1
|
Ebrahimzadeh E, Sadjadi SM, Asgarinejad M, Dehghani A, Rajabion L, Soltanian-Zadeh H. Neuroenhancement by repetitive transcranial magnetic stimulation (rTMS) on DLPFC in healthy adults. Cogn Neurodyn 2025; 19:34. [PMID: 39866659 PMCID: PMC11759757 DOI: 10.1007/s11571-024-10195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2024] [Accepted: 10/27/2024] [Indexed: 01/28/2025] Open
Abstract
The term "neuroenhancement" describes the enhancement of cognitive function associated with deficiencies resulting from a specific condition. Nevertheless, there is currently no agreed-upon definition for the term "neuroenhancement", and its meaning can change based on the specific research being discussed. As humans, our continual pursuit of expanding our capabilities, encompassing both cognitive and motor skills, has led us to explore various tools. Among these, repetitive Transcranial Magnetic Stimulation (rTMS) stands out, yet its potential remains underestimated. Historically, rTMS was predominantly employed in studies focused on rehabilitation objectives. A small amount of research has examined its use on healthy subjects with the goal of improving cognitive abilities like risk-seeking, working memory, attention, cognitive control, learning, computing speed, and decision-making. It appears that the insights gained in this domain largely stem from indirect outcomes of rehabilitation research. This review aims to scrutinize these studies, assessing the effectiveness of rTMS in enhancing cognitive skills in healthy subjects. Given that the dorsolateral prefrontal cortex (DLPFC) has become a popular focus for rTMS in treating psychiatric disorders, corresponding anatomically to Brodmann areas 9 and 46, and considering the documented success of rTMS stimulation on the DLPFC for cognitive improvement, our focus in this review article centers on the DLPFC as the focal point and region of interest. Additionally, recognizing the significance of theta burst magnetic stimulation protocols (TBS) in mimicking the natural firing patterns of the brain to modulate excitability in specific cortical areas with precision, we have incorporated Theta Burst Stimulation (TBS) wave patterns. This inclusion, mirroring brain patterns, is intended to enhance the efficacy of the rTMS method. To ascertain if brain magnetic stimulation consistently improves cognition, a thorough meta-analysis of the existing literature has been conducted. The findings indicate that, after excluding outlier studies, rTMS may improve cognition when compared to appropriate control circumstances. However, there is also a considerable degree of variation among the researches. The navigation strategy used to reach the stimulation site and the stimulation location are important factors that contribute to the variation between studies. The results of this study can provide professional athletes, firefighters, bodyguards, and therapists-among others in high-risk professions-with insightful information that can help them perform better on the job.
Collapse
Affiliation(s)
- Elias Ebrahimzadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| | - Seyyed Mostafa Sadjadi
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| | | | - Amin Dehghani
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH USA
| | - Lila Rajabion
- School of Graduate Studies, SUNY Empire State College, Manhattan, NY USA
| | - Hamid Soltanian-Zadeh
- CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Niavaran Ave., Tehran, Iran
| |
Collapse
|
2
|
Huang X, Wei X, Wang J, Yi G. Effects of dendritic Ca 2+ spike on the modulation of spike timing with transcranial direct current stimulation in cortical pyramidal neurons. J Comput Neurosci 2024:10.1007/s10827-024-00886-y. [PMID: 39688634 DOI: 10.1007/s10827-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024]
Abstract
Transcranial direct current stimulation (tDCS) generates a weak electric field (EF) within the brain, which induces opposite polarization in the soma and distal dendrite of cortical pyramidal neurons. The somatic polarization directly affects the spike timing, and dendritic polarization modulates the synaptically evoked dendritic activities. Ca2+ spike, the most dramatic dendritic activity, is crucial for synaptic integration and top-down signal transmission, thereby indirectly influencing the output spikes of pyramidal cells. Nevertheless, the role of dendritic Ca2+ spike in the modulation of neural spike timing with tDCS remains largely unclear. In this study, we use morphologically and biophysically realistic models of layer 5 pyramidal cells (L5 PCs) to simulate the dendritic Ca2+ spike and somatic Na+ spike in response to distal dendritic synaptic inputs under weak EF stimulation. Our results show that weak EFs modulate the spike timing through the modulation of dendritic Ca2+ spike and somatic polarization, and such field effects are dependent on synaptic inputs. At weak synaptic inputs, the spike timing is advanced due to the facilitation of dendritic Ca2+ spike by field-induced dendritic depolarization. Conversely, it is delayed by field-induced dendritic hyperpolarization. In this context, the Ca2+ spike exhibits heightened sensitivity to weak EFs, thereby governing the changes in spike timing. At strong synaptic inputs, somatic polarization dominates the changes in spike timing due to the decreased sensitivity of Ca2+ spike to EFs. Consequently, the spike timing is advanced/delayed by field-induced somatic depolarization/hyperpolarization. Moreover, EFs have significant effects on the changes in the timing of somatic spike and Ca2+ spike when synaptic current injection coincides with the onset of EFs. Field effects on spike timing follow a cosine dependency on the field polar angle, with maximum effects in the field direction parallel to the somato-dendritic axis. Furthermore, our results are robust to morphological and biological diversity. These findings clarify the modulation of spike timing with weak EFs and highlight the crucial role of dendritic Ca2+ spike. These predictions shed light on the neural basis of tDCS and should be considered when understanding the effect of tDCS on population dynamics and cognitive behavior.
Collapse
Affiliation(s)
- Xuelin Huang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Wards Y, Ehrhardt SE, Garner KG, Mattingley JB, Filmer HL, Dux PE. Stimulating prefrontal cortex facilitates training transfer by increasing representational overlap. Cereb Cortex 2024; 34:bhae209. [PMID: 38771242 PMCID: PMC11654026 DOI: 10.1093/cercor/bhae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
A recent hypothesis characterizes difficulties in multitasking as being the price humans pay for our ability to generalize learning across tasks. The mitigation of these costs through training has been associated with reduced overlap of constituent task representations within frontal, parietal, and subcortical regions. Transcranial direct current stimulation, which can modulate functional brain activity, has shown promise in generalizing performance gains when combined with multitasking training. However, the relationship between combined transcranial direct current stimulation and training protocols with task-associated representational overlap in the brain remains unexplored. Here, we paired prefrontal cortex transcranial direct current stimulation with multitasking training in 178 individuals and collected functional magnetic resonance imaging data pre- and post-training. We found that 1 mA transcranial direct current stimulation applied to the prefrontal cortex paired with multitasking training enhanced training transfer to spatial attention, as assessed via a visual search task. Using machine learning to assess the overlap of neural activity related to the training task in task-relevant brain regions, we found that visual search gains were predicted by changes in classification accuracy in frontal, parietal, and cerebellar regions for participants that received left prefrontal cortex stimulation. These findings demonstrate that prefrontal cortex transcranial direct current stimulation may interact with training-related changes to task representations, facilitating the generalization of learning.
Collapse
Affiliation(s)
- Yohan Wards
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| | - Shane E Ehrhardt
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| | - Kelly G Garner
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
- Queensland Brain Institute, The University of Queensland,
Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of New South Wales,
Mathews Building, Gate 11, Botany Street, Randwick, New South Wales
2052, Australia
- School of Psychology, University of Birmingham,
Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Jason B Mattingley
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
- Queensland Brain Institute, The University of Queensland,
Building 79, Upland Road, St Lucia, Queensland 4072, Australia
- School of Psychology, University of Birmingham,
Hills Building, Edgbaston Park Rd, Birmingham B15 2TT, United Kingdom
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, McElwain
Building, Campbell Road, St Lucia, Queensland
4072, Australia
| |
Collapse
|
4
|
Battisti A, Lazzaro G, Varuzza C, Vicari S, Menghini D. Effects of online tDCS and hf-tRNS on reading performance in children and adolescents with developmental dyslexia: a study protocol for a cross sectional, within-subject, randomized, double-blind, and sham-controlled trial. Front Neurol 2024; 15:1338430. [PMID: 38533416 PMCID: PMC10964771 DOI: 10.3389/fneur.2024.1338430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Background Developmental Dyslexia (DD) is a brain-based developmental disorder causing severe reading difficulties. The extensive data on the neurobiology of DD have increased interest in brain-directed approaches, such as transcranial direct current stimulation (tDCS), which have been proposed for DD. While positive outcomes have been observed, results remain heterogeneous. Various methodological approaches have been employed to address this issue. However, no studies have compared the effects of different transcranial electrical stimulation techniques (e.g., tDCS and transcranial random noise stimulation, tRNS), on reading in children and adolescents with DD. Methods The present within-subject, double-blind, and sham-controlled trial aims to investigate the effects of tDCS and hf-tRNS on reading in children and adolescents with DD. Participants will undergo three conditions with a one-week interval session: (A) single active tDCS session; (B) single active hf-tRNS session; and (C) single sham session (tDCS/hf-tRNS). Left anodal/right cathodal tDCS and bilateral tRNS will be applied over the temporo-parietal regions for 20 min each. Reading measures will be collected before and during each session. Safety and blinding parameters will be recordered. Discussion We hypothesize that tRNS will demonstrate comparable effectiveness to tDCS in improving reading compared to sham conditions. Additionally, we anticipate that hf-tRNS will exhibit a similar safety profile to tDCS. This study will contribute novel insights into the effectiveness of hf-tRNS, expediting the validation of brain-based treatments for DD.
Collapse
Affiliation(s)
- Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Human Sciences, LUMSA University, Rome, Italy
| | - Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristiana Varuzza
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Visibelli E, Vigna G, Nascimben C, Benavides-Varela S. Neurobiology of numerical learning. Neurosci Biobehav Rev 2024; 158:105545. [PMID: 38220032 DOI: 10.1016/j.neubiorev.2024.105545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Numerical abilities are complex cognitive skills essential for dealing with requirements of the modern world. Although the brain structures and functions underlying numerical cognition in different species have long been appreciated, genetic and molecular techniques have more recently expanded the knowledge about the mechanisms underlying numerical learning. In this review, we discuss the status of the research related to the neurobiological bases of numerical abilities. We consider how genetic factors have been associated with mathematical capacities and how these link to the current knowledge of brain regions underlying these capacities in human and non-human animals. We further discuss the extent to which significant variations in the levels of specific neurotransmitters may be used as potential markers of individual performance and learning difficulties and take into consideration the therapeutic potential of brain stimulation methods to modulate learning and improve interventional outcomes. The implications of this research for formulating a more comprehensive view of the neural basis of mathematical learning are discussed.
Collapse
Affiliation(s)
- Emma Visibelli
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giulia Vigna
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Chiara Nascimben
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
6
|
Fan Y, Wei X, Lu M, Wang J, Yi G. Electric field effects on neuronal input-output relationship by regulating NMDA spikes. Cogn Neurodyn 2024; 18:199-215. [PMID: 38406200 PMCID: PMC10881955 DOI: 10.1007/s11571-022-09922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 01/05/2023] Open
Abstract
Evidence shows that the dendritic polarization induced by weak electrical field (EF) can affect the neuronal input-output function via modulating dendritic integration of AMPA synapses, indicating that the supralinear dendritic integration of NMDA synapses can also be influenced by dendritic polarization. However, it remains unknown how dendritic polarization affects NMDA-type dendritic integration, and then contributes to neuronal input-output relationship. Here, we used a computational model of pyramidal neuron with inhomogeneous extracellular potentials to characterize the relationship among EF, dendritic integration, and somatic output. Basing on singular perturbation we analyzed the subthreshold dynamics of membrane potentials in response to NMDA synapses, and found that the equilibrium mapping of a fast subsystem can characterize the asymptotic subthreshold input-output (sI/O) relationship for EF-regulated supralinear dendritic integration, allowing us to predict the tendency of EF-regulated dendritic integration by showing the variation of equilibrium mapping under EF stimulation. EF-induced depolarization at distal dendrites receiving synapses plays a crucial role in shifting the steep change of sI/O left by facilitating dendritic NMDA spike generation and in decreasing the plateau of sI/O via reducing driving force. And more effective EF modulation appears at sparsely activated NMDA receptors compared with clustered synaptic inputs. During the action potential (AP) generation, the respective contribution of EF-regulated dendritic integration and EF-induced somatic polarization was identified to show their synergetic or antagonistic effect on AP generation, depending on neuronal excitability. These results provided insight in understanding the modulation effect of EF on neuronal computation, which is important for optimizing noninvasive brain stimulation. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09922-y.
Collapse
Affiliation(s)
- Yaqin Fan
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xile Wei
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Meili Lu
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, 300222 China
| | - Jiang Wang
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Guosheng Yi
- Tianjin Key Laboratory of Process Measurement and Control, School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Garcia-Sanz S, Serra Grabulosa JM, Cohen Kadosh R, Muñóz Aguilar N, Marín Gutiérrez A, Redolar Ripoll D. Effects of prefrontal and parietal neuromodulation on magnitude processing and integration. PROGRESS IN BRAIN RESEARCH 2023; 282:95-121. [PMID: 38035911 DOI: 10.1016/bs.pbr.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Numerical cognition is an essential skill for survival, which includes the processing of discrete and continuous quantities, involving a mainly right fronto-parietal network. However, the neurocognitive systems underlying the processing and integration of discrete and continuous quantities are currently under debate. Noninvasive brain stimulation techniques have been used in the study of the neural basis of numerical cognition with a spatial, temporal and functional resolution superior to other neuroimaging techniques. The present randomized sham-controlled single-blinded trial addresses the involvement of the right dorsolateral prefrontal cortex and the right intraparietal sulcus in magnitude processing and integration. Multifocal anodal transcranial direct current stimulation was applied online during the execution of magnitude comparison tasks in three conditions: right prefrontal, right parietal and sham stimulation. The results show that prefrontal stimulation produced a moderated decrease in response times in all magnitude processing and integration tasks compared to sham condition. While parietal stimulation had no significant effect on any of the tasks. The effect found is interpreted as a generalized improvement in processing speed and magnitude integration due to right prefrontal neuromodulation, which may be attributable to domain-general or domain-specific factors.
Collapse
Affiliation(s)
- Sara Garcia-Sanz
- Faculty of Psychology and Education, Universidad del Atlantico Medio, Las Palmas, Spain; Child Development Research Group, Universidad de La Sabana, Chía, Colombia.
| | | | - Roi Cohen Kadosh
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | - Diego Redolar Ripoll
- Cognitive Neurolab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
8
|
Grootjans Y, Byczynski G, Vanneste S. The use of non-invasive brain stimulation in auditory perceptual learning: A review. Hear Res 2023; 439:108881. [PMID: 37689034 DOI: 10.1016/j.heares.2023.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/08/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
Auditory perceptual learning is an experience-dependent form of auditory learning that can improve substantially throughout adulthood with practice. A key mechanism associated with perceptual learning is synaptic plasticity. In the last decades, an increasingly better understanding has formed about the neural mechanisms related to auditory perceptual learning. Research in animal models found an association between the functional organization of the primary auditory cortex and frequency discrimination ability. Several studies observed an increase in the area of representation to be associated with improved frequency discrimination. Non-invasive brain stimulation techniques have been related to the promotion of plasticity. Despite its popularity in other fields, non-invasive brain stimulation has not been used much in auditory perceptual learning. The present review has discussed the application of non-invasive brain stimulation methods in auditory perceptual learning by discussing the mechanisms, current evidence and challenges, and future directions.
Collapse
Affiliation(s)
- Yvette Grootjans
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Gabriel Byczynski
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity Institute for Neuroscience, School of Psychology, Trinity College Dublin, Ireland; Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Ireland.
| |
Collapse
|
9
|
Khan A, Mosbacher JA, Vogel SE, Binder M, Wehovz M, Moshammer A, Halverscheid S, Pustelnik K, Nitsche MA, Tong RKY, Grabner RH. Modulation of resting-state networks following repetitive transcranial alternating current stimulation of the dorsolateral prefrontal cortex. Brain Struct Funct 2023; 228:1643-1655. [PMID: 37436503 PMCID: PMC10471656 DOI: 10.1007/s00429-023-02667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023]
Abstract
Transcranial alternating current stimulation (tACS) offers a unique method to temporarily manipulate the activity of the stimulated brain region in a frequency-dependent manner. However, it is not clear if repetitive modulation of ongoing oscillatory activity with tACS over multiple days can induce changes in grey matter resting-state functional connectivity and white matter structural integrity. The current study addresses this question by applying multiple-session theta band stimulation on the left dorsolateral prefrontal cortex (L-DLPFC) during arithmetic training. Fifty healthy participants (25 males and 25 females) were randomly assigned to the experimental and sham groups, half of the participants received individually adjusted theta band tACS, and half received sham stimulation. Resting-state functional magnetic resonance (rs-fMRI) and diffusion-weighted imaging (DWI) data were collected before and after 3 days of tACS-supported procedural learning training. Resting-state network analysis showed a significant increase in connectivity for the frontoparietal network (FPN) with the precuneus cortex. Seed-based analysis with a seed defined at the primary stimulation site showed an increase in connectivity with the precuneus cortex, posterior cingulate cortex (PCC), and lateral occipital cortex. There were no effects on the structural integrity of white matter tracts as measured by fractional anisotropy, and on behavioral measures. In conclusion, the study suggests that multi-session task-associated tACS can produce significant changes in resting-state functional connectivity; however, changes in functional connectivity do not necessarily translate to changes in white matter structure or behavioral performance.
Collapse
Affiliation(s)
- Ahsan Khan
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China
| | - Jochen A Mosbacher
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Stephan E Vogel
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Mira Binder
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Michael Wehovz
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Arnulf Moshammer
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | | | - Kolja Pustelnik
- Mathematics Institute, University of Göttingen, Göttingen, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Protestant Hospital of Bethel Foundation, Bielefeld University, University Hospital OWL, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Raymond Kai-Yu Tong
- Biomedical Engineering Department, The Chinese University of Hong Kong, Hong Kong, China.
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| |
Collapse
|
10
|
Dakwar-Kawar O, Mairon N, Hochman S, Berger I, Cohen Kadosh R, Nahum M. Transcranial random noise stimulation combined with cognitive training for treating ADHD: a randomized, sham-controlled clinical trial. Transl Psychiatry 2023; 13:271. [PMID: 37528107 PMCID: PMC10394047 DOI: 10.1038/s41398-023-02547-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023] Open
Abstract
Non-invasive brain stimulation has been suggested as a potential treatment for improving symptomology and cognitive deficits in Attention-Deficit/Hyperactivity Disorder (ADHD), the most common childhood neurodevelopmental disorder. Here, we examined whether a novel form of stimulation, high-frequency transcranial random noise stimulation (tRNS), applied with cognitive training (CT), may impact symptoms and neural oscillations in children with ADHD. We conducted a randomized, double-blind, sham-controlled trial in 23 unmedicated children with ADHD, who received either tRNS over the right inferior frontal gyrus (rIFG) and left dorsolateral prefrontal cortex (lDLPFC) or sham stimulation for 2 weeks, combined with CT. tRNS + CT yielded significant clinical improvements (reduced parent-reported ADHD rating-scale scores) following treatment, compared to the control intervention. These improvements did not change significantly at a 3-week follow-up. Moreover, resting state (RS)-EEG periodic beta bandwidth of the extracted peaks was reduced in the experimental compared to control group immediately following treatment, with further reduction at follow-up. A lower aperiodic exponent, which reflects a higher cortical excitation/inhibition (E/I) balance and has been related to cognitive improvement, was seen in the experimental compared to control group. This replicates previous tRNS findings in adults without ADHD but was significant only when using a directional hypothesis. The experimental group further exhibited longer sleep onset latencies and more wake-up times following treatment compared to the control group. No significant group differences were seen in executive functions, nor in reported adverse events. We conclude that tRNS + CT has a lasting clinical effect on ADHD symptoms and on beta activity. These results provide a preliminary direction towards a novel intervention in pediatric ADHD.
Collapse
Affiliation(s)
- Ornella Dakwar-Kawar
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Noam Mairon
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Itai Berger
- Pediatric Neurology Unit, Assuta-Ashdod University Hospital and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- School of Social Work and Social Welfare, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Mor Nahum
- School of Occupational Therapy, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
11
|
Berglund-Barraza A, Carey S, Hart J, Vanneste S, Evans JL. Modulating Phonological Working Memory With Anodal High-Definition Transcranial Direct Current Stimulation to the Anterior Portion of the Supplementary Motor Area. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2023; 66:2079-2094. [PMID: 37227790 PMCID: PMC10465152 DOI: 10.1044/2023_jslhr-21-00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/27/2021] [Accepted: 02/28/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Phonological working memory is key to vocabulary acquisition, spoken word recognition, real-time language processing, and reading. Transcranial direct current stimulation, when coupled with behavioral training, has been shown to facilitate speech motor output processes, a key component of nonword repetition, the primary task used to assess phonological working memory. In this study, we examined the efficacy of combining overt nonword repetition training with anodal high-definition transcranial direct current stimulation (HD tDCS) to the presupplementary motor area (preSMA) to enhance nonword repetition. OBJECTIVE This study investigated whether 20 min of active or sham anodal HD tDCS targeting preSMA concurrently with a nonword repetition task differentially impacted nonword repetition ability. METHOD Twenty-eight neurotypical college-age adults (18-25 years; 19 females, eight males, one nonbinary) completed a 20-min nonword repetition training task where they received either active or sham 1-mA anodal HD tDCS to the preSMA while overtly repeating a list of four-, five-, six-, and seven-syllable English-like nonwords presented in a random order. Whole nonword accuracy and error patterns (phoneme and syllable) were measured prior to and following training. RESULTS Following training, both groups showed a decrease in nonword repetition accuracy. The drop in performance was significantly greater for the active stimulation group compared to the sham stimulation group at the four-syllable nonword length. DISCUSSION The findings suggest that targeting the speech motor component of nonword repetition through overt training and HD tDCS to the preSMA does not enhance phonological working memory ability.
Collapse
Affiliation(s)
- Amy Berglund-Barraza
- Child Language and Cognitive Processes Laboratory, The University of Texas at Dallas
| | - Sarah Carey
- Child Language and Cognitive Processes Laboratory, The University of Texas at Dallas
| | - John Hart
- Cognitive Neuroscience Laboratory of Memory and Language, The University of Texas at Dallas
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland
| | - Julia L. Evans
- Child Language and Cognitive Processes Laboratory, The University of Texas at Dallas
| |
Collapse
|
12
|
Blagovechtchenski E, Kostromina S, Shaboltas A. Using a Pulse Protocol to Fix the Individual Dosage of Transcranial and Transspinal Direct Current Electrical Stimulation. Life (Basel) 2023; 13:1376. [PMID: 37374158 DOI: 10.3390/life13061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The non-invasive current stimulation protocol differs significantly between the brain and spinal cord, such that when comparing the two, there is a clear predominance of protocols using transcranial direct current stimulation (tDCS) for the brain and of protocols using pulsed stimulation for the spinal cord (psSC). These protocols differ in their effects on the central nervous system and in such important parameters as stimulation intensity. In most cases, tDCS has a fixed amplitude for all subjects/patients, while psSC is usually chosen on a case-by-case basis, according to the thresholds of muscle responses. In our opinion, it is possible to use the experience of identifying thresholds during psSC to adjust the dose of the direct current for transcranial and transspinal electrical stimulation, an approach that may provide more homogeneous tDCS data.
Collapse
Affiliation(s)
- Evgeny Blagovechtchenski
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Svetlana Kostromina
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Alla Shaboltas
- Laboratory of Behavioural Neurodynamics, St. Petersburg State University, St. Petersburg 199034, Russia
| |
Collapse
|
13
|
Grinschgl S, Berdnik AL, Stehling E, Hofer G, Neubauer AC. Who Wants to Enhance Their Cognitive Abilities? Potential Predictors of the Acceptance of Cognitive Enhancement. J Intell 2023; 11:109. [PMID: 37367511 PMCID: PMC10299699 DOI: 10.3390/jintelligence11060109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
With advances in new technologies, the topic of cognitive enhancement has been at the center of public debate in recent years. Various enhancement methods (e.g., brain stimulation, smart drugs, or working memory training) promise improvements in one's cognitive abilities such as intelligence and memory. Although these methods have been rather ineffective so far, they are largely available to the general public and can be applied individually. As applying enhancement might be accompanied by certain risks, it is important to understand which individuals seek to enhance themselves. For instance, individuals' intelligence, personality, and interests might predict their willingness to get enhanced. Thus, in a preregistered study, we asked 257 participants about their acceptance of various enhancement methods and tested predictors thereof, such as participants' psychometrically measured and self-estimated intelligence. While both measured and self-estimated intelligence as well as participants' implicit beliefs about intelligence, did not predict participants' acceptance of enhancement; a younger age, higher interest in science-fiction, and (partially) higher openness as well as lower conscientiousness did. Thus, certain interests and personality traits might contribute to the willingness to enhance one's cognition. Finally, we discuss the need for replication and argue for testing other potential predictors of the acceptance of cognitive enhancement.
Collapse
Affiliation(s)
- Sandra Grinschgl
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8020 Graz, Austria; (G.H.); (A.C.N.)
- Institute of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland
| | - Anna-Lena Berdnik
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8020 Graz, Austria; (G.H.); (A.C.N.)
| | - Elisabeth Stehling
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8020 Graz, Austria; (G.H.); (A.C.N.)
| | - Gabriela Hofer
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8020 Graz, Austria; (G.H.); (A.C.N.)
| | - Aljoscha C. Neubauer
- Institute of Psychology, University of Graz, Universitätsplatz 2, 8020 Graz, Austria; (G.H.); (A.C.N.)
| |
Collapse
|
14
|
Krause CD, Fengler A, Pino D, Sehm B, Friederici AD, Obrig H. The role of left temporo-parietal and inferior frontal cortex in comprehending syntactically complex sentences: A brain stimulation study. Neuropsychologia 2023; 180:108465. [PMID: 36586718 DOI: 10.1016/j.neuropsychologia.2022.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Syntactic competence relies on a left-lateralized network converging on hubs in inferior-frontal and posterior-temporal cortices. We address the question whether anodal transcranial direct current stimulation (a-tDCS) over these hubs can modulate comprehension of sentences, whose syntactic complexity systematically varied along the factors embedding depths and canonicity. Semantic content and length of the sentences were kept identical and forced choice picture matching was required after the full sentence had been presented. METHODS We used a single-blind, within-subject, sham-controlled design, applying a-tDCS targeting left posterior tempo-parietal (TP) and left inferior frontal cortex (FC). Stimulation sites were determined by individual neuro-navigation. 20 participants were included of whom 19 entered the analysis. Results were analysed using (generalized) mixed models. In a pilot-experiment in another group of 20 participants we validated the manipulation of syntactic complexity by the two factors embedding depth and argument-order. RESULTS Reaction times increased and accuracy decreased with higher embedding depth and non-canonical argument order in both experiments. Notably a-tDCS over TP enhanced sentence-to-picture matching, while FC-stimulation showed no consistent effect. Moreover, the analysis disclosed a session effect, indicating improvements of task performance especially regarding speed. CONCLUSIONS We conclude that the posterior 'hub' of the neuronal network affording syntactic analysis represents a 'bottleneck', likely due to working-memory capacity and the challenges of mapping semantic to syntactic information allowing for role assignment. While this does not challenge the role of left inferior-frontal cortex for syntax processing and novel-grammar learning, the application of highly established syntactic rules during sentence comprehension may be considered optimized, thus not augmentable by a-tDCS in the uncompromised network. SIGNIFICANCE STATEMENT Anodal transcranial direct current stimulation (a-tDCS) over left temporo-parietal cortex enhances comprehension of complex sentences in uncompromised young speakers. Since a-tDCS over left frontal cortex did not elicit any change, the 'bottleneck' for the understanding of complex sentences seems to be the posterior, temporo-parietal rather than the anterior inferior-frontal 'hub' of language processing. Regarding the attested role of inferior-frontal cortex in syntax processing, we suggest that its function is optimized in competent young speakers, preventing further enhancement by (facilitatory) tDCS. Results shed light on the functional anatomy of syntax processing during sentence comprehension; moreover, they open perspectives for research in the lesioned language network of people with syntactic deficits due to aphasia.
Collapse
Affiliation(s)
- Carina D Krause
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| | - Anja Fengler
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Martin Luther University Halle-Wittenberg, Department of Special and Inclusive Education, Speech and Language Pedagogy and Pathology, 06110 Halle, Germany
| | - Danièle Pino
- Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany
| | - Bernhard Sehm
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Neurology, University Medicine Halle, 06120, Halle (Saale), Germany
| | - Angela D Friederici
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany
| | - Hellmuth Obrig
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neuropsychology & Department of Neurology, 04103 Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital & Faculty of Medicine, 04103 Leipzig, Germany.
| |
Collapse
|
15
|
Henschke A. When Enhancements need Therapy: disenhancements, Iatrogenesis, and the responsibility of Military Institutions. New Bioeth 2022:10.1007/s40592-022-00169-1. [PMID: 36550227 PMCID: PMC9778449 DOI: 10.1007/s40592-022-00169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Adam Henschke
- grid.6214.10000 0004 0399 8953University of Twente Enschede, Overijssel, Netherlands
| |
Collapse
|
16
|
Peña J, Sampedro A, Balboa-Bandeira Y, Ibarretxe-Bilbao N, Zubiaurre-Elorza L, García-Guerrero MA, Ojeda N. Comparing transcranial direct current stimulation and transcranial random noise stimulation over left dorsolateral prefrontal cortex and left inferior frontal gyrus: Effects on divergent and convergent thinking. Front Hum Neurosci 2022; 16:997445. [PMID: 36405079 PMCID: PMC9669420 DOI: 10.3389/fnhum.2022.997445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/18/2022] [Indexed: 02/11/2025] Open
Abstract
The essential role of creativity has been highlighted in several human knowledge areas. Regarding the neural underpinnings of creativity, there is evidence about the role of left dorsolateral prefrontal cortex (DLPFC) and left inferior frontal gyrus (IFG) on divergent thinking (DT) and convergent thinking (CT). Transcranial stimulation studies suggest that the left DLPFC is associated with both DT and CT, whereas left IFG is more related to DT. However, none of the previous studies have targeted both hubs simultaneously and compared transcranial direct current stimulation (tDCS) and random noise stimulation (tRNS). Additionally, given the relationship between cognitive flexibility and creativity, we included it in order to check if the improvement in creativity may be mediated by cognitive flexibility. In this double-blind, between-subjects study, 66 healthy participants were randomly assigned to one of three groups (N = 22) that received a transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), or sham for 20 min. The tDCS group received 1.5 mA with the anode over the left DLPFC and cathode over the left IFG. Locations in tRNS group were the same and they received 1.5 mA of high frequency tRNS (100-500 Hz). Divergent thinking was assessed before (baseline) and during stimulation with unusual uses (UU) and picture completion (PC) subtests from Torrance Creative thinking Test, whereas convergent thinking was evaluated with the remote association test (RAT). Stroop test was included to assess cognitive flexibility. ANCOVA results of performance under stimulation (controlling for baseline performance) showed that there were significant differences in PC (F = 3.35, p = 0.042, n p 2 = 0.10) but not in UU (F = 0.61, p = 0.546) and RAT (F = 2.65, p = 0.079) scores. Post-hoc analyses showed that tRNS group had significantly higher scores compared to sham (p = 0.004) in PC. More specifically, tRNS showed higher performance in fluency (p = 0.012) and originality (p = 0.021) dimensions of PC compared to sham. Regarding cognitive flexibility, we did not find any significant effect of any of the stimulation groups (F = 0.34, p = 0.711). Therefore, no further mediation analyses were performed. Finally, the group that received tDCS reported more adverse effects than sham group (F = 3.46, p = 0.035). Altogether, these results suggest that tRNS may have some advantages over tDCS in DT.
Collapse
Affiliation(s)
- Javier Peña
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Bilbao, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Ehrhardt SE, Ballard T, Wards Y, Mattingley JB, Dux PE, Filmer HL. tDCS augments decision-making efficiency in an intensity dependent manner: A training study. Neuropsychologia 2022; 176:108397. [DOI: 10.1016/j.neuropsychologia.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
|
18
|
Peña J, Muthalib M, Sampedro A, Cardoso‐Botelho M, Zabala O, Ibarretxe‐Bilbao N, García‐Guerrero A, Zubiaurre‐Elorza L, Ojeda N. Enhancing Creativity With Combined Transcranial Direct Current and Random Noise Stimulation of the Left Dorsolateral Prefrontal Cortex and Inferior Frontal Gyrus. JOURNAL OF CREATIVE BEHAVIOR 2022. [DOI: 10.1002/jocb.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Zhao R, He ZY, Cheng C, Tian QQ, Cui YP, Chang MY, Wang FM, Kong Y, Deng H, Yang XJ, Sun JB. Assessing the Effect of Simultaneous Combining of Transcranial Direct Current Stimulation and Transcutaneous Auricular Vagus Nerve Stimulation on the Improvement of Working Memory Performance in Healthy Individuals. Front Neurosci 2022; 16:947236. [PMID: 35928012 PMCID: PMC9344917 DOI: 10.3389/fnins.2022.947236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
A previous study found that combining transcranial direct current stimulation (tDCS) and transcutaneous auricular vagus nerve stimulation (taVNS) could evoke significantly larger activation on a range of cortical and subcortical brain regions than the numerical summation of tDCS and taVNS effects. In this study, two within-subject experiments were employed to investigate its effects on working memory (WM). In experiment 1, the WM modulatory effects of tDCS over the left dorsolateral prefrontal cortex (DLPFC), taVNS, and simultaneous joint simulation of tDCS over the left DLPFC and taVNS (SJS-L) were compared among 60 healthy subjects. They received these three interventions between the baseline test and post-test in a random manner three times. In spatial 3-back task, there was a significant interaction between time and stimulations in the accuracy rate of matching trials (mACC, p=0.018). MACCs were significantly improved by SJS (p = 0.001) and taVNS (p = 0.045), but not by tDCS (p = 0.495). Moreover, 41 subjects in the SJS group showed improvement, which was significantly larger than that in the taVNS group (29 subjects) and tDCS group (26 subjects). To further investigate the generalization effects of SJS, 72 students were recruited in experiment 2. They received tDCS over the right DLPFC, taVNS, simultaneous joint simulation of tDCS over the right DLPFC and taVNS (SJS-R), and sham stimulation in a random manner four times. No significant results were found, but there was a tendency similar to experiment 1 in the spatial 3-back task. In conclusion, combining tDCS and taVNS might be a potential non-invasive neuromodulation technique which is worthy of study in future.
Collapse
Affiliation(s)
- Rui Zhao
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Zhao-Yang He
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Chen Cheng
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
| | - Qian-Qian Tian
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ya-Peng Cui
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Meng-Ying Chang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Fu-Min Wang
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Yao Kong
- School of Electronics and Information, Xi'an Polytechnic University, Xi'an, China
| | - Hui Deng
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| | - Xue-Juan Yang
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
| | - Jin-Bo Sun
- Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, China
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Guangzhou Institute of Technology, Xidian University, Xi'an, China
- *Correspondence: Jin-Bo Sun
| |
Collapse
|
20
|
Neubauer AC, Wood G. Intelligenzsteigerung durch Neuroenhancement? PSYCHOLOGISCHE RUNDSCHAU 2022. [DOI: 10.1026/0033-3042/a000599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Zusammenfassung. Die menschliche Intelligenz gehört zu den bestuntersuchten psychologischen Merkmalen, in denen interindividuelle Differenzen bestehen. Die mehr als 100jährige Forschungsgeschichte hat einen hoch belastbaren Wissensstand hervorgebracht; dieser umfasst die Definition, die Psychometrie, die (ontogenetische) Entwicklung, die Struktur, die Vorhersagekraft für real-life-Variablen, das Wissen über elementar-kognitive, verhaltensgenetische und neurobiologische Grundlagen der Intelligenz, u.v.m. Jüngst steht zudem die Frage des ‚enhancements‘ der Intelligenz im Fokus, eine Frage, die nicht zuletzt durch die aktuelle philosophische Strömung des Transhumanismus stark an Bedeutung gewinnt. Der Transhumanismus nimmt eine substanzielle Erhöhung (enhancement) von Fähigkeiten und anderen (auch) psychologischen Eigenschaften des Menschen ins Zentrum und postuliert, dass ein soziokultureller Fortschritt – und letztlich das Überlegen des Homo Sapiens und unseres Planeten – erst durch technologischen Fortschritt ermöglicht werde. Viele Transhumanisten stellen eine substanzielle Steigerung der Intelligenz in den Vordergrund, die primär durch (neuro–)technologische und pharmakologische Maßnahmen zu bewerkstelligen seien. Diese Debatten sind jedoch oft gekennzeichnet durch übertrieben optimistische Annahmen der Möglichkeiten moderner neurowissenschaftlicher Methoden bei gleichzeitiger Vernachlässigung der potenziellen negativen Folgen für das Individuum, für die Gesellschaften und insgesamt für unsere Spezies. Im gegenständlichen Überblicksbeitrag werden behaviorale, neuroelektrische und pharmakologische Methoden im Hinblick auf ihr aktuelles Potenzial einer Steigerung der individuellen Intelligenz analysiert. Die zwischenzeitlich zu diesen Fragen vorliegenden experimentellen Studien, sowie verfügbare Metaanalysen lassen allerdings den Schluss zu, dass bislang keine der gegenwärtig verfügbaren Methoden das Potenzial haben, die individuelle Intelligenz substanziell zu steigern. Und selbst falls solche möglicherweise in absehbarer Zeit zur Verfügung stünden, müssen zuvor sowohl individuelle als auch gesellschaftliche (negative) Konsequenzen einer kritischen Analyse unterzogen werden. Diese sind Gegenstand einer abschließenden Diskussion.
Collapse
|
21
|
Blinding efficacy and adverse events following repeated transcranial alternating current, direct current, and random noise stimulation. Cortex 2022; 154:77-88. [PMID: 35759817 DOI: 10.1016/j.cortex.2022.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/22/2022]
Abstract
As transcranial electrical stimulation (tES) protocols advance, assumptions underlying the technique need to be retested to ensure they still hold. Whilst the safety of stimulation has been demonstrated mainly for a small number of sessions, and small sample size, adverse events (AEs) following multiple sessions remain largely untested. Similarly, whilst blinding procedures are typically assumed to be effective, the effect of multiple stimulation sessions on the efficacy of blinding procedures also remains under question. This is especially relevant in multisite projects where small unintentional variations in protocol could lead to inter-site difference. We report AE and blinding data from 1,019 participants who received up to 11 semi-consecutive sessions of active or sham transcranial alternating current stimulation (tACS), direct current stimulation (tDCS), and random noise stimulation (tRNS), at 4 sites in the UK and US. We found that AEs were often best predicted by factors other than tES, such as testing site or session number. Results from the blinding analysis suggested that blinding was less effective for tDCS and tACS than tRNS. The occurrence of AEs did not appear to be linked to tES despite the use of smaller electrodes or repeated delivery. However, blinding efficacy was impacted in tES conditions with higher cutaneous sensation, highlighting a need for alternative stimulation blinding protocols. This may be increasingly necessary in studies wishing to deliver stimulation with higher intensities.
Collapse
|
22
|
Study on the Effect of Different Transcranial Pulse Current Stimulation Intervention Programs for Eliminating Physical Fatigue. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have reported the effect of transcranial pulsed current stimulation (tPCS) on eliminating cognitive fatigue, but there is little research on optimizing the intervention program of tPCS. The purpose of this study was to explore the effect of different tPCS intervention programs on the elimination of physical fatigue in college athletes. Accordingly, 40 healthy college athletes were randomly divided into two groups of 20, denoted as A and B. Both groups exercised on treadmills. There were 15 subjects in group A who met the criteria of moderate physical fatigue, and 15 subjects in group B who met the criteria of severe physical fatigue. The subjects in each group were intervened with five different intervention programs of tPCS (intervention programs I, II, III, IV and V). The heart rate variability (HRV) and concentrations of oxygenated hemoglobin (HbO2) were measured before and after each intervention to judge the elimination effects of different intervention programs on different degrees of physical fatigue; the measurement indicators of the HRV include RMSSD, SDNN, HF and LF. The results indicated that tPCS intervention can eliminate both moderate and severe physical fatigue. Programs II, III, and IV had a significant effect on eliminating the moderate physical fatigue of athletes (p < 0.05), among which program II, with a stimulation time of 30 min and a stimulation intensity of sensory intensity, had the best effect. Programs I, II, III, and IV all had significant effects on eliminating the severe physical fatigue of athletes (p < 0.05), among which program I, with a stimulation time of 30 min and a stimulation intensity of sensory intensity + 0.2 mA, had the best effect. We conclude that different tPCS intervention programs can have different effects on the elimination of physical fatigue. The effects of the five intervention programs on the elimination of physical fatigue in athletes are as follows: program II is most suitable for moderate physical fatigue, and program I is most suitable for severe physical fatigue.
Collapse
|
23
|
Lazzaro G, Fucà E, Caciolo C, Battisti A, Costanzo F, Varuzza C, Vicari S, Menghini D. Understanding the Effects of Transcranial Electrical Stimulation in Numerical Cognition: A Systematic Review for Clinical Translation. J Clin Med 2022; 11:jcm11082082. [PMID: 35456176 PMCID: PMC9032363 DOI: 10.3390/jcm11082082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Atypical development of numerical cognition (dyscalculia) may increase the onset of neuropsychiatric symptoms, especially when untreated, and it may have long-term detrimental social consequences. However, evidence-based treatments are still lacking. Despite plenty of studies investigating the effects of transcranial electrical stimulation (tES) on numerical cognition, a systematized synthesis of results is still lacking. In the present systematic review (PROSPERO ID: CRD42021271139), we found that the majority of reports (20 out of 26) showed the effectiveness of tES in improving both number (80%) and arithmetic (76%) processing. In particular, anodal tDCS (regardless of lateralization) over parietal regions, bilateral tDCS (regardless of polarity/lateralization) over frontal regions, and tRNS (regardless of brain regions) strongly enhance number processing. While bilateral tDCS and tRNS over parietal and frontal regions and left anodal tDCS over frontal regions consistently improve arithmetic skills. In addition, tACS seems to be more effective than tDCS at ameliorating arithmetic learning. Despite the variability of methods and paucity of clinical studies, tES seems to be a promising brain-based treatment to enhance numerical cognition. Recommendations for clinical translation, future directions, and limitations are outlined.
Collapse
Affiliation(s)
- Giulia Lazzaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Cristina Caciolo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Andrea Battisti
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
- Department of Human Science, LUMSA University, 00193 Rome, Italy
| | - Floriana Costanzo
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Cristiana Varuzza
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Centro di Riabilitazione Casa San Giuseppe, Opera Don Guanella, 00165 Rome, Italy
| | - Deny Menghini
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (G.L.); (E.F.); (C.C.); (A.B.); (F.C.); (C.V.); (S.V.)
- Correspondence: ; Tel.: +39-066-859-7091
| |
Collapse
|
24
|
Pabst A, Proksch S, Médé B, Comstock DC, Ross JM, Balasubramaniam R. A systematic review and meta-analysis of the efficacy of intermittent theta burst stimulation (iTBS) on cognitive enhancement. Neurosci Biobehav Rev 2022; 135:104587. [PMID: 35202646 DOI: 10.1016/j.neubiorev.2022.104587] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
Abstract
Intermittent theta-burst stimulation (iTBS) has been used to focally regulate excitability of neural cortex over the past decade - however there is little consensus on the generalizability of effects reported in individual studies. Many studies use small sample sizes (N < 30), and there is a considerable amount of methodological heterogeneity in application of the stimulation itself. This systematic meta-analysis aims to consolidate the extant literature and determine if up-regulatory theta-burst stimulation reliably enhances cognition through measurable behavior. Results show that iTBS - when compared to suitable control conditions - may enhance cognition when outlier studies are removed, but also that there is a significant amount of heterogeneity across studies. Significant contributors to between-study heterogeneity include location of stimulation and method of navigation to the stimulation site. Surprisingly, the type of cognitive domain investigated was not a significant contributor of heterogeneity. The findings of this meta-analysis demonstrate that standardization of iTBS is urgent and necessary to determine if neuroenhancement of particular cognitive faculties are reliable and robust, and measurable through observable behavior.
Collapse
Affiliation(s)
- Alexandria Pabst
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA; Accenture Labs, 415 Mission Street, San Francisco, CA 94105, USA.
| | - Shannon Proksch
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| | - Butovens Médé
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| | - Daniel C Comstock
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA; Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95618, USA.
| | - Jessica Marie Ross
- Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA; Veterans Affairs Palo Alto Healthcare System, Stanford University, 3801 Miranda Ave, Palo Alto, CA 94304, USA.
| | - Ramesh Balasubramaniam
- Department of Cognitive and Information Sciences, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA.
| |
Collapse
|
25
|
Lee G, Lee J, Kim J, Kim H, Chang WH, Kim YH. Whole Brain Hemodynamic Response Based on Synchrony Analysis of Brain Signals for Effective Application of HD-tDCS in Stroke Patients: An fNIRS Study. J Pers Med 2022; 12:jpm12030432. [PMID: 35330432 PMCID: PMC8949719 DOI: 10.3390/jpm12030432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
In this study, the effective application of high-definition transcranial direct current stimulation (HD-tDCS) based on the whole brain hemodynamic response in stroke patients was investigated using functional near-infrared spectroscopy (fNIRS). The intrahemispheric and interhemispheric synchronization and cortical activity based on the time during 1 mA HD-tDCS were examined in 26 chronic cerebrovascular disease patients. At the beginning of HD-tDCS, the synchronization and brain activity in the whole brain increased rapidly and decreased after 5 min. In the middle of tDCS, the synchronization began to increase again, and strong synchronic connections were formed around the desired stimulation area. After tDCS, strong cortical activation was observed in the stimulation area, indicating that the baseline of the oxyhemoglobin (HbO) signal increased in the desired stimulation area. Therefore, the results of this study indicate that HD-tDCS can be applied efficiently to enhance the effect of tDCS. This stimulation method with tDCS can be explored clinically for more neurorehabilitation of patients with degenerative brain diseases.
Collapse
Affiliation(s)
- Gihyoun Lee
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea; (G.L.); (J.K.); (H.K.)
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Jungsoo Lee
- Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea;
| | - Jinuk Kim
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea; (G.L.); (J.K.); (H.K.)
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Heegoo Kim
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea; (G.L.); (J.K.); (H.K.)
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
| | - Yun-Hee Kim
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea; (G.L.); (J.K.); (H.K.)
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea;
- Department of Medical Device Management & Research, Department of Digital Health, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
- Correspondence:
| |
Collapse
|
26
|
Smucny J, Dienel SJ, Lewis DA, Carter CS. Mechanisms underlying dorsolateral prefrontal cortex contributions to cognitive dysfunction in schizophrenia. Neuropsychopharmacology 2022; 47:292-308. [PMID: 34285373 PMCID: PMC8617156 DOI: 10.1038/s41386-021-01089-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
Kraepelin, in his early descriptions of schizophrenia (SZ), characterized the illness as having "an orchestra without a conductor." Kraepelin further speculated that this "conductor" was situated in the frontal lobes. Findings from multiple studies over the following decades have clearly implicated pathology of the dorsolateral prefrontal cortex (DLPFC) as playing a central role in the pathophysiology of SZ, particularly with regard to key cognitive features such as deficits in working memory and cognitive control. Following an overview of the cognitive mechanisms associated with DLPFC function and how they are altered in SZ, we review evidence from an array of neuroscientific approaches addressing how these cognitive impairments may reflect the underlying pathophysiology of the illness. Specifically, we present evidence suggesting that alterations of the DLPFC in SZ are evident across a range of spatial and temporal resolutions: from its cellular and molecular architecture, to its gross structural and functional integrity, and from millisecond to longer timescales. We then present an integrative model based upon how microscale changes in neuronal signaling in the DLPFC can influence synchronized patterns of neural activity to produce macrocircuit-level alterations in DLPFC activation that ultimately influence cognition and behavior. We conclude with a discussion of initial efforts aimed at targeting DLPFC function in SZ, the clinical implications of those efforts, and potential avenues for future development.
Collapse
Affiliation(s)
- Jason Smucny
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA
- Center for Neuroscience, University of California Davis, Davis, CA, USA
| | - Samuel J Dienel
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - David A Lewis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Cameron S Carter
- Department of Psychiatry and Behavioral Sciences, University of California Davis Medical Center, Sacramento, CA, USA.
- Center for Neuroscience, University of California Davis, Davis, CA, USA.
| |
Collapse
|
27
|
Mosbacher JA, Halverscheid S, Pustelnik K, Danner M, Prassl C, Brunner C, Vogel SE, Nitsche MA, Grabner RH. Theta Band Transcranial Alternating Current Stimulation Enhances Arithmetic Learning: A Systematic Comparison of Different Direct and Alternating Current Stimulations. Neuroscience 2021; 477:89-105. [PMID: 34648868 DOI: 10.1016/j.neuroscience.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022]
Abstract
Over the last decades, interest in transcranial electrical stimulation (tES) has grown, as it might allow for causal investigations of the associations between cortical activity and cognition as well as to directly influence cognitive performance. The main objectives of the present work were to assess whether tES can enhance the acquisition and application of arithmetic abilities, and whether it enables a better assessment of underlying neurophysiological processes. To this end, the present, double-blind, sham-controlled study assessed the effects of six active stimulations (three tES protocols: anodal transcranial direct current stimulation (tDCS), alpha band transcranial alternating current stimulation (tACS), and theta band tACS; targeting the left dorsolateral prefrontal cortex or the left posterior parietal cortex) on the acquisition of an arithmetic procedure, arithmetic facts, and event-related synchronization/desynchronization (ERS/ERD) patterns. 137 healthy adults were randomly assigned to one of seven groups, each receiving one of the tES-protocols during learning. Results showed that frontal theta band tACS reduced the repetitions needed to learn novel facts and both, frontal and parietal theta band tACS accelerated the decrease in calculation times in fact learning problems. The beneficial effect of frontal theta band tACS may reflect enhanced executive functions, allowing for better control and inhibition processes and hence, a faster acquisition and integration of novel fact knowledge. However, there were no significant effects of the stimulations on procedural learning or ERS/ERD patterns. Overall, theta band tACS appears promising as a support for arithmetic fact training, but effects on procedural calculations and neurophysiological processes remain ambiguous.
Collapse
Affiliation(s)
- Jochen A Mosbacher
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | | | - Kolja Pustelnik
- Mathematics Institute, University of Göttingen, Göttingen, Germany
| | - Martina Danner
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Christina Prassl
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Clemens Brunner
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Stephan E Vogel
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Roland H Grabner
- Section of Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| |
Collapse
|
28
|
van Bueren NER, Reed TL, Nguyen V, Sheffield JG, van der Ven SHG, Osborne MA, Kroesbergen EH, Cohen Kadosh R. Personalized brain stimulation for effective neurointervention across participants. PLoS Comput Biol 2021; 17:e1008886. [PMID: 34499639 PMCID: PMC8454957 DOI: 10.1371/journal.pcbi.1008886] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/21/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Accumulating evidence from human-based research has highlighted that the prevalent one-size-fits-all approach for neural and behavioral interventions is inefficient. This approach can benefit one individual, but be ineffective or even detrimental for another. Studying the efficacy of the large range of different parameters for different individuals is costly, time-consuming and requires a large sample size that makes such research impractical and hinders effective interventions. Here an active machine learning technique is presented across participants-personalized Bayesian optimization (pBO)-that searches available parameter combinations to optimize an intervention as a function of an individual's ability. This novel technique was utilized to identify transcranial alternating current stimulation (tACS) frequency and current strength combinations most likely to improve arithmetic performance, based on a subject's baseline arithmetic abilities. The pBO was performed across all subjects tested, building a model of subject performance, capable of recommending parameters for future subjects based on their baseline arithmetic ability. pBO successfully searches, learns, and recommends parameters for an effective neurointervention as supported by behavioral, simulation, and neural data. The application of pBO in human-based research opens up new avenues for personalized and more effective interventions, as well as discoveries of protocols for treatment and translation to other clinical and non-clinical domains.
Collapse
Affiliation(s)
- Nienke E. R. van Bueren
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas L. Reed
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Vu Nguyen
- Department of Materials, University of Oxford, Oxford, United Kingdom
- Amazon, Adelaide, Australia
| | - James G. Sheffield
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | | | - Michael A. Osborne
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Evelyn H. Kroesbergen
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Roi Cohen Kadosh
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
29
|
Balboa-Bandeira Y, Zubiaurre-Elorza L, Ibarretxe-Bilbao N, Ojeda N, Peña J. Effects of transcranial electrical stimulation techniques on second and foreign language learning enhancement in healthy adults: A systematic review and meta-analysis. Neuropsychologia 2021; 160:107985. [PMID: 34371068 DOI: 10.1016/j.neuropsychologia.2021.107985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Transcranial electrical stimulation (tES) techniques have been used to enhance different cognitive domains such as language in healthy adults. While several reviews and meta-analysis have been conducted on the effects of tES on different language skills (picture naming, verbal fluency, word reading), there has been little research conducted to date on the effects of tES on the processes involved in foreign language learning. OBJECTIVE A meta-analysis was performed to quantify the effects of tES on foreign language learning processes (non-words, artificial grammar, and foreign languages), focusing on accuracy, response times and 1-week follow-up effects, if reported by the studies. RESULTS Eleven studies that had sham condition were reviewed. Nine of them were analyzed, including five using within-participant design, and four that employed between-participant design. The final analysis encompassed nine studies with 279 healthy participants. The analysis showed moderate enhancing effects of tES on overall language learning (g = 0.50, 95 % CI [0.29, 0.71], p = .0001). However, results were not significant on follow up data (g = 0.54, 95 % CI [-0.12, 1.20], p = .07), and on response times (g = 0.50, 95 % CI [-0.1, 1.18], p = .10). The effects were significantly moderated by years of education. CONCLUSIONS The results suggest that tES seems to enhance the mechanisms involved in foreign language learning; however, more research is needed to understand the impact scope of these techniques on language learning processes.
Collapse
Affiliation(s)
| | | | | | - Natalia Ojeda
- Department of Methods and Experimental Psychology, University of Deusto, Bilbao, Spain
| | - Javier Peña
- Department of Methods and Experimental Psychology, University of Deusto, Bilbao, Spain.
| |
Collapse
|
30
|
Friehs MA, Frings C, Hartwigsen G. Effects of single-session transcranial direct current stimulation on reactive response inhibition. Neurosci Biobehav Rev 2021; 128:749-765. [PMID: 34271027 DOI: 10.1016/j.neubiorev.2021.07.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 01/03/2023]
Abstract
Transcranial direct current stimulation (tDCS) is widely used to explore the role of various cortical regions for reactive response inhibition. In recent years, tDCS studies reported polarity-, time- and stimulation-site dependent effects on response inhibition. Given the large parameter space in which study designs, tDCS procedures and task procedures can differ, it is crucial to systematically explore the existing tDCS literature to increase the current understanding of potential modulatory effects and limitations of different approaches. We performed a systematic review on the modulatory effects of tDCS on response inhibition as measured by the Stop-Signal Task. The final dataset shows a large variation in methodology and heterogeneous effects of tDCS on performance. The most consistent result across studies is a performance enhancement due to anodal tDCS over the right prefrontal cortex. Partially sub-optimal choices in study design, methodology and lacking consistency in reporting procedures may impede valid conclusions and obscured the effects of tDCS on response inhibition in some previous studies. Finally, we outline future directions and areas to improve research.
Collapse
Affiliation(s)
| | - Christian Frings
- Trier University, Department of Cognitive Psychology and Methodology, Trier, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive Brain Sciences, Leipzig, Germany
| |
Collapse
|
31
|
Neubauer AC. The future of intelligence research in the coming age of artificial intelligence – With a special consideration of the philosophical movements of trans- and posthumanism. INTELLIGENCE 2021. [DOI: 10.1016/j.intell.2021.101563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Kimura T, Nakano W. Does a Cognitive Task Promote Implicit or Explicit Motor Learning? J Mot Behav 2021; 55:619-631. [PMID: 34121633 DOI: 10.1080/00222895.2021.1918053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 10/21/2022]
Abstract
This study examined whether use of an N-back task could promote implicit and explicit motor learning. In Experiment 1, 30 healthy adults were assigned to an N-back task group (NTG) or a control task group (CG). All participants performed the serial reaction time task (SRTT) and generation task after either the N-back or control tasks. The results did not reveal whether the N-back task promoted implicit or explicit motor learning because participants in the NTG noticed a hidden loop in the SRTT and this "awareness" made it difficult to interpret the results in Experiment 1. In Experiment 2, we examined whether the N-back task promoted explicit motor learning only using a modified SRTT. Thirty healthy adults were assigned to the NTG or the CG. On day 1, all participants performed the modified SRTT after either the N-back or control tasks. On day 7, all participants repeated the modified SRTT. As a result, the performance on the modified SRTT was faster in the NTG than in the CG on days 1 and 7. In summary, although the N-back task might promote explicit motor learning, the present study could not clearly conclude whether the N-back task promoted implicit and explicit motor learning.
Collapse
Affiliation(s)
- Takehide Kimura
- Department of Physical Therapy, Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki, Japan
| | - Wataru Nakano
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, 1-30 Shizuoka, Shizuoka, Japan
| |
Collapse
|
33
|
Smits FM, Schutter DJLG, van Honk J, Geuze E. Does non-invasive brain stimulation modulate emotional stress reactivity? Soc Cogn Affect Neurosci 2021; 15:23-51. [PMID: 31993648 PMCID: PMC7171378 DOI: 10.1093/scan/nsaa011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/09/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Excessive emotional responses to stressful events can detrimentally affect psychological functioning and mental health. Recent studies have provided evidence that non-invasive brain stimulation (NBS) targeting the prefrontal cortex (PFC) can affect the regulation of stress-related emotional responses. However, the reliability and effect sizes have not been systematically analyzed. In the present study, we reviewed and meta-analyzed the effects of repetitive transcranial magnetic (rTMS) and transcranial direct current stimulation (tDCS) over the PFC on acute emotional stress reactivity in healthy individuals. Forty sham-controlled single-session rTMS and tDCS studies were included. Separate random effects models were performed to estimate the mean effect sizes of emotional reactivity. Twelve rTMS studies together showed no evidence that rTMS over the PFC influenced emotional reactivity. Twenty-six anodal tDCS studies yielded a weak beneficial effect on stress-related emotional reactivity (Hedges’ g = −0.16, CI95% = [−0.33, 0.00]). These findings suggest that a single session of NBS is insufficient to induce reliable, clinically significant effects but also provide preliminary evidence that specific NBS methods can affect emotional reactivity. This may motivate further research into augmenting the efficacy of NBS protocols on stress-related processes.
Collapse
Affiliation(s)
- Fenne M Smits
- Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Jack van Honk
- Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands.,Department of Psychiatry and Mental Health, University of Cape Town, Observatory, 7925, Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Elbert Geuze
- Brain Research & Innovation Centre, Ministry of Defence, Lundlaan 1, 3584 EZ, Utrecht, The Netherlands.,Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
34
|
fMRI and transcranial electrical stimulation (tES): A systematic review of parameter space and outcomes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110149. [PMID: 33096158 DOI: 10.1016/j.pnpbp.2020.110149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/12/2020] [Accepted: 10/17/2020] [Indexed: 12/12/2022]
Abstract
The combination of non-invasive brain stimulation interventions with human brain mapping methods have supported research beyond correlational associations between brain activity and behavior. Functional MRI (fMRI) partnered with transcranial electrical stimulation (tES) methods, i.e., transcranial direct current (tDCS), transcranial alternating current (tACS), and transcranial random noise (tRNS) stimulation, explore the neuromodulatory effects of tES in the targeted brain regions and their interconnected networks and provide opportunities for individualized interventions. Advances in the field of tES-fMRI can be hampered by the methodological variability between studies that confounds comparability/replicability. In order to explore variability in the tES-fMRI methodological parameter space (MPS), we conducted a systematic review of 222 tES-fMRI experiments (181 tDCS, 39 tACS and 2 tRNS) published before February 1, 2019, and suggested a framework to systematically report main elements of MPS across studies. Publications dedicated to tRNS-fMRI were not considered in this systematic review. We have organized main findings in terms of fMRI modulation by tES. tES modulates activation and connectivity beyond the stimulated areas particularly with prefrontal stimulation. There were no two studies with the same MPS to replicate findings. We discuss how to harmonize the MPS to promote replication in future studies.
Collapse
|
35
|
Bleich-Cohen M, Gurevitch G, Carmi N, Medvedovsky M, Bregman N, Nevler N, Elman K, Ginou A, Zangen A, Ash EL. A functional magnetic resonance imaging investigation of prefrontal cortex deep transcranial magnetic stimulation efficacy in adults with attention deficit/hyperactive disorder: A double blind, randomized clinical trial. Neuroimage Clin 2021; 30:102670. [PMID: 34215144 PMCID: PMC8102620 DOI: 10.1016/j.nicl.2021.102670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/19/2021] [Accepted: 04/08/2021] [Indexed: 02/09/2023]
Abstract
ADHD is one of the most prevalent neurocognitive disorders. Deep Transcranial Magnetic Stimulation (dTMS) is a non-invasive neuromodulation tool that holds promise in treatment of neurocognitive disorders. Hypoactivity of the prefrontal cortex (PFC) has been observed in ADHD. This study examined the clinical, cognitive, and neural effects of dTMS to the PFC in adults with ADHD by using functional magnetic resonance imaging (fMRI). High frequency repetitive dTMS was applied to either the right or left PFC in 62 adults with ADHD in a randomized, double blind, placebo controlled protocol with 3 study groups: 2 treatment arms (rPFC, or lPFC) and a Sham arm. The study included 15 dTMS/cognitive training treatment sessions. Clinical effects were assessed with the Conners Adult ADHD Rating Scale (CAARS) self-report and the Clinical Global Impression score (CGI) as primary outcome measures. Self-report/observer questionnaires and computerized cognitive testing were also performed to assess clinical and cognitive effects. Neural effects were assessed with fMRI using working-memory (WM) and resting-state paradigms. While the study did not show improvement in the primary endpoints, significant improvements were observed in the CAARS (self-report) inattention/memory sub-scale, as well as increased activations in the rDLPFC, right parietal-cortex and right insula/IFG during WM conditions after treatment in the right stimulation group. Increased rDLPFC activation was associated with larger symptom improvement in the right stimulation group. This study indicates that dTMS is effective in modulating attention related brain networks, and is a feasible technique that may improve attention symptoms in adults with ADHD.
Collapse
Affiliation(s)
- Maya Bleich-Cohen
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; Brainsway Ltd, Jerusalem 9777518, Israel.
| | - Guy Gurevitch
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noa Carmi
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Mordekhay Medvedovsky
- Department of Neurology, Agnes Ginges Center of Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Noa Bregman
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Naomi Nevler
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Karin Elman
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Amit Ginou
- Brainsway Ltd, Jerusalem 9777518, Israel
| | - Abraham Zangen
- Brain Stimulation and Behavior Lab, The Zlotowski Center for Neuroscience, Ben Gurion University, Beer Sheva 8410501, Israel
| | - Elissa L Ash
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| |
Collapse
|
36
|
PeÑa J, Sampedro A, GÓmez‐Gastiasoro A, Ibarretxe‐Bilbao N, Zubiaurre‐Elorza L, Aguiar C, Ojeda N. The Effect of Changing the Balance Between Right and Left Dorsolateral Prefrontal Cortex on Different Creativity Tasks: A Transcranial Random Noise Stimulation Study. JOURNAL OF CREATIVE BEHAVIOR 2021. [DOI: 10.1002/jocb.496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
37
|
Noninvasive brain stimulation to lateral prefrontal cortex alters the novelty of creative idea generation. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:311-326. [PMID: 33624232 DOI: 10.3758/s13415-021-00869-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2021] [Indexed: 11/08/2022]
Abstract
Theories of the processes involved in creative cognition posit that cognitive control has a negative effect on creative idea generation but a positive effect on creative idea evaluation. Brain stimulation research has started to examine empirically the effects of cognitive control, with several reports of decreased cognitive control facilitating creative ideation. Such studies have shown how decreased cognitive control mechanisms facilitate creative idea generation, potentially by allowing participants access to less inhibited weaker-related associations, thereby increasing novelty. In the current study, we advance this line of work by investigating how cognitive control affects creative thinking, potentially inhibiting or facilitating novel idea generation based on task demands. Participants read sentences with the final word missing and were instructed to complete the sentence with an uncommon (but appropriate) ending. Participants performed this task while undergoing either anodal (excitatory), cathodal (inhibitory), or sham (control) transcranial direct current stimulation over their left prefrontal cortex. These responses were then rated for their novelty and appropriateness by an independent sample of raters. We found that anodal stimulation increased the appropriateness and decreased the novelty of participants' responses. Contrary to previous studies, we did not find that cathodal stimulation increased the novelty of participants' responses, which may be due to the nature of our task. Overall, we demonstrate how cognitive control mechanisms may inhibit novel idea generation.
Collapse
|
38
|
Scaffolding the attention-deficit/hyperactivity disorder brain using transcranial direct current and random noise stimulation: A randomized controlled trial. Clin Neurophysiol 2021; 132:699-707. [PMID: 33561725 DOI: 10.1016/j.clinph.2021.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Improving symptomology and cognitive deficits in neurodevelopmental disorders is a crucial challenge. We examined whether neurostimulation protocols, which have been shown to yield long-term effects when combined with cognitive training, could benefit children with Attention-deficit/hyperactivity-disorder (ADHD), the most common neurodevelopmental disorder in childhood. METHODS We used a randomized double-blind active-controlled crossover study of 19 unmedicated children with ADHD, who received either anodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (dlPFC) or random noise stimulation (tRNS) over the bilateral dlPFC, while completing executive functions training. RESULTS For our primary outcome, tRNS yielded a clinical improvement as indicated by the reduced ADHD rating-scale score from baseline, and in comparison to the changes observed in tDCS. The effect of brain stimulation one week after completion of treatment yielded further improvement, suggesting a neuroplasticity-related effect. Finally, tRNS improved working memory compared to tDCS, and a larger tRNS effect on ADHD rating-scale was predicted for those who showed the greatest improvement in working memory. CONCLUSIONS We found that our intervention can have a lasting effect, rather than a merely immediate effect as was shown for in previous medical interventions in ADHD. SIGNIFICANCE Our results provide a promising direction toward a novel intervention in ADHD.
Collapse
|
39
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
40
|
Santos FH, Mosbacher JA, Menghini D, Rubia K, Grabner RH, Cohen Kadosh R. Effects of transcranial stimulation in developmental neurocognitive disorders: A critical appraisal. PROGRESS IN BRAIN RESEARCH 2021; 264:1-40. [PMID: 34167652 DOI: 10.1016/bs.pbr.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Non-invasive brain stimulation (NIBS) has been highlighted as a powerful tool to promote neuroplasticity, and an attractive approach to support cognitive remediation. Here we provide a systematic review of 26 papers using NIBS to ameliorate cognitive dysfunctions in three prevalent neurodevelopmental disorders: Attention-Deficit/Hyperactivity Disorder (ADHD), Developmental Dyslexia and Developmental Dyscalculia. An overview of the state of research shows a predominance of studies using repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) techniques, and an unequal distribution among clinical conditions. Regarding the utility of NIBS, the results are promising but also ambiguous. Twenty-three papers reported beneficial effects, but many of these effects were found only once or were only partially replicated and some studies even reported detrimental effects. Furthermore, most studies differed in at least one core aspect, the NIBS applied, the questionnaires and cognitive tests conducted, or the age group investigated, and sample sizes were mostly small. Hence, further studies are needed to rigorously examine the potential of NIBS in the remediation of cognitive functions. Finally, we discuss potential caveats and future directions. We reason that if adequately addressing these challenges NIBS can be feasible, with potential benefits in treating neurodevelopmental disorders.
Collapse
Affiliation(s)
- Flavia H Santos
- School of Psychology, University College Dublin, Dublin, Ireland
| | - Jochen A Mosbacher
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria.
| | - Deny Menghini
- Department of Neuroscience, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Katya Rubia
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Roland H Grabner
- Educational Neuroscience, Institute of Psychology, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
41
|
Sánchez-León CA, Sánchez-López Á, Gómez-Climent MA, Cordones I, Cohen Kadosh R, Márquez-Ruiz J. Impact of chronic transcranial random noise stimulation (tRNS) on GABAergic and glutamatergic activity markers in the prefrontal cortex of juvenile mice. PROGRESS IN BRAIN RESEARCH 2021; 264:323-341. [PMID: 34167661 DOI: 10.1016/bs.pbr.2021.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Transcranial random noise stimulation (tRNS), a non-invasive neuromodulatory technique capable of altering cortical activity, has been proposed to improve the signal-to-noise ratio at the neuronal level and the sensitivity of the neurons following an inverted U-function. The aim of this study was to examine the effects of tRNS on vGLUT1 and GAD 65-67 and its safety in terms of pathological changes. For that, juvenile mice were randomly distributed in three different groups: "tRNS 1×" receiving tRNS at the density current used in humans (0.3A/m2, 20min), "tRNS 100×" receiving tRNS at two orders of magnitude higher (30.0A/m2, 20min) and "sham" (0.3A/m2, 15s). Nine tRNS sessions during 5 weeks were administered to the prefrontal cortex of awake animals. No detectable tissue macroscopic lesions were observed after tRNS sessions. Post-stimulation immunohistochemical analysis of GAD 65-67 and vGLUT1 immunoreactivity showed reduced GAD 65-67 immunoreactivity levels in the region directly beneath the electrode for tRNS 1× group with no significant effects in the tRNS 100× nor sham group. The observed results suggest an excitatory effect associated with a decrease in GABA levels in absence of major histopathological alterations providing a novel mechanistic explanation for tRNS effects.
Collapse
Affiliation(s)
- Carlos A Sánchez-León
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Álvaro Sánchez-López
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - María A Gómez-Climent
- Educational Psychology and Psychobiology Area, Faculty of Education, International University of La Rioja, Logroño, Spain
| | - Isabel Cordones
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain
| | - Roi Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Javier Márquez-Ruiz
- Department of Physiology, Anatomy and Cell Biology, Pablo de Olavide University, Seville, Spain.
| |
Collapse
|
42
|
Prefrontal transcranial direct-current stimulation improves early technical skills in surgery. Brain Stimul 2020; 13:1834-1841. [DOI: 10.1016/j.brs.2020.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
|
43
|
Verveer I, Remmerswaal D, van der Veen FM, Franken IH. Long-term tDCS effects on neurophysiological measures of cognitive control in tobacco smokers. Biol Psychol 2020; 156:107962. [DOI: 10.1016/j.biopsycho.2020.107962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/17/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
|
44
|
Peña J, Sampedro A, Ibarretxe-Bilbao N, Zubiaurre-Elorza L, Aizpurua A, Ojeda N. The effect of transcranial random noise stimulation (tRNS) over bilateral posterior parietal cortex on divergent and convergent thinking. Sci Rep 2020; 10:15559. [PMID: 32968171 PMCID: PMC7511964 DOI: 10.1038/s41598-020-72532-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 08/31/2020] [Indexed: 12/17/2022] Open
Abstract
Creativity pervades many areas of everyday life and is considered highly relevant in several human living domains. Previous literature suggests that the posterior parietal cortex (PPC) is related to creativity. However, none of previous studies have compared the effect of transcranial random noise stimulation (tRNS) over bilateral PPC on both verbal and visual divergent thinking (DT) and Remote Associates Test (RAT) in the same experimental design. Forty healthy participants were randomly assigned to tRNS (100–500 Hz) over bilateral PPC or sham group, for 15 min and current was set at 1.5 mA. Participants’ creativity skills were assessed before and after brain stimulation with the Unusual Uses and the Picture Completion subtests from the Torrance Test of Creative Thinking and the RAT. ANCOVA (baseline scores as covariate) results indicated that tRNS group had significantly higher scores at post-test in RAT and visual originality compared to sham group. Unusual Uses, on the other hand, was not significant. Improvement in RAT suggests the involvement of PPC during via insight solution which may reflect internally directed attention that helps the recombination of remotely associated information. The improvement in visual originality dimension from DT may be due to a higher internally directed attention while reducing externally oriented attention.
Collapse
Affiliation(s)
- Javier Peña
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain.
| | - Agurne Sampedro
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain
| | - Naroa Ibarretxe-Bilbao
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain
| | - Aralar Aizpurua
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Avda. Universidades 24, 48007, Bilbao, , Basque Country, Spain
| |
Collapse
|
45
|
Wagner J, Lo Monaco S, Contò F, Parrott D, Battelli L, Rusconi E. Effects of transcranial direct current stimulation over the posterior parietal cortex on novice X-ray screening performance. Cortex 2020; 132:1-14. [PMID: 32911230 DOI: 10.1016/j.cortex.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/08/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Existing theories of visual search are generally deduced from lab-based studies involving the identification of a target object among similar distractors. The role of the right parietal cortex in visual search is well-established. However, less is known about real-world visual search tasks, such as X-ray screening, which require targets to be disembedded from their background. Research has shown variations in the cognitive abilities required for these tasks and typical lab-based visual search tasks. Thus, the findings of traditional visual search studies do not always transfer into the applied domain. Although brain imaging studies have offered insights into visual search tasks involving disembedding, highlighting an association between the left parietal cortex and disembedding performance, no causal link has yet been established. To this end, we carried out a pilot study (n = 34, between-subjects) administering non-invasive brain stimulation over the posterior parietal cortex (PPC) prior to completing a security X-ray screening task. The findings suggested that anodal left PPC tDCS enhanced novice performance in X-ray screening over that of sham stimulation, in line with brain imaging findings. However, the efficacy of tDCS is under question, with a growing number of failed replications. With this in mind, this study aims to re-test our original hypothesis by examining the effects of left-side parietal stimulation on novice X-ray screener performance and comparing them to those of sham stimulation and of stimulation on a control site (right PPC). As such, this within-subjects study comprised three sessions (2 mA left PPC, 2 mA right PPC, low-intensity sham stimulation left PPC), to investigate effects of anodal tDCS on X-ray screening performance. The pre-registered analysis did not detect any significant differences between left PPC tDCS and sham tDCS or left PPC tDCS and right PPC tDCS on novice performance (d') in X-ray screening. Further exploratory analyses detected no effects of left PPC tDCS on any other indices of performance in the X-ray security screening task (c, RTs and accuracy), or a disembedding control task (RTs and accuracy). The use of alternative stimulation techniques, with replicable behavioural effects on the parietal lobe (or a multi-technique approach), and well-powered studies with a systematic variation of stimulation parameters, could help to choose between two possible interpretations: that neither left nor right PPC are causally related to either tasks or that tDCS was ineffective. Finally, low-intensity sham stimulation (.016 mA), previously shown to outperform other sham conditions in between-subjects designs, was found to be ineffective for blinding participants in a within-subjects design. Our findings raise concerns for the current lack of optimal control conditions and add to the growing literature highlighting the need for replication in the field.
Collapse
Affiliation(s)
| | - Silvia Lo Monaco
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| | - Federica Contò
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Danielle Parrott
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Lorella Battelli
- Center for Neuroscience and Cognitive Systems@UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy; Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Elena Rusconi
- Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy.
| |
Collapse
|
46
|
Debatin T. Neuroenergetics and "General Intelligence": A Systems Biology Perspective. J Intell 2020; 8:jintelligence8030031. [PMID: 32858851 PMCID: PMC7555089 DOI: 10.3390/jintelligence8030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
David C. Geary proposed the efficiency of mitochondrial processes, especially the production of energy, as the most fundamental biological mechanism contributing to individual differences in general intelligence (g). While the efficiency of mitochondrial functioning is undoubtedly an important and highly interesting factor, I outline several reasons why other main factors of neuroenergetics should not be neglected and why a systems biology perspective should be adopted. There are many advantages for research on intelligence to focus on individual differences in the capability of the overall brain metabolism system to produce the energy currency adenosine triphosphate (ATP): higher predictive strength than single mechanisms, diverse possibilities for experimental manipulation, measurement with existing techniques and answers to unresolved questions because of multiple realizability. Many of these aspects are especially important for research on developmental processes and the building and refining of brain networks for adaptation. Focusing too much on single parts of the system, like the efficiency of mitochondrial functioning, carries the danger of missing important information about the role of neuroenergetics in intelligence and valuable research opportunities.
Collapse
Affiliation(s)
- Tobias Debatin
- Department of Educational Sciences, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
47
|
Buecker S, Simacek T, Ingwersen B, Terwiel S, Simonsmeier BA. Physical activity and subjective well-being in healthy individuals: a meta-analytic review. Health Psychol Rev 2020; 15:574-592. [PMID: 32452716 DOI: 10.1080/17437199.2020.1760728] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Longstanding research suggests a positive relation between physical activity and health. However, when investigating this relation most studies focused on the absence of disease or infirmity as health indicators. The relation between physical activity and positive health-related constructs such as subjective well-being (SWB) remains oftentimes unexplored. The present meta-analysis offers a rigorous test of the relation between physical activity and SWB in healthy individuals, by including all different kinds of physical activity and SWB facets from childhood to old age. Random-effects meta-analysis using robust variance estimation revealed a positive relation (d = 0.360, 95% CI [0.301, 0.420]). Our results demonstrate a small beneficial main effect of physical activity on SWB, independent of the prior fitness level of the participants and various characteristics of the physical activity intervention. This effect was found in experimental studies as well as in correlational and quasi-experimental studies. Physical activity was more strongly related to positive affect compared to cognitive well-being and was unrelated to negative affect. Our results provide evidence for the importance of physical activity in the context of well-being. Further, we also systematically review and discuss the large heterogeneity of studies published on this relation and warrant further research regarding underlying mechanisms.
Collapse
Affiliation(s)
- Susanne Buecker
- Department of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Thomas Simacek
- Department of Psychology, Trier University, Trier, Germany
| | | | - Sophia Terwiel
- Department of Psychology, Ruhr-Universität Bochum, Bochum, Germany
| | | |
Collapse
|
48
|
Patel R, Dawidziuk A, Darzi A, Singh H, Leff DR. Systematic review of combined functional near-infrared spectroscopy and transcranial direct-current stimulation studies. NEUROPHOTONICS 2020; 7:020901. [PMID: 32607389 PMCID: PMC7315225 DOI: 10.1117/1.nph.7.2.020901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 05/05/2023]
Abstract
Significance: Combining transcranial direct-current stimulation (tDCS) with functional near-infrared spectroscopy (fNIRS) is a recent approach to exploring brain activation evoked by neurostimulation. Aim: To critically evaluate studies combining tDCS and fNIRS and provide a consolidated overview of cortical hemodynamic responses to neurostimulation. Approach: Key terms were searched in three databases (MEDLINE, EMBASE, and PsycINFO) with cross-referencing and works from Google Scholar also evaluated. All studies reporting on fNIRS-derived hemoglobin changes evoked by tDCS were included. Results: Literature searches revealed 474 articles, of which 28 were included for final review (22 in healthy individuals: 9 involving rest and 13 with tasks; 6 in the clinical setting). At rest, an overall increase in cortical activation was observed in fNIRS responses at the site of stimulation, with evidence suggesting nonstimulated brain regions are also similarly affected. Conversely, during tasks, reduced cortical activation was observed during online stimulation. Offline and poststimulation effects were less consistent, as is the impact on clinical populations and their symptom correlation. Conclusion: This review explores the methodological frameworks for fNIRS-tDCS evaluations and summarizes hemodynamic responses associated with tDCS in all populations. Our findings provide further evidence of the impact of tDCS on neuronal activation within functionally connected networks.
Collapse
Affiliation(s)
- Ronak Patel
- St. Mary’s Hospital Campus, Imperial College London, Department of Surgery and Cancer, London, United Kingdom
- Address all correspondence to Ronak Patel, E-mail:
| | - Aleksander Dawidziuk
- St. Mary’s Hospital Campus, Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - Ara Darzi
- St. Mary’s Hospital Campus, Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - Harsimrat Singh
- St. Mary’s Hospital Campus, Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| | - Daniel Richard Leff
- St. Mary’s Hospital Campus, Imperial College London, Department of Surgery and Cancer, London, United Kingdom
| |
Collapse
|
49
|
Grasso PA, Tonolli E, Miniussi C. Effects of different transcranial direct current stimulation protocols on visuo-spatial contextual learning formation: evidence of homeostatic regulatory mechanisms. Sci Rep 2020; 10:4622. [PMID: 32165722 PMCID: PMC7067887 DOI: 10.1038/s41598-020-61626-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/27/2020] [Indexed: 11/09/2022] Open
Abstract
In the present study we tested the effects of different transcranial direct current stimulation (tDCS) protocols in the formation of visuo-spatial contextual learning (VSCL). The study comprised three experiments designed to evaluate tDCS-induced changes in VSCL measures collected during the execution of a visual search task widely used to examine statistical learning in the visuo-spatial domain. In Experiment 1, we probed for the effects of left-posterior parietal cortex (PPC) anodal-tDCS (AtDCS) at different timings (i.e. offline and online) and intensities (i.e. 3 mA and 1.5 mA). The protocol producing the more robust effect in Experiment 1 was used in Experiment 2 over the right-PPC, while in Experiment 3, cathodal-tDCS (CtDCS) was applied over the left-PPC only at a high intensity (i.e. 3 mA) but varying timing of application (offline and online). Results revealed that high intensity offline AtDCS reduced VSCL regardless of the stimulation side (Experiment 1 and 2), while no significant behavioral changes were produced by both online AtDCS protocols (Experiment 1) and offline/online CtDCS (Experiment 3). The reduced VSCL could result from homeostatic regulatory mechanisms hindering normal task-related neuroplastic phenomena.
Collapse
Affiliation(s)
- Paolo A Grasso
- Centre for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy.
| | - Elena Tonolli
- Centre for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy
| | - Carlo Miniussi
- Centre for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, TN, Italy.
| |
Collapse
|
50
|
Gibson BC, Mullins TS, Heinrich MD, Witkiewitz K, Yu AB, Hansberger JT, Clark VP. Transcranial direct current stimulation facilitates category learning. Brain Stimul 2020; 13:393-400. [PMID: 31848068 DOI: 10.1016/j.brs.2019.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/06/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND After two decades of transcranial direct current stimulation (tDCS) research, it is still unclear which applications benefit most from which tDCS protocols. One prospect is the acceleration of learning, where previous work has demonstrated that anodal tDCS applied to the right ventrolateral prefrontal cortex (rVLPFC) is capable of doubling the rate of learning in a visual camouflaged threat detection and category learning task. GOALS Questions remain as to the specific cognitive mechanisms underlying this learning enhancement, and whether it generalizes to other tasks. The goal of the current project was to expand previous findings by employing a novel category learning task. METHODS Participants learned to classify pictures of European streets within a discovery learning paradigm. In a double-blind design, 54 participants were randomly assigned to 30 min of tDCS using either 2.0 mA anodal (n = 18), cathodal (n = 18), or 0.1 mA sham (n = 18) tDCS over the rVLPFC. RESULTS A linear mixed-model revealed a significant effect of tDCS condition on classification accuracy across training (p = 0.001). Compared to a 4.2% increase in sham participants, anodal tDCS over F10 increased performance by 20.6% (d = 1.71) and cathodal tDCS by 14.4% (d = 1.16). CONCLUSIONS These results provide further evidence for the capacity of tDCS applied to rVLPFC to enhance learning, showing a greater than quadrupling of test performance after training (491% of sham) in a difficult category learning task. Combined with our previous studies, these results suggest a generalized performance enhancement. Other tasks requiring sustained attention, insight and/or category learning may also benefit from this protocol.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Teagan S Mullins
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Melissa D Heinrich
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; Center on Alcoholism, Substance Abuse, & Addictions, Albuquerque, NM, 87106, USA
| | - Alfred B Yu
- CCDC, Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, 21005, USA
| | - Jeffrey T Hansberger
- CCDC, Army Research Laboratory, Human Research and Engineering Directorate, Aberdeen Proving Ground, MD, 21005, USA; U.S. Army Research Laboratory, Huntsville, AL, 35898, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Dept. Psychology, MSC03-2220, University of New Mexico, Albuquerque, NM, 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, USA; The Mind Research Network of the Lovelace Biomedical Research Institute, 1101 Yale Blvd. NE, Albuquerque, NM, 87106, USA.
| |
Collapse
|