1
|
Akıllıoğlu K, Köse Korkmaz S, Dönmez Kutlu M. The effect of caffeine in a model of schizophrenia-like behavior induced by MK-801 in mice. Behav Brain Res 2025; 483:115468. [PMID: 39922384 DOI: 10.1016/j.bbr.2025.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVE The blockade of NMDA receptors during early developmental stages is accepted as a model for schizophrenia-like behavior. This study aimed to investigate the effects of caffeine on adult behaviors in mice subjected to tests of schizophrenia-like behaviors induced by the NMDA receptor antagonist MK-801. MATERIALS AND METHODS MK-801 (0.25 mg/kg, twice daily, 0.1 ml/10 g body weight, intraperitoneally) was administered to Balb/c mice during PND 7-10 to establish a schizophrenia-like behavior model. In one group, caffeine (10 mg/kg, twice daily, 0.1 ml/10 g body weight, intraperitoneally) was given 30 min after MK-801 administration. In another group, MK-801 was administered 30 min after caffeine injection. At 8-10 weeks of age, behavioral tests were performed sequentially: open field test (OFT), elevated plus maze test (EPM), Morris water maze test (MWM), and social interaction test. RESULTS MK-801 administration significantly increased anxiety-like behaviors and decreased exploratory behavior in the OFT by reducing the time spent in the center, the frequency of center entries, and rearing frequency, while increasing the latency to the first center entry. In the EPM, MK-801 significantly decreased the time spent in the open arms, the frequency of open arm entries, and the head-dipping behavior of the open arm while increasing the time spent in the closed arms and the latency to the first open arm entry. In the MWM, MK-801 impaired learning and memory performance. MK-801 reduced social interaction. Caffeine reversed the anxiety, social interaction, learning, and memory impairments caused by MK-801. CONCLUSION MK-801 administration during the neonatal period induces schizophrenia-like behaviors in adulthood, whereas low-dose caffeine can mitigate these effects.
Collapse
Affiliation(s)
- Kübra Akıllıoğlu
- Çukurova University Faculty of Medicine. Department of Physiology, Department of Neurophysiology, Adana 01330, Turkey
| | - Seda Köse Korkmaz
- Çukurova University Faculty of Medicine. Department of Physiology, Department of Neurophysiology, Adana 01330, Turkey
| | - Meltem Dönmez Kutlu
- Çukurova University Faculty of Medicine. Department of Physiology, Department of Neurophysiology, Adana 01330, Turkey.
| |
Collapse
|
2
|
Štefková-Mazochová K, Danda H, Mazoch V, Olejníková-Ladislavová L, Šíchová K, Paškanová N, Vágnerová M, Jurásek B, Ryšánek P, Šíma M, Šafanda A, Bui QH, Kuchař M, Páleníček T. The acute effects of methoxphenidine on behaviour and pharmacokinetics profile in animal model. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111285. [PMID: 39929370 DOI: 10.1016/j.pnpbp.2025.111285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Methoxphenidine (MXP) is classified as a new psychoactive substance that has recently emerged on the illicit drug market. Understanding the pharmacological and behavioural profiles of newly emerging drugs is essential for a better understanding of their psychotropic effects and potential toxicity. Therefore, in this study, we investigated a broad range of effects of acute MXP administration: pharmacokinetics in the brain and serum; behaviour (open field and prepulse inhibition), systemic toxicity (lethal dose; LD 50), and histopathology changes in parenchymal organs of Wistar rats. MXP rapidly crossed the blood-brain barrier, reaching peak median concentrations in both serum and brain 30 min post-administration, followed by an elimination phase with a half-life of 2.15 h. Locomotor activity in the open field test displayed a dose-response effect at low to moderate doses (10-20 mg/kg MXP). At higher doses (40 mg/kg), locomotor activity decreased. All doses of MXP significantly disrupted prepulse inhibition and the effect was present during the onset of its action as well as 60 min after treatment. Additionally, MXP demonstrated moderate acute toxicity, with an estimated LD50 of 500 mg/kg when administered subcutaneously. In summary, MXP exhibited a profile similar to typical dissociative anesthetics, producing stimulant and anxiogenic effects at lower doses, sedative effects at higher doses, and disrupting sensorimotor gating. The accumulation of MXP in brain tissue is likely to contribute to acute intoxication in humans, potentially leading to negative experiences. Our findings highlight the potentially dangerous effects of recreational MXP use and underscore the risks of inducing serious adverse health outcomes.
Collapse
Affiliation(s)
- Kristýna Štefková-Mazochová
- Psychedelics Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic.
| | - Hynek Danda
- Psychedelics Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic; 3(rd) Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic
| | - Vladimír Mazoch
- Psychedelics Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
| | | | - Klára Šíchová
- Psychedelics Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic
| | - Natálie Paškanová
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, Prague, 6, 166 28, Czech Republic
| | - Magdaléna Vágnerová
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, Prague, 6, 166 28, Czech Republic; Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 166 28, Czech Republic
| | - Bronislav Jurásek
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, Prague, 6, 166 28, Czech Republic
| | - Pavel Ryšánek
- Institute of Pharmacology, 1(st) Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, Prague 2 128 00, Czech Republic
| | - Martin Šíma
- Institute of Pharmacology, 1(st) Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, Prague 2 128 00, Czech Republic
| | - Adam Šafanda
- Institute of Pathology, 1(st) Faculty of Medicine, Charles University, Studničkova 2, Prague 2 128 00, Czech Republic
| | - Quang Hiep Bui
- Institute of Pathology, 1(st) Faculty of Medicine, Charles University, Studničkova 2, Prague 2 128 00, Czech Republic
| | - Martin Kuchař
- Psychedelics Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic; Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Technická 5, Prague, 6, 166 28, Czech Republic
| | - Tomáš Páleníček
- Psychedelics Research Centre, National Institute of Mental Health, Topolová 748, Klecany 250 67, Czech Republic; 3(rd) Faculty of Medicine, Charles University, Ruská 87, Prague 10 100 00, Czech Republic.
| |
Collapse
|
3
|
Cammà G, Verdouw MP, van der Meer PB, Groenink L, Batalla A. Therapeutic potential of minor cannabinoids in psychiatric disorders: A systematic review. Eur Neuropsychopharmacol 2025; 91:9-24. [PMID: 39541799 DOI: 10.1016/j.euroneuro.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Interest in cannabinoids' therapeutic potential in mental health is growing, supported by evidence of the involvement of the endocannabinoid system in psychiatric disorders such as anxiety, depression, and addiction. While the major cannabinoids cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC) have been more extensively researched, approximately 120 minor cannabinoids from the cannabis plant have been identified. Although some displayed promising pharmacological profiles, research on their application for psychiatric disorders is fragmented. This systematic review evaluates, for the first time, both preclinical and clinical studies exploring minor cannabinoids' therapeutic potential in psychiatric disorders. 22 preclinical studies and one clinical study were included, investigating various minor cannabinoids in substance use disorders, anxiety disorders, depressive disorders, trauma and stressor-related disorders, psychotic disorders, neurodevelopmental disorders, and eating disorders. Despite the heterogeneous results and the moderate to high risk of bias in several articles, certain compounds demonstrate promise for further investigation. Δ8-tetrahydrocannabidivarin (Δ8-THCV) exhibited potential for nicotine addiction; Δ9-tetrahydrocannabidivarin (Δ9-THCV) for psychotic-like symptoms; cannabidiolic acid methyl ester (CBDA-ME) alleviated anxiety and depression-like symptoms, and cannabidivarin (CBDV) autism spectrum disorder-like symptoms.
Collapse
Affiliation(s)
- Guido Cammà
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - Monika P Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Pim B van der Meer
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Albert Batalla
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Dutra-Tavares AC, Couto LA, Souza TP, Bandeira-Martins A, Silva JO, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Nicotine's Effects on Schizophrenia-like Symptoms in a Mice Model: Time Matters. Brain Sci 2024; 14:855. [PMID: 39335351 PMCID: PMC11430416 DOI: 10.3390/brainsci14090855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024] Open
Abstract
Tobacco consumption in schizophrenia (SCHZ) patients is highly prevalent. Data support the occurrence of sequential events during comorbidity establishment, and both smoking first, SCHZ second and SCHZ first, smoking second sequences have been proposed. To investigate whether these two possibilities lead to distinct outcomes of comorbidity, we used a phencyclidine-induced SCHZ model and nicotine exposure as a surrogate of smoking. C57Bl/6 mice were submitted to a protocol that either began with 4 days of phencyclidine exposure or 4 days of nicotine exposure. This period was followed by 5 days of combined phencyclidine + nicotine exposure. Locomotor sensitization and pre-pulse inhibition (PPI) were assessed due to their well-known associations with SCHZ as opposed to rearing, an unrelated behavior. Nicotine priming potentiated phencyclidine-evoked sensitization. However, nicotine exposure after SCHZ modeling did not interfere with phencyclidine's effects. In the PPI test, nicotine after SCHZ modeling worsened the phencyclidine-evoked deficiency in males. In contrast, nicotine priming had no effects. Regarding rearing, nicotine priming failed to interfere with phencyclidine-mediated inhibition. Similarly, phencyclidine priming did not modify nicotine-mediated inhibition. The present results indicate that the sequence, either SCHZ-first or nicotine-first, differentially impacts comorbidity outcomes, a finding that is relevant for the identification of mechanisms of nicotine interference in the neurobiology of SCHZ.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Departamento de Ciências Biomédicas e Saúde, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Cabo Frio 28905-320, RJ, Brazil;
| | - Luciana Araújo Couto
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Thainá P. Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Anais Bandeira-Martins
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Juliana Oliveira Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Claudio C. Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores, UERJ, São Gonçalo 24435-005, RJ, Brazil;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro UERJ, Rio de Janeiro 20550-170, RJ, Brazil (T.P.S.); (A.B.-M.); (J.O.S.); (C.C.F.); (Y.A.-V.)
| |
Collapse
|
5
|
Shaw HE, Patel DR, Gannon BM, Fitzgerald LR, Carbonaro TM, Johnson CR, Fantegrossi WE. Phencyclidine-Like Abuse Liability and Psychosis-Like Neurocognitive Effects of Novel Arylcyclohexylamine Drugs of Abuse in Rodents. J Pharmacol Exp Ther 2024; 390:14-28. [PMID: 38272671 PMCID: PMC11192579 DOI: 10.1124/jpet.123.001942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024] Open
Abstract
Abuse of novel arylcyclohexylamines (ACX) poses risks for toxicities, including adverse neurocognitive effects. In vivo effects of ring-substituted analogs of phencyclidine (PCP), eticyclidine (PCE), and ketamine are understudied. Adult male National Institutes of Health Swiss mice were used to assess locomotor effects of PCP and its 3-OH, 3-MeO, 3-Cl, and 4-MeO analogs, PCE and its 3-OH and 3-MeO analogs, and ketamine and its deschloro and 2F-deschloro analogs, in comparison with those of methamphetamine (METH), 3,4-methylenedioxymethamphetamine (MDMA), and two benzofuran analogs of MDMA. PCP-like interoceptive effects for all of these ACXs were determined using a food-reinforced drug discrimination procedure in adult male Sprague Dawley rats. A novel operant assay of rule-governed behavior incorporating aspects of attentional set-shifting was used to profile psychosis-like neurocognitive effects of PCP and 3-Cl-PCP in rats, in comparison with cocaine and morphine. PCP-like ACXs were more effective locomotor stimulants than the amphetamines, PCE-like ACXs were as effective as the amphetamines, and ketamine-like ACXs were less effective than the amphetamines. Addition of -Cl, -OH, or -OMe at the 3-position on the aromatic ring did not impact locomotor effectiveness, but addition of -OMe at the 4-position reduced locomotor effectiveness. Lethal effects were induced by drugs with -OH at the 3-position or -OMe at the 3- or 4-position. All novel ACXs substituted at least partially for PCP, and PCP and 3-Cl-PCP elicited dose-dependent psychosis-like neurocognitive deficits in the rule-governed behavior task not observed with cocaine or morphine. Novel ACXs exhibit substantial abuse liability and toxicities not necessarily observed with their parent drugs. SIGNIFICANCE STATEMENT: Novel arylcyclohexylamine analogs of PCP, PCE, and ketamine are appearing on the illicit market, and abuse of these drugs poses risks for toxicities, including adverse neurocognitive effects. These studies demonstrate that the novel ACXs exhibit PCP-like abuse liability in the drug discrimination assay, elicit varied locomotor stimulant and lethal effects in mice, and induce psychosis-like neurocognitive effects in rats.
Collapse
Affiliation(s)
- Hannah E Shaw
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Dylan R Patel
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Brenda M Gannon
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Lauren R Fitzgerald
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Theresa M Carbonaro
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - Chad R Johnson
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas (H.E.S., D.R.P., B.M.G., L.R.F., W.E.F.); Drug Enforcement Administration, United States Department of Justice, Washington, DC (T.M.C.); and Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (C.R.J.)
| |
Collapse
|
6
|
Ma Y, Gao K, Sun X, Wang J, Yang Y, Wu J, Chai A, Yao L, Liu N, Yu H, Su Y, Lu T, Wang L, Yue W, Zhang X, Xu L, Zhang D, Li J. STON2 variations are involved in synaptic dysfunction and schizophrenia-like behaviors by regulating Syt1 trafficking. Sci Bull (Beijing) 2024; 69:1458-1471. [PMID: 38402028 DOI: 10.1016/j.scib.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/13/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Synaptic dysfunction is a core component of the pathophysiology of schizophrenia. However, the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood. The Stonin 2 (STON2) gene encodes a major adaptor for clathrin-mediated endocytosis (CME) of synaptic vesicles. In this study, we showed that the C-C (307Pro-851Ala) haplotype of STON2 increases the susceptibility to schizophrenia and examined whether STON2 variations cause schizophrenia-like behaviors through the regulation of CME. We found that schizophrenia-related STON2 variations led to protein dephosphorylation, which affected its interaction with synaptotagmin 1 (Syt1), a calcium sensor protein located in the presynaptic membrane that is critical for CME. STON2307Pro851Ala knockin mice exhibited deficits in synaptic transmission, short-term plasticity, and schizophrenia-like behaviors. Moreover, among seven antipsychotic drugs, patients with the C-C (307Pro-851Ala) haplotype responded better to haloperidol than did the T-A (307Ser-851Ser) carriers. The recovery of deficits in Syt1 sorting and synaptic transmission by acute administration of haloperidol effectively improved schizophrenia-like behaviors in STON2307Pro851Ala knockin mice. Our findings demonstrated the effect of schizophrenia-related STON2 variations on synaptic dysfunction through the regulation of CME, which might be attractive therapeutic targets for treating schizophrenia-like phenotypes.
Collapse
Affiliation(s)
- Yuanlin Ma
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China; The First Affiliated Hospital, Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Kai Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China; Changping Laboratory, Beijing 102206, China
| | - Xiaoxuan Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Jinxin Wang
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yang Yang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Jianying Wu
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Anping Chai
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Li Yao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Nan Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Hao Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Yi Su
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Tianlan Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Lifang Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Lin Xu
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Dai Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China; Changping Laboratory, Beijing 102206, China
| | - Jun Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Key Laboratory of Mental Health, Chinese Academy of Medical Sciences, Beijing 100191, China; Changping Laboratory, Beijing 102206, China.
| |
Collapse
|
7
|
Richardson B, Clarke C, Blundell J, Bambico FR. Therapeutic-like activity of cannabidiolic acid methyl ester in the MK-801 mouse model of schizophrenia: Role for cannabinoid CB1 and serotonin-1A receptors. Eur J Neurosci 2024; 59:2403-2415. [PMID: 38385841 DOI: 10.1111/ejn.16278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024]
Abstract
Schizophrenia is a psychotic disorder with an increasing prevalence and incidence over the last two decades. The condition presents with a diverse array of positive, negative, and cognitive impairments. Conventional treatments often yield unsatisfactory outcomes, especially with negative symptoms. We investigated the role of prefrontocortical (PFC) N-methyl-D-aspartate receptors (NMDARs) in the pathophysiology and development of schizophrenia. We explored the potential therapeutic effects of cannabidiolic acid (CBDA) methyl ester (HU-580), an analogue of CBDA known to act as an agonist of the serotonin-1A receptor (5-HT1AR) and an antagonist of cannabinoid type 1 receptor (CB1R). C57BL/6 mice were intraperitoneally administered the NMDAR antagonist, dizocilpine (MK-801, .3 mg/kg) once daily for 17 days. After 7 days, they were concurrently given HU-580 (.01 or .05 μg/kg) for 10 days. Behavioural deficits were assessed at two time points. We conducted enzyme-linked immunosorbent assays to measure the concentration of PFC 5-HT1AR and CB1R. We found that MK-801 effectively induced schizophrenia-related behaviours including hyperactivity, social withdrawal, increased forced swim immobility, and cognitive deficits. We discovered that low-dose HU-580 (.01 μg/kg), but not the high dose (.05 μg/kg), attenuated hyperactivity, forced swim immobility and cognitive deficits, particularly in female mice. Our results revealed that MK-801 downregulated both CB1R and 5-HT1AR, an effect that was blocked by both low- and high-dose HU-580. This study sheds light on the potential antipsychotic properties of HU-580, particularly in the context of NMDAR-induced dysfunction. Our findings could contribute significantly to our understanding of schizophrenia pathophysiology and offer a promising avenue for exploring the therapeutic potential of HU-580 and related compounds in alleviating symptoms.
Collapse
MESH Headings
- Animals
- Schizophrenia/drug therapy
- Schizophrenia/chemically induced
- Schizophrenia/metabolism
- Dizocilpine Maleate/pharmacology
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Male
- Mice
- Female
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/agonists
- Mice, Inbred C57BL
- Disease Models, Animal
- Cannabinoids/pharmacology
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Antipsychotic Agents/pharmacology
Collapse
Affiliation(s)
- Brandon Richardson
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Courtney Clarke
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Jacqueline Blundell
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| | - Francis R Bambico
- Memorial University of Newfoundland and Labrador, St. John's, Newfoundland, Canada
| |
Collapse
|
8
|
Wang X, Li Z, Kuai S, Wang X, Chen J, Yang Y, Qin L. Correlation between desynchrony of hippocampal neural activity and hyperlocomotion in the model mice of schizophrenia and therapeutic effects of aripiprazole. CNS Neurosci Ther 2024; 30:e14739. [PMID: 38702935 PMCID: PMC11069053 DOI: 10.1111/cns.14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear. METHODS Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity. RESULTS We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment. CONCLUSIONS These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.
Collapse
Affiliation(s)
- Xueru Wang
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Zijie Li
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Shihui Kuai
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xuejiao Wang
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Jingyu Chen
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| | - Yanping Yang
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ling Qin
- Department of PhysiologyChina Medical UniversityShenyangLiaoningChina
| |
Collapse
|
9
|
Harde E, Hierl M, Weber M, Waiz D, Wyler R, Wach JY, Haab R, Gundlfinger A, He W, Schnider P, Paina M, Rolland JF, Greiter-Wilke A, Gasser R, Reutlinger M, Dupont A, Roberts S, O'Connor EC, Bartels B, Hall BJ. Selective and brain-penetrant HCN1 inhibitors reveal links between synaptic integration, cortical function, and working memory. Cell Chem Biol 2024; 31:577-592.e23. [PMID: 38042151 DOI: 10.1016/j.chembiol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023]
Abstract
Hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) ion channels are proposed to be critical for cognitive function through regulation of synaptic integration. However, resolving the precise role of HCN1 in neurophysiology and exploiting its therapeutic potential has been hampered by minimally selective antagonists with poor potency and limited in vivo efficiency. Using automated electrophysiology in a small-molecule library screen and chemical optimization, we identified a primary carboxamide series of potent and selective HCN1 inhibitors with a distinct mode of action. In cognition-relevant brain circuits, selective inhibition of native HCN1 produced on-target effects, including enhanced excitatory postsynaptic potential summation, while administration of a selective HCN1 inhibitor to rats recovered decrement working memory. Unlike prior non-selective HCN antagonists, selective HCN1 inhibition did not alter cardiac physiology in human atrial cardiomyocytes or in rats. Collectively, selective HCN1 inhibitors described herein unmask HCN1 as a potential target for the treatment of cognitive dysfunction in brain disorders.
Collapse
Affiliation(s)
- Eva Harde
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Markus Hierl
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael Weber
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David Waiz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roger Wyler
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jean-Yves Wach
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rachel Haab
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anja Gundlfinger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Weiping He
- WuXi AppTec (Wuhan) Co., Ltd, 666 Gaoxin Road, Wuhan East Lake High-Tech Development Zone, Wuhan, Huibei, China
| | - Patrick Schnider
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Andrea Greiter-Wilke
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rodolfo Gasser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael Reutlinger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Amanda Dupont
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sonia Roberts
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eoin C O'Connor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Björn Bartels
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Benjamin J Hall
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
10
|
Horka P, Langova V, Hubeny J, Vales K, Chrtkova I, Horacek J. Open field test for the assessment of anxiety-like behavior in Gnathonemus petersii fish. Front Behav Neurosci 2024; 17:1280608. [PMID: 38268794 PMCID: PMC10806096 DOI: 10.3389/fnbeh.2023.1280608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
The open field test (OFT) is a basic and most widely used test for investigation in animal studies of the neurobiological basis of anxiety and screening for novel drug targets. Here, we present the results of an OFT for weakly electric fish Gnathonemus petersii. This study aimed to describe the behavioral response of G. petersii exposed to an OFT, simultaneously with an evaluation of electrical organ discharges (EOD), to determine whether any association between EOD and patterns of motor behavior in the OFT exists. Treatment of OFT activity and its temporal patterning was assessed for the whole 6-min trial as well as per-minute distributions of activity using a near-infrared camera and an EOD data acquisition system. Our results demonstrated that the time spent, distance moved, and time of activity were significantly higher in the periphery of the OFT arena. The zone preference pattern over the 6-min test session showed that G. petersii prefer the outer zone (83.61%) over the center of the arena (16.39%). The motor behavior of fish measured as distance moved, active time, and swim speed were correlated with the number of EODs; however, no relationship was found between EOD and acceleration.
Collapse
Affiliation(s)
- Petra Horka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia
| | - Veronika Langova
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Hubeny
- National Institute of Mental Health, Klecany, Czechia
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czechia
| | - Ivana Chrtkova
- National Institute of Mental Health, Klecany, Czechia
- Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czechia
| | - Jiri Horacek
- National Institute of Mental Health, Klecany, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
11
|
Popik P, Cyrano E, Piotrowska D, Holuj M, Golebiowska J, Malikowska-Racia N, Potasiewicz A, Nikiforuk A. Effects of ketamine on rat social behavior as analyzed by DeepLabCut and SimBA deep learning algorithms. Front Pharmacol 2024; 14:1329424. [PMID: 38269275 PMCID: PMC10806163 DOI: 10.3389/fphar.2023.1329424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024] Open
Abstract
Traditional methods of rat social behavior assessment are extremely time-consuming and susceptible to the subjective biases. In contrast, novel digital techniques allow for rapid and objective measurements. This study sought to assess the feasibility of implementing a digital workflow to compare the effects of (R,S)-ketamine and a veterinary ketamine preparation Vetoquinol (both at 20 mg/kg) on the social behaviors of rat pairs. Historical and novel videos were used to train the DeepLabCut neural network. The numerical data generated by DeepLabCut from 14 video samples, representing various body parts in time and space were subjected to the Simple Behavioral Analysis (SimBA) toolkit, to build classifiers for 12 distinct social and non-social behaviors. To validate the workflow, previously annotated by the trained observer historical videos were analyzed with SimBA classifiers, and regression analysis of the total time of social interactions yielded R 2 = 0.75, slope 1.04; p < 0.001 (N = 101). Remarkable similarities between human and computer annotations allowed for using the digital workflow to analyze 24 novel videos of rats treated with vehicle and ketamine preparations. Digital workflow revealed similarities in the reduction of social behavior by both compounds, and no substantial differences between them. However, the digital workflow also demonstrated ketamine-induced increases in self-grooming, increased transitions from social contacts to self-grooming, and no effects on adjacent lying time. This study confirms and extends the utility of deep learning in analyzing rat social behavior and highlights its efficiency and objectivity. It provides a faster and objective alternative to human workflow.
Collapse
|
12
|
Vojtechova I, Tuckova K, Juza R, Stuchlik A, Kelemen E, Korabecny J, Soukup O, Petrasek T. Dopaminergic and glutamatergic models of psychosis show differential sensitivity to aripiprazole and a novel experimental compound modulating D 2/5-HT receptor activity. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110819. [PMID: 37379895 DOI: 10.1016/j.pnpbp.2023.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Dopamine type 2 receptors (D2Rs) constitute the main molecular target in the pharmacotherapy of schizophrenia. However, the second and third generation of antipsychotics comprises multi-target ligands, also binding serotonin type 3 receptors (5-HT3Rs) and other receptor classes as well. Here, we examined two experimental compounds (marked compound K1697 and K1700) from the group of 1,4-di-substituted aromatic piperazines, previously described in the study of Juza et al., 2021, and compared them with the chosen reference antipsychotic, aripiprazole. Their efficacy against schizophrenia-like behavior was tested in two different models of psychosis in the rat, induced by acute administration of either amphetamine (1.5 mg/kg) or dizocilpine (0.1 mg/kg), reflecting the dopaminergic and glutamatergic hypotheses of schizophrenia. The two models exhibited broadly similar behavioral manifestations: hyperlocomotion, disrupted social behavior and impaired prepulse inhibition of the startle response. However, they differed in their treatment responses as hyperlocomotion and prepulse inhibition deficit in the dizocilpine model were resistant to antipsychotic treatment, unlike the amphetamine model. One of the experimental compounds, K1700, ameliorated all the observed schizophrenia-like behaviors in the amphetamine model with an efficacy comparable to or greater than aripiprazole. Whereas social impairments caused by dizocilpine were strongly suppressed by aripiprazole, K1700 was less efficient. Taken together, K1700 showed antipsychotic properties comparable to those of aripiprazole, although the efficacy of the two drugs differed in specific domains of behavior and was also model-dependent. Our present results highlight the differences in these two schizophrenia models and their responsiveness to pharmacotherapy, and confirm compound K1700 as a promising drug candidate.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Klara Tuckova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Radomir Juza
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ales Stuchlik
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Eduard Kelemen
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Tomas Petrasek
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic.
| |
Collapse
|
13
|
Xu S, Hao K, Xiong Y, Xu R, Huang H, Wang H. Capsaicin alleviates neuronal apoptosis and schizophrenia-like behavioral abnormalities induced by early life stress. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:77. [PMID: 37935716 PMCID: PMC10630396 DOI: 10.1038/s41537-023-00406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Early life stress (ELS) is associated with the later development of schizophrenia. In the rodent model, the maternal separation (MS) stress may induce neuronal apoptosis and schizophrenia-like behavior. Although the TRPV1 agonist capsaicin (CAP) has been reported to reduce apoptosis in the central nervous system, its effect in MS models is unclear. Twenty-four hours of MS of Wistar rat pups on postnatal day (PND9) was used as an ELS. Male rats in the adult stage were the subjects of the study. CAP (1 mg/kg/day) intraperitoneal injection pretreatment was undertaken before behavioral tests for 1 week and continued during the tests. Behavioral tests included open field, novel object recognition, Barnes maze test, and pre-pulse inhibition (PPI) test. MS rats showed behavioral deficits and cognitive impairments mimicking symptoms of schizophrenia compared with controls. MS decreased the expression of TRPV1 in the frontal association cortex (FrA) and in the hippocampal CA1, CA3, and dentate gyrus (DG) regions compared with the control group resulting in the increase of pro-apoptotic proteins (BAX, Caspase3, Cleaved-Caspase3) and the decrease of anti-apoptotic proteins (Bcl-2). The number of NeuN++TUNEL+ cells increased in the MS group in the FrA, CA1, CA3, and DG compared with the control group. Neuronal and behavioral impairments of MS were reversed by treatment with CAP. Exposure to ELS may lead to increased neuronal apoptosis and impaired cognitive function with decreased TRPV1 expression in the prefrontal cortex and hippocampus in adulthood. Sustained low-dose administration of CAP improved neuronal apoptosis and cognitive function. Our results provide evidence for future clinical trials of chili peppers or CAP as dietary supplements for the reversal treatment of schizophrenia.
Collapse
Affiliation(s)
- Shilin Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Keke Hao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ying Xiong
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Rui Xu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huan Huang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
14
|
Tanaka R, Yamada K. Genomic and Reverse Translational Analysis Discloses a Role for Small GTPase RhoA Signaling in the Pathogenesis of Schizophrenia: Rho-Kinase as a Novel Drug Target. Int J Mol Sci 2023; 24:15623. [PMID: 37958606 PMCID: PMC10648424 DOI: 10.3390/ijms242115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia is one of the most serious psychiatric disorders and is characterized by reductions in both brain volume and spine density in the frontal cortex. RhoA belongs to the RAS homolog (Rho) family and plays critical roles in neuronal development and structural plasticity via Rho-kinase. RhoA activity is regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Several variants in GAPs and GEFs associated with RhoA have been reported to be significantly associated with schizophrenia. Moreover, several mouse models carrying schizophrenia-associated gene variants involved in RhoA/Rho-kinase signaling have been developed. In this review, we summarize clinical evidence showing that variants in genes regulating RhoA activity are associated with schizophrenia. In the last half of the review, we discuss preclinical evidence indicating that RhoA/Rho-kinase is a potential therapeutic target of schizophrenia. In particular, Rho-kinase inhibitors exhibit anti-psychotic-like effects not only in Arhgap10 S490P/NHEJ mice, but also in pharmacologic models of schizophrenia (methamphetamine- and MK-801-treated mice). Accordingly, we propose that Rho-kinase inhibitors may have antipsychotic effects and reduce cognitive deficits in schizophrenia despite the presence or absence of genetic variants in small GTPase signaling pathways.
Collapse
Affiliation(s)
- Rinako Tanaka
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
15
|
Dutra-Tavares AC, Souza TP, Silva JO, Semeão KA, Mello FF, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Neonatal phencyclidine as a model of sex-biased schizophrenia symptomatology in adolescent mice. Psychopharmacology (Berl) 2023; 240:2111-2129. [PMID: 37530885 DOI: 10.1007/s00213-023-06434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023]
Abstract
Sex-biased differences in schizophrenia are evident in several features of the disease, including symptomatology and response to pharmacological treatments. As a neurodevelopmental disorder, these differences might originate early in life and emerge later during adolescence. Considering that the disruption of the glutamatergic system during development is known to contribute to schizophrenia, we hypothesized that the neonatal phencyclidine model could induce sex-dependent behavioral and neurochemical changes associated with this disorder during adolescence. C57BL/6 mice received either saline or phencyclidine (5, 10, or 20 mg/kg) on postnatal days (PN) 7, 9, and 11. Behavioral assessment occurred in late adolescence (PN48-50), when mice were submitted to the open field, social interaction, and prepulse inhibition tests. Either olanzapine or saline was administered before each test. The NMDAR obligatory GluN1 subunit and the postsynaptic density protein 95 (PSD-95) were evaluated in the frontal cortex and hippocampus at early (PN30) and late (PN50) adolescence. Neonatal phencyclidine evoked dose-dependent deficits in all analyzed behaviors and males were more susceptible. Males also had reduced GluN1 expression in the frontal cortex at PN30. There were late-emergent effects at PN50. Cortical GluN1 was increased in both sexes, while phencyclidine increased cortical and decreased hippocampal PSD-95 in females. Olanzapine failed to mitigate most phencyclidine-evoked alterations. In some instances, this antipsychotic aggravated the deficits or potentiated subthreshold effects. These results lend support to the use of neonatal phencyclidine as a sex-biased neurodevelopmental preclinical model of schizophrenia. Olanzapine null effects and deleterious outcomes suggest that its use during adolescence should be further evaluated.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Thainá P Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Juliana O Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Keila A Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Felipe F Mello
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro (UERJ), RJ, São Gonçalo, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil.
| |
Collapse
|
16
|
Rodríguez-Vega A, Dutra-Tavares AC, Souza TP, Semeão KA, Filgueiras CC, Ribeiro-Carvalho A, Manhães AC, Abreu-Villaça Y. Nicotine Exposure in a Phencyclidine-Induced Mice Model of Schizophrenia: Sex-Selective Medial Prefrontal Cortex Protein Markers of the Combined Insults in Adolescent Mice. Int J Mol Sci 2023; 24:14634. [PMID: 37834084 PMCID: PMC10572990 DOI: 10.3390/ijms241914634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Tobacco misuse as a comorbidity of schizophrenia is frequently established during adolescence. However, comorbidity markers are still missing. Here, the method of label-free proteomics was used to identify deregulated proteins in the medial prefrontal cortex (prelimbic and infralimbic) of male and female mice modelled to schizophrenia with a history of nicotine exposure during adolescence. Phencyclidine (PCP), used to model schizophrenia (SCHZ), was combined with an established model of nicotine minipump infusions (NIC). The combined insults led to worse outcomes than each insult separately when considering the absolute number of deregulated proteins and that of exclusively deregulated ones. Partially shared Reactome pathways between sexes and between PCP, NIC and PCPNIC groups indicate functional overlaps. Distinctively, proteins differentially expressed exclusively in PCPNIC mice reveal unique effects associated with the comorbidity model. Interactome maps of these proteins identified sex-selective subnetworks, within which some proteins stood out: for females, peptidyl-prolyl cis-trans isomerase (Fkbp1a) and heat shock 70 kDa protein 1B (Hspa1b), both components of the oxidative stress subnetwork, and gamma-enolase (Eno2), a component of the energy metabolism subnetwork; and for males, amphiphysin (Amph), a component of the synaptic transmission subnetwork. These are proposed to be further investigated and validated as markers of the combined insult during adolescence.
Collapse
Affiliation(s)
- Andrés Rodríguez-Vega
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Ana Carolina Dutra-Tavares
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Thainá P. Souza
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Keila A. Semeão
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Claudio C. Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo 24435-005, RJ, Brazil;
| | - Alex C. Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20550-170, RJ, Brazil; (A.R.-V.); (A.C.D.-T.); (T.P.S.); (K.A.S.); (C.C.F.); (A.C.M.)
| |
Collapse
|
17
|
Han S, Zhuang D, Wang J, Ju C. Inhibition of neuronal Kv7 channels ameliorates MK-801-induced cognitive dysfunction in mice via up-regulating NAMPT expression. Neurosci Lett 2023; 814:137471. [PMID: 37673371 DOI: 10.1016/j.neulet.2023.137471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/01/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE Abnormal energy metabolism affects cognitive function in schizophrenia. Nicotinamide phosphoribosyltransferase (NAMPT), as the rate-limiting enzyme of nicotinamide adenine dinucleotide (NAD+), is involved in energy metabolism by regulating the synthesis of NAD+. This study aims to clarify whether inhibition of Kv7 channels improves cognitive impairment by up-regulating NAMPT expression to increase the level of NAD+. METHODS The dominant negative pore mutation of KCNQ2 in transgenic mice was achieved by mutating residual 279-Gly to Ser (rQ2-G279S). A cognitive deficit model was established by injecting MK-801 into C57BL/6J mice. Y-maze and prepulse inhibition (PPI) tests were performed to evaluate cognitive ability. Gene and protein expression of NAMPT in the mouse hippocampus, cortex, and PC-12 cells were measured by qRT-PCR and Western blot. The level of NAD+ was measured by a WST-8 assay. RESULTS The Y-maze and PPI results showed that genetic or pharmacological inhibition of Kv7 channels by XE991 enhanced cognitive function in mice. Furthermore, inhibition of Kv7 channels increased the gene and protein expression of NAMPT and the level of NAD+ in the hippocampus and cortex of the above animal model. Similarly, XE991 treatment increased NAMPT expression and NAD+ levels in PC-12 cells. NAMPT inhibitor FK866 and Kv7 channel opener retigabine reversed the effects of XE991 in vivo and in vitro. In addition, XE991 increased pAMPK protein expression in PC-12 cells, while AMPK inhibitor Compound C counteracted the effect of XE991 on increasing NAMPT expression and NAD+ levels. CONCLUSIONS Suppression of Kv7 channel function improved spatial working memory and PPI impairment. This result may be achieved by activating AMPK to up-regulate NAMPT expression and thus increase NAD+ levels.
Collapse
Affiliation(s)
- Shuo Han
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, China
| | - Dongpei Zhuang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, China
| | - Jing Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, China; Translational Pharmaceutical Laboratory, Jining First People's Hospital, Shandong First Medical University, Jining 272000, China
| | - Chuanxia Ju
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, China.
| |
Collapse
|
18
|
Marszalek-Grabska M, Gawel K, Kosheva N, Kocki T, Turski WA. Developmental Exposure to Kynurenine Affects Zebrafish and Rat Behavior. Cells 2023; 12:2224. [PMID: 37759447 PMCID: PMC10526278 DOI: 10.3390/cells12182224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Proper nutrition and supplementation during pregnancy and breastfeeding are crucial for the development of offspring. Kynurenine (KYN) is the central metabolite of the kynurenine pathway and a direct precursor of other metabolites that possess immunoprotective or neuroactive properties, with the ultimate effect on fetal neurodevelopment. To date, no studies have evaluated the effects of KYN on early embryonic development. Thus, the aim of our study was to determine the effect of incubation of larvae with KYN in different developmental periods on the behavior of 5-day-old zebrafish. Additionally, the effects exerted by KYN administered on embryonic days 1-7 (ED 1-7) on the behavior of adult offspring of rats were elucidated. Our study revealed that the incubation with KYN induced changes in zebrafish behavior, especially when zebrafish embryos or larvae were incubated with KYN from 1 to 72 h post-fertilization (hpf) and from 49 to 72 hpf. KYN administered early during pregnancy induced subtle differences in the neurobehavioral development of adult offspring. Further research is required to understand the mechanism of these changes. The larval zebrafish model can be useful for studying disturbances in early brain development processes and their late behavioral consequences. The zebrafish-medium system may be applicable in monitoring drug metabolism in zebrafish.
Collapse
Affiliation(s)
- Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland; (K.G.); (N.K.); (T.K.); (W.A.T.)
| | | | | | | | | |
Collapse
|
19
|
Kruk-Slomka M, Adamski B, Slomka T, Biala G. Inhibitors of Endocannabinoids' Enzymatic Degradation as a Potential Target of the Memory Disturbances in an Acute N-Methyl-D-Aspartate (NMDA) Receptor Hypofunction Model of Schizophrenia in Mice. Int J Mol Sci 2023; 24:11400. [PMID: 37511157 PMCID: PMC10380236 DOI: 10.3390/ijms241411400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Treating schizophrenia with the available pharmacotherapy is difficult. One possible strategy is focused on the modulation of the function of the endocannabinoid system (ECS). The ECS is comprised of cannabinoid (CB) receptors, endocannabinoids and enzymes responsible for the metabolism of endocannabinoids (fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL)). Here, the aim of the experiments was to evaluate the impact of inhibitors of endocannabinoids' enzymatic degradation in the brain: KML-29 (MAGL inhibitor), JZL-195 (MAGL/FAAH inhibitor) and PF-3845 (FAAH inhibitor), on the memory disturbances typical for schizophrenia in an acute N-methyl-D-aspartate (NMDA) receptor hypofunction animal model of schizophrenia (i.e., injection of MK-801, an NMDA receptor antagonist). The memory-like responses were assessed in the passive avoidance (PA) test. A single administration of KML-29 or PF-3845 had a positive effect on the memory processes, but an acute administration of JZL-195 impaired cognition in mice in the PA test. Additionally, the combined administration of a PA-ineffective dose of KML-29 (5 mg/kg) or PF-3845 (3 mg/kg) attenuated the MK-801-induced cognitive impairment (0.6 mg/kg). Our results suggest that the indirect regulation of endocannabinoids' concentration in the brain through the use of selected inhibitors may positively affect memory disorders, and thus increase the effectiveness of modern pharmacotherapy of schizophrenia.
Collapse
Affiliation(s)
- Marta Kruk-Slomka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Bartlomiej Adamski
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| | - Tomasz Slomka
- Department of Medical Informatics and Statistics with E-Health Lab, Medical University of Lublin, Jaczewskiego 4 Street, 20-954 Lublin, Poland
| | - Grazyna Biala
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, 4a Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
20
|
Cervetto C, Maura G, Guidolin D, Amato S, Ceccoli C, Agnati LF, Marcoli M. Striatal astrocytic A2A-D2 receptor-receptor interactions and their role in neuropsychiatric disorders. Neuropharmacology 2023:109636. [PMID: 37321323 DOI: 10.1016/j.neuropharm.2023.109636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
It is now generally accepted that astrocytes are active players in synaptic transmission, so that a neurocentric perspective of the integrative signal communication in the central nervous system is shifting towards a neuro-astrocentric perspective. Astrocytes respond to synaptic activity, release chemical signals (gliotransmitters) and express neurotransmitter receptors (G protein-coupled and ionotropic receptors), thus behaving as co-actors with neurons in signal communication in the central nervous system. The ability of G protein-coupled receptors to physically interact through heteromerization, forming heteromers and receptor mosaics with new distinct signal recognition and transduction pathways, has been intensively studied at neuronal plasma membrane, and has changed the view of the integrative signal communication in the central nervous system. One of the best-known examples of receptor-receptor interaction through heteromerization, with relevant consequences for both the physiological and the pharmacological points of view, is given by adenosine A2A and dopamine D2 receptors on the plasma membrane of striatal neurons. Here we review evidence that native A2A and D2 receptors can interact through heteromerization at the plasma membrane of astrocytes as well. Astrocytic A2A-D2 heteromers were found able to control the release of glutamate from the striatal astrocyte processes. A2A-D2 heteromers on striatal astrocytes and astrocyte processes are discussed as far as their potential relevance in the control of glutamatergic transmission in striatum is concerned, including potential roles in glutamatergic transmission dysregulation in pathological conditions including schizophrenia or the Parkinson's disease.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy.
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Italy.
| | - Sarah Amato
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Cristina Ceccoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy.
| | - Luigi F Agnati
- Department of Biochemical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy.
| | - Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy; Center for Promotion of 3Rs in Teaching and Research (Centro 3R), Pisa, Italy; Center of Excellence for Biomedical Research, University of Genova, Italy.
| |
Collapse
|
21
|
Riccardi A, Guarino M, Serra S, Spampinato MD, Vanni S, Shiffer D, Voza A, Fabbri A, De Iaco F. Narrative Review: Low-Dose Ketamine for Pain Management. J Clin Med 2023; 12:jcm12093256. [PMID: 37176696 PMCID: PMC10179418 DOI: 10.3390/jcm12093256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pain is the leading cause of medical consultations and occurs in 50-70% of emergency department visits. To date, several drugs have been used to manage pain. The clinical use of ketamine began in the 1960s and it immediately emerged as a manageable and safe drug for sedation and anesthesia. The analgesic properties of this drug were first reported shortly after its use; however, its psychomimetic effects have limited its use in emergency departments. Owing to the misuse and abuse of opioids in some countries worldwide, ketamine has become a versatile tool for sedation and analgesia. In this narrative review, ketamine's role as an analgesic is discussed, with both known and new applications in various contexts (acute, chronic, and neuropathic pain), along with its strengths and weaknesses, especially in terms of psychomimetic, cardiovascular, and hepatic effects. Moreover, new scientific evidence has been reviewed on the use of additional drugs with ketamine, such as magnesium infusion for improving analgesia and clonidine for treating psychomimetic symptoms. Finally, this narrative review was refined by the experience of the Pain Group of the Italian Society of Emergency Medicine (SIMEU) in treating acute and chronic pain with acute manifestations in Italian Emergency Departments.
Collapse
Affiliation(s)
| | - Mario Guarino
- Emergency Department, Centro Traumatologico Ortopedico, Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Napoli, Italy
| | - Sossio Serra
- Emergency Department, Maurizio Bufalini Hospital, 47522 Cesena, Italy
| | | | - Simone Vanni
- Dipartimento Emergenza e Area Critica, Azienda USL Toscana Centro Struttura Complessa di Medicina d'Urgenza, 50053 Empoli, Italy
| | - Dana Shiffer
- Emergency Department, Humanitas University, Via Rita Levi Montalcini 4, 20089 Milan, Italy
| | - Antonio Voza
- Emergency Department, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Andrea Fabbri
- Emergency Department, AUSL Romagna, Presidio Ospedaliero Morgagni-Pierantoni, 47121 Forlì, Italy
| | - Fabio De Iaco
- Emergency Department, Ospedale Maria Vittoria, 10144 Turin, Italy
| |
Collapse
|
22
|
Vila È, Pinacho R, Prades R, Tarragó T, Castro E, Munarriz-Cuezva E, Meana JJ, Eugui-Anta A, Roldan M, Vera-Montecinos A, Ramos B. Inhibition of Prolyl Oligopeptidase Restores Prohibitin 2 Levels in Psychosis Models: Relationship to Cognitive Deficits in Schizophrenia. Int J Mol Sci 2023; 24:6016. [PMID: 37046989 PMCID: PMC10093989 DOI: 10.3390/ijms24076016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Cognitive impairment represents one of the core features of schizophrenia. Prolyl Oligopeptidase (POP) inhibition is an emerging strategy for compensating cognitive deficits in hypoglutamatergic states such as schizophrenia, although little is known about how POP inhibitors exert their pharmacological activity. The mitochondrial and nuclear protein Prohibitin 2 (PHB2) could be dysregulated in schizophrenia. However, altered PHB2 levels in schizophrenia linked to N-methyl-D-aspartate receptor (NMDAR) activity and cognitive deficits are still unknown. To shed light on this, we measured the PHB2 levels by immunoblot in a postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects, in the frontal pole of mice treated with the NMDAR antagonists phencyclidine and dizocilpine, and in rat cortical astrocytes and neurons treated with dizocilpine. Mice and cells were treated in combination with the POP inhibitor IPR19. The PHB2 levels were also analyzed by immunocytochemistry in rat neurons. The PHB2 levels increased in DLPFC in cases of chronic schizophrenia and were associated with cognitive impairments. NMDAR antagonists increased PHB2 levels in the frontal pole of mice and in rat astrocytes and neurons. High levels of PHB2 were found in the nucleus and cytoplasm of neurons upon NMDAR inhibition. IPR19 restored PHB2 levels in the acute NMDAR inhibition. These results show that IPR19 restores the upregulation of PHB2 in an acute NMDAR hypoactivity stage suggesting that the modulation of PHB2 could compensate NMDAR-dependent cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Èlia Vila
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Raquel Pinacho
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Roger Prades
- Iproteos S.L., Baldiri i Reixac, 10, 08028 Barcelona, Spain
| | - Teresa Tarragó
- Iproteos S.L., Baldiri i Reixac, 10, 08028 Barcelona, Spain
- Institute for Research in Biomedicine (IRB Barcelona), Baldiri i Reixac, 10, 08028 Barcelona, Spain
| | - Elena Castro
- Departamento de Fisiología y Farmacología, Universidad de Cantabria, Avda. Cardenal Herrera Oria s/n, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Eva Munarriz-Cuezva
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - J. Javier Meana
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Institute of Health Carlos III, 28029 Madrid, Spain
- Department of Pharmacology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Ania Eugui-Anta
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Mònica Roldan
- Unitat de Microscòpia Confocal i Imatge Cel·lular, Servei de Medicina Genètica i Molecular, Institut Pediàtric de Malaties Rares (IPER), Hospital Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain
| | - América Vera-Montecinos
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
| | - Belén Ramos
- Parc Sanitari Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Dr. Antoni Pujadas, 42, 08830 Sant Boi de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM (Biomedical Network Research Center of Mental Health), Institute of Health Carlos III, 28029 Madrid, Spain
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia, 08500 Vic, Spain
| |
Collapse
|
23
|
Bhuia MS, Rahaman MM, Islam T, Bappi MH, Sikder MI, Hossain KN, Akter F, Al Shamsh Prottay A, Rokonuzzman M, Gürer ES, Calina D, Islam MT, Sharifi-Rad J. Neurobiological effects of gallic acid: current perspectives. Chin Med 2023; 18:27. [PMID: 36918923 PMCID: PMC10015939 DOI: 10.1186/s13020-023-00735-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Gallic acid (GA) is a phenolic molecule found naturally in a wide range of fruits as well as in medicinal plants. It has many health benefits due to its antioxidant properties. This study focused on finding out the neurobiological effects and mechanisms of GA using published data from reputed databases. For this, data were collected from various sources, such as PubMed/Medline, Science Direct, Scopus, Google Scholar, SpringerLink, and Web of Science. The findings suggest that GA can be used to manage several neurological diseases and disorders, such as Alzheimer's disease, Parkinson's disease, strokes, sedation, depression, psychosis, neuropathic pain, anxiety, and memory loss, as well as neuroinflammation. According to database reports and this current literature-based study, GA may be considered one of the potential lead compounds to treat neurological diseases and disorders. More preclinical and clinical studies are required to establish GA as a neuroprotective drug.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Mizanur Rahaman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Iqbal Sikder
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Kazi Nadim Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Fatama Akter
- Department of Pharmacy, Southern University Bangladesh, Chattogram, 4210 Bangladesh
| | - Abdullah Al Shamsh Prottay
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100 Bangladesh
| | | |
Collapse
|
24
|
Langova V, Horka P, Hubeny J, Novak T, Vales K, Adamek P, Holubova K, Horacek J. Ketamine disrupts locomotion and electrolocation in a novel model of schizophrenia, Gnathonemus petersii fish. J Neurosci Res 2023; 101:1098-1106. [PMID: 36866610 DOI: 10.1002/jnr.25186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/02/2022] [Accepted: 02/17/2023] [Indexed: 03/04/2023]
Abstract
The present study aimed to examine a weakly electric fish Gnathonemus petersii (G. petersii) as a candidate model organism of glutamatergic theory of schizophrenia. The idea of G. petersii elevating the modeling of schizophrenia symptoms is based on the fish's electrolocation and electrocommunication abilities. Fish were exposed to the NMDA antagonist ketamine in two distinct series differing in the dose of ketamine. The main finding revealed ketamine-induced disruption of the relationship between electric signaling and behavior indicating impairment of fish navigation. Moreover, lower doses of ketamine significantly increased locomotion and erratic movement and higher doses of ketamine reduced the number of electric organ discharges indicating successful induction of positive schizophrenia-like symptoms and disruption of fish navigation. Additionally, a low dose of haloperidol was used to test the normalization of the positive symptoms to suggest a predictive validity of the model. However, although successfully induced, positive symptoms were not normalized using the low dose of haloperidol; hence, more doses of the typical antipsychotic haloperidol and probably also of a representative of atypical antipsychotic drugs need to be examined to confirm the predictive validity of the model.
Collapse
Affiliation(s)
- Veronika Langova
- National Institute of Mental Health, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Horka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Hubeny
- National Institute of Mental Health, Klecany, Czech Republic
| | - Tomas Novak
- National Institute of Mental Health, Klecany, Czech Republic
| | - Karel Vales
- National Institute of Mental Health, Klecany, Czech Republic
| | - Petr Adamek
- National Institute of Mental Health, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Katerina Holubova
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Horacek
- National Institute of Mental Health, Klecany, Czech Republic.,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
25
|
Moulin TC, Stojanovic T, Rajesh RP, Pareek T, Donzelli L, Williams MJ, Schiöth HB. Effects of Transient Administration of the NMDA Receptor Antagonist MK-801 in Drosophila melanogaster Activity, Sleep, and Negative Geotaxis. Biomedicines 2023; 11:biomedicines11010192. [PMID: 36672700 PMCID: PMC9855773 DOI: 10.3390/biomedicines11010192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
MK-801, also called dizocilpine, is an N-methyl-D-aspartate (NMDA) receptor antagonist widely used in animal research to model schizophrenia-like phenotypes. Although its effects in rodents are well characterised, little is known about the outcomes of this drug in other organisms. In this study, we characterise the effects of MK-801 on the locomotion, sleep, and negative geotaxis of the fruit fly Drosophila melanogaster. We observed that acute (24 h) and chronic (7 days) administration of MK-801 enhanced negative geotaxis activity in the forced climbing assay for all tested concentrations (0.15 mM, 0.3 mM, and 0.6 mM). Moreover, acute administration, but not chronic, increased the flies' locomotion in a dose-dependent matter. Finally, average sleep duration was not affected by any concentration or administration protocol. Our results indicate that acute MK-801 could be used to model hyperactivity phenotypes in Drosophila melanogaster. Overall, this study provides further evidence that the NMDA receptor system is functionally conserved in flies, suggesting the usefulness of this model to investigate several phenotypes as a complement and replacement of the rodent models within drug discovery.
Collapse
Affiliation(s)
- Thiago C. Moulin
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
- Correspondence:
| | - Tijana Stojanovic
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Rasika P. Rajesh
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Tirusha Pareek
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Laura Donzelli
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Michael J. Williams
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| |
Collapse
|
26
|
Kaki S, DeRosa H, Timmerman B, Brummelte S, Hunter RG, Kentner AC. Developmental Manipulation-Induced Changes in Cognitive Functioning. Curr Top Behav Neurosci 2023; 63:241-289. [PMID: 36029460 PMCID: PMC9971379 DOI: 10.1007/7854_2022_389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Schizophrenia is a complex neurodevelopmental disorder with as-yet no identified cause. The use of animals has been critical to teasing apart the potential individual and intersecting roles of genetic and environmental risk factors in the development of schizophrenia. One way to recreate in animals the cognitive impairments seen in people with schizophrenia is to disrupt the prenatal or neonatal environment of laboratory rodent offspring. This approach can result in congruent perturbations in brain physiology, learning, memory, attention, and sensorimotor domains. Experimental designs utilizing such animal models have led to a greatly improved understanding of the biological mechanisms that could underlie the etiology and symptomology of schizophrenia, although there is still more to be discovered. The implementation of the Research and Domain Criterion (RDoC) has been critical in taking a more comprehensive approach to determining neural mechanisms underlying abnormal behavior in people with schizophrenia through its transdiagnostic approach toward targeting mechanisms rather than focusing on symptoms. Here, we describe several neurodevelopmental animal models of schizophrenia using an RDoC perspective approach. The implementation of animal models, combined with an RDoC framework, will bolster schizophrenia research leading to more targeted and likely effective therapeutic interventions resulting in better patient outcomes.
Collapse
Affiliation(s)
- Sahith Kaki
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Holly DeRosa
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
- University of Massachusetts Boston, Boston, MA, USA
| | - Brian Timmerman
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Susanne Brummelte
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Translational Neuroscience Program, Wayne State University, Detroit, MI, USA
| | | | - Amanda C Kentner
- School of Arts and Sciences, Health Psychology Program, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA.
| |
Collapse
|
27
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
28
|
Adolescent nicotine potentiates the inhibitory effect of raclopride, a D2R antagonist, on phencyclidine-sensitized psychotic-like behavior in mice. Toxicol Appl Pharmacol 2022; 456:116282. [DOI: 10.1016/j.taap.2022.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 01/01/2023]
|
29
|
Zhao T, Shi Z, Ling N, Qin J, Zhou Q, Wu L, Wang Y, Lin C, Ma D, Song X. Sevoflurane Ameliorates Schizophrenia in a Mouse Model and Patients: A Pre-Clinical and Clinical Feasibility Study. Curr Neuropharmacol 2022; 20:2369-2380. [PMID: 35272593 DOI: 10.2174/1570159x20666220310115846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 03/05/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND GABAergic deficits have been considered to be associated with the pathophysiology of schizophrenia, and hence, GABA receptors subtype A (GABAARs) modulators, such as commonly used volatile anesthetic sevoflurane, may have therapeutic values for schizophrenia. The present study investigates the therapeutic effectiveness of low-concentration sevoflurane in MK801-induced schizophrenia-like mice and schizophrenia patients. METHODS Three weeks after MK801 administration (0.5 mg kg-1, i.p. twice a day for 5 days), mice were exposed to 1% sevoflurane 1hr/day for 5 days. Behavioral tests, immunohistochemical analysis, western blot assay, and electrophysiology assessments were performed 1-week post-exposure. Ten schizophrenia patients received 1% sevoflurane 5 hrs per day for 6 days and were assessed with the Positive and Negative Syndrome Scale (PANSS) and the 18-item Brief Psychiatric Rating Scale (BPRS-18) at week 1 and week 2. RESULTS MK801 induced hypolocomotion and social deficits, downregulated expression of NMDARs subunits and postsynaptic density protein 95 (PSD95), reduced parvalbumin - and GAD67-positive neurons, altered amplitude and frequency of mEPSCs and mIPSCs, and increased the excitation/inhibition ratio. All these changes induced by MK-801 were attenuated by sevoflurane administration. Six and eight patients achieved a response defined as a reduction of at least 30% in the PANSS total score at 1st and 2nd week after treatments. The BPRS-18 total score was found to be significantly decreased by 38% at the 2nd week (p < 0.01). CONCLUSION Low-concentration sevoflurane effectively reversed MK801-induced schizophrenialike disease in mice and alleviated schizophrenia patients' symptoms. Our work suggests sevoflurane to be a valuable therapeutic strategy for treating schizophrenia patients.
Collapse
Affiliation(s)
- Tianyun Zhao
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ziwen Shi
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Nongxi Ling
- Department of Psychiatry, The Third People\'s Hospital of Xinhui District, Guangdong, China
| | - Jingwen Qin
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Quancai Zhou
- Department of Psychiatry, The Third People\'s Hospital of Xinhui District, Guangdong, China
| | - Lingzhi Wu
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Yuansheng Wang
- Department of Anesthesiology, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Guangdong, China
| | - Chuansong Lin
- Department of Psychiatry, The Third People\'s Hospital of Xinhui District, Guangdong, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK
| | - Xingrong Song
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
30
|
The Antidepressant-like Activity, Effects on Recognition Memory Deficits, Bioavailability, and Safety after Chronic Administration of New Dual-Acting Small Compounds Targeting Neuropsychiatric Symptoms in Dementia. Int J Mol Sci 2022; 23:ijms231911452. [PMID: 36232749 PMCID: PMC9569954 DOI: 10.3390/ijms231911452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to extend the body of preclinical research on prototype dual-acting compounds combining the pharmacophores relevant for inhibiting cyclic nucleotide phosphodiesterase 10 (PDE10A) and serotonin 5-HT1A/5-HT7 receptor (5-HT1AR/5-HT7R) activity into a single chemical entity (compounds PQA-AZ4 and PQA-AZ6). After i.v. administration of PQA-AZ4 and PQA-AZ6 to rats, the brain to plasma ratio was 0.9 and 8.60, respectively. After i.g. administration, the brain to plasma ratio was 5.7 and 5.3, respectively. An antidepressant-like effect was observed for PQA-AZ6 in the forced swim test, after chronic 21-day treatment via i.p. administration with 1 mg/kg/day. Both compounds revealed an increased level of brain-derived neurotrophic factor (Bdnf) mRNA in the hippocampus and prefrontal cortex. Moreover, PQA-AZ4 and PQA-AZ6 completely reversed (+)-MK801-induced memory disturbances comparable with the potent PDE10 inhibitor, compound PQ-10. In the safety profile that included measurements of plasma glucose, triglyceride, and total cholesterol concentration, liver enzyme activity, the total antioxidant activity of serum, together with weight gain, compounds exhibited no significant activity. However, the studied compounds had different effects on human normal fibroblast cells as revealed in in vitro assay. The pharmacokinetic and biochemical results support the notion that these novel dual-acting compounds might offer a promising therapeutic tool in CNS-related disorders.
Collapse
|
31
|
Rosenbrock H, Dorner-Ciossek C, Giovannini R, Schmid B, Schuelert N. Effects of the Glycine Transporter-1 Inhibitor Iclepertin (BI 425809) on Sensory Processing, Neural Network Function, and Cognition in Animal Models Related to Schizophrenia. J Pharmacol Exp Ther 2022; 382:223-232. [PMID: 35661632 DOI: 10.1124/jpet.121.001071] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/04/2022] [Indexed: 11/22/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor hypofunction leading to neural network dysfunction is thought to play an important role in the pathophysiology of cognitive impairment associated with schizophrenia (CIAS). Increasing extracellular concentrations of the NMDA receptor co-agonist glycine through inhibition of glycine transporter-1 (GlyT1) has the potential to treat CIAS by improving cortical network function through enhanced glutamatergic signaling. Indeed, the novel GlyT1 inhibitor iclepertin (BI 425809) improved cognition in a recent clinical study in patients with schizophrenia. The present study tested the ability of iclepertin to reverse deficits in auditory sensory processing and cortical network function induced by the uncompetetive NMDA receptor antagonist, MK-801, using electroencephalography (EEG) to measure auditory event-related potentials (AERPs) and 40 Hz auditory steady-state response (ASSR). In addition, improvements in memory performance with iclepertin were evaluated using the T-maze spontaneous alternation test in MK-801-treated mice and the social recognition test in naïve rats. Iclepertin reversed MK-801-induced deficits in the AERP readouts N1 amplitude and N1 gating, as well as reversing deficits in 40 Hz ASSR power and intertrial coherence. Additionally, iclepertin significantly attenuated an MK-801-induced increase in basal gamma power. Furthermore, iclepertin reversed MK-801-induced working memory deficits in mice and improved social recognition memory performance in rats. Overall, this study demonstrates that inhibition of GlyT1 is sufficient to attenuate MK-801-induced deficits in translatable EEG parameters relevant to schizophrenia. Moreover, iclepertin showed memory-enhancing effects in rodent cognition tasks, further demonstrating the potential for GlyT1 inhibition to treat CIAS. SIGNIFICANCE STATEMENT: Despite the significant patient burden caused by cognitive impairment associated with schizophrenia, there are currently no approved pharmacotherapies. In this preclinical study, the novel glycine transporter inhibitor iclepertin (BI 425809) reversed sensory processing deficits and neural network dysfunction evoked by inhibition of N-methyl-D-aspartate receptors and enhanced working memory performance and social recognition in rodents. These findings support previous clinical evidence for the procognitive effects of iclepertin.
Collapse
Affiliation(s)
- Holger Rosenbrock
- Department of CNS Discovery Research (H.R., C.D.-C., N.S.), Department of Medicinal Chemistry (R.G.), and Department of Drug Discovery Sciences (B.S.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Cornelia Dorner-Ciossek
- Department of CNS Discovery Research (H.R., C.D.-C., N.S.), Department of Medicinal Chemistry (R.G.), and Department of Drug Discovery Sciences (B.S.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Riccardo Giovannini
- Department of CNS Discovery Research (H.R., C.D.-C., N.S.), Department of Medicinal Chemistry (R.G.), and Department of Drug Discovery Sciences (B.S.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bernhard Schmid
- Department of CNS Discovery Research (H.R., C.D.-C., N.S.), Department of Medicinal Chemistry (R.G.), and Department of Drug Discovery Sciences (B.S.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Niklas Schuelert
- Department of CNS Discovery Research (H.R., C.D.-C., N.S.), Department of Medicinal Chemistry (R.G.), and Department of Drug Discovery Sciences (B.S.), Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
32
|
Cortez IL, Silva NR, Rodrigues NS, Pedrazzi JFC, Del Bel EA, Mechoulam R, Gomes FV, Guimarães FS. HU-910, a CB2 receptor agonist, reverses behavioral changes in pharmacological rodent models for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110553. [PMID: 35341823 DOI: 10.1016/j.pnpbp.2022.110553] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 12/09/2022]
Abstract
Despite attenuating the positive symptoms, drugs currently used to treat schizophrenia frequently do not improve the negative symptoms and cognitive impairments. In addition, they show low tolerability, which has been associated with high rates of treatment discontinuation. Recent evidence suggests that the endocannabinoid system may be a target for schizophrenia treatment. The CB2 receptor modulates dopaminergic neurotransmission, which is abnormally enhanced in schizophrenia patients. Here, we aimed to evaluate whether HU-910, a selective CB2 receptor agonist, would reverse schizophrenia-related behavioral changes observed after the acute injections of amphetamine or the N-methyl-d-aspartate receptor (NMDAR) antagonist MK-801. We also investigated the effects of HU-910 in the memory impairment caused by repeated MK-801 administration. Finally, we tested whether HU-910 would produce the cannabinoid tetrad (catalepsy, hypolocomotion, hypothermia, and antinociception). In male C57BL/6 mice, the acute treatment with HU-910 (30 mg/kg) prevented the hyperlocomotion induced by acute MK-801. This effect was blocked by the CB2 receptor antagonist AM630 (1 mg/kg). On the contrary, HU-910 did not prevent the increased locomotor activity caused by acute amphetamine. The acute treatment with HU-910 (3, 10, and 30 mg/kg) also attenuated the impairments in the prepulse inhibition test induced by acute MK-801 and amphetamine. The repeated treatment with HU-910 attenuated the cognitive impairment caused by chronic administration of MK-801 in the novel object recognition test. Furthermore, HU-910 did not produce the cannabinoid tetrad. These results indicate that HU-910 produced antipsychotic-like effects and support further research on the potential therapeutic properties of this compound to treat schizophrenia.
Collapse
Affiliation(s)
- Isadora Lopes Cortez
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Nicole R Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Naielly S Rodrigues
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Elaine A Del Bel
- Department of Physiology, Ribeirão Preto Dentistry School, University of São Paulo, Brazil
| | - Raphael Mechoulam
- Department of Medicinal Chemistry and Natural Products, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
33
|
Design, synthesis, and behavioral evaluation of dual-acting compounds as phosphodiesterase type 10A (PDE10A) inhibitors and serotonin ligands targeting neuropsychiatric symptoms in dementia. Eur J Med Chem 2022; 233:114218. [DOI: 10.1016/j.ejmech.2022.114218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
|
34
|
Jeong Y, Bae HJ, Park K, Bae HJ, Yang X, Cho YJ, Jung SY, Jang DS, Ryu JH. 4-Methoxycinnamic acid attenuates schizophrenia-like behaviors induced by MK-801 in mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114864. [PMID: 34822958 DOI: 10.1016/j.jep.2021.114864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scrophularia buergeriana has been used for traditional medicine as an agent for reducing heat in the blood and for nourishing kidney 'Yin'. Therefore, S. buergeriana might be a potential treatment for mental illness, especially schizophrenia, which may be attenuated by supplying kidney Yin and reducing blood heat. In a pilot study, we found that S. buergeriana alleviated sensorimotor gating dysfunction induced by MK-801. AIM OF THE STUDY In the present study, we attempted to reveal the active component(s) of S. buergeriana as a candidate for treating sensorimotor gating dysfunction, and we identified 4-methoxycinnamic acid. We explored whether 4-methoxycinnamic acid could affect schizophrenia-like behaviors induced by hypofunction of the glutamatergic neurotransmitter system. MATERIALS AND METHODS Mice were treated with 4-methoxycinnamic acid (3, 10, or 30 mg/kg, i.g.) under MK-801-induced schizophrenia-like conditions. The effect of 4-methoxycinnamic acid on schizophrenia-like behaviors were explored using several behavioral tasks. We also used Western blotting to investigate which signaling pathway(s) is involved in the pharmacological activities of 4-methoxycinnamic acid. RESULTS 4-Methoxycinnamic acid ameliorated MK-801-induced prepulse inhibition deficits, social interaction disorders and cognitive impairment by regulating the phosphorylation levels of PI3K, Akt and GSK-3β signaling in the prefrontal cortex. And there were no adverse effects in terms of catalepsy and motor coordination impairments. CONCLUSION Collectively, 4-methoxycinnamic acid would be a potential candidate for treating schizophrenia with fewer adverse effects, especially the negative symptoms and cognitive dysfunctions.
Collapse
Affiliation(s)
- Yongwoo Jeong
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ho Jung Bae
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Keontae Park
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyo Jeoung Bae
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Xingquan Yang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Young-Jin Cho
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Seo Yun Jung
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jong Hoon Ryu
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
35
|
Tsai CW, Tsai SJ, Pan YJ, Lin HM, Pan TY, Yang FY. Transcranial Ultrasound Stimulation Reverses Behavior Changes and the Expression of Calcium-Binding Protein in a Rodent Model of Schizophrenia. Neurotherapeutics 2022; 19:649-659. [PMID: 35229268 PMCID: PMC9226253 DOI: 10.1007/s13311-022-01195-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 11/29/2022] Open
Abstract
Cognitive dysfunctions are a core feature of schizophrenia that may be linked to abnormalities in gamma-aminobutyric-acid (GABA)ergic neurons. Traditional antipsychotics show poor efficacy in treating cognitive symptoms. The purpose of this study was to investigate the restorative role of transcranial ultrasound stimulation (TUS) in counteracting dizocilpine (MK-801)-induced cognitive deficits and GABAergic interneuron dysfunction in a simulation of schizophrenia. Some rats subjected to MK-801 administration were treated with low-intensity pulsed ultrasound (LIPUS) daily for 5 days, while other rats subjected to MK-801 administration received no LIPUS treatment. After LIPUS treatment, the neuroprotective effects of LIPUS in the LIPUS-treated rats were assessed through behavioral analysis, western blotting, and histological observations. Compared with the MK-801-treated group, the MK-801 plus LIPUS-treated rats revealed a preference for novel objects. The MK-801 plus LIPUS-treated rats also exhibited a significant decrease in swim times compared to the MK-801-treated rats. LIPUS stimulation significantly increased hippocampal levels of CB and PV and restored the cell densities of PV + and CB + in the cingulate cortex in the MK-801 plus LIPUS-treated group. In addition, LIPUS stimulation rebalanced the BDNF levels in the hippocampus and medial prefrontal cortex. Our findings indicate that LIPUS improves cognitive deficits and ameliorates neuropathology in MK-801-treated rats. These results suggest that LIPUS may constitute a potential novel therapeutic approach for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Che-Wen Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ju Pan
- Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Institute of Public Health, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Mei Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsung-Yu Pan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
36
|
Schizophrenia-like endurable behavioral and neuroadaptive changes induced by ketamine administration involve Angiotensin II AT 1 receptor. Behav Brain Res 2022; 425:113809. [PMID: 35218792 DOI: 10.1016/j.bbr.2022.113809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 11/21/2022]
Abstract
Schizophrenia is a chronic disease affecting 1% worldwide population, of which 30% are refractory to the available treatments: thus, searching for new pharmacological targets is imperative. The acute and repeated ketamine administration are validated preclinical models that recreate the behavioral and neurochemical features of this pathology, including the parvalbumin-expressing interneurons dysfunction. Angiotensin II, through AT1 receptors (AT1-R), modulates the dopaminergic and GABAergic neurotransmission. We evaluated the AT1-R role in the long-term neuronal activation and behavioral alterations induced by repeated ketamine administration. Adult male Wistar rats received AT1-R antagonist candesartan/vehicle (days 1-10) and ketamine/saline (days 6-10). After 14 days of drug-free, neuronal activation and behavioral analysis were performed. Locomotor activity, social interaction and novel object recognition tests were assessed at basal conditions or after ketamine challenge. Immunostaining for c-Fos, GAD67 and parvalbumin were assessed after ketamine challenge in cingulate, insular, piriform, perirhinal, and entorhinal cortices, striatum, and hippocampus. Additionally, to evaluate the AT1-R involvement in acute ketamine psychotomimetic effects, the same behavioral tests were performed after 6 days of daily-candesartan and a single-ketamine administration. We found that ketamine-induced long-lasting schizophrenia-like behavioral alterations, and regional-dependent neuronal activation changes, involving the GABAergic neurotransmission system and the parvalbumin-expressing interneurons, were AT1-R-dependent. The AT1-R were not involved in the acute ketamine psychotomimetic effects. These results add new evidence to the wide spectrum of action of ketamine and strengthen the AT1-R involvement in endurable alterations induced by psychostimulants administration, previously proposed by our group, as well as their preponderant role in the development of psychiatric pathologies.
Collapse
|
37
|
Maleninska K, Jandourkova P, Brozka H, Stuchlik A, Nekovarova T. Selective impairment of timing in a NMDA hypofunction animal model of psychosis. Behav Brain Res 2022; 419:113671. [PMID: 34788697 DOI: 10.1016/j.bbr.2021.113671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/01/2022]
Abstract
Schizophrenia is severe neuropsychiatric disease, which is commonly accompanied not only by positive or negative symptoms, but also by cognitive impairment. To study neuronal mechanisms underlying cognitive distortions and mechanisms underlying schizophrenia, animal pharmacological models of cognitive symptoms are commonly used. Between various cognitive impairments in schizophrenia patients, disturbed time perception has often been reported. Here, we examined temporal and spatial cognition in a modified Carousel maze task in the animal model of schizophrenia induced by non-competitive NMDA-receptor antagonists MK-801. Male Long-Evans rats (n = 18) first learned to avoid the aversive sector on a rotating arena in both dark and light intervals. We verified that during dark, rats used temporal cues, while during light they relied predominantly on spatial cues. We demonstrated that the timing strategy depends on the stable rotation speed of the arena and on the repositioning clues such as aversive stimuli. During testing (both in light and dark intervals), half of the rats received MK-801 and the control half received saline solution. We observed dose-dependent disruptions of both temporal and spatial cognition. Namely, both doses of MK-801 (0.1 and 0.12 mg/kg) significantly impaired timing strategy in the dark and increased locomotor activity. MK-801 dose 0.1 mg/kg, but not 0.12, also impaired spatial avoidance strategy in light. We found that the timing strategy is more sensitive to NMDA antagonist MK-801 than the spatial strategy. To conclude, a modified version of the Carousel maze is a useful and sensitive tool for detecting timing impairments in the MK-801 induced rodent model of schizophrenia.
Collapse
Affiliation(s)
- Kristyna Maleninska
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic.
| | - Pavla Jandourkova
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; Department of Physiology, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic
| | - Hana Brozka
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Ales Stuchlik
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic.
| | - Tereza Nekovarova
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic; National Institute of Mental Health, Topolova 748, 25067 Klecany, Czech Republic; Department of Zoology, Faculty of Science, Charles University, Albertov 6, 12800 Prague 2, Czech Republic.
| |
Collapse
|
38
|
Loureiro CM, Fachim HA, Harte MK, Dalton CF, Reynolds GP. Subchronic PCP effects on DNA methylation and protein expression of NMDA receptor subunit genes in the prefrontal cortex and hippocampus of female rats. J Psychopharmacol 2022; 36:238-244. [PMID: 35102781 DOI: 10.1177/02698811211069109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND N-methyl-d-aspartate receptor (NMDAR) dysfunction is implicated in schizophrenia, and NMDAR antagonists, such as phencyclidine (PCP), can induce behaviours that mimic aspects of the disorder. AIMS We investigated DNA methylation of Grin1, Grin2a and Grin2b promoter region and NR1 and NR2 protein expression in the prefrontal cortex (PFC) and hippocampus of adult female Lister-hooded rats following subchronic PCP (scPCP) administration. We also determined whether any alterations were tissue-specific. METHODS Rats were divided into two groups that received vehicle (0.9% saline) or 2 mg/kg PCP twice a day for 7 days (n = 10 per group). After behavioural testing (novel object recognition), to confirm a cognitive deficit, brains were dissected and NMDAR subunit DNA methylation and protein expression were analysed by pyrosequencing and ELISA. Line-1 methylation was determined as a measure of global methylation. Data were analysed using Student's t-test and Pearson correlation. RESULTS The scPCP administration led to Grin1 and Grin2b hypermethylation and reduction in NR1 protein in both PFC and hippocampus. No significant differences were observed in Line-1 or Grin2a methylation and NR2 protein. CONCLUSIONS The scPCP treatment resulted in increased DNA methylation at promoter sites of Grin1 and Grin2b NMDAR subunits in two brain areas implicated in schizophrenia, independent of any global change in DNA methylation, and are similar to our observations in a neurodevelopmental animal model of schizophrenia - social isolation rearing post-weaning. Moreover, these alterations may contribute to the changes in protein expression for NMDAR subunits demonstrating the potential importance of epigenetic mechanisms in schizophrenia.
Collapse
Affiliation(s)
- Camila M Loureiro
- Department of Internal Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Helene A Fachim
- Department of Endocrinology and Metabolism, Salford Royal Foundation Trust, Salford, UK
| | - Michael K Harte
- Division of Pharmacy & Optometry, University of Manchester, Manchester, UK
| | - Caroline F Dalton
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| |
Collapse
|
39
|
Bauminger H, Zaidan H, Akirav I, Gaisler-Salomon I. Anandamide Hydrolysis Inhibition Reverses the Long-Term Behavioral and Gene Expression Alterations Induced by MK-801 in Male Rats: Differential CB1 and CB2 Receptor-Mediated Effects. Schizophr Bull 2022; 48:795-803. [PMID: 35092675 PMCID: PMC9212101 DOI: 10.1093/schbul/sbab153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
NMDA receptor blockade in rodents is commonly used to induce schizophrenia-like behavioral abnormalities, including cognitive deficits and social dysfunction. Aberrant glutamate and GABA transmission, particularly in adolescence, is implicated in these behavioral abnormalities. The endocannabinoid system modulates glutamate and GABA transmission, but the impact of endocannabinoid modulation on cognitive and social dysfunction is unclear. Here, we asked whether late-adolescence administration of the anandamide hydrolysis inhibitor URB597 can reverse behavioral deficits induced by early-adolescence administration of the NMDA receptor blocker MK-801. In parallel, we assessed the impact of MK-801 and URB597 on mRNA expression of glutamate and GABA markers. We found that URB597 prevented MK-801-induced novel object recognition deficits and social interaction abnormalities in adult rats, and reversed glutamate and GABA aberrations in the prelimbic PFC. URB597-mediated reversal of MK-801-induced social interaction deficits was mediated by the CB1 receptor, whereas the reversal of cognitive deficits was mediated by the CB2 receptor. This was paralleled by the reversal of CB1 and CB2 receptor expression abnormalities in the basolateral amygdala and prelimbic PFC, respectively. Together, our findings show that interfering with NMDA receptor function in early adolescence has a lasting impact on phenotypes resembling the negative symptoms and cognitive deficits of schizophrenia and on glutamate and GABA marker expression in the PFC. Prevention of behavioral and molecular abnormalities by late-adolescence URB597 via CB1 and CB2 receptors suggests that endocannabinoid stimulation may have therapeutic potential in addressing treatment-resistant symptoms.
Collapse
Affiliation(s)
- Hagar Bauminger
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Hiba Zaidan
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Irit Akirav
- Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa 3498838, Israel,The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa 3498838, Israel
| | - Inna Gaisler-Salomon
- To whom correspondence should be addressed; tel: +972-4-8249674, fax: +972-4-8263157, e-mail:
| |
Collapse
|
40
|
Yi GL, Zhu MZ, Cui HC, Yuan XR, Liu P, Tang J, Li YQ, Zhu XH. A hippocampus dependent neural circuit loop underlying the generation of auditory mismatch negativity. Neuropharmacology 2022; 206:108947. [PMID: 35026286 DOI: 10.1016/j.neuropharm.2022.108947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/11/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022]
Abstract
Extracting relevant information and transforming it into appropriate behavior, is a fundamental brain function, and requires the coordination between the sensory and cognitive systems, however, the underlying mechanisms of interplay between sensory and cognition systems remain largely unknown. Here, we developed a mouse model for mimicking human auditory mismatch negativity (MMN), a well-characterized translational biomarker for schizophrenia, and an index of early auditory information processing. We found that a subanesthetic dose of ketamine decreased the amplitude of MMN in adult mice. Using pharmacological and chemogenetic approaches, we identified an auditory cortex-entorhinal cortex-hippocampus neural circuit loop that is required for the generation of MMN. In addition, we found that inhibition of dCA1→MEC circuit impaired the auditory related fear discrimination. Moreover, we found that ketamine induced MMN deficiency by inhibition of long-range GABAergic projection from the CA1 region of the dorsal hippocampus to the medial entorhinal cortex. These results provided circuit insights for ketamine effects and early auditory information processing. As the entorhinal cortex is the interface between the neocortex and hippocampus, and the hippocampus is critical for the formation, consolidation, and retrieval of episodic memories and other cognition, our results provide a neural mechanism for the interplay between the sensory and cognition systems.
Collapse
Affiliation(s)
- Guo-Liang Yi
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Min-Zhen Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - He-Chen Cui
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xin-Rui Yuan
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Liu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie Tang
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yuan-Qing Li
- Research Center for Brain-Computer Interface, Pazhou Lab, Guangzhou, 510330, China
| | - Xin-Hong Zhu
- Institute of Mental Health, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China; Research Center for Brain Health, Pazhou Lab, Guangzhou, 510330, China; School of Psychology, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
41
|
Franscescon F, Souza TP, Müller TE, Michelotti P, Canzian J, Stefanello FV, Rosemberg DB. Taurine prevents MK-801-induced shoal dispersion and altered cortisol responses in zebrafish. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110399. [PMID: 34246730 DOI: 10.1016/j.pnpbp.2021.110399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/22/2021] [Accepted: 07/05/2021] [Indexed: 11/28/2022]
Abstract
Schizophrenia is a chronic neuropsychiatric disorder characterized by a shortened lifespan and significant impaired social and vocational functioning. Schizophrenic patients can present hypothalamic-pituitary-adrenal (HPA) axis dysfunctions and cortisol dysregulation, which play an important role on the etiology onset, exacerbation, and relapsing of symptoms. Based on its intrinsic neuroprotective properties, taurine is considered a promising substance with beneficial role on various brain disorders, including schizophrenia. Here, we evaluated the effects of taurine on shoaling behavior and whole-body cortisol levels in zebrafish treated with dizocilpine (MK-801), which elicits schizophrenia-like phenotypes in animal models. Briefly, zebrafish shoals (4 fish per shoal) were exposed to dechlorinated water or taurine (42, 150, or 400 mg/L) for 60 min. Then, saline (PBS, pH 7.4 or 2.0 mg/kg MK-801) were intraperitoneally injected and zebrafish behavior was recorded 15 min later. In general, MK-801 disrupted shoaling behavior and reduced whole-body cortisol levels in zebrafish. All taurine pretreatments prevented MK-801-induced increase in shoal area, while 400 mg/L taurine prevented the MK-801-induced alterations in neuroendocrine responses. Moreover, all taurine-pretreated groups showed increased geotaxis, supporting a modulatory role in the overall dispersion pattern of the shoal. Collectively, our novel findings show a potential protective effect of taurine on MK-801-induced shoal dispersion and altered neuroendocrine responses, fostering the use of zebrafish models to assess schizophrenia-like phenotypes.
Collapse
Affiliation(s)
- Francini Franscescon
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Thiele P Souza
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Talise E Müller
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Paula Michelotti
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Flavia V Stefanello
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria. 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
42
|
Chen ST, Hsieh CP, Lee MY, Chen LC, Huang CM, Chen HH, Chan MH. Betaine prevents and reverses the behavioral deficits and synaptic dysfunction induced by repeated ketamine exposure in mice. Biomed Pharmacother 2021; 144:112369. [PMID: 34715446 DOI: 10.1016/j.biopha.2021.112369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022] Open
Abstract
As an N-methyl-D-aspartate (NMDA) receptor inhibitor, ketamine has become a popular recreational substance and currently is used to address treatment-resistant depression. Since heavy ketamine use is associated with persisting psychosis, cognitive impairments, and neuronal damage, the safety of ketamine treatment for depression should be concerned. The nutrient supplement betaine has been shown to counteract the acute ketamine-induced psychotomimetic effects and cognitive dysfunction through modulating NMDA receptors. This study aimed to determine whether the adjunctive or subsequent betaine treatment would improve the enduring behavioral disturbances and hippocampal synaptic abnormality induced by repeated ketamine exposure. Mice received ketamine twice daily for 14 days, either combined with betaine co-treatment or subsequent betaine post-treatment for 7 days. Thereafter, three-chamber social approach test, reciprocal social interaction, novel location/object recognition test, forced swimming test, and head-twitch response induced by serotonergic hallucinogen were monitored. Data showed that the enduring behavioral abnormalities after repeated ketamine exposure, including disrupted social behaviors, recognition memory impairments, and increased depression-like and hallucinogen-induced head-twitch responses, were remarkably improved by betaine co-treatment or post-treatment. Consistently, betaine protected and reversed the reduced hippocampal synaptic activity, such as decreases in field excitatory post-synaptic potentiation (fEPSP), long-term potentiation (LTP), and PSD-95 levels, after repeated ketamine treatment. These results demonstrated that both co-treatment and post-treatment with betaine could effectively prevent and reverse the adverse behavioral manifestations and hippocampal synaptic plasticity after repeated ketamine use, suggesting that betaine can be used as a novel adjunct therapy with ketamine for treatment-resistant depression and provide benefits for ketamine use disorders.
Collapse
Affiliation(s)
- Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien, Taiwan
| | - Chung-Pin Hsieh
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yi Lee
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Liao-Chen Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chien-Min Huang
- Animal Behavior Core National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, Taiwan
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan; Animal Behavior Core National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli, Taiwan; Institute of Neuroscience, National Chengchi Uinversity, Taipei, Taiwan.
| | - Ming-Huan Chan
- Institute of Neuroscience, National Chengchi Uinversity, Taipei, Taiwan; Research Center for Mind, Brain, and Learning, National Changchi University, 64, Section 2, Zhinan Road, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
43
|
Büki A, Bohár Z, Kekesi G, Vécsei L, Horvath G. Wisket rat model of schizophrenia: Impaired motivation and, altered brain structure, but no anhedonia. Physiol Behav 2021; 244:113651. [PMID: 34800492 DOI: 10.1016/j.physbeh.2021.113651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/17/2023]
Abstract
It is well-known that the poor cognition in schizophrenia is strongly linked to negative symptoms, including motivational deficit, which due to, at least partially, anhedonia. The goal of this study was to explore whether the schizophrenia-like Wisket animals with impaired motivation (obtained in the reward-based hole-board test), also show decreased hedonic behavior (investigated with the sucrose preference test). While neurochemical alterations of different neurotransmitter systems have been detected in the Wisket rats, no research has been performed on structural changes. Therefore, our additional aim was to reveal potential neuroanatomical and structural alterations in different brain regions in these rats. The rats showed decreased general motor activity (locomotion, rearing and exploration) and impaired task performance in the hole-board test compared to the controls, whereas no significant difference was observed in the sucrose preference test between the groups. The Wisket rats exhibited a significant decrease in the frontal cortical thickness and the hippocampal area, and moderate increases in the lateral ventricles and cell disarray in the CA3 subfield of hippocampus. To our knowledge, this is the first study to investigate the hedonic behavior and neuroanatomical alterations in a multi-hit animal model of schizophrenia. The results obtained in the sucrose preference test suggest that anhedonic behavior might not be involved in the impaired motivation obtained in the hole-board test. The neuropathological changes agree with findings obtained in patients with schizophrenia, which refine the high face validity of the Wisket model.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary.
| | - Zsuzsanna Bohár
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, H-6725, Hungary; Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., Szeged, H-6725, Hungary; Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., Szeged, H-6725 Hungary
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary
| |
Collapse
|
44
|
Griego E, Hernández-Frausto M, Márquez LA, Lara-Valderrabano L, López Rubalcava C, Galván EJ. Activation of D1/D5 Receptors Ameliorates Decreased Intrinsic Excitability of Hippocampal Neurons Induced by Neonatal Blockade of NMDA Receptors. Br J Pharmacol 2021; 179:1695-1715. [PMID: 34791647 DOI: 10.1111/bph.15735] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/01/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Dysregulation of dopaminergic transmission combined with transient hypofunction of N-methyl-D-aspartate receptors (NMDARs) is a key mechanism that may underlie cognitive symptoms of schizophrenia. EXPERIMENTAL APPROACH Therefore, we aimed to identify electrophysiologic alterations in animals neonatally treated with the NMDA receptor antagonist, MK-801 or with saline solution. KEY RESULTS Patch-clamp whole-cell recordings from MK-801-treated animals revealed altered passive and active electrophysiologic properties compared with CA1 pyramidal cells from saline-treated animals, including upregulation of the K+ inward-rectifier conductance and fast-inactivating and slow/non-inactivating K+ currents. Upregulation of these membrane ionic currents reduced the overall excitability and altered the firing properties of CA1 pyramidal cells. We also explored the capability of cells treated with MK-801 to express intrinsic excitability potentiation, a non-synaptic form of hippocampal plasticity associated with cognition and memory formation. CA1 pyramidal cells from animals treated with MK-801 were unable to convey intrinsic excitability potentiation and had blunted synaptic potentiation. Furthermore, MK-801-treated animals also exhibited reduced cognitive performance in the Barnes maze task. Notably, activation of D1/D5 receptors with SKF-38, 393 partially restored electrophysiologic alterations caused by neonatal treatment with MK-801. CONCLUSION AND IMPLICATIONS Our results offer a molecular and mechanistic explanation based on dysregulation of glutamatergic in addition to dopaminergic transmission that may contribute to the understanding of the cognitive deterioration associated with schizophrenia.
Collapse
Affiliation(s)
- Ernesto Griego
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Melissa Hernández-Frausto
- Current address: Department of Neuroscience and Physiology, NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY, USA
| | - Luis A Márquez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Leonardo Lara-Valderrabano
- Current address: A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Carolina López Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Emilio J Galván
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| |
Collapse
|
45
|
The Phenoxyalkyltriazine Antagonists for 5-HT 6 Receptor with Promising Procognitive and Pharmacokinetic Properties In Vivo in Search for a Novel Therapeutic Approach to Dementia Diseases. Int J Mol Sci 2021; 22:ijms221910773. [PMID: 34639113 PMCID: PMC8509428 DOI: 10.3390/ijms221910773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Among the serotonin receptors, one of the most recently discovered 5-HT6 subtype is an important protein target and its ligands may play a key role in the innovative treatment of cognitive disorders. However, none of its selective ligands have reached the pharmaceutical market yet. Recently, a new chemical class of potent 5-HT6 receptor agents, the 1,3,5-triazine-piperazine derivatives, has been synthesized. Three members, the ortho and meta dichloro- (1,2) and the unsubstituted phenyl (3) derivatives, proved to be of special interest due to their high affinities (1,2) and selectivity (3) toward 5-HT6 receptor. Thus, a broader pharmacological profile for 1–3, including comprehensive screening of the receptor selectivity and drug-like parameters in vitro as well as both, pharmacokinetic and pharmacodynamic properties in vivo, have been investigated within this study. A comprehensive analysis of the obtained results indicated significant procognitive-like activity together with beneficial drug-likeness in vitro and pharmacokinetics in vivo profiles for both, (RS)-4-[1-(2,3-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (2) and (RS)-4-(4-methylpiperazin-1-yl)-6-(1-phenoxypropyl)-1,3,5-triazin-2-amine (3), but insensibly predominant for compound 2. Nevertheless, both compounds (2 and 3) seem to be good Central Nervous System drug candidates in search for novel therapeutic approach to dementia diseases, based on the 5-HT6 receptor target.
Collapse
|
46
|
Kruk-Slomka M, Biala G. Cannabidiol Attenuates MK-801-Induced Cognitive Symptoms of Schizophrenia in the Passive Avoidance Test in Mice. Molecules 2021; 26:molecules26195977. [PMID: 34641522 PMCID: PMC8513030 DOI: 10.3390/molecules26195977] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is a chronic mental disorder that disturbs feelings and behavior. The symptoms of schizophrenia fall into three categories: positive, negative, and cognitive. Cognitive symptoms are characterized by memory loss or attentional deficits, and are especially difficult to treat. Thus, there is intense research into the development of new treatments for schizophrenia-related responses. One of the possible strategies is connected with cannabidiol (CBD), a cannabinoid compound. This research focuses on the role of CBD in different stages of memory (acquisition, consolidation, retrieval) connected with fear conditioning in the passive avoidance (PA) learning task in mice, as well as in the memory impairment typical of cognitive symptoms of schizophrenia. Memory impairment was provoked by an acute injection of the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (animal model of schizophrenia). Our results revealed that an acute injection of CBD (30 mg/kg; intraperitoneally (i.p.) improved all phases of long-term fear memory in the PA test in mice. Moreover, the acute injection of non-effective doses of CBD (1 or 5 mg/kg; i.p.) attenuated the memory impairment provoked by MK-801 (0.6 mg/kg; i.p.) in the consolidation and retrieval stages of fear memory, but not in the acquisition of memory. The present findings confirm that CBD has a positive influence on memory and learning processes in mice, and reveals that this cannabinoid compound is able to attenuate memory impairment connected with hypofunction of glutamate transmission in a murine model of schizophrenia.
Collapse
|
47
|
Evaluation of acute and chronic nociception in subchronically administered MK-801-induced rat model of schizophrenia. Behav Pharmacol 2021; 32:571-580. [PMID: 34494988 DOI: 10.1097/fbp.0000000000000651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Patients diagnosed with schizophrenia have been reported to exhibit atypically low pain sensitivity and to vary in their experience of chronic pain. To the best of our knowledge, there has yet to be an animal study that provides information concerning the relationship between models of schizophrenia and pain. In the present study, we investigated several distinct nociceptive behaviors in a translational rat model of schizophrenia (0. 5 mg/kg MK-801, twice a day for 7 days followed by a 7-day washout period). The presence of the expected cognitive deficit was confirmed with novel object recognition (NOR) paradigm prior to nociception testing. MK-801-treated rats with lack of novelty interest in NOR testing showed: hyposensitivity to thermal and mechanical stimuli; short-term hypoalgesia followed by augmented hyperalgesia in response to formalin-induced spontaneous nociception and increased thermal and mechanical hyperalgesia in the complete Freund's adjuvant (CFA) induced chronic pain model. In conclusion, MK-801 induced antinociception effects for thermal stimuli in rats that were consistent with the decreased pain sensitivity observed in schizophrenia patients. Additionally, the amplified biphasic response exhibited by the MK-801 group in the formalin-induced spontaneous nociception test affirms the suitability of the test as a model of acute to delayed pain transition.
Collapse
|
48
|
Dutra-Tavares AC, Manhães AC, Semeão KA, Maia JG, Couto LA, Filgueiras CC, Ribeiro-Carvalho A, Abreu-Villaça Y. Does nicotine exposure during adolescence modify the course of schizophrenia-like symptoms? Behavioral analysis in a phencyclidine-induced mice model. PLoS One 2021; 16:e0257986. [PMID: 34587208 PMCID: PMC8480744 DOI: 10.1371/journal.pone.0257986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/14/2021] [Indexed: 01/18/2023] Open
Abstract
The first symptoms of schizophrenia (SCHZ) are usually observed during adolescence, a developmental period during which first exposure to psychoactive drugs also occurs. These epidemiological findings point to adolescence as critical for nicotine addiction and SCHZ comorbidity, however it is not clear whether exposure to nicotine during this period has a detrimental impact on the development of SCHZ symptoms since there is a lack of studies that investigate the interactions between these conditions during this period of development. To elucidate the impact of a short course of nicotine exposure across the spectrum of SCHZ-like symptoms, we used a phencyclidine-induced adolescent mice model of SCHZ (2.5mg/Kg, s.c., daily, postnatal day (PN) 38-PN52; 10mg/Kg on PN53), combined with an established model of nicotine minipump infusions (24mg/Kg/day, PN37-44). Behavioral assessment began 4 days after the end of nicotine exposure (PN48) using the following tests: open field to assess the hyperlocomotion phenotype; novel object recognition, a declarative memory task; three-chamber sociability, to verify social interaction and prepulse inhibition, a measure of sensorimotor gating. Phencyclidine exposure evoked deficits in all analyzed behaviors. Nicotine history reduced the magnitude of phencyclidine-evoked hyperlocomotion and impeded the development of locomotor sensitization. It also mitigated the deficient sociability elicited by phencyclidine. In contrast, memory and sensorimotor gating deficits evoked by phencyclidine were neither improved nor worsened by nicotine history. In conclusion, our results show for the first time that nicotine history, restricted to a short period during adolescence, does not worsen SCHZ-like symptoms evoked by a phencyclidine-induced mice model.
Collapse
Affiliation(s)
- Ana Carolina Dutra-Tavares
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Alex C. Manhães
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Keila A. Semeão
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Julyana G. Maia
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Luciana A. Couto
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Claudio C. Filgueiras
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Anderson Ribeiro-Carvalho
- Departamento de Ciências, Faculdade de Formação de Professores da Universidade do Estado do Rio de Janeiro, São Gonçalo, RJ, Brazil
| | - Yael Abreu-Villaça
- Departamento de Ciências Fisiológicas, Laboratório de Neurofisiologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| |
Collapse
|
49
|
Hogendorf A, Hogendorf AS, Kurczab R, Satała G, Szewczyk B, Cieślik P, Latacz G, Handzlik J, Lenda T, Kaczorowska K, Staroń J, Bugno R, Duszyńska B, Bojarski AJ. N-Skatyltryptamines-Dual 5-HT 6R/D 2R Ligands with Antipsychotic and Procognitive Potential. Molecules 2021; 26:4605. [PMID: 34361754 PMCID: PMC8347595 DOI: 10.3390/molecules26154605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
A series of N-skatyltryptamines was synthesized and their affinities for serotonin and dopamine receptors were determined. Compounds exhibited activity toward 5-HT1A, 5-HT2A, 5-HT6, and D2 receptors. Substitution patterns resulting in affinity/activity switches were identified and studied using homology modeling. Chosen hits were screened to determine their metabolism, permeability, hepatotoxicity, and CYP inhibition. Several D2 receptor antagonists with additional 5-HT6R antagonist and agonist properties were identified. The former combination resembled known antipsychotic agents, while the latter was particularly interesting due to the fact that it has not been studied before. Selective 5-HT6R antagonists have been shown previously to produce procognitive and promnesic effects in several rodent models. Administration of 5-HT6R agonists was more ambiguous-in naive animals, it did not alter memory or produce slight amnesic effects, while in rodent models of memory impairment, they ameliorated the condition just like antagonists. Using the identified hit compounds 15 and 18, we tried to sort out the difference between ligands exhibiting the D2R antagonist function combined with 5-HT6R agonism, and mixed D2/5-HT6R antagonists in murine models of psychosis.
Collapse
Affiliation(s)
- Agata Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Adam S. Hogendorf
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (B.S.); (P.C.)
| | - Paulina Cieślik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (B.S.); (P.C.)
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (G.L.); (J.H.)
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland; (G.L.); (J.H.)
| | - Tomasz Lenda
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland;
| | - Katarzyna Kaczorowska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Jakub Staroń
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Ryszard Bugno
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Beata Duszyńska
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| | - Andrzej J. Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (A.H.); (A.S.H.); (R.K.); (G.S.); (K.K.); (J.S.); (R.B.); (B.D.)
| |
Collapse
|
50
|
Vales K, Holubova K. Minireview: Animal model of schizophrenia from the perspective of behavioral pharmacology: Effect of treatment on cognitive functions. Neurosci Lett 2021; 761:136098. [PMID: 34224793 DOI: 10.1016/j.neulet.2021.136098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Schizophrenia is a debilitating mental disorder characterized by positive, negative and cognitive symptoms. Whereas positive symptoms are satisfactorily addressed by current antipsychotic treatment, negative and cognitive symptomatic treatment remains largely ineffective. This review investigates the treatment efficacy regarding cognitive symptoms and evaluates the contribution of different monoamine receptor systems involved in schizophrenia pathophysiology to cognition. In the review, we included preclinical studies assessing the effect of different treatments on cognition in pre-pulse inhibition and two spatial cognitive tests. While pre-pulse inhibition investigates pre-attentive processes operating outside of conscious awareness, the spatial tasks require continuous attention and active engagement in task solving for a successful outcome. The schizophrenia-like phenotype was attained by acute or subchronic administration of non-competitive NMDA receptor antagonist MK-801.
Collapse
Affiliation(s)
- K Vales
- The National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Institute of Physiology CAS, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - K Holubova
- The National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic.
| |
Collapse
|