyperinflammation that is central to the pathogenesis of ARDS.
Collapse
Affiliation(s)
- S F Moussavi-Harami
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
- Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of California, San Francisco
| | - S J Cleary
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - M Magnen
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - Y Seo
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - C Conrad
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - B C English
- Department of Microbiology & Immunology, University of California, San Francisco
- CoLabs, University of California, San Francisco
| | - L Qiu
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - K M Wang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
| | - C L Abram
- Department of Laboratory Medicine, University of California, San Francisco
| | - C A Lowell
- Department of Laboratory Medicine, University of California, San Francisco
| | - M R Looney
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, University of California, San Francisco
- Department of Laboratory Medicine, University of California, San Francisco
| |
Collapse
|
2
|
Mao T, He P, Xu Z, Lai Y, Huang J, Yu Z, Li P, Gong X. Impacts of small-molecule STAT3 inhibitor SC-43 on toxicity, global proteomics and metabolomics of HepG2 cells. J Pharm Biomed Anal 2024; 242:116023. [PMID: 38395000 DOI: 10.1016/j.jpba.2024.116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE In this study, we aimed to investigate the cytotoxicity and potential mechanisms of SC-43 by analyzing the global proteomics and metabolomics of HepG2 cells exposed to SC-43. METHODS The effect of SC-43 on cell viability was evaluated through CCK-8 assay. Proteomics and metabolomics studies were performed on HepG2 cells exposed to SC-43, and the functions of differentially expressed proteins and metabolites were categorized. Drug affinity responsive target stability (DARTS) was utilized to identify the potential binding proteins of SC-43 in HepG2 cells. Finally, based on the KEGG pathway database, the co-regulatory mechanism of SC-43 on HepG2 cells was elucidated by conducting a joint pathway analysis on the differentially expressed proteins and metabolites using the MetaboAnalyst 5.0 platform. RESULTS Liver cell viability is significantly impaired by continuous exposure to high concentrations of SC-43. Forty-eight dysregulated proteins (27 upregulated, 21 downregulated) were identified by proteomics analysis, and 184 dysregulated metabolites (65 upregulated, 119 downregulated) were determined by metabolomics in HepG2 cells exposed to SC-43 exposure compared with the control. A joint pathway analysis of proteomics and metabolomics data using the MetaboAnalyst 5.0 platform supported the close correlation between SC-43 toxicity toward HepG2 and the disturbances in pyrimidine metabolism, ferroptosis, mismatch repair, and ABC transporters. Specifically, SC-43 significantly affected the expression of several proteins and metabolites correlated with the above-mentioned functional pathways, such as uridine 5'-monophosphate, uridine, 3'-CMP, glutathione, γ-Glutamylcysteine, TF, MSH2, RPA1, RFC3, TAP1, and glycerol. The differential proteins suggested by the joint analysis were further selected for ELISA validation. The data showed that the RPA1 and TAP1 protein levels significantly increased in HepG2 cells exposed to SC-43 compared to the control group. The results of ELISA and joint analysis were basically in agreement. Notably, DARTS and biochemical analysis indicated that SART3 might be a potential target for SC-43 toxicity in HepG2 cells. CONCLUSION In summary, prolonged exposure of liver cells to high concentrations of SC-43 can result in significant damage. Based on a multi-omics analysis, we identified proteins and metabolites associated with SC-43-induced hepatocellular injury and clarified the underlying mechanism, providing new insights into the toxic mechanism of SC-43.
Collapse
Affiliation(s)
- Ting Mao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Peikun He
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhichao Xu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Yingying Lai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Jinlian Huang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China.
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital, Beijing University of Chinese Medicine, Xiamen 361001, China.
| |
Collapse
|
3
|
Lim S, Lee KW, Kim JY, Kim KD. Consideration of SHP-1 as a Molecular Target for Tumor Therapy. Int J Mol Sci 2023; 25:331. [PMID: 38203502 PMCID: PMC10779157 DOI: 10.3390/ijms25010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Abnormal activation of receptor tyrosine kinases (RTKs) contributes to tumorigenesis, while protein tyrosine phosphatases (PTPs) contribute to tumor control. One of the most representative PTPs is Src homology region 2 (SH2) domain-containing phosphatase 1 (SHP-1), which is associated with either an increased or decreased survival rate depending on the cancer type. Hypermethylation in the promoter region of PTPN6, the gene for the SHP-1 protein, is a representative epigenetic regulation mechanism that suppresses the expression of SHP-1 in tumor cells. SHP-1 comprises two SH2 domains (N-SH2 and C-SH2) and a catalytic PTP domain. Intramolecular interactions between the N-SH2 and PTP domains inhibit SHP-1 activity. Opening of the PTP domain by a conformational change in SHP-1 increases enzymatic activity and contributes to a tumor control phenotype by inhibiting the activation of the Janus kinase/signal transducer and activator of transcription (JAK/STAT3) pathway. Although various compounds that increase SHP-1 activation or expression have been proposed as tumor therapeutics, except sorafenib and its derivatives, few candidates have demonstrated clinical significance. In some cancers, SHP-1 expression and activation contribute to a tumorigenic phenotype by inducing a tumor-friendly microenvironment. Therefore, developing anticancer drugs targeting SHP-1 must consider the effect of SHP-1 on both cell biological mechanisms of SHP-1 in tumor cells and the tumor microenvironment according to the target cancer type. Furthermore, the use of combination therapies should be considered.
Collapse
Affiliation(s)
- Seyeon Lim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Ki Won Lee
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Gyeongsang National University, Jinju 52725, Republic of Korea;
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Republic of Korea;
- Anti-Aging Bio Cell Factory—Regional Leading Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
4
|
Yang MH, Sethi G, Ravish A, Mohan AK, Pandey V, Lobie PE, Basappa S, Basappa B, Ahn KS. Discovery of imidazopyridine-pyrazoline-hybrid structure as SHP-1 agonist that suppresses phospho-STAT3 signaling in human breast cancer cells. Chem Biol Interact 2023; 386:110780. [PMID: 37879592 DOI: 10.1016/j.cbi.2023.110780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) promotes breast cancer malignancy and controls key processes including proliferation, differentiation, and survival in breast cancer cells. Although many methods for treating breast cancer have been improved, there is still a need to discover and develop new methods for breast cancer treatment. Therefore, we synthesized a new compound 2-(4-(2,3-dichlorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (DIP). We aimed to evaluate the anti-cancer effect of DIP in breast cancer cells and clarify its mode of action. We noted that DIP abrogated STAT3 activation and STAT3 upstream kinases janus-activated kinase (JAK) and Src kinases. In addition, DIP promoted the levels of SHP-1 protein and acts as SHP-1 agonist. Further, silencing of SHP-1 gene reversed the DIP-induced attenuation of STAT3 activation and apoptosis. DIP also induced apoptosis through modulating PARP cleavage and oncogenic proteins. Moreover, DIP also significantly enhanced the apoptotic effects of docetaxel through the suppression of STAT3 activation in breast cancer cells. Overall, our data indicated that DIP may act as a suppressor of STAT3 cascade, and it could be a new therapeutic strategy in breast cancer cells.
Collapse
Affiliation(s)
- Min Hee Yang
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Akshay Ravish
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India.
| | - Arun Kumar Mohan
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, China.
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Medchal, 500078, India.
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Hsu CY, Yang WT, Lin JH, Lu CH, Hu KC, Lan TH, Chang CC. Sertindole, an Antipsychotic Drug, Curbs the STAT3/BCL-xL Axis to Elicit Human Bladder Cancer Cell Apoptosis In Vitro. Int J Mol Sci 2023; 24:11852. [PMID: 37511611 PMCID: PMC10380261 DOI: 10.3390/ijms241411852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Bladder cancer is the leading urinary tract malignancy. Epidemiological evidence has linked lower cancer incidence in schizophrenia patients to long-term medication, highlighting the anticancer potential of antipsychotics. Sertindole is an atypical antipsychotic agent with reported anticancer action on breast and gastric cancers. Yet, sertindole's effect on bladder cancer remains unaddressed. We herein present the first evidence of sertindole's antiproliferative effect and mechanisms of action on human bladder cancer cells. Sertindole was cytotoxic against bladder cancer cells while less cytotoxic to normal urothelial cells. Apoptosis was a primary cause of sertindole's cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk rescued cells from sertindole-induced killing. Mechanistically, sertindole inhibited the activation of signal transducer and activator of transcription 3 (STAT3), an oncogenic driver of bladder cancer, as sertindole lowered the levels of tyrosine 705-phosphorylated STAT3 along with that of STAT3's target gene BCL-xL. Notably, ectopic expression of the dominant-active STAT3 mutant impaired sertindole-induced apoptosis in addition to restoring BCL-xL expression. Moreover, bladder cancer cells overexpressing BCL-xL were refractory to sertindole's proapoptotic action, arguing that sertindole represses STAT3 to downregulate BCL-xL, culminating in the induction of apoptosis. Overall, the current study indicated sertindole exerts bladder cancer cytotoxicity by provoking apoptosis through targeted inhibition of the antiapoptotic STAT3/BCL-xL signaling axis. These findings implicate the potential to repurpose sertindole as a therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 435403, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Wei-Ting Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Ju-Hwa Lin
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Chien-Hsing Lu
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Kai-Cheng Hu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou 542019, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Neuropsychiatric Research, National Health Research Institute, Miaoli 350401, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Graduate Institute of Biomedical Sciences, Rong Hsing Translational Medicine Research Center, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
6
|
Xu X, Ji S, Chen Y, Xia S, Li Y, Chen L, Li Y, Zhang F, Zhang Z, Zheng S. Induction of DNMT1-dependent demethylation of SHP-1 by the natural flavonoid compound Baicalein overcame Imatinib-resistance in CML CD34 + cells. Cell Commun Signal 2023; 21:47. [PMID: 36869331 PMCID: PMC9985268 DOI: 10.1186/s12964-023-01049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 01/14/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND The most significant cause of treatment failure in chronic myeloid leukemia (CML) is a persistent population of minimal residual cells. Emerging evidences showed that methylation of SHP-1 contributed to Imatinib (IM) resistance. Baicalein was reported to have an effect on reversal of chemotherapeutic agents resistance. However, the molecular mechanism of Baicalein on JAK2/STAT5 signaling inhibition against drug resistance in bone marrow (BM) microenvironment that had not been clearly revealed. METHODS We co-cultured hBMSCs and CML CD34+ cells as a model of SFM-DR. Further researches were performed to clarify the reverse mechanisms of Baicalein on SFM-DR model and engraftment model. The apoptosis, cytotoxicity, proliferation, GM-CSF secretion, JAK2/STAT5 activity, the expression of SHP-1 and DNMT1 were analyzed. To validate the role of SHP-1 on the reversal effect of Baicalein, the SHP-1 gene was over-expressed by pCMV6-entry shp-1 and silenced by SHP-1 shRNA, respectively. Meanwhile, the DNMT1 inhibitor decitabine was used. The methylation extent of SHP-1 was evaluated using MSP and BSP. The molecular docking was replenished to further explore the binding possibility of Baicalein and DNMT1. RESULTS BCR/ABL-independent activation of JAK2/STAT5 signaling was involved in IM resistance in CML CD34+ subpopulation. Baicalein significantly reversed BM microenvironment-induced IM resistance not through reducing GM-CSF secretion, but interfering DNMT1 expression and activity. Baicalein induced DNMT1-mediated demethylation of the SHP-1 promoter region, and subsequently activated SHP-1 re-expression, which resulted in an inhibition of JAK2/STAT5 signaling in resistant CML CD34+ cells. Molecular docking model indicated that DNMT1 and Baicalein had binding pockets in 3D structures, which further supported Baicalein might be a small-molecule inhibitor targeting DNMT1. CONCLUSIONS The mechanism of Baicalein on improving the sensitivity of CD34+ cells to IM might be correlated with SHP-1 demethylation by inhibition of DNMT1 expression. These findings suggested that Baicalein could be a promising candidate by targeting DNMT1 to eradicate minimal residual disease in CML patients. Video Abstract.
Collapse
Affiliation(s)
- Xuefen Xu
- Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Nanjing, Jiangsu, People's Republic of China. .,Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
| | - Shufan Ji
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yuan Chen
- Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138, Xianlin Road, Nanjing, Jiangsu, People's Republic of China
| | - Siwei Xia
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yang Li
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Li Chen
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yujia Li
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Feng Zhang
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zili Zhang
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Shizhong Zheng
- Jangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.
| |
Collapse
|
7
|
Ji Y, Yang Y, Sun S, Dai Z, Ren F, Wu Z. Insights into diet-associated oxidative pathomechanisms in inflammatory bowel disease and protective effects of functional amino acids. Nutr Rev 2022; 81:95-113. [PMID: 35703919 DOI: 10.1093/nutrit/nuac039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
There has been a substantial rise in the incidence and prevalence of clinical patients presenting with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis. Accumulating evidence has corroborated the view that dietary factors (particularly diets with high levels of saturated fat or sugar) are involved in the development and progression of IBD, which is predominately associated with changes in the composition of the gut microbiota and an increase in the generation of reactive oxygen species. Notably, the ecological imbalance of the gut microbiome exacerbates oxidative stress and inflammatory responses, leading to perturbations of the intestinal redox balance and immunity, as well as mucosal integrity. Recent findings have revealed that functional amino acids, including L-glutamine, glycine, L-arginine, L-histidine, L-tryptophan, and hydroxyproline, are effectively implicated in the maintenance of intestinal redox and immune homeostasis. These amino acids and their metabolites have oxygen free-radical scavenging and inflammation-relieving properties, and they participate in modulation of the microbial community and the metabolites in the gut. The principal focus of this article is a review of recent advances in the oxidative pathomechanisms of IBD development and progression in relation to dietary factors, with a particular emphasis on the redox and signal transduction mechanisms of host cells in response to unbalanced diets and enterobacteria. In addition, an update on current understanding of the protective effects of functional amino acids against IBD, together with the underlying mechanisms for this protection, have been provided.
Collapse
Affiliation(s)
- Yun Ji
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ying Yang
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Shiqiang Sun
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China
| | - Zhaolai Dai
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, ChinaChina
| | - Fazheng Ren
- are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- are with the State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, China.,are with the Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Chen JL, Chu PY, Huang CT, Huang TT, Wang WL, Lee YH, Chang YY, Dai MS, Shiau CW, Liu CY. Interfering B cell receptor signaling via SHP-1/p-Lyn axis shows therapeutic potential in diffuse large B-cell lymphoma. Mol Med 2022; 28:93. [PMID: 35941532 PMCID: PMC9358803 DOI: 10.1186/s10020-022-00518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is an aggressive and molecularly heterogeneous non-Hodgkin’s lymphoma. The B cell receptor (BCR) signaling pathway in DLBCL emerges as a new drug target. Protein phosphatase SHP-1 negatively regulates several oncogenic tyrosine kinases and plays a tumor suppressive role. Methods The direct SHP-1 agonists were used to evaluate the potential therapeutic implication of SHP-1 in DLBCL. Immunohistochemical staining for SHP-1 was quantified by H-score. The SHP-1 phosphatase activity was determined using tyrosine phosphatase assay. In vitro studies, including MTT, western blot analysis and cell apoptosis, were utilized to examined biological functions of SHP-1. Results Oral administration of SHP-1 agonist showed the potent anti-tumor effects compared to a selective Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib in mice bearing U2932 xenografts. SHP-1 agonist increased SHP-1 activity as well as downregulated p-Lyn in vivo. Here, we demonstrated that immunohistochemical staining for SHP-1 expression was positive in 76% of DLBCL samples. SHP-1 agonist exerted anti-proliferative and apoptotic effects compared with ibrutinib in DLBCL cells. Mechanistically, SHP-1 agonist decreased BCR signaling, especially p-Lyn, and led to apoptosis. Conclusions These data suggest that SHP-1 negatively regulates phosphorylation of Lyn, and targeting SHP-1/p-Lyn using SHP-1 agonist has therapeutic potential for treatment of DLBCL. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00518-0.
Collapse
Affiliation(s)
- Ji-Lin Chen
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, No. 542, Sec. 1, Chung-Shan Rd., Changhua City, 500, Taiwan.,School of Medicine, Fu Jen Catholic University, No. 510, Zhong-zheng Rd., Xin-zhuang Dist., New Taipei City, 24205, Taiwan.,Department of Health Food, Chung Chou University of Science and Technology, Changhua, 510, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, No.145, Zhengzhou Rd., Datong Dist., Taipei, 10341, Taiwan
| | - Tzu-Ting Huang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Wan-Lun Wang
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Yu-Hsuan Lee
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Yuan-Ya Chang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Ming-Shen Dai
- Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan
| | - Chun-Yu Liu
- Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan. .,School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan. .,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan. .,Division of Transfusion Medicine, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.
| |
Collapse
|
9
|
STAT3 activation in large granular lymphocyte leukemia is associated with cytokine signaling and DNA hypermethylation. Leukemia 2021; 35:3430-3443. [PMID: 34075200 PMCID: PMC8632689 DOI: 10.1038/s41375-021-01296-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Large granular lymphocyte leukemia (LGLL) is characterized by somatic gain-of-function STAT3 mutations. However, the functional effects of STAT3 mutations on primary LGLL cells have not been studied in detail. In this study, we show that CD8+ T cells isolated from STAT3 mutated LGLL patients have high protein levels of epigenetic regulators, such as DNMT1, and are characterized by global hypermethylation. Correspondingly, treatment of healthy CD8+ T cells with IL-6, IL-15, and/or MCP-1 cytokines resulted in STAT3 activation, increased DNMT1, EZH2, c-MYC, l-MYC, MAX, and NFκB levels, increased DNA methylation, and increased oxidative stress. Similar results were discovered in KAI3 NK cells overexpressing gain-of-function STAT3Y640F and STAT3G618R mutants compared to KAI3 NK cells overexpressing STAT3WT. Our results also confirm that STAT3 forms a direct complex with DNMT1, EZH2, and HDAC1. In STAT3 mutated LGLL cells, DNA methyltransferase (DNMT) inhibitor azacitidine abrogated the activation of STAT3 via restored SHP1 expression. In conclusion, STAT3 mutations cause DNA hypermethylation resulting in sensitivity to DNMT inhibitors, which could be considered as a novel treatment option for LGLL patients with resistance to standard treatments.
Collapse
|
10
|
Juengpanich S, Topatana W, Lu C, Staiculescu D, Li S, Cao J, Lin J, Hu J, Chen M, Chen J, Cai X. Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: Possible targets and future directions in the regorafenib era. Int J Cancer 2020; 147:1778-1792. [PMID: 32162677 DOI: 10.1002/ijc.32970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) remains as one of the major causes of cancer-related mortality, despite the recent development of new therapeutic options. Regorafenib, an oral multikinase inhibitor, is the first systemic therapy that has a survival benefit for patients with advanced HCC that have a poor response to sorafenib. Even though regorafenib has been approved by the FDA, the clinical trial for regorafenib treatment does not show significant improvement in overall survival. The impaired efficacy of regorafenib caused by various resistance mechanisms, including epithelial-mesenchymal transitions, inflammation, angiogenesis, hypoxia, oxidative stress, fibrosis and autophagy, still needs to be resolved. In this review, we provide insight on regorafenib microenvironmental, molecular and cellular mechanisms and interactions in HCC treatment. The aim of this review is to help physicians select patients that would obtain the maximal benefits from regorafenib in HCC therapy.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiacheng Lin
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Blevins LK, Zhou J, Crawford R, Kaminski NE. TCDD-mediated suppression of naïve human B cell IgM secretion involves aryl hydrocarbon receptor-mediated reduction in STAT3 serine 727 phosphorylation and is restored by interferon-γ. Cell Signal 2019; 65:109447. [PMID: 31678681 DOI: 10.1016/j.cellsig.2019.109447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant formed as a byproduct in organic synthesis and burning of organic materials. TCDD has potent immunotoxic effects in B lymphocytes resulting in decreased cellular activation and suppressed IgM secretion following activation with CD40 ligand. Previous work from our lab demonstrated that TCDD treatment of naïve human B cells resulted in significant increases in the levels of the tyrosine phosphatase SHP-1, which corresponded with suppression of IgM secretion. STAT3 is a critical B cell transcription factor for B cell activation and secretion of immunoglobulins (Ig). STAT3 dimerizes and translocates to the nucleus following phosphorylation as a result of cytokine receptor signaling. We hypothesized that TCDD-mediated increases in SHP-1 could result in decreased STAT3 tyrosine phosphorylation. Interestingly, only modest changes in the levels of STAT3 tyrosine phosphorylation were observed. By contrast, TCDD significantly reduced levels of STAT3 serine phosphorylation as early as 12h post B cell activation. These results corresponded with decreased inhibitory phosphorylation of the serine specific phosphatase PP2a, which is regulated by SHP-1. Further, studies revealed that interferon gamma (IFNγ), which signals through the type II interferon receptor, can non-canonically induce STAT3 activation via Src kinase activity. Indeed, treatment of human B cells with IFNγ resulted in increased STAT3 serine phosphorylation and reversed TCDD-mediated suppression of the IgM response. Together, these data putatively identify a key event in the mechanism by which TCDD induces suppression of Ig secretion and demonstrate the potential of IFNγ as a means to reverse this effect in primary human B lymphocytes.
Collapse
Affiliation(s)
- Lance K Blevins
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jiajun Zhou
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Robert Crawford
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States
| | - Norbert E Kaminski
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, United States; Department of Toxicology & Pharmacology, Michigan State University, East Lansing, MI, United States; Center for Research on Ingredient Safety, MIchigan State University, East Lansing, MI, United States.
| |
Collapse
|
12
|
Saraswati S, Alhaider A, Abdelgadir AM, Tanwer P, Korashy HM. Phloretin attenuates STAT-3 activity and overcomes sorafenib resistance targeting SHP-1-mediated inhibition of STAT3 and Akt/VEGFR2 pathway in hepatocellular carcinoma. Cell Commun Signal 2019; 17:127. [PMID: 31619257 PMCID: PMC6794763 DOI: 10.1186/s12964-019-0430-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Phloretin (PH) possesses anticancer, antitumor, and hepatoprotective effects, however, the effects and potential mechanisms of phloretin remain elusive. Methods Five HCC cells were tested in vitro for sensitivity to PH, Sorafenib (Sor) or both and the apoptosis, signal transduction and phosphatase activity were analyzed. To validate the role of SHP-1, we used PTP inhibitor III and SHP-1 siRNA. Further, we used purified SHP-1 proteins or HCC cells expressing deletion N-SH2 domain or D61A point mutants to study the PH efficacy on SHP-1. The `in vivo studies were conducted using HepG2 and SK-Hep1 and Sor resistant HepG2SR and Huh7SR xenografts. Molecular docking was done with Swiss dock and Auto Dock Vina. Results PH inhibited cell growth and induced apoptosis in all HCC cells by upregulating SHP-1 expression and downregulating STAT3 expression and further inhibited pAKT/pERK signaling. PH activated SHP-1 by disruption of autoinhibition of SHP-1, leading to reduced p-STAT3Tyr705 level. PH induced apoptosis in two Sor-resistant cell lines and overcome STAT3, AKT, MAPK and VEGFR2 dependent Sor resistance in HCCs. PH potently inhibited tumor growth in both Sor-sensitive and Sor-resistant xenografts in vivo by impairing angiogenesis, cell proliferation and inducing apoptosis via targeting the SHP-1/STAT3 signaling pathway. Conclusion Our data suggest that PH inhibits STAT3 activity in Sor-sensitive and -resistant HCCs via SHP-1–mediated inhibition of STAT3 and AKT/mTOR/JAK2/VEGFR2 pathway. Our results clearly indicate that PH may be a potent reagent for hepatocellular carcinoma and a noveltargeted therapy for further clinical investigations. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0430-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarita Saraswati
- Department of Pharmacology and Physiology, College of Medicine,
- King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Abdulqader Alhaider
- Department of Pharmacology and Physiology, College of Medicine,
- King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdelgalil Mohamed Abdelgadir
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Pooja Tanwer
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas-New Delhi, India
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
13
|
Laudisi F, Cherubini F, Di Grazia A, Dinallo V, Di Fusco D, Franzè E, Ortenzi A, Salvatori I, Scaricamazza S, Monteleone I, Sakamoto N, Monteleone G, Stolfi C. Progranulin sustains STAT3 hyper-activation and oncogenic function in colorectal cancer cells. Mol Oncol 2019; 13:2142-2159. [PMID: 31361391 PMCID: PMC6763778 DOI: 10.1002/1878-0261.12552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 12/23/2022] Open
Abstract
Persistent activation of Signal Transducer and Activator of Transcription (STAT)3 occurs in a high percentage of tumors, including colorectal cancer (CRC), thereby contributing to malignant cell proliferation and survival. Although STAT3 is recognized as an attractive therapeutic target in CRC, conventional approaches aimed at inhibiting its functions have met with several limitations. Moreover, the factors that sustain hyper-activation of STAT3 in CRC are not yet fully understood. The identification of tumor-specific STAT3 cofactors may facilitate the development of compounds that interfere exclusively with STAT3 activity in cancer cells. Here, we show that progranulin, a STAT3 cofactor, is upregulated in human CRC as compared to nontumor tissue/cells and its expression correlates with STAT3 activation. Progranulin physically interacts with STAT3 in CRC cells, and its knockdown with a specific antisense oligonucleotide (ASO) inhibits STAT3 activation and restrains the expression of STAT3-related oncogenic proteins, thus causing cell cycle arrest and apoptosis. Moreover, progranulin knockdown reduces STAT3 phosphorylation and cell proliferation induced by tumor-infiltrating leukocyte (TIL)-derived supernatants in CRC cell lines and human CRC explants. These findings indicate that CRC exhibits overexpression of progranulin, and suggest a role for this protein in amplifying the STAT3 pathway in CRC.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Fabio Cherubini
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | | | - Vincenzo Dinallo
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Davide Di Fusco
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Eleonora Franzè
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | - Angela Ortenzi
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| | | | - Silvia Scaricamazza
- IRCCS Fondazione Santa LuciaRomeItaly
- Department of BiologyUniversity of ‘Tor Vergata’RomeItaly
| | - Ivan Monteleone
- Department of Biomedicine and PreventionUniversity of ‘Tor Vergata’RomeItaly
| | - Naoya Sakamoto
- Department of Molecular PathologyHiroshima UniversityHiroshimaJapan
| | | | - Carmine Stolfi
- Department of Systems MedicineUniversity of ‘Tor Vergata’RomeItaly
| |
Collapse
|
14
|
Hu H, Wang S, Shi D, Zhong B, Huang X, Shi C, Shao Z. Lycorine exerts antitumor activity against osteosarcoma cells in vitro and in vivo xenograft model through the JAK2/STAT3 pathway. Onco Targets Ther 2019; 12:5377-5388. [PMID: 31371981 PMCID: PMC6626901 DOI: 10.2147/ott.s202026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Lycorine, a natural alkaloid, has been indicated to have various physiological effects, including a potential effect against cancer. However, the anticancer effect of lycorine on osteosarcoma (OS) and the detailed molecular mechanisms involved remain unclear. Purpose: The purpose of this study was to examine the effect of lycorine on human OS and elucidated it underlying mechanisms Materials and methods: In vitro assays, OS cells were treated with lycorine at various concentrations. Then the cell proliferation, colony formation, cell cycle distribution, apoptosis, migration and invasion were assayed to detect the anticancer effect of lycorine on OS cell lines. Western blotting analysis was used to verify the expression of related proteins. In addition, the mouse xenograft model was performed to evaluate lycorine’s therapeutic potential on OS in vivo. Results: The in vitro results demonstrated that lycorine induced apoptosis and cell cycle arrest and suppressed the migration and invasion by suppressing constitutive signal transducers and activators of transcription 3 (STAT3) activation through enhancing the expression of SH2 domain-containing phosphatase 1 (SHP-1) and downregulating the expression of STAT3 target proteins. Moreover, our mouse xenograft model revealed that lycorine inhibited the tumor growth in vivo. Conclusion: These results demonstrated that the anti-OS effects of lycorine were at least partly due to the suppression of the Janus kinase 2/signal transducers and activators of transcription 3 (JAK2)/STAT3 pathway. Taken together, these results indicate that lycorine possesses the potential to be a promising candidate in clinical therapy for human OS in the future.
Collapse
Affiliation(s)
- Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Binglong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Chunwei Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| |
Collapse
|
15
|
Jiang Q. Natural forms of vitamin E and metabolites-regulation of cancer cell death and underlying mechanisms. IUBMB Life 2018; 71:495-506. [PMID: 30548200 DOI: 10.1002/iub.1978] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Accepted: 11/02/2018] [Indexed: 12/25/2022]
Abstract
The disappointing results from large clinical studies of α-tocopherol (αT), the major form of vitamin E in tissues, for prevention of chronic diseases including cancer have cast doubt on not only αT but also other forms of vitamin E regarding their role in preventing carcinogenesis. However, basic research has shown that specific forms of vitamin E such as γ-tocopherol (γT), δ-tocopherol (δT), γ-tocotrienol (γTE) and δ-tocotrienol (δTE) can inhibit the growth and induce death of many types of cancer cells, and are capable of suppressing cancer development in preclinical cancer models. For these activities, these vitamin E forms are much stronger than αT. Further, recent research revealed novel anti-inflammatory and anticancer effects of vitamin E metabolites including 13'-carboxychromanols. This review focuses on anti-proliferation and induction of death in cancer cells by vitamin E forms and metabolites, and discuss mechanisms underlying these anticancer activities. The existing in vitro and in vivo evidence indicates that γT, δT, tocotrienols and 13'-carboxychromanols have anti-cancer activities via modulating key signaling or mediators that regulate cell death and tumor progression, such as eicosanoids, NF-κB, STAT3, PI3K, and sphingolipid metabolism. These results provide useful scientific rationales and mechanistic understanding for further translation of basic discoveries to the clinic with respect to potential use of these vitamin E forms and metabolites for cancer prevention and therapy. © 2018 IUBMB Life, 71(4):495-506, 2019.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
16
|
Li J, Liu YY, Yang XF, Shen DF, Sun HZ, Huang KQ, Zheng HC. Effects and mechanism of STAT3 silencing on the growth and apoptosis of colorectal cancer cells. Oncol Lett 2018; 16:5575-5582. [PMID: 30344711 PMCID: PMC6176248 DOI: 10.3892/ol.2018.9368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) have roles in various cellular processes, including angiogenesis, apoptosis, cell cycle progression, cell migration and drug resistance. To clarify the effects of STAT3 in colorectal cancer (CRC) cells and the underlying molecular mechanisms, STAT3 was directly silenced, and the effects of STAT3 silencing on cell proliferation, apoptosis and growth with phenotype-associated molecules were examined.pSH1-Si-STAT3 was successfully transfected into the CRC HCT-116 and SW480 cell lines, which was verified by GFP tagging under a fluorescence microscope. An MTT assay revealed that the proliferation of both cell lines that were transfected with pSH1-Si-STAT3 was significantly suppressed in comparison with the control and mock (P<0.05). Acridine orange/ethidium bromide staining and flow cytometry indicated that the transfected cell lines had a significantly higher rate of apoptosis than the control- and mock-treated cells (P<0.05). STAT3-silienced cells were also significantly arrested at the G2/M stage compared with the cells that were transfected with control and mock plasmids (P<0.05). At the mRNA level, the expression of STAT3 and survivin was significantly downregulated (P<0.05), but p53 and caspase-3 were significantly upregulated (P<0.05). The significantly different patterns of expression were observed in western blot analysis (P<0.05). The findings of the present study indicate that STAT3 silencing may suppress the proliferation and growth of CRC cells, and induce their apoptosis by upregulating the expression of survivin, p53 and caspase-3. Therefore, STAT3 may be a good candidate for CRC gene therapy.
Collapse
Affiliation(s)
- Jing Li
- Department of Gastroenterology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - You-Yu Liu
- Department of Orthopedics, The Central Hospital of Liaoyang, Liaoyang, Liaoning 111000, P.R. China
| | - Xue-Feng Yang
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Dao-Fu Shen
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hong-Zhi Sun
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Ke-Qiang Huang
- Department of Orthodontics, School of Stomatology, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hua-Chuan Zheng
- Tumor Basic and Translational Laboratory, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
17
|
Fan LC, Teng HW, Shiau CW, Tai WT, Hung MH, Yang SH, Jiang JK, Chen KF. Regorafenib (Stivarga) pharmacologically targets epithelial-mesenchymal transition in colorectal cancer. Oncotarget 2018; 7:64136-64147. [PMID: 27580057 PMCID: PMC5325431 DOI: 10.18632/oncotarget.11636] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/13/2016] [Indexed: 01/28/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is well-known to evoke cancer invasion/metastasis, leading to a high frequency of mortality in patients with metastatic colorectal cancer (mCRC). Protein tyrosine phosphatase (PTPase)-targeted therapy has been identified as a novel cancer therapeutic. Previously, we proved that sorafenib with anti-EMT potency prevents TGF-β1-induced EMT/invasion by directly activating SH2-domain-containing phosphatase 1 (SHP-1)-dependent p-STAT3Tyr705 suppression in hepatocellular carcinoma. Regorafenib has a closely related chemical structure as sorafenib and is approved for the pharmacotherapy of mCRC. Herein, we evaluate whether regorafenib activates PTPase SHP-1 in the same way as sorafenib to abolish EMT-related invasion/metastasis in CRC. Notably, regorafenib exerted potent anti-EMT activity to curb TGF-β1-induced EMT/invasion in vitro as well inhibited lung metastatic outgrowth of SW480 mesenchymal cells in vivo. Mechanistically, regorafenib-enhanced SHP-1 activity significantly impeded TGF-β1-induced EMT/invasion via low p-STAT3Tyr705 level as proved by a SHP-1 inhibitor or siRNA-mediated SHP-1 depletion. Conversely, overexpression of SHP-1 further enhanced the inhibitory effects of regorafenib on TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Regorafenib directly activates SHP-1 by potently relieving the autoinhibited N-SH2 domain of SHP-1 to inhibit TGF-β1-induced p-STAT3Tyr705 and EMT/invasion. Importantly, the clinical evidence indicated that SHP-1 was positively correlated with E-cadherin and that significantly determined the overall survival of CRC patients. This result further confirms our in vitro data that SHP-1 is a negative regulatory PTPase in EMT regulation and serves as a pharmacological target for mCRC therapy. Collectively, activating PTPase SHP-1 by regorafenib focusing on its anti-EMT activity might be a useful pharmacotherapy for mCRC.
Collapse
Affiliation(s)
- Li-Ching Fan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Wei Teng
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Tien Tai
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Man-Hsin Hung
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon and Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan.,National Center of Excellence for Clinical Trial and Research, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Gabriele E, Brambilla D, Ricci C, Regazzoni L, Taguchi K, Ferri N, Asai A, Sparatore A. New sulfurated derivatives of cinnamic acids and rosmaricine as inhibitors of STAT3 and NF-κB transcription factors. J Enzyme Inhib Med Chem 2017; 32:1012-1028. [PMID: 28738705 PMCID: PMC6009881 DOI: 10.1080/14756366.2017.1350658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 12/30/2022] Open
Abstract
A set of new sulfurated drug hybrids, mainly derived from caffeic and ferulic acids and rosmaricine, has been synthesized and their ability to inhibit both STAT3 and NF-κB transcription factors have been evaluated. Results showed that most of the new hybrid compounds were able to strongly and selectively bind to STAT3, whereas the parent drugs were devoid of this ability at the tested concentrations. Some of them were also able to inhibit the NF-κB transcriptional activity in HCT-116 cell line and inhibited HCT-116 cell proliferation in vitro with IC50 in micromolar range, thus suggesting a potential anticancer activity. Taken together, our study described the identification of new derivatives with dual STAT3/NF-κB inhibitory activity, which may represent hit compounds for developing multi-target anticancer agents.
Collapse
Affiliation(s)
- Elena Gabriele
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Dario Brambilla
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Chiara Ricci
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Luca Regazzoni
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Kyoko Taguchi
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di Padova, Largo Egidio Meneghetti, Padova, Italy
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Anna Sparatore
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
19
|
Chuang YF, Huang SW, Hsu YF, Yu MC, Ou G, Huang WJ, Hsu MJ. WMJ-8-B, a novel hydroxamate derivative, induces MDA-MB-231 breast cancer cell death via the SHP-1-STAT3-survivin cascade. Br J Pharmacol 2017. [PMID: 28646512 DOI: 10.1111/bph.13929] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Histone deacetylase (HDAC) inhibitors have been demonstrate to have broad-spectrum anti-tumour properties and have attracted lots of attention in the field of drug discovery. However, the underlying anti-tumour mechanisms of HDAC inhibitors remain incompletely understood. In this study, we aimed to characterize the underlying mechanisms through which the novel hydroxamate-based HDAC inhibitor, WMJ-8-B, induces the death of MDA-MB-231 breast cancer cells. EXPERIMENTAL APPROACH Effects of WMJ-8-B on cell viability, cell cycle distribution, apoptosis and signalling molecules were analysed by the MTT assay, flowcytometric analysis, immunoblotting, reporter assay, chromatin immunoprecipitation analysis and use of siRNAs. A xenograft model was used to determine anti-tumour effects of WMJ-8-B in vivo. KEY RESULTS WMJ-8-B induced survivin reduction, G2/M cell cycle arrest and apoptosis in MDA-MB-231 cells. STAT3 phosphorylation, transactivity and its binding to the survivin promoter region were reduced in WMJ-8-B-treated cells. WMJ-8-B activated the protein phosphatase SHP-1 and when SHP-1 signalling was blocked, the effects of WMJ-8-B on STAT3 phosphorylation and survivin levels were abolished. However, WMJ-8-B increased the transcription factor Sp1 binding to the p21 promoter region and enhanced p21 levels. Moreover, WMJ-8-B induced α-tubulin acetylation and disrupted microtubule assembly. Inhibition of HDACs was shown to contribute to WMJ-8-B's actions. Furthermore, WMJ-8-B suppressed the growth of MDA-MB-231 xenografts in mammary fat pads in vivo. CONCLUSIONS AND IMPLICATIONS The SHP-1-STAT3-survivin and Sp1-p21 cascades are involved in WMJ-8-B-induced MDA-MB-231 breast cancer cell death. These results also indicate the potential of WMJ-8-B as a lead compound for treatment of breast cancer and warrant its clinical development.
Collapse
Affiliation(s)
- Yu-Fan Chuang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Wen Huang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Fen Hsu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan, Taiwan
| | - Meng-Chieh Yu
- Division of General Surgery, Department of Surgery, Landseed Hospital, Taoyuan, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - George Ou
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jen Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
20
|
Alteration of SHP-1/p-STAT3 Signaling: A Potential Target for Anticancer Therapy. Int J Mol Sci 2017; 18:ijms18061234. [PMID: 28594363 PMCID: PMC5486057 DOI: 10.3390/ijms18061234] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022] Open
Abstract
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1), a non-receptor protein tyrosine phosphatase, has been reported as a negative regulator of phosphorylated signal transducer and activator of transcription 3 (STAT3) and linked to tumor development. In this present review, we will discuss the importance and function of SHP-1/p-STAT3 signaling in nonmalignant conditions as well as malignancies, its cross-talk with other pathways, the current clinical development and the potential role of inhibitors of this pathway in anticancer therapy and clinical relevance of SHP-1/p-STAT3 in cancers. Lastly, we will summarize and highlight work involving novel drugs/compounds targeting SHP-1/p-STAT3 signaling and combined strategies that were/are discovered in our and our colleagues’ laboratories.
Collapse
|
21
|
Thanasupawat T, Natarajan S, Rommel A, Glogowska A, Bergen H, Krcek J, Pitz M, Beiko J, Krawitz S, Verma IM, Ghavami S, Klonisch T, Hombach-Klonisch S. Dovitinib enhances temozolomide efficacy in glioblastoma cells. Mol Oncol 2017; 11:1078-1098. [PMID: 28500786 PMCID: PMC5537714 DOI: 10.1002/1878-0261.12076] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/25/2017] [Indexed: 12/15/2022] Open
Abstract
The multikinase inhibitor and FDA‐approved drug dovitinib (Dov) crosses the blood–brain barrier and was recently used as single drug application in clinical trials for GB patients with recurrent disease. The Dov‐mediated molecular mechanisms in GB cells are unknown. We used GB patient cells and cell lines to show that Dov downregulated the stem cell protein Lin28 and its target high‐mobility group protein A2 (HMGA2). The Dov‐induced reduction in pSTAT3Tyr705 phosphorylation demonstrated that Dov negatively affects the STAT3/LIN28/Let‐7/HMGA2 regulatory axis in GB cells. Consistent with the known function of LIN28 and HMGA2 in GB self‐renewal, Dov reduced GB tumor sphere formation. Dov treatment also caused the downregulation of key base excision repair factors and O6‐methylguanine‐DNA‐methyltransferase (MGMT), which are known to have important roles in the repair of temozolomide (TMZ)‐induced alkylating DNA damage. Combined Dov/TMZ treatment enhanced TMZ‐induced DNA damage as quantified by nuclear γH2AX foci and comet assays, and increased GB cell apoptosis. Pretreatment of GB cells with Dov (‘Dov priming’) prior to TMZ treatment reduced GB cell viability independent of p53 status. Sequential treatment involving ‘Dov priming’ and alternating treatment cycles with TMZ and Dov substantially reduced long‐term GB cell survival in MGMT+ patient GB cells. Our results may have immediate clinical implications to improve TMZ response in patients with LIN28+/HMGA2+GB, independent of their MGMT methylation status.
Collapse
Affiliation(s)
| | - Suchitra Natarajan
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Amy Rommel
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Aleksandra Glogowska
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Hugo Bergen
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Jerry Krcek
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada.,Department of Surgery, University of Manitoba, Winnipeg, Canada
| | - Marshall Pitz
- Department of Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Jason Beiko
- Department of Surgery, University of Manitoba, Winnipeg, Canada
| | - Sherry Krawitz
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | - Inder M Verma
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada.,Department of Surgery, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Canada
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Canada.,Obstetrics, Gynecology and Reproductive Medicine, College of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
22
|
Liu CY, Chen KF, Chao TI, Chu PY, Huang CT, Huang TT, Yang HP, Wang WL, Lee CH, Lau KY, Tsai WC, Su JC, Wu CY, Chen MH, Shiau CW, Tseng LM. Sequential combination of docetaxel with a SHP-1 agonist enhanced suppression of p-STAT3 signaling and apoptosis in triple negative breast cancer cells. J Mol Med (Berl) 2017; 95:965-975. [PMID: 28578456 DOI: 10.1007/s00109-017-1549-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 05/07/2017] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
Abstract
Triple negative breast cancer (TNBC) is an aggressive cancer for which prognosis remains poor. Combination therapy is a promising strategy for enhancing treatment efficacy. Blockade of STAT3 signaling may enhance the response of cancer cells to conventional chemotherapeutic agents. Here we used a SHP-1 agonist SC-43 to dephosphorylate STAT3 thereby suppressing oncogenic STAT3 signaling and tested it in combination with docetaxel in TNBC cells. We first analyzed messenger RNA (mRNA) expression of SHP-1 gene (PTPN6) in a public TNBC dataset (TCGA) and found that higher SHP-1 mRNA expression is associated with better overall survival in TNBC patients. Sequential combination of docetaxel and SC-43 in vitro showed enhanced anti-proliferation and apoptosis associated with decreased p-STAT3 and decreased STAT3-downstream effector cyclin D1 in the TNBC cell lines MDA-MB-231, MDA-MB-468, and HCC-1937. Ectopic expression of STAT3 reduced the increased cytotoxicity induced by the combination therapy. In addition, this sequential combination showed enhanced SHP-1 activity compared to SC-43 alone. Furthermore, the combination treatment-induced apoptosis was attenuated by small interfering RNA (siRNA) against SHP-1 or by ectopic expression of SHP-1 mutants that caused SC-43 to lose its SHP-1 agonist capability. Moreover, combination of docetaxel and SC-43 showed enhanced tumor growth inhibition compared to single-agent therapy in mice bearing MDA-MB-231 tumor xenografts. Our results suggest that the novel SHP-1 agonist SC-43 enhanced docetaxel-induced cytotoxicity by SHP-1 dependent STAT3 inhibition in human triple negative breast cancer cells. TNBC patients with high SHP-1 expressions show better survival. Docetaxel combined with SC-43 enhances cell apoptosis and reduces p-STAT3. SHP-1 inhibition reduces the enhanced effect of docetaxel-SC-43 combination. Docetaxel-SC-43 combination suppresses xenograft tumor growth and reduces p-STAT3. KEY MESSAGES TNBC patients with high SHP-1 expressions show better survival. Docetaxel combined with SC-43 enhances cell apoptosis and reduces p-STAT3. SHP-1 inhibition reduces the enhanced effect of docetaxel-SC-43 combination. Docetaxel-SC-43 combination suppresses xenograft tumor growth and reduces p-STAT3.
Collapse
Affiliation(s)
- Chun-Yu Liu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Kuen-Feng Chen
- Department of Medical Research, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan.,National Taiwan University College of Medicine, No. 1 Sec. 1, Jen-Ai Road, Taipei, 100, Taiwan
| | - Tzu-I Chao
- Department of Medical Research, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei, 100, Taiwan
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial Hospital, No. 542, Sec. 1, Chung-Shan Rd, Changhua City, 500, Taiwan.,School of Medicine, Fu Jen Catholic University, No. 510, Zhong-zheng Rd., Xin-zhuang Dist, New Taipei City, 24205, Taiwan
| | - Chun-Teng Huang
- School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Yang-Ming Branch of Taipei City Hospital, No. 145, Zhengzhou Rd., Datong Dist, Taipei, 10341, Taiwan
| | - Tzu-Ting Huang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.,Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Hsiu-Ping Yang
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Wan-Lun Wang
- Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Chia-Han Lee
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Ka-Yi Lau
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Wen-Chun Tsai
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan
| | - Jung-Chen Su
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan
| | - Chia-Yun Wu
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
| | - Ming-Huang Chen
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.,School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan
| | - Chung-Wai Shiau
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan
| | - Ling-Ming Tseng
- School of Medicine, National Yang-Ming University, No. 155, Sec. 2, Li-Nong Street, Taipei, 112, Taiwan. .,Comprehensive Breast Health Center, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan. .,Department of Surgery, Taipei Veterans General Hospital, No. 201, Sec. 2, Shih-Pai Road, Taipei, 112, Taiwan.
| |
Collapse
|
23
|
Gabriele E, Ricci C, Meneghetti F, Ferri N, Asai A, Sparatore A. Methanethiosulfonate derivatives as ligands of the STAT3-SH2 domain. J Enzyme Inhib Med Chem 2017; 32:337-344. [PMID: 28097912 PMCID: PMC6009886 DOI: 10.1080/14756366.2016.1252757] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With the aim to discover new STAT3 direct inhibitors, potentially useful as anticancer agents, a set of methanethiosulfonate drug hybrids were synthesized. The in vitro tests showed that all the thiosulfonic compounds were able to strongly and selectively bind STAT3-SH2 domain, whereas the parent drugs were completely devoid of this ability. In addition, some of them showed a moderate antiproliferative activity on HCT-116 cancer cell line. These results suggest that methanethiosulfonate moiety can be considered a useful scaffold in the preparation of new direct STAT3 inhibitors. Interestingly, an unusual kind of organo-sulfur derivative, endowed with valuable antiproliferative activity, was occasionally isolated. [Formula: see text].
Collapse
Affiliation(s)
- Elena Gabriele
- a Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milano , Italy
| | - Chiara Ricci
- b Department of Pharmacological and Biomolecular Sciences , Università degli Studi di Milano , Milano , Italy
| | - Fiorella Meneghetti
- a Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milano , Italy
| | - Nicola Ferri
- c Department of Pharmaceutical and Pharmacological Sciences , Università degli Studi di Padova , Padova , Italy
| | - Akira Asai
- d Center for Drug Discovery, Graduate School of Pharmaceutical Sciences , University of Shizuoka , Shizuoka , Japan
| | - Anna Sparatore
- a Department of Pharmaceutical Sciences , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
24
|
Bharadwaj U, Kasembeli MM, Tweardy DJ. STAT3 Inhibitors in Cancer: A Comprehensive Update. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/978-3-319-42949-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Ji K, Zhang M, Chu Q, Gan Y, Ren H, Zhang L, Wang L, Li X, Wang W. The Role of p-STAT3 as a Prognostic and Clinicopathological Marker in Colorectal Cancer: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0160125. [PMID: 27504822 PMCID: PMC4978497 DOI: 10.1371/journal.pone.0160125] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/13/2016] [Indexed: 01/04/2023] Open
Abstract
Objective High expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) has been detected in a variety of human tumors. However, the association of positive p-STAT3 expression with clinicopathological parameters and the prognosis of colorectal cancer patients remain controversial. To identify the relationship between p-STAT3 expression and clinicopathological parameters and prognosis in patients with colorectal cancer, a systematic review and meta-analysis were performed. Methods We performed a comprehensive literature search from PubMed, EMBASE, and SinoMed through 27 March, 2016. Hazard ratios (HRs) with 95% confidence intervals (CI) were combined to evaluate the association between p-STAT3 expression and overall survival of colorectal cancer patients. Odds ratios (ORs) with 95% CI were combined to evaluate the association between p-STAT3 expression and clinicopathological parameters in patients with colorectal cancer. Results Seventeen studies including a total of 2,346 colorectal cancer patients were included in this meta-analysis. The combined HR was 1.43 (95% CI: 1.23–1.67, P < 0.001), which suggested a positive relationship between p-STAT3 overexpression and poorer overall survival of colorectal cancer patients. In addition, the results indicated that positive p-STAT3 expression was significantly associated with the presence of lymph node metastasis (OR: 2.43, 95% CI: 1.18–5.01, P = 0.02) but was not associated with TNM stage, tumor differentiation or gender. Conclusion The meta-analysis results suggest that p-STAT3 overexpression is unfavorable for the prognosis of colorectal cancer patients, and p-STAT3 overexpression is associated with the presence of lymph node metastasis among colorectal cancer patients.
Collapse
Affiliation(s)
- Kun Ji
- Department of Pathophysiology, Shenyang Medical College, Shenyang, Liaoning, China
- * E-mail: (KJ); (WW)
| | - Mingxuan Zhang
- Grade 2012 Clinical Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| | - Qi Chu
- Grade 2012 Clinical Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| | - Yong Gan
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Ren
- Department of Colorectal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Liyan Zhang
- Department of Pathophysiology, Shenyang Medical College, Shenyang, Liaoning, China
| | - Liwei Wang
- Department of health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Xiaoxiu Li
- Department of Pharmacology, Shenyang Medical College, Shenyang, Liaoning, China
| | - Wei Wang
- Department of Neurosurgery, The Second Clinical Medical School of Inner Mongolia University for the Nationalities (Inner Mongolia General Forestry Hospital), Yakeshi, Inner Mongolia, China
- * E-mail: (KJ); (WW)
| |
Collapse
|
26
|
Wang J, Zhang N, Qu H, You G, Yuan J, Chen C, Li W, Pan F. Inhibitory effect of STAT3 gene combined with CDDP on growth of human Wilms tumour SK-NEP-1 cells. Biosci Rep 2016; 36:e00342. [PMID: 27129294 PMCID: PMC5293582 DOI: 10.1042/bsr20160072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 01/10/2023] Open
Abstract
To investigate the effects of signal transducer and activator of transcription 3 (STAT3) combined with cisplatin (CDDP) on the growth of human Wilms tumour (WT) SK-NEP-1 cell subcutaneous xenografts in nude mice and the possible mechanisms. Human WT SK-NEP-1 cells were subcutaneously transplanted to establish the BALB/c nude mice xenograft model. Mice were randomly divided into five groups: blank control group, adenovirus control group (NC group), STAT3 group, CDDP group and STAT3 plus CDDP group (combination group). Tumour volume and tumour weight were observed during the therapeutic process. The expression levels of STAT3, glucose regulatory protein 78 (GRP78) and BCL2-associated X protein (BAX) were evaluated by immunohistochemical analysis. Compared with the STAT3 group or CDDP group, the tumour weight and volume was significantly reduced in the combination group (P<0.05). No statistical significance was found in NC group compared with the blank control group (P > 0.05). Immunohistochemical analysis showed that STAT3, GRP78 and BAX protein levels in the combination group were significantly higher than those in STAT3 group and CDDP group (P<0.05). Exogenous STAT3 and CDDP may synergistically inhibit the xenograft tumour growth through up-regulation of BAX protein via GRP78.
Collapse
Affiliation(s)
- Junrong Wang
- Department of Laboratory Medicine, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Nina Zhang
- Department of Laboratory Medicine, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Haijiang Qu
- Department of Oncology, The Second People's Hospital of Wenling City (Cancer Hospital in Taizhou, Shanghai Tumor Hospital in Taizhou Branch), Wenling 317502, Zhejiang Province, China
| | - Guangxian You
- Department of Oncology, The Second People's Hospital of Wenling City (Cancer Hospital in Taizhou, Shanghai Tumor Hospital in Taizhou Branch), Wenling 317502, Zhejiang Province, China
| | - Junhui Yuan
- Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Caie Chen
- Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| | - Wenyi Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Feng Pan
- Department of Pediatrics, Wenling Maternal and Child Health Care Hospital, Wenling 317500, Zhejiang Province, China
| |
Collapse
|