1
|
Ciani C, Falcone C. Interlaminar and varicose-projection astrocytes: toward a new understanding of the primate brain. Front Cell Neurosci 2024; 18:1477753. [PMID: 39655243 PMCID: PMC11626530 DOI: 10.3389/fncel.2024.1477753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
In the last years, science started to move toward a more glio-neurocentric view, in which astrocytes are hypothesized to be directly involved in cognitive functions. Indeed, astrocytes show a variety of shapes with species-specific characteristics, suggesting a specialization of roles during evolution. Interlaminar (ILA) and varicose-projection (VP-As) astrocytes show an anatomical organization that is different compared to the classical horizontal net typically formed by protoplasmic and fibrous astrocytes. ILAs show a modular architecture with the soma in the first cortical layer and processes toward the deep layers with species-specific length. VP-As reside in the deep layers of the cortex, are characterized by varicosities on the longest processes, and are individual-specific. These characteristics suggest roles that are more complex than what was theorized until now. Here, we recapitulate what we know so far from literature from the first time ILAs were described to the most recent discoveries, spanning from morphology description, hypothesis on the development to their features in diseases. For a complete glance on this topic, we included a final paragraph on which techniques and models were used to study ILAs and VP-As, and what new avenues may be opened thanks to more novel methods.
Collapse
Affiliation(s)
| | - Carmen Falcone
- Department of Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy
| |
Collapse
|
2
|
Yang Y, Liu T, Li J, Yan D, Hu Y, Wu P, Fang F, McQuillan PM, Hang W, Leng J, Hu Z. General anesthetic agents induce neurotoxicity through astrocytes. Neural Regen Res 2024; 19:1299-1307. [PMID: 37905879 PMCID: PMC11467951 DOI: 10.4103/1673-5374.385857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Neuroscientists have recognized the importance of astrocytes in regulating neurological function and their influence on the release of glial transmitters. Few studies, however, have focused on the effects of general anesthetic agents on neuroglia or astrocytes. Astrocytes can also be an important target of general anesthetic agents as they exert not only sedative, analgesic, and amnesic effects but also mediate general anesthetic-induced neurotoxicity and postoperative cognitive dysfunction. Here, we analyzed recent advances in understanding the mechanism of general anesthetic agents on astrocytes, and found that exposure to general anesthetic agents will destroy the morphology and proliferation of astrocytes, in addition to acting on the receptors on their surface, which not only affect Ca2+ signaling, inhibit the release of brain-derived neurotrophic factor and lactate from astrocytes, but are even involved in the regulation of the pro- and anti-inflammatory processes of astrocytes. These would obviously affect the communication between astrocytes as well as between astrocytes and neighboring neurons, other neuroglia, and vascular cells. In this review, we summarize how general anesthetic agents act on neurons via astrocytes, and explore potential mechanisms of action of general anesthetic agents on the nervous system. We hope that this review will provide a new direction for mitigating the neurotoxicity of general anesthetic agents.
Collapse
Affiliation(s)
- Yanchang Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Tiantian Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Anesthesiology, Ningbo Women and Children’s Hospital, Ningbo, Zhejiang Province, China
| | - Jun Li
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Anesthesiology, Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, Zhejiang Province, China
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yuhan Hu
- Cell Biology Department, Yale University, New Haven, CT, USA
| | - Pin Wu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Fuquan Fang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Patrick M. McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA, USA
| | - Wenxin Hang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jianhang Leng
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Dienel GA, Schousboe A, McKenna MC, Rothman DL. A tribute to Leif Hertz: The historical context of his pioneering studies of the roles of astrocytes in brain energy metabolism, neurotransmission, cognitive functions, and pharmacology identifies important, unresolved topics for future studies. J Neurochem 2024; 168:461-495. [PMID: 36928655 DOI: 10.1111/jnc.15812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Leif Hertz, M.D., D.Sc. (honōris causā) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K+ from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K+ uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, 21201, USA
| | - Douglas L Rothman
- Department of Radiology, Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
4
|
Ringuette D, EbrahimAmini A, Sangphosuk W, Aquilino MS, Carroll G, Ashley M, Bazzigaluppi P, Dufour S, Droguerre M, Stefanovic B, Levi O, Charveriat M, Monnier PP, Carlen PL. Spreading depolarization suppression from inter-astrocytic gap junction blockade assessed with multimodal imaging and a novel wavefront detection scheme. Neurotherapeutics 2024; 21:e00298. [PMID: 38241157 PMCID: PMC10903093 DOI: 10.1016/j.neurot.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 01/21/2024] Open
Abstract
Spreading depolarizations (SDs) are an enigmatic and ubiquitous co-morbidity of neural dysfunction. SDs are propagating waves of local field depolarization and increased extracellular potassium. They increase the metabolic demand on brain tissue, resulting in changes in tissue blood flow, and are associated with adverse neurological consequences including stroke, epilepsy, neurotrauma, and migraine. Their occurrence is associated with poor patient prognosis through mechanisms which are only partially understood. Here we show in vivo that two (structurally dissimilar) drugs, which suppress astroglial gap junctional communication, can acutely suppress SDs. We found that mefloquine hydrochloride (MQH), administered IP, slowed the propagation of the SD potassium waveform and intermittently led to its suppression. The hemodynamic response was similarly delayed and intermittently suppressed. Furthermore, in instances where SD led to transient tissue swelling, MQH reduced observable tissue displacement. Administration of meclofenamic acid (MFA) IP was found to reduce blood flow, both proximal and distal, to the site of SD induction, preceding a large reduction in the amplitude of the SD-associated potassium wave. We introduce a novel image processing scheme for SD wavefront localization under low-contrast imaging conditions permitting full-field wavefront velocity mapping and wavefront parametrization. We found that MQH administration delayed SD wavefront's optical correlates. These two clinically used drugs, both gap junctional blockers found to distinctly suppress SDs, may be of therapeutic benefit in the various brain disorders associated with recurrent SDs.
Collapse
Affiliation(s)
- Dene Ringuette
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Division of Genetics and Development, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada.
| | - Azin EbrahimAmini
- Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Weerawong Sangphosuk
- Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada
| | - Mark S Aquilino
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Gwennyth Carroll
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Max Ashley
- Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada
| | - Paolo Bazzigaluppi
- Sunnybrook Health Sciences Center, 2075 Bayview Ave., Toronto, Ontario M4N 3M5, Canada
| | - Suzie Dufour
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | | | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, 610 University Ave., Toronto, Ontario M5G 2M9, Canada; Sunnybrook Health Sciences Center, 2075 Bayview Ave., Toronto, Ontario M4N 3M5, Canada
| | - Ofer Levi
- The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Rd., Toronto, Ontario M5S 3G4, Canada
| | | | - Philippe P Monnier
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Division of Genetics and Development, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; Department of Ophthalmology & Vision Science, Faculty of Medicine, University of Toronto, 340 College St., Toronto, Ontario M5T 3A9, Canada
| | - Peter L Carlen
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Division of Genetics and Development, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; Krembil Neuroscience, Krembil Research Institute, 60 Leonard Ave., Toronto, Ontario M5T 2S8, Canada; The Institute Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
5
|
Jiwaji Z, Márkus NM, McQueen J, Emelianova K, He X, Dando O, Chandran S, Hardingham GE. General anesthesia alters CNS and astrocyte expression of activity-dependent and activity-independent genes. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1216366. [PMID: 37670849 PMCID: PMC10476527 DOI: 10.3389/fnetp.2023.1216366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023]
Abstract
General anesthesia represents a common clinical intervention and yet can result in long-term adverse CNS effects particularly in the elderly or dementia patients. Suppression of cortical activity is a key feature of the anesthetic-induced unconscious state, with activity being a well-described regulator of pathways important for brain health. However, the extent to which the effects of anesthesia go beyond simple suppression of neuronal activity is incompletely understood. We found that general anesthesia lowered cortical expression of genes induced by physiological activity in vivo, and recapitulated additional patterns of gene regulation induced by total blockade of firing activity in vitro, including repression of neuroprotective genes and induction of pro-apoptotic genes. However, the influence of anesthesia extended beyond that which could be accounted for by activity modulation, including the induction of non activity-regulated genes associated with inflammation and cell death. We next focused on astrocytes, important integrators of both neuronal activity and inflammatory signaling. General anesthesia triggered gene expression changes consistent with astrocytes being in a low-activity environment, but additionally caused induction of a reactive profile, with transcriptional changes enriched in those triggered by stroke, neuroinflammation, and Aß/tau pathology. Thus, while the effects of general anesthesia on cortical gene expression are consistent with the strong repression of brain activity, further deleterious effects are apparent including a reactive astrocyte profile.
Collapse
Affiliation(s)
- Zoeb Jiwaji
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Anaesthesia, Critical Care and Pain Medicine, Usher Institute, Edinburgh Royal Infirmary, Edinburgh, United Kingdom
| | - Nóra M. Márkus
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Jamie McQueen
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katie Emelianova
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Xin He
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Owen Dando
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles E. Hardingham
- UK Dementia Research Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Li J, Wang P, Wang LY, Wu Y, Wang J, Yu D, Chen Z, Shi H, Yin S. Redistribution of the astrocyte phenotypes in the medial vestibular nuclei after unilateral labyrinthectomy. Front Neurosci 2023; 17:1146147. [PMID: 37434761 PMCID: PMC10330711 DOI: 10.3389/fnins.2023.1146147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Astrocytes are highly heterogeneous and involved in different aspects of fundamental functions in the central nervous system (CNS). However, whether and how this heterogeneous population of cells reacts to the pathophysiological challenge is not well understood. To investigate the response status of astrocytes in the medial vestibular nucleus (MVN) after vestibular loss, we examined the subtypes of astrocytes in MVN using single-cell sequencing technology in a unilateral labyrinthectomy mouse model. We discovered four subtypes of astrocytes in the MVN with each displaying unique gene expression profiles. After unilateral labyrinthectomy, the proportion of the astrocytic subtypes and their transcriptional features on the ipsilateral side of the MVN differ significantly from those on the contralateral side. With new markers to detect and classify the subtypes of astrocytes in the MVN, our findings implicate potential roles of the adaptive changes of astrocyte subtypes in the early vestibular compensation following peripheral vestibular damage to reverse behavioral deficits.
Collapse
Affiliation(s)
- Jie Li
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pengjun Wang
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lu-Yang Wang
- Programs in Neurosciences & Mental Health, SickKids Research Institute and Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yaqin Wu
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiping Wang
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongzhen Yu
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhengnong Chen
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haibo Shi
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otorhinolaryngology—Head and Neck Surgery, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
7
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
8
|
Liu L, Gao H, Li J, Chen S. Probing microdomain Ca 2+ activity and synaptic transmission with a node-based tripartite synapse model. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1111306. [PMID: 36926546 PMCID: PMC10013067 DOI: 10.3389/fnetp.2023.1111306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 06/08/2023]
Abstract
Astrocytic fine processes are the most minor structures of astrocytes but host much of the Ca2+ activity. These localized Ca2+ signals spatially restricted to microdomains are crucial for information processing and synaptic transmission. However, the mechanistic link between astrocytic nanoscale processes and microdomain Ca2+ activity remains hazily understood because of the technical difficulties in accessing this structurally unresolved region. In this study, we used computational models to disentangle the intricate relations of morphology and local Ca2+ dynamics involved in astrocytic fine processes. We aimed to answer: 1) how nano-morphology affects local Ca2+ activity and synaptic transmission, 2) and how fine processes affect Ca2+ activity of large process they connect. To address these issues, we undertook the following two computational modeling: 1) we integrated the in vivo astrocyte morphological data from a recent study performed with super-resolution microscopy that discriminates sub-compartments of various shapes, referred to as nodes and shafts to a classic IP3R-mediated Ca2+ signaling framework describing the intracellular Ca2+ dynamics, 2) we proposed a node-based tripartite synapse model linking with astrocytic morphology to predict the effect of structural deficits of astrocytes on synaptic transmission. Extensive simulations provided us with several biological insights: 1) the width of nodes and shafts could strongly influence the spatiotemporal variability of Ca2+ signals properties but what indeed determined the Ca2+ activity was the width ratio between nodes and shafts, 2) the connectivity of nodes to larger processes markedly shaped the Ca2+ signal of the parent process rather than nodes morphology itself, 3) the morphological changes of astrocytic part might potentially induce the abnormality of synaptic transmission by affecting the level of glutamate at tripartite synapses. Taken together, this comprehensive model which integrated theoretical computation and in vivo morphological data highlights the role of the nanomorphology of astrocytes in signal transmission and its possible mechanisms related to pathological conditions.
Collapse
Affiliation(s)
- Langzhou Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Huayi Gao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Shangbin Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China
- MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Chen W, Meng S, Han Y, Shi J. Astrocytes: the neglected stars in the central nervous system and drug addiction. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:417-426. [PMID: 37724324 PMCID: PMC10388769 DOI: 10.1515/mr-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 09/20/2023]
Abstract
With the advent of improved tools to examine the astrocytes, which have been believed to play a supportive role in the central nervous system (CNS) for years, their participation in the operation of the CNS and drug addiction was unveiled. Assisting the formation and function of the CNS, astrocytes are involved in physiological and pathological brain activities. Drug addiction is a pervasive psychiatric disorder, characterized by compulsive drug-taking behavior and high rate of relapse, impacting individual health and society stability and safety. When exposed to drugs of abuse, astrocytes go through a series of alterations, contributing to the development of addiction. Here we review how astrocytes contribute to the CNS and drug addiction. We hope that understanding the interaction between addictive drugs and astrocytes may help discover new mechanisms underlying the addiction and produce novel therapeutic treatments.
Collapse
Affiliation(s)
- Wenjun Chen
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Shiqiu Meng
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Ying Han
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
- The State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
- The Key Laboratory for Neuroscience of the Ministry of Education and Health, Peking University, Beijing 100191, China
| |
Collapse
|
10
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
11
|
Jiwaji Z, Hardingham GE. Good, bad, and neglectful: Astrocyte changes in neurodegenerative disease. Free Radic Biol Med 2022; 182:93-99. [PMID: 35202786 PMCID: PMC8969603 DOI: 10.1016/j.freeradbiomed.2022.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 12/17/2022]
Abstract
Astrocytes play key roles in CNS development as well as well as neuro-supportive roles in the mature brain including ionic, bioenergetic and redox homeostasis. Astrocytes undergo rapid changes following acute CNS insults such as stroke or traumatic brain injury, but are also profoundly altered in chronic neurodegenerative conditions such as Alzheimer's disease. While disease-altered astrocytes are often referred to as reactive, this does not represent a single cellular state or group of states, but a shift in astrocyte properties that is determined by the type of insult as well as spatio-temporal factors. Such changes can accelerate disease progression due to astrocytes neglecting their normal homeostatic neuro-supportive roles, as well as by gaining active neuro-toxic properties. However, other aspects of astrocytic responses to chronic disease can include the induction of adaptive-protective pathways. This is particularly the case when considering antioxidant defences, which can be up-regulated in many cell types, including astrocytes, in response to stresses, sometimes in concert with the activation of detoxification and proteostasis pathways. Protective responses, whilst potentially serving to mitigate neuronal dysfunction, may ultimately fail due to being insufficiently strong, or be offset by other deleterious changes to astrocytes occurring in parallel. Nevertheless, a greater understanding of early adaptive-protective responses of astrocytes to neurodegenerative disease pathology may point to ways in which these responses may be harnessed for therapeutic effect.
Collapse
Affiliation(s)
- Zoeb Jiwaji
- UK Dementia Research Institute at the University of Edinburgh, Chancellor's Building, Edinburgh Medical School, EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Giles E Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Chancellor's Building, Edinburgh Medical School, EH16 4SB, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
12
|
Verkhratsky A, Parpura V, Li B, Scuderi C. Astrocytes: The Housekeepers and Guardians of the CNS. ADVANCES IN NEUROBIOLOGY 2021; 26:21-53. [PMID: 34888829 DOI: 10.1007/978-3-030-77375-5_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astroglia are a diverse group of cells in the central nervous system. They are of the ectodermal, neuroepithelial origin and vary in morphology and function, yet, they can be collectively defined as cells having principle function to maintain homeostasis of the central nervous system at all levels of organisation, including homeostasis of ions, pH and neurotransmitters; supplying neurones with metabolic substrates; supporting oligodendrocytes and axons; regulating synaptogenesis, neurogenesis, and formation and maintenance of the blood-brain barrier; contributing to operation of the glymphatic system; and regulation of systemic homeostasis being central chemosensors for oxygen, CO2 and Na+. Their basic physiological features show a lack of electrical excitability (inapt to produce action potentials), but display instead a rather active excitability based on variations in cytosolic concentrations of Ca2+ and Na+. It is expression of neurotransmitter receptors, pumps and transporters at their plasmalemma, along with transports on the endoplasmic reticulum and mitochondria that exquisitely regulate the cytosolic levels of these ions, the fluctuation of which underlies most, if not all, astroglial homeostatic functions.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
13
|
Ghasemi Z, Naderi N, Shojaei A, Raoufy MR, Ahmadirad N, Barkley V, Mirnajafi-Zadeh J. Group I metabotropic glutamate receptors contribute to the antiepileptic effect of electrical stimulation in hippocampal CA1 pyramidal neurons. Epilepsy Res 2021; 178:106821. [PMID: 34839145 DOI: 10.1016/j.eplepsyres.2021.106821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
Low-frequency deep brain stimulation (LFS) inhibits neuronal hyperexcitability during epilepsy. Accordingly, the use of LFS as a treatment method for patients with drug-resistant epilepsy has been proposed. However, the LFS antiepileptic mechanisms are not fully understood. Here, the role of metabotropic glutamate receptors group I (mGluR I) in LFS inhibitory action on epileptiform activity (EA) was investigated. EA was induced by increasing the K+ concentration in artificial cerebrospinal fluid (ACSF) up to 12 mM in hippocampal slices of male Wistar rats. LFS (1 Hz, 900 pulses) was delivered to the bundles of Schaffer collaterals at the beginning of EA. The excitability of CA1 pyramidal neurons was assayed by intracellular whole-cell recording. Applying LFS reduced the firing frequency during EA and substantially moved the membrane potential toward repolarization after a high-K+ ACSF washout. In addition, LFS attenuated the EA-generated neuronal hyperexcitability. A blockade of both mGluR 1 and mGluR 5 prevented the inhibitory action of LFS on EA-generated neuronal hyperexcitability. Activation of mGluR I mimicked the LFS effects and had similar inhibitory action on excitability of CA1 pyramidal neurons following EA. However, mGluR I agonist's antiepileptic action was not as strong as LFS. The observed LFS effects were significantly attenuated in the presence of a PKC inhibitor. Altogether, the LFS' inhibitory action on neuronal hyperexcitability following EA relies, in part, on the activity of mGluR I and a PKC-related signaling pathway.
Collapse
Affiliation(s)
- Zahra Ghasemi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nooshin Ahmadirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
14
|
Rezaei M, Ahmadirad N, Ghasemi Z, Shojaei A, Raoufy MR, Barkley V, Fathollahi Y, Mirnajafi-Zadeh J. Alpha adrenergic receptors have role in the inhibitory effect of electrical low frequency stimulation on epileptiform activity in rats. Int J Neurosci 2021; 133:496-504. [PMID: 33998961 DOI: 10.1080/00207454.2021.1929211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Aim: Low frequency stimulation (LFS) inhibits neuronal hyperexcitability following epileptic activity. However, knowledge about LFS' inhibitory mechanisms is lacking. Here, α1 and α2 adrenergic receptors' roles in mediating LFS inhibitory action on high-K+ induced epileptiform activity (EA) was examined in rat hippocampal slices.Materials and methods: LFS (1 Hz, 900 pulses) was applied to the Schaffer collaterals. Whole-cell, patch clamp recording was used to measure changes in CA1 pyramidal neurons' excitability. By applying high-K+ on hippocampal slices, EA was induced, and neuronal excitability increased.Results: When administered at the beginning of EA, LFS reduced neuronal excitability. In the presence of prazosin (10 µM, an α1 adrenergic receptor antagonist) and yohimbine (5 µM, an α2 adrenergic receptor antagonist), LFS' typically has a restorative impact on EA-induced membrane potential hyperpolarization and spike firing frequency, but this effect was reduced after high-K+ washout; These antagonists did not have a significant effect on LFS' inhibitory action on spike firing during EA.Conclusion: These findings suggest that LFS' anticonvulsant effect, on neuronal hyperexcitability following high-K+ EA, may be mediated partly through α adrenergic receptors in hippocampal slices.
Collapse
Affiliation(s)
- Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nooshin Ahmadirad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Ghasemi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Victoria Barkley
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
15
|
O’Hare L, Asher JM, Hibbard PB. Migraine Visual Aura and Cortical Spreading Depression-Linking Mathematical Models to Empirical Evidence. Vision (Basel) 2021; 5:30. [PMID: 34200625 PMCID: PMC8293461 DOI: 10.3390/vision5020030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/15/2021] [Accepted: 05/24/2021] [Indexed: 01/10/2023] Open
Abstract
This review describes the subjective experience of visual aura in migraine, outlines theoretical models of this phenomenon, and explores how these may be linked to neurochemical, electrophysiological, and psychophysical differences in sensory processing that have been reported in migraine with aura. Reaction-diffusion models have been used to model the hallucinations thought to arise from cortical spreading depolarisation and depression in migraine aura. One aim of this review is to make the underlying principles of these models accessible to a general readership. Cortical spreading depolarisation and depression in these models depends on the balance of the diffusion rate between excitation and inhibition and the occurrence of a large spike in activity to initiate spontaneous pattern formation. We review experimental evidence, including recordings of brain activity made during the aura and attack phase, self-reported triggers of migraine, and psychophysical studies of visual processing in migraine with aura, and how these might relate to mechanisms of excitability that make some people susceptible to aura. Increased cortical excitability, increased neural noise, and fluctuations in oscillatory activity across the migraine cycle are all factors that are likely to contribute to the occurrence of migraine aura. There remain many outstanding questions relating to the current limitations of both models and experimental evidence. Nevertheless, reaction-diffusion models, by providing an integrative theoretical framework, support the generation of testable experimental hypotheses to guide future research.
Collapse
Affiliation(s)
- Louise O’Hare
- Division of Psychology, Nottingham Trent University, Nottingham NG1 4FQ, UK
| | - Jordi M. Asher
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| | - Paul B. Hibbard
- Department of Psychology, University of Essex, Colchester CO4 3SQ, UK; (J.M.A.); (P.B.H.)
| |
Collapse
|
16
|
Sancho L, Contreras M, Allen NJ. Glia as sculptors of synaptic plasticity. Neurosci Res 2021; 167:17-29. [PMID: 33316304 PMCID: PMC8513541 DOI: 10.1016/j.neures.2020.11.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Glial cells are non-neuronal cells in the nervous system that are crucial for proper brain development and function. Three major classes of glia in the central nervous system (CNS) include astrocytes, microglia and oligodendrocytes. These cells have dynamic morphological and functional properties and constantly surveil neural activity throughout life, sculpting synaptic plasticity. Astrocytes form part of the tripartite synapse with neurons and perform many homeostatic functions essential to proper synaptic function including clearing neurotransmitter and regulating ion balance; they can modify these properties, in addition to additional mechanisms such as gliotransmitter release, to influence short- and long-term plasticity. Microglia, the resident macrophage of the CNS, monitor synaptic activity and can eliminate synapses by phagocytosis or modify synapses by release of cytokines or neurotrophic factors. Oligodendrocytes regulate speed of action potential conduction and efficiency of information exchange through the formation of myelin, having important consequences for the plasticity of neural circuits. A deeper understanding of how glia modulate synaptic and circuit plasticity will further our understanding of the ongoing changes that take place throughout life in the dynamic environment of the CNS.
Collapse
Affiliation(s)
- Laura Sancho
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Minerva Contreras
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA, 92037, USA.
| |
Collapse
|
17
|
McNeill J, Rudyk C, Hildebrand ME, Salmaso N. Ion Channels and Electrophysiological Properties of Astrocytes: Implications for Emergent Stimulation Technologies. Front Cell Neurosci 2021; 15:644126. [PMID: 34093129 PMCID: PMC8173131 DOI: 10.3389/fncel.2021.644126] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Astrocytes comprise a heterogeneous cell population characterized by distinct morphologies, protein expression and function. Unlike neurons, astrocytes do not generate action potentials, however, they are electrically dynamic cells with extensive electrophysiological heterogeneity and diversity. Astrocytes are hyperpolarized cells with low membrane resistance. They are heavily involved in the modulation of K+ and express an array of different voltage-dependent and voltage-independent channels to help with this ion regulation. In addition to these K+ channels, astrocytes also express several different types of Na+ channels; intracellular Na+ signaling in astrocytes has been linked to some of their functional properties. The physiological hallmark of astrocytes is their extensive intracellular Ca2+ signaling cascades, which vary at the regional, subregional, and cellular levels. In this review article, we highlight the physiological properties of astrocytes and the implications for their function and influence of network and synaptic activity. Furthermore, we discuss the implications of these differences in the context of optogenetic and DREADD experiments and consider whether these tools represent physiologically relevant techniques for the interrogation of astrocyte function.
Collapse
Affiliation(s)
- Jessica McNeill
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | | | | | - Natalina Salmaso
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| |
Collapse
|
18
|
Astrocyte-specific hypoxia-inducible factor 1 (HIF-1) does not disrupt the endothelial barrier during hypoxia in vitro. Fluids Barriers CNS 2021; 18:13. [PMID: 33736658 PMCID: PMC7977259 DOI: 10.1186/s12987-021-00247-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Astrocytes (AC) are essential for brain homeostasis. Much data suggests that AC support and protect the vascular endothelium, but increasing evidence indicates that during injury conditions they may lose their supportive role resulting in endothelial cell activation and BBB disturbance. Understanding the triggers that flip this switch would provide invaluable information for designing new targets to modulate the brain vascular compartment. Hypoxia-inducible factor-1 (HIF-1) has long been assumed to be a culprit for barrier dysfunction as a number of its target genes are potent angiogenic factors. Indeed AC themselves, reservoirs of an array of different growth factors and molecules, are frequently assumed to be the source of such molecules although direct supporting evidence is yet to be published. Being well known reservoirs of HIF-1 dependent angiogenic molecules, we asked if AC HIF-1 dependent paracrine signaling drives brain EC disturbance during hypoxia. METHODS First we collected conditioned media from control and siRNA-mediated HIF-1 knockdown primary rat AC that had been exposed to normoxic or hypoxic conditions. The conditioned media was then used to culture normoxic and hypoxic (1% O2) rat brain microvascular EC (RBE4) for 6 and 24 h. Various activation parameters including migration, proliferation and cell cycling were assessed and compared to untreated controls. In addition, tight junction localization and barrier stability per se (via permeability assay) was evaluated. RESULTS AC conditioned media maintained both normoxic and hypoxic EC in a quiescent state by suppressing EC metabolic activity and proliferation. By FACs we observed reduced cell cycling with an increased number of cells in G0 phase and reduced cell numbers in M phase compared to controls. EC migration was also blocked by AC conditioned media and in correlation hypoxic tight junction organization and barrier functionality was improved. Surprisingly however, AC HIF-1 deletion did not impact EC responses or barrier stability during hypoxia. CONCLUSIONS This study demonstrates that AC HIF-1 dependent paracrine signaling does not contribute to AC modulation of EC barrier function under normoxic or hypoxic conditions. Thus other cell types likely mediate EC permeability in stress scenarios. Our data does however highlight the continuous protective effect of AC on the barrier endothelium. Exploring these protective mechanisms in more detail will provide essential insight into ways to prevent barrier disturbance during injury and disease.
Collapse
|
19
|
Tarazona S, Carmona H, Conesa A, Llansola M, Felipo V. A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats. Cell Biol Toxicol 2021; 37:129-149. [PMID: 33404927 DOI: 10.1007/s10565-020-09572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/12/2020] [Indexed: 12/01/2022]
Abstract
Patients with liver cirrhosis may develop covert or minimal hepatic encephalopathy (MHE). Hyperammonemia (HA) and peripheral inflammation play synergistic roles in inducing the cognitive and motor alterations in MHE. The cerebellum is one of the main cerebral regions affected in MHE. Rats with chronic HA show some motor and cognitive alterations reproducing neurological impairment in cirrhotic patients with MHE. Neuroinflammation and altered neurotransmission and signal transduction in the cerebellum from hyperammonemic (HA) rats are associated with motor and cognitive dysfunction, but underlying mechanisms are not completely known. The aim of this work was to use a multi-omic approach to study molecular alterations in the cerebellum from hyperammonemic rats to uncover new molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment. We analyzed metabolomic, transcriptomic, and proteomic data from the same cerebellums from control and HA rats and performed a multi-omic integrative analysis of signaling pathway enrichment with the PaintOmics tool. The histaminergic system, corticotropin-releasing hormone, cyclic GMP-protein kinase G pathway, and intercellular communication in the cerebellar immune system were some of the most relevant enriched pathways in HA rats. In summary, this is a good approach to find altered pathways, which helps to describe the molecular mechanisms involved in the alteration of brain function in rats with chronic HA and to propose possible therapeutic targets to improve MHE symptoms.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Héctor Carmona
- Department of Microbiology and Ecology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universidad de Valencia, Valencia, Spain
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| |
Collapse
|
20
|
Gunes ZI, Kan VWY, Ye X, Liebscher S. Exciting Complexity: The Role of Motor Circuit Elements in ALS Pathophysiology. Front Neurosci 2020; 14:573. [PMID: 32625051 PMCID: PMC7311855 DOI: 10.3389/fnins.2020.00573] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the degeneration of both upper and lower motor neurons. Despite decades of research, we still to date lack a cure or disease modifying treatment, emphasizing the need for a much-improved insight into disease mechanisms and cell type vulnerability. Altered neuronal excitability is a common phenomenon reported in ALS patients, as well as in animal models of the disease, but the cellular and circuit processes involved, as well as the causal relevance of those observations to molecular alterations and final cell death, remain poorly understood. Here, we review evidence from clinical studies, cell type-specific electrophysiology, genetic manipulations and molecular characterizations in animal models and culture experiments, which argue for a causal involvement of complex alterations of structure, function and connectivity of different neuronal subtypes within the cortical and spinal cord motor circuitries. We also summarize the current knowledge regarding the detrimental role of astrocytes and reassess the frequently proposed hypothesis of glutamate-mediated excitotoxicity with respect to changes in neuronal excitability. Together, these findings suggest multifaceted cell type-, brain area- and disease stage- specific disturbances of the excitation/inhibition balance as a cardinal aspect of ALS pathophysiology.
Collapse
Affiliation(s)
- Zeynep I Gunes
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Vanessa W Y Kan
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Graduate School of Systemic Neurosciences, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig Maximilians University Munich, Munich, Germany.,Biomedical Center, Ludwig Maximilians University Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
21
|
Tapella L, Soda T, Mapelli L, Bortolotto V, Bondi H, Ruffinatti FA, Dematteis G, Stevano A, Dionisi M, Ummarino S, Di Ruscio A, Distasi C, Grilli M, Genazzani AA, D'Angelo E, Moccia F, Lim D. Deletion of calcineurin from GFAP-expressing astrocytes impairs excitability of cerebellar and hippocampal neurons through astroglial Na + /K + ATPase. Glia 2020; 68:543-560. [PMID: 31626368 DOI: 10.1002/glia.23737] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 01/29/2023]
Abstract
Astrocytes perform important housekeeping functions in the nervous system including maintenance of adequate neuronal excitability, although the regulatory mechanisms are currently poorly understood. The astrocytic Ca2+ /calmodulin-activated phosphatase calcineurin (CaN) is implicated in the development of reactive gliosis and neuroinflammation, but its roles, including the control of neuronal excitability, in healthy brain is unknown. We have generated a mouse line with conditional knockout (KO) of CaN B1 (CaNB1) in glial fibrillary acidic protein-expressing astrocytes (astroglial calcineurin KO [ACN-KO]). Here, we report that postnatal and astrocyte-specific ablation of CaNB1 did not alter normal growth and development as well as adult neurogenesis. Yet, we found that specific deletion of astrocytic CaN selectively impairs intrinsic neuronal excitability in hippocampal CA1 pyramidal neurons and cerebellar granule cells (CGCs). This impairment was associated with a decrease in after hyperpolarization in CGC, while passive properties were unchanged, suggesting impairment of K+ homeostasis. Indeed, blockade of Na+ /K+ -ATPase (NKA) with ouabain phenocopied the electrophysiological alterations observed in ACN-KO CGCs. In addition, NKA activity was significantly lower in cerebellar and hippocampal lysates and in pure astrocytic cultures from ACN-KO mice. While no changes were found in protein levels, NKA activity was inhibited by the specific CaN inhibitor FK506 in both cerebellar lysates and primary astroglia from control mice, suggesting that CaN directly modulates NKA activity and in this manner controls neuronal excitability. In summary, our data provide formal evidence for the notion that astroglia is fundamental for controlling basic neuronal functions and place CaN center-stage as an astrocytic Ca2+ -sensitive switch.
Collapse
Affiliation(s)
- Laura Tapella
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Teresa Soda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Valeria Bortolotto
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Heather Bondi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Federico A Ruffinatti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Giulia Dematteis
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Alessio Stevano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Marianna Dionisi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Simone Ummarino
- Center of Life Science, Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Annalisa Di Ruscio
- Center of Life Science, Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Carla Distasi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Mariagrazia Grilli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Armando A Genazzani
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| |
Collapse
|
22
|
Wotton CA, Cross CD, Bekar LK. Serotonin, norepinephrine, and acetylcholine differentially affect astrocytic potassium clearance to modulate somatosensory signaling in male mice. J Neurosci Res 2020; 98:964-977. [PMID: 32067254 DOI: 10.1002/jnr.24597] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 11/07/2022]
Abstract
Changes in extracellular potassium ([K+ ]e ) modulate neuronal networks via changes in membrane potential, voltage-gated channel activity, and alteration to transmission at the synapse. Given the limited extracellular space in the central nervous system, potassium clearance is crucial. As activity-induced potassium transients are rapidly managed by astrocytic Kir4.1 and astrocyte-specific Na+ /K+ -ATPase, any neurotransmitter/neuromodulator that can regulate their function may have indirect influence on network activity. Neuromodulators differentially affect cortical/thalamic networks to align sensory processing with differing behavioral states. Given serotonin (5HT), norepinephrine (NE), and acetylcholine (ACh) differentially affect spike frequency adaptation and signal fidelity ("signal-to-noise") in somatosensory cortex, we hypothesize that [K+ ]e may be differentially regulated by the different neuromodulators to exert their individual effects on network function. This study aimed to compare effects of individually applied 5HT, NE, and ACh on regulating [K+ ]e in connection to effects on cortical-evoked response amplitude and adaptation in male mice. Using extracellular field and K+ ion-selective recordings of somatosensory stimulation, we found that differential effects of 5HT, NE, and ACh on [K+ ]e regulation mirrored differential effects on amplitude and adaptation. 5HT effects on transient K+ recovery, adaptation, and field post-synaptic potential amplitude were disrupted by barium (200 µM), whereas NE and ACh effects were disrupted by ouabain (1 µM) or iodoacetate (100 µM). Considering the impact [K+ ]e can have on many network functions; it seems highly efficient that neuromodulators regulate [K+ ]e to exert their many effects. This study provides functional significance for astrocyte-mediated buffering of [K+ ]e in neuromodulator-mediated shaping of cortical network activity.
Collapse
Affiliation(s)
- Caitlin A Wotton
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cassidy D Cross
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
23
|
Ghaffari H, Grant SC, Petzold LR, Harrington MG. Regulation of CSF and Brain Tissue Sodium Levels by the Blood-CSF and Blood-Brain Barriers During Migraine. Front Comput Neurosci 2020; 14:4. [PMID: 32116618 PMCID: PMC7010722 DOI: 10.3389/fncom.2020.00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Cerebrospinal fluid (CSF) and brain tissue sodium levels increase during migraine. However, little is known regarding the underlying mechanisms of sodium homeostasis disturbance in the brain during the onset and propagation of migraine. Exploring the cause of sodium dysregulation in the brain is important, since correction of the altered sodium homeostasis could potentially treat migraine. Under the hypothesis that disturbances in sodium transport mechanisms at the blood-CSF barrier (BCSFB) and/or the blood-brain barrier (BBB) are the underlying cause of the elevated CSF and brain tissue sodium levels during migraines, we developed a mechanistic, differential equation model of a rat's brain to compare the significance of the BCSFB and the BBB in controlling CSF and brain tissue sodium levels. The model includes the ventricular system, subarachnoid space, brain tissue and blood. Sodium transport from blood to CSF across the BCSFB, and from blood to brain tissue across the BBB were modeled by influx permeability coefficients PBCSFB and PBBB, respectively, while sodium movement from CSF into blood across the BCSFB, and from brain tissue to blood across the BBB were modeled by efflux permeability coefficients PBCSFB′ and PBBB′, respectively. We then performed a global sensitivity analysis to investigate the sensitivity of the ventricular CSF, subarachnoid CSF and brain tissue sodium concentrations to pathophysiological variations in PBCSFB, PBBB, PBCSFB′ and PBBB′. Our results show that the ventricular CSF sodium concentration is highly influenced by perturbations of PBCSFB, and to a much lesser extent by perturbations of PBCSFB′. Brain tissue and subarachnoid CSF sodium concentrations are more sensitive to pathophysiological variations of PBBB and PBBB′ than variations of PBCSFB and PBCSFB′ within 30 min of the onset of the perturbations. However, PBCSFB is the most sensitive model parameter, followed by PBBB and PBBB′, in controlling brain tissue and subarachnoid CSF sodium levels within 3 h of the perturbation onset.
Collapse
Affiliation(s)
- Hamed Ghaffari
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Samuel C Grant
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL, United States
| | - Linda R Petzold
- Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael G Harrington
- Neuroscience, Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
24
|
Cheng H, Wang Y, Chen J, Chen Z. The piriform cortex in epilepsy: What we learn from the kindling model. Exp Neurol 2020; 324:113137. [DOI: 10.1016/j.expneurol.2019.113137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022]
|
25
|
Verkhratsky A, Rose CR. Na +-dependent transporters: The backbone of astroglial homeostatic function. Cell Calcium 2019; 85:102136. [PMID: 31835178 DOI: 10.1016/j.ceca.2019.102136] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/30/2019] [Accepted: 11/30/2019] [Indexed: 01/30/2023]
Abstract
Astrocytes are the principal homeostatic cells of the central nerves system (CNS) that support the CNS function at all levels of organisation, from molecular to organ. Several fundamental homeostatic functions of astrocytes are mediated through plasmalemmal pumps and transporters; most of which are also regulated by the transplasmalemmal gradient of Na+ ions. Neuronal activity as well as mechanical or chemical stimulation of astrocytes trigger plasmalemmal Na+ fluxes, which in turn generate spatio-temporally organised transient changes in the cytosolic Na+ concentration, which represent the substrate of astroglial Na+ signalling. Astroglial Na+ signals link and coordinate neuronal activity and CNS homeostatic demands with the astroglial homeostatic response.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
26
|
Jones JR, Kong L, Hanna MG, Hoffman B, Krencik R, Bradley R, Hagemann T, Choi J, Doers M, Dubovis M, Sherafat MA, Bhattacharyya A, Kendziorski C, Audhya A, Messing A, Zhang SC. Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes. Cell Rep 2019; 25:947-958.e4. [PMID: 30355500 PMCID: PMC6275075 DOI: 10.1016/j.celrep.2018.09.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 09/05/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
How mutations in glial fibrillary acidic protein (GFAP) cause Alexander disease (AxD) remains elusive. We generated iPSCs from two AxD patients and corrected the GFAP mutations to examine the effects of mutant GFAP on human astrocytes. AxD astrocytes displayed GFAP aggregates, recapitulating the pathological hallmark of AxD. RNA sequencing implicated the endoplasmic reticulum, vesicle regulation, and cellular metabolism. Corroborating this analysis, we observed enlarged and heterogeneous morphology coupled with perinuclear localization of endoplasmic reticulum and lysosomes in AxD astrocytes. Functionally, AxD astrocytes showed impaired extracellular ATP release, which is responsible for attenuated calcium wave propagation. These results reveal that AxD-causing mutations in GFAP disrupt intracellular vesicle regulation and impair astrocyte secretion, resulting in astrocyte dysfunction and AxD pathogenesis.
Collapse
Affiliation(s)
- Jeffrey R Jones
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Linghai Kong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael G Hanna
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brianna Hoffman
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert Krencik
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert Bradley
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tracy Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jeea Choi
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew Doers
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Marina Dubovis
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | | | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anjon Audhya
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
27
|
Song S, Luo L, Sun B, Sun D. Roles of glial ion transporters in brain diseases. Glia 2019; 68:472-494. [PMID: 31418931 DOI: 10.1002/glia.23699] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Glial ion transporters are important in regulation of ionic homeostasis, cell volume, and cellular signal transduction under physiological conditions of the central nervous system (CNS). In response to acute or chronic brain injuries, these ion transporters can be activated and differentially regulate glial functions, which has subsequent impact on brain injury or tissue repair and functional recovery. In this review, we summarized the current knowledge about major glial ion transporters, including Na+ /H+ exchangers (NHE), Na+ /Ca2+ exchangers (NCX), Na+ -K+ -Cl- cotransporters (NKCC), and Na+ -HCO3 - cotransporters (NBC). In acute neurological diseases, such as ischemic stroke and traumatic brain injury (TBI), these ion transporters are rapidly activated and play significant roles in regulation of the intra- and extracellular pH, Na+ , K+ , and Ca2+ homeostasis, synaptic plasticity, and myelin formation. However, overstimulation of these ion transporters can contribute to glial apoptosis, demyelination, inflammation, and excitotoxicity. In chronic brain diseases, such as glioma, Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS), glial ion transporters are involved in the glioma Warburg effect, glial activation, neuroinflammation, and neuronal damages. These findings suggest that glial ion transporters are involved in tissue structural and functional restoration, or brain injury and neurological disease development and progression. A better understanding of these ion transporters in acute and chronic neurological diseases will provide insights for their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lanxin Luo
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China.,School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Baoshan Sun
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China.,Pólo Dois Portos, Instituto National de Investigação Agrária e Veterinária, Dois Portos, Portugal
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Pittsburgh Institute for Neurodegenerative Disorders, University of Pittsburgh, Pittsburgh, Pennsylvania.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Ghasemi Z, Naderi N, Shojaei A, Raoufy MR, Ahmadirad N, Barkley V, Mirnajafi-Zadeh J. The inhibitory effect of different patterns of low frequency stimulation on neuronal firing following epileptiform activity in rat hippocampal slices. Brain Res 2019; 1706:184-195. [DOI: 10.1016/j.brainres.2018.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
|
29
|
Abstract
Glucose is the long-established, obligatory fuel for brain that fulfills many critical functions, including ATP production, oxidative stress management, and synthesis of neurotransmitters, neuromodulators, and structural components. Neuronal glucose oxidation exceeds that in astrocytes, but both rates increase in direct proportion to excitatory neurotransmission; signaling and metabolism are closely coupled at the local level. Exact details of neuron-astrocyte glutamate-glutamine cycling remain to be established, and the specific roles of glucose and lactate in the cellular energetics of these processes are debated. Glycolysis is preferentially upregulated during brain activation even though oxygen availability is sufficient (aerobic glycolysis). Three major pathways, glycolysis, pentose phosphate shunt, and glycogen turnover, contribute to utilization of glucose in excess of oxygen, and adrenergic regulation of aerobic glycolysis draws attention to astrocytic metabolism, particularly glycogen turnover, which has a high impact on the oxygen-carbohydrate mismatch. Aerobic glycolysis is proposed to be predominant in young children and specific brain regions, but re-evaluation of data is necessary. Shuttling of glucose- and glycogen-derived lactate from astrocytes to neurons during activation, neurotransmission, and memory consolidation are controversial topics for which alternative mechanisms are proposed. Nutritional therapy and vagus nerve stimulation are translational bridges from metabolism to clinical treatment of diverse brain disorders.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences , Little Rock, Arkansas ; and Department of Cell Biology and Physiology, University of New Mexico , Albuquerque, New Mexico
| |
Collapse
|
30
|
Breslin K, Wade JJ, Wong-Lin K, Harkin J, Flanagan B, Van Zalinge H, Hall S, Walker M, Verkhratsky A, McDaid L. Potassium and sodium microdomains in thin astroglial processes: A computational model study. PLoS Comput Biol 2018; 14:e1006151. [PMID: 29775457 PMCID: PMC5979043 DOI: 10.1371/journal.pcbi.1006151] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/31/2018] [Accepted: 04/20/2018] [Indexed: 11/19/2022] Open
Abstract
A biophysical model that captures molecular homeostatic control of ions at the perisynaptic cradle (PsC) is of fundamental importance for understanding the interplay between astroglial and neuronal compartments. In this paper, we develop a multi-compartmental mathematical model which proposes a novel mechanism whereby the flow of cations in thin processes is restricted due to negatively charged membrane lipids which result in the formation of deep potential wells near the dipole heads. These wells restrict the flow of cations to “hopping” between adjacent wells as they transverse the process, and this surface retention of cations will be shown to give rise to the formation of potassium (K+) and sodium (Na+) microdomains at the PsC. We further propose that a K+ microdomain formed at the PsC, provides the driving force for the return of K+ to the extracellular space for uptake by the neurone, thereby preventing K+ undershoot. A slow decay of Na+ was also observed in our simulation after a period of glutamate stimulation which is in strong agreement with experimental observations. The pathological implications of microdomain formation during neuronal excitation are also discussed. During periods of neuronal activity, ionic homeostasis in the surrounding extracellular space (ECS) is disturbed. To provide a healthy environment for continued neuronal function, excess ions such as potassium must be buffered away from the ECS; a vital supportive role provided by astrocyte cells. It has long been thought that astrocytes not only removed ions from the ECS but also transport them to other areas of the brain where their concentrations are lower. However, while our computational model simulations agree that astrocytes do remove these ions from the ECS they also show that these ions are mainly stored locally at the PsC to be returned to the ECS, thus restoring ionic homeostasis. Furthermore, we detail in this paper that this happens because of a previously overlooked biophysical phenomenon that is only dominant in thin astrocyte processes. The flow of these cations within thin processes is primarily by surface conduction where they experience the attraction of fixed negative charge at the membrane inner surface. This negative charge constrains cation movement along the surface and so their flow rate is restricted. Consequently, ions such as potassium that are released during neuronal excitation enter the PsC and are stored locally due to the low conductance pathway between the PsC and the astrocyte soma. Our simulations also show that this local build-up of K+ is returned to the ECS after the neuronal activity dies off which could potentially explain why K+ undershoot has not been observed; this result agrees with experimental observations. Moreover, the same mechanism can also explain the transient behaviour of Na+ ions whereby in thin processes a slow decay time constant is experimentally observed. These findings have important implications for the role of astrocytes in regulating neuronal excitability under physiological and pathological conditions, and therefore highlight the significance of the work presented in this paper.
Collapse
Affiliation(s)
- Kevin Breslin
- Computational Neuroscience and Neural Engineering (CNET) Research Team, Intelligent Systems Research Centre, Ulster University, Derry, United Kingdom
| | - John Joseph Wade
- Computational Neuroscience and Neural Engineering (CNET) Research Team, Intelligent Systems Research Centre, Ulster University, Derry, United Kingdom
- * E-mail:
| | - KongFatt Wong-Lin
- Neural Systems and Neurotechnology Research Team, Intelligent Systems Research Centre, Ulster University, Derry, United Kingdom
| | - Jim Harkin
- Computational Neuroscience and Neural Engineering (CNET) Research Team, Intelligent Systems Research Centre, Ulster University, Derry, United Kingdom
| | - Bronac Flanagan
- Computational Neuroscience and Neural Engineering (CNET) Research Team, Intelligent Systems Research Centre, Ulster University, Derry, United Kingdom
| | - Harm Van Zalinge
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Steve Hall
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Matthew Walker
- Clinical & Experimental Epilepsy Institute of Neurology, University College London, London, United Kingdom
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Liam McDaid
- Computational Neuroscience and Neural Engineering (CNET) Research Team, Intelligent Systems Research Centre, Ulster University, Derry, United Kingdom
| |
Collapse
|
31
|
Flanagan B, McDaid L, Wade J, Wong-Lin K, Harkin J. A computational study of astrocytic glutamate influence on post-synaptic neuronal excitability. PLoS Comput Biol 2018; 14:e1006040. [PMID: 29659572 PMCID: PMC5919689 DOI: 10.1371/journal.pcbi.1006040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 04/26/2018] [Accepted: 02/15/2018] [Indexed: 11/18/2022] Open
Abstract
The ability of astrocytes to rapidly clear synaptic glutamate and purposefully release the excitatory transmitter is critical in the functioning of synapses and neuronal circuits. Dysfunctions of these homeostatic functions have been implicated in the pathology of brain disorders such as mesial temporal lobe epilepsy. However, the reasons for these dysfunctions are not clear from experimental data and computational models have been developed to provide further understanding of the implications of glutamate clearance from the extracellular space, as a result of EAAT2 downregulation: although they only partially account for the glutamate clearance process. In this work, we develop an explicit model of the astrocytic glutamate transporters, providing a more complete description of the glutamate chemical potential across the astrocytic membrane and its contribution to glutamate transporter driving force based on thermodynamic principles and experimental data. Analysis of our model demonstrates that increased astrocytic glutamate content due to glutamine synthetase downregulation also results in increased postsynaptic quantal size due to gliotransmission. Moreover, the proposed model demonstrates that increased astrocytic glutamate could prolong the time course of glutamate in the synaptic cleft and enhances astrocyte-induced slow inward currents, causing a disruption to the clarity of synaptic signalling and the occurrence of intervals of higher frequency postsynaptic firing. Overall, our work distilled the necessity of a low astrocytic glutamate concentration for reliable synaptic transmission of information and the possible implications of enhanced glutamate levels as in epilepsy. The role of astrocytes in the excitability and hyperexcitability of neurons is a subject which has gained a lot of attention, particularly in the pathology of neurological disorders including epilepsy. Although not completely understood, the control of glutamate homeostasis is believed to play a role in paroxysmal neuronal hyperexcitability known to precede seizure activity. We have developed a computational model which explores two of the astrocytic homeostatic mechanisms, namely glutamate clearance and gliotransmission, and connect them with a common controlling factor, astrocytic cytoplasmic glutamate concentration. In our model simulations we demonstrate both a slower clearance rate of synaptic glutamate and enhanced astrocytic glutamate release where cytoplasmic glutamate is elevated, both of which contribute to high frequency neuronal firing and conditions for seizure generation. We also describe a viable role for astrocytes as a “high pass” filter, where astrocytic activation in the form of intracellular calcium oscillations is possible for only a certain range of presynaptic neuronal firing rates, the lower bound of the range being reduced where astrocytic glutamate is elevated. In physiological terms this perhaps indicates not only neuronal but also astrocytic glutamate-mediated excitation in the neural-astrocytic network.
Collapse
Affiliation(s)
- Bronac Flanagan
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry~Londonderry, Northern Ireland, United Kingdom
- * E-mail:
| | - Liam McDaid
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry~Londonderry, Northern Ireland, United Kingdom
| | - John Wade
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry~Londonderry, Northern Ireland, United Kingdom
| | - KongFatt Wong-Lin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry~Londonderry, Northern Ireland, United Kingdom
| | - Jim Harkin
- Intelligent Systems Research Centre, University of Ulster, Magee Campus, Derry~Londonderry, Northern Ireland, United Kingdom
| |
Collapse
|
32
|
Yu Y, Fu P, Yu Z, Xie M, Wang W, Luo X. NKCC1 Inhibition Attenuates Chronic Cerebral Hypoperfusion-Induced White Matter Lesions by Enhancing Progenitor Cells of Oligodendrocyte Proliferation. J Mol Neurosci 2018; 64:449-458. [PMID: 29502291 DOI: 10.1007/s12031-018-1043-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/15/2018] [Indexed: 11/28/2022]
Abstract
Cerebral white matter is vulnerable to ischemic condition. However, no effective treatment to alleviate or restore the myelin damage caused by chronic cerebral hypoperfusion has been found. Na+-K+-Cl- cotransporter 1 (NKCC1), a Na+-K+-Cl- cotransporter widely expressed in the central nervous system (CNS), involves in regulation of cell swelling, EAA release, cell apoptosis, and proliferation. Nevertheless, the role of NKCC1 in chronic hypoperfusion-induced white matter lesions (WMLs) has not been explored. Here, mice subjected to bilateral common carotid artery stenosis (BCAS) were used as model of chronic cerebral hypoperfusion; density of progenitor cells of oligodendrocyte (OPCs), oligodendrocytes (OLs), astrocytes, and microglia was assessed by immunofluorescent staining and Western blot analysis; working memory was examined by eight-arm radial maze test; expression of MAPK signaling pathway was determined by Western blot analysis. After BCAS, white matter integrity disruption and working memory impairment were observed. NKCC1 inhibition by bumetanide administration enhanced OPC proliferation, attenuated chronic hypoperfusion-induced white matter damage, and promoted recovery of neurological function. However, NKCC1 inhibition caused no significant change in the densities of GFAP- and Iba-1-positive cells in the corpus callosum. Bumetanide administration significantly increased the expression of p-ERK and decreased the expression of p-JNK and p-p38 in comparison to vehicle-BCAS groups. In conclusion, NKCC1 inhibition might significantly ameliorate chronic cerebral hypoperfusion-induced WMLs and cognitive impairment by enhancing progenitor cells of oligodendrocyte proliferation, and this protective function of bumetanide might be mediated by modulation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Ying Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peicai Fu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
33
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
34
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 964] [Impact Index Per Article: 137.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
35
|
Dienel GA, Behar KL, Rothman DL. Cellular Origin of [ 18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons. Neuroscientist 2017; 24:316-328. [PMID: 29276856 DOI: 10.1177/1073858417749375] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [18F]fluorodeoxyglucose-positron emission tomographic ([18F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [18F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [18F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.
Collapse
Affiliation(s)
- Gerald A Dienel
- 1 Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,2 Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, USA
| | - Kevin L Behar
- 3 Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Douglas L Rothman
- 4 Departments of Radiology and Biomedical Engineering, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
36
|
Hertz L, Chen Y. Additional mechanisms for brain activation failure due to reduced glucose metabolism-a commentary on Zilberter and Zilberter: The vicious circle of hypometabolism in neurodegenerative diseases. J Neurosci Res 2017; 96:757-761. [PMID: 29095528 DOI: 10.1002/jnr.24192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, Maryland
| |
Collapse
|
37
|
Hertz L, Chen Y. Integration between Glycolysis and Glutamate-Glutamine Cycle Flux May Explain Preferential Glycolytic Increase during Brain Activation, Requiring Glutamate. Front Integr Neurosci 2017. [PMID: 28890689 DOI: 10.3389/fnint.2017.00018+10.3389/fnint.2017.00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The 1988 observation by Fox et al. (1988) that brief intense brain activation increases glycolysis (pyruvate formation from glucose) much more than oxidative metabolism has been abundantly confirmed. Specifically glycolytic increase was unexpected because the amount of ATP it generates is much smaller than that formed by subsequent oxidative metabolism of pyruvate. The present article shows that preferential glycolysis can be explained by metabolic processes associated with activation of the glutamate-glutamine cycle. The flux in this cycle, which is essential for production of transmitter glutamate and GABA, equals 75% of brain glucose utilization and each turn is associated with utilization of ~1 glucose molecule. About one half of the association between cycle flux and glucose metabolism occurs during neuronal conversion of glutamine to glutamate in a process similar to the malate-aspartate shuttle (MAS) except that glutamate is supplied from glutamine, not formed from α-ketoglutarate (αKG) as during operation of conventional MAS. Regular MAS function is triggered by one oxidative process in the cytosol during glycolysis causing NAD+ reduction to NADH. Since NADH cannot cross the mitochondrial membrane (MEM) for oxidation NAD+ is re-generated by conversion of cytosolic oxaloacetate (OAA) to malate, which enters the mitochondria for oxidation and in a cyclic process regenerates cytosolic OAA. Therefore MAS as well as the "pseudo-MAS" necessary for neuronal glutamate formation can only operate together with cytosolic reduction of NAD+ to NADH. The major process causing NAD+ reduction is glycolysis which therefore also must occur during neuronal conversion of glutamine to glutamate and may energize vesicular glutamate uptake which preferentially uses glycolytically derived energy. Another major contributor to the association between glutamate-glutamine cycle and glucose utilization is the need for astrocytic pyruvate to generate glutamate. Although some oxidative metabolism occurs during glutamate formation it is only one half of that during normal tricarboxylic acid (TCA) cycle function. Glutamate's receptor stimulation leads to potassium ion (K+) release and astrocytic uptake, preferentially fueled by glycolysis and followed by release and neuronal re-accumulation. The activation-induced preferential glycolysis diminishes with continued activation and is followed by an increased ratio between oxidative metabolism and glycolysis, reflecting oxidation of generated glutamate and accumulated lactate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical UniversityShenyang, China
| | - Ye Chen
- Henry M. Jackson FoundationBethesda, MD, United States
| |
Collapse
|
38
|
Hertz L, Chen Y. Integration between Glycolysis and Glutamate-Glutamine Cycle Flux May Explain Preferential Glycolytic Increase during Brain Activation, Requiring Glutamate. Front Integr Neurosci 2017; 11:18. [PMID: 28890689 PMCID: PMC5574930 DOI: 10.3389/fnint.2017.00018] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 08/11/2017] [Indexed: 11/13/2022] Open
Abstract
The 1988 observation by Fox et al. (1988) that brief intense brain activation increases glycolysis (pyruvate formation from glucose) much more than oxidative metabolism has been abundantly confirmed. Specifically glycolytic increase was unexpected because the amount of ATP it generates is much smaller than that formed by subsequent oxidative metabolism of pyruvate. The present article shows that preferential glycolysis can be explained by metabolic processes associated with activation of the glutamate-glutamine cycle. The flux in this cycle, which is essential for production of transmitter glutamate and GABA, equals 75% of brain glucose utilization and each turn is associated with utilization of ~1 glucose molecule. About one half of the association between cycle flux and glucose metabolism occurs during neuronal conversion of glutamine to glutamate in a process similar to the malate-aspartate shuttle (MAS) except that glutamate is supplied from glutamine, not formed from α-ketoglutarate (αKG) as during operation of conventional MAS. Regular MAS function is triggered by one oxidative process in the cytosol during glycolysis causing NAD+ reduction to NADH. Since NADH cannot cross the mitochondrial membrane (MEM) for oxidation NAD+ is re-generated by conversion of cytosolic oxaloacetate (OAA) to malate, which enters the mitochondria for oxidation and in a cyclic process regenerates cytosolic OAA. Therefore MAS as well as the "pseudo-MAS" necessary for neuronal glutamate formation can only operate together with cytosolic reduction of NAD+ to NADH. The major process causing NAD+ reduction is glycolysis which therefore also must occur during neuronal conversion of glutamine to glutamate and may energize vesicular glutamate uptake which preferentially uses glycolytically derived energy. Another major contributor to the association between glutamate-glutamine cycle and glucose utilization is the need for astrocytic pyruvate to generate glutamate. Although some oxidative metabolism occurs during glutamate formation it is only one half of that during normal tricarboxylic acid (TCA) cycle function. Glutamate's receptor stimulation leads to potassium ion (K+) release and astrocytic uptake, preferentially fueled by glycolysis and followed by release and neuronal re-accumulation. The activation-induced preferential glycolysis diminishes with continued activation and is followed by an increased ratio between oxidative metabolism and glycolysis, reflecting oxidation of generated glutamate and accumulated lactate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical UniversityShenyang, China
| | - Ye Chen
- Henry M. Jackson FoundationBethesda, MD, United States
| |
Collapse
|
39
|
Hertz L, Chen Y. Integration between Glycolysis and Glutamate-Glutamine Cycle Flux May Explain Preferential Glycolytic Increase during Brain Activation, Requiring Glutamate. Front Integr Neurosci 2017. [PMID: 28890689 DOI: 10.3389/fnint.2017.00018 10.3389/fnint.2017.00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 1988 observation by Fox et al. (1988) that brief intense brain activation increases glycolysis (pyruvate formation from glucose) much more than oxidative metabolism has been abundantly confirmed. Specifically glycolytic increase was unexpected because the amount of ATP it generates is much smaller than that formed by subsequent oxidative metabolism of pyruvate. The present article shows that preferential glycolysis can be explained by metabolic processes associated with activation of the glutamate-glutamine cycle. The flux in this cycle, which is essential for production of transmitter glutamate and GABA, equals 75% of brain glucose utilization and each turn is associated with utilization of ~1 glucose molecule. About one half of the association between cycle flux and glucose metabolism occurs during neuronal conversion of glutamine to glutamate in a process similar to the malate-aspartate shuttle (MAS) except that glutamate is supplied from glutamine, not formed from α-ketoglutarate (αKG) as during operation of conventional MAS. Regular MAS function is triggered by one oxidative process in the cytosol during glycolysis causing NAD+ reduction to NADH. Since NADH cannot cross the mitochondrial membrane (MEM) for oxidation NAD+ is re-generated by conversion of cytosolic oxaloacetate (OAA) to malate, which enters the mitochondria for oxidation and in a cyclic process regenerates cytosolic OAA. Therefore MAS as well as the "pseudo-MAS" necessary for neuronal glutamate formation can only operate together with cytosolic reduction of NAD+ to NADH. The major process causing NAD+ reduction is glycolysis which therefore also must occur during neuronal conversion of glutamine to glutamate and may energize vesicular glutamate uptake which preferentially uses glycolytically derived energy. Another major contributor to the association between glutamate-glutamine cycle and glucose utilization is the need for astrocytic pyruvate to generate glutamate. Although some oxidative metabolism occurs during glutamate formation it is only one half of that during normal tricarboxylic acid (TCA) cycle function. Glutamate's receptor stimulation leads to potassium ion (K+) release and astrocytic uptake, preferentially fueled by glycolysis and followed by release and neuronal re-accumulation. The activation-induced preferential glycolysis diminishes with continued activation and is followed by an increased ratio between oxidative metabolism and glycolysis, reflecting oxidation of generated glutamate and accumulated lactate.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical UniversityShenyang, China
| | - Ye Chen
- Henry M. Jackson FoundationBethesda, MD, United States
| |
Collapse
|
40
|
Larsen BR, MacAulay N. Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms. Glia 2017; 65:1668-1681. [PMID: 28744903 DOI: 10.1002/glia.23187] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/09/2017] [Accepted: 06/23/2017] [Indexed: 11/09/2022]
Abstract
During neuronal activity in the mammalian brain, the K+ released into the synaptic space is initially buffered by the astrocytic compartment. In parallel, the extracellular space (ECS) shrinks, presumably due to astrocytic cell swelling. With the Na+ /K+ /2Cl- cotransporter and the Kir4.1/AQP4 complex not required for the astrocytic cell swelling in the hippocampus, the molecular mechanisms underlying the activity-dependent ECS shrinkage have remained unresolved. To identify these molecular mechanisms, we employed ion-sensitive microelectrodes to measure changes in ECS, [K+ ]o and [H+ ]o /pHo during electrical stimulation of rat hippocampal slices. Transporters and receptors responding directly to the K+ and glutamate released into the extracellular space (the K+ /Cl- cotransporter, KCC, glutamate transporters and G protein-coupled receptors) did not modulate the extracellular space dynamics. The HCO3--transporting mechanism, which in astrocytes mainly constitutes the electrogenic Na+ / HCO3- cotransporter 1 (NBCe1), is activated by the K+ -mediated depolarization of the astrocytic membrane. Inhibition of this transporter reduced the ECS shrinkage by ∼25% without affecting the K+ transients, pointing to NBCe1 as a key contributor to the stimulus-induced astrocytic cell swelling. Inhibition of the monocarboxylate cotransporters (MCT), like-wise, reduced the ECS shrinkage by ∼25% without compromising the K+ transients. Isosmotic reduction of extracellular Cl- revealed a requirement for this ion in parts of the ECS shrinkage. Taken together, the stimulus-evoked astrocytic cell swelling does not appear to occur as a direct effect of the K+ clearance, as earlier proposed, but partly via the pH-regulating transport mechanisms activated by the K+ -induced astrocytic depolarization and the activity-dependent metabolism.
Collapse
Affiliation(s)
- Brian Roland Larsen
- Faculty of Health and Medical Sciences, Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- Faculty of Health and Medical Sciences, Center for Neuroscience, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Hertz L, Chen Y. Glycogenolysis, an Astrocyte-Specific Reaction, is Essential for Both Astrocytic and Neuronal Activities Involved in Learning. Neuroscience 2017; 370:27-36. [PMID: 28668486 DOI: 10.1016/j.neuroscience.2017.06.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/10/2017] [Accepted: 06/19/2017] [Indexed: 01/26/2023]
Abstract
In brain glycogen, formed from glucose, is degraded (glycogenolysis) in astrocytes but not in neurons. Although most of the degradation follows the same pathway as glucose, its breakdown product, l-lactate, is released from astrocytes in larger amounts than glucose when glycogenolysis is activated by noradrenaline. However, this is not the case when glycogenolysis is activated by high potassium ion (K+) concentrations - possibly because noradrenaline in contrast to high K+ stimulates glycogenolysis by an increase not only in free cytosolic Ca2+ concentration ([Ca2+]i) but also in cyclic AMP (c-AMP), which may increase the expression of the monocarboxylate transporter through which it is released. Several transmitters activate glycogenolysis in astrocytes and do so at different time points after training. This stimulation is essential for memory consolidation because glycogenolysis is necessary for uptake of K+ and stimulates formation of glutamate from glucose, and therefore is needed both for removal of increased extracellular K+ following neuronal excitation (which initially occurs into astrocytes) and for formation of transmitter glutamate and GABA. In addition the released l-lactate has effects on neurons which are essential for learning and for learning-related long-term potentiation (LTP), including induction of the neuronal gene Arc/Arg3.1 and activation of gene cascades mediated by CREB and cofilin. Inhibition of glycogenolysis blocks learning, LTP and all related molecular events, but all changes can be reversed by injection of l-lactate. The effect of extracellular l-lactate is due to both astrocyte-mediated signaling which activates noradrenergic activity on all brain cells and to a minor uptake, possibly into dendritic spines.
Collapse
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, PR China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, MD 20817, USA.
| |
Collapse
|
42
|
Chaban YHG, Chen Y, Hertz E, Hertz L. Severe Convulsions and Dysmyelination in Both Jimpy and Cx32/47 -/- Mice may Associate Astrocytic L-Channel Function with Myelination and Oligodendrocytic Connexins with Internodal K v Channels. Neurochem Res 2017; 42:1747-1766. [PMID: 28214987 DOI: 10.1007/s11064-017-2194-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/12/2022]
Abstract
The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K+ concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca2+. The resulting deficiency in Ca2+ entry has many consequences, including lack of K+-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K+ channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K+ released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na+,K+-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.
Collapse
Affiliation(s)
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, MD, 20817, USA
| | - Elna Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
43
|
Jiao R, Cui D, Wang SC, Li D, Wang YF. Interactions of the Mechanosensitive Channels with Extracellular Matrix, Integrins, and Cytoskeletal Network in Osmosensation. Front Mol Neurosci 2017; 10:96. [PMID: 28424587 PMCID: PMC5380722 DOI: 10.3389/fnmol.2017.00096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/21/2017] [Indexed: 01/14/2023] Open
Abstract
Life is maintained in a sea water-like internal environment. The homeostasis of this environment is dependent on osmosensory system translation of hydromineral information into osmotic regulatory machinery at system, tissue and cell levels. In the osmosensation, hydromineral information can be converted into cellular reactions through osmoreceptors, which changes thirst and drinking, secretion of antidiuretic vasopressin (VP), reabsorption of water and salt in the kidneys at systemic level as well as cellular metabolic activity and survival status at tissue level. The key feature of osmosensation is the activation of mechanoreceptors or mechanosensors, particularly transient receptor potential vallinoid (TRPV) and canonical (TRPC) family channels, which increases cytosolic Ca2+ levels, activates osmosensory cells including VP neurons and triggers a series of secondary reactions. TRPV channels are sensitive to both hyperosmotic and hyposmotic stimuli while TRPC channels are more sensitive to hyposmotic challenge in neurons. The activation of TRP channels relies on changes in cell volume, membrane stretch and cytoskeletal reorganization as well as hydration status of extracellular matrix (ECM) and activity of integrins. Different families of TRP channels could be activated differently in response to hyperosmotic and hyposmotic stimuli in different spatiotemporal orders, leading to differential reactions of osmosensory cells. Together, they constitute the osmosensory machinery. The activation of this osmoreceptor complex is also associated with the activity of other osmolarity-regulating organelles, such as water channel protein aquaporins, Na-K-2Cl cotransporters, volume-sensitive anion channels, sodium pump and purinergic receptors in addition to intercellular interactions, typically astrocytic neuronal interactions. In this article, we review our current understandings of the composition of osmoreceptors and the processes of osmosensation.
Collapse
Affiliation(s)
- Runsheng Jiao
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Stephani C Wang
- Department of Internal Medicine, Albany Medical CollegeAlbany, NY, USA
| | - Dongyang Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical UniversityHarbin, China
| |
Collapse
|
44
|
Pereira A. Astroglial hydro-ionic waves guided by the extracellular matrix: An exploratory model. J Integr Neurosci 2017; 16:57-72. [DOI: 10.3233/jin-160003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Alfredo Pereira
- Institute of Biosciences, São Paulo State University, Brazil. E-mail:
| |
Collapse
|
45
|
Hertz L, Chen Y. Editorial: All 3 Types of Glial Cells Are Important for Memory Formation. Front Integr Neurosci 2016; 10:31. [PMID: 27729851 PMCID: PMC5037195 DOI: 10.3389/fnint.2016.00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/26/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University Shenyang, China
| | - Ye Chen
- Henry M. Jackson Foundation Bethesda, MD, USA
| |
Collapse
|