1
|
Astorkia M, Liu Y, Pedrosa EM, Lachman HM, Zheng D. Molecular and network disruptions in neurodevelopment uncovered by single cell transcriptomics analysis of CHD8 heterozygous cerebral organoids. Heliyon 2024; 10:e34862. [PMID: 39149047 PMCID: PMC11325375 DOI: 10.1016/j.heliyon.2024.e34862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
More than 100 genes have been associated with significantly increased risks of autism spectrum disorders (ASD) with an estimate of ∼1000 genes that may contribute. The new challenge is to investigate the molecular and cellular functions of these genes during neural and brain development, and then even more challenging, to link the altered molecular and cellular phenotypes to the ASD clinical manifestations. In this study, we used single-cell RNA-seq analysis to study one of the top risk genes, CHD8, in cerebral organoids, which models early neural development. We identified 21 cell clusters in the organoid samples, representing non-neuronal cells, neural progenitors, and early differentiating neurons at the start of neural cell fate commitment. Comparisons of the cells with one copy of a CHD8 knockout allele, generated by CRISPR/Cas9 editing, and their isogenic controls uncovered thousands of differentially expressed genes, which were enriched with functions related to neural and brain development, cilium organization, and extracellular matrix organization. The affected genes were also enriched with genes and pathways previously implicated in ASD, but surprisingly not for schizophrenia and intellectual disability risk genes. The comparisons also uncovered cell composition changes, indicating potentially altered neural differential trajectories upon CHD8 reduction. Moreover, we found that cell-cell communications were affected in the CHD8 knockout organoids, including the interactions between neural and glial cells. Taken together, our results provide new data and information for understanding CHD8 functions in the early stages of neural lineage development and interaction.
Collapse
Affiliation(s)
- Maider Astorkia
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Erika M. Pedrosa
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Afshari M, Gharibzadeh S, Pouretemad H, Roghani M. Reversing valproic acid-induced autism-like behaviors through a combination of low-frequency repeated transcranial magnetic stimulation and superparamagnetic iron oxide nanoparticles. Sci Rep 2024; 14:8082. [PMID: 38582936 PMCID: PMC10998842 DOI: 10.1038/s41598-024-58871-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) is a neurostimulation device used to modulate brain cortex activity. Our objective was to enhance the therapeutic effectiveness of low-frequency repeated TMS (LF-rTMS) in a rat model of autism spectrum disorder (ASD) induced by prenatal valproic acid (VPA) exposure through the injection of superparamagnetic iron oxide nanoparticles (SPIONs). For the induction of ASD, we administered prenatal VPA (600 mg/kg, I.P.) on the 12.5th day of pregnancy. At postnatal day 30, SPIONs were injected directly into the lateral ventricle of the brain. Subsequently, LF-rTMS treatment was applied for 14 consecutive days. Following the treatment period, behavioral analyses were conducted. At postnatal day 60, brain tissue was extracted, and both biochemical and histological analyses were performed. Our data revealed that prenatal VPA exposure led to behavioral alterations, including changes in social interactions, increased anxiety, and repetitive behavior, along with dysfunction in stress coping strategies. Additionally, we observed reduced levels of SYN, MAP2, and BDNF. These changes were accompanied by a decrease in dendritic spine density in the hippocampal CA1 area. However, LF-rTMS treatment combined with SPIONs successfully reversed these dysfunctions at the behavioral, biochemical, and histological levels, introducing a successful approach for the treatment of ASD.
Collapse
Affiliation(s)
- Masoud Afshari
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Shahriar Gharibzadeh
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran.
| | - Hamidreza Pouretemad
- Department of Cognitive Psychology, Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran.
| |
Collapse
|
3
|
Hung LY, Margolis KG. Autism spectrum disorders and the gastrointestinal tract: insights into mechanisms and clinical relevance. Nat Rev Gastroenterol Hepatol 2024; 21:142-163. [PMID: 38114585 DOI: 10.1038/s41575-023-00857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
Autism spectrum disorders (ASDs) are recognized as central neurodevelopmental disorders diagnosed by impairments in social interactions, communication and repetitive behaviours. The recognition of ASD as a central nervous system (CNS)-mediated neurobehavioural disorder has led most of the research in ASD to be focused on the CNS. However, gastrointestinal function is also likely to be affected owing to the neural mechanistic nature of ASD and the nervous system in the gastrointestinal tract (enteric nervous system). Thus, it is unsurprising that gastrointestinal disorders, particularly constipation, diarrhoea and abdominal pain, are highly comorbid in individuals with ASD. Gastrointestinal problems have also been repeatedly associated with increased severity of the core symptoms diagnostic of ASD and other centrally mediated comorbid conditions, including psychiatric issues, irritability, rigid-compulsive behaviours and aggression. Despite the high prevalence of gastrointestinal dysfunction in ASD and its associated behavioural comorbidities, the specific links between these two conditions have not been clearly delineated, and current data linking ASD to gastrointestinal dysfunction have not been extensively reviewed. This Review outlines the established and emerging clinical and preclinical evidence that emphasizes the gut as a novel mechanistic and potential therapeutic target for individuals with ASD.
Collapse
Affiliation(s)
- Lin Y Hung
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA
| | - Kara Gross Margolis
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA.
- Department of Cell Biology, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
- Department of Pediatrics, NYU Grossman School of Medicine and Langone Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Wang Y, Wang F, Kong Y, Gao T, Zhu Q, Han L, Sun B, Guan L, Zhang Z, Qian Y, Xu L, Li Y, Fang H, Jiao G, Ke X. High definition transcranial direct current stimulation of the Cz improves social dysfunction in children with autism spectrum disorder: A randomized, sham, controlled study. Autism Res 2023; 16:2035-2048. [PMID: 37695276 DOI: 10.1002/aur.3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The purpose of this study was to determine the effect of the Cz of high-definition 5-channel tDCS (HD-tDCS) on social function in 4-12 years-old children with autism spectrum disorder (ASD). This study was a randomized, double-blind, pseudo-controlled trial in which 45 ASD children were recruited and divided into three groups with sex, age, and rehabilitation treatment as control variables. Each group of 15 children with ASD was randomly administered active HD-tDCS with the Cz as the central anode, active HD-tDCS with the left dorsolateral prefrontal cortex (F3) as the central anode, and sham HD-tDCS with the Cz as the central anode with 14 daily sessions in 3 weeks. The Social Responsiveness Scale Chinese Version (SRS-Chinese Version) was compared 1 week after stimulation with values recorded 1 week prior to stimulation. At the end of treatment, both the anodal Cz and anodal left DLFPC tDCS decreased the measures of SRS-Chinese Version. The total score of SRS-Chinese Version decreased by 13.08%, social cognition decreased by 18.33%, and social communication decreased by 10.79%, which were significantly improved over the Cz central anode active stimulation group, especially in children with young age, and middle and low function. There was no significant change in the total score and subscale score of SRS-Chinese Version over the Cz central anode sham stimulation group. In the F3 central anode active stimulation group, the total score of SRS-Chinese Version decreased by 13%, autistic behavior decreased by 19.39%, and social communication decreased by 14.39%, which were all significantly improved. However, there was no significant difference in effect between the Cz and left DLPFC stimulation conditions. HD-tDCS of the Cz central anode may be an effective treatment for social dysfunction in children with ASD.
Collapse
Affiliation(s)
- Yonglu Wang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Wang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Kong
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Tianshu Gao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qingyao Zhu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Han
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Bei Sun
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Guan
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Zhang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Qian
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lingxi Xu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Fang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Gongkai Jiao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Astorkia M, Liu Y, Pedrosa EM, Lachman HM, Zheng D. Molecular and network disruptions in neurodevelopment uncovered by single cell transcriptomics analysis of CHD8 heterozygous cerebral organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559752. [PMID: 37808768 PMCID: PMC10557718 DOI: 10.1101/2023.09.27.559752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
About 100 genes have been associated with significantly increased risks of autism spectrum disorders (ASD) with an estimate of ~1000 genes that may be involved. The new challenge now is to investigate the molecular and cellular functions of these genes during neural and brain development, and then even more challenging, to link the altered molecular and cellular phenotypes to the ASD clinical manifestations. In this study, we use single cell RNA-seq analysis to study one of the top risk gene, CHD8, in cerebral organoids, which models early neural development. We identify 21 cell clusters in the organoid samples, representing non-neuronal cells, neural progenitors, and early differentiating neurons at the start of neural cell fate commitment. Comparisons of the cells with one copy of the CHD8 knockout and their isogenic controls uncover thousands of differentially expressed genes, which are enriched with function related to neural and brain development, with genes and pathways previously implicated in ASD, but surprisingly not for Schizophrenia and intellectual disability risk genes. The comparisons also find cell composition changes, indicating potential altered neural differential trajectories upon CHD8 reduction. Moreover, we find that cell-cell communications are affected in the CHD8 knockout organoids, including the interactions between neural and glial cells. Taken together, our results provide new data for understanding CHD8 functions in the early stages of neural lineage development and interaction.
Collapse
Affiliation(s)
- Maider Astorkia
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Erika M. Pedrosa
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Herbert M. Lachman
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
6
|
Frasch MG, Yoon BJ, Helbing DL, Snir G, Antonelli MC, Bauer R. Autism Spectrum Disorder: A Neuro-Immunometabolic Hypothesis of the Developmental Origins. BIOLOGY 2023; 12:914. [PMID: 37508346 PMCID: PMC10375982 DOI: 10.3390/biology12070914] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023]
Abstract
Fetal neuroinflammation and prenatal stress (PS) may contribute to lifelong neurological disabilities. Astrocytes and microglia, among the brain's non-neuronal "glia" cell populations, play a pivotal role in neurodevelopment and predisposition to and initiation of disease throughout lifespan. One of the most common neurodevelopmental disorders manifesting between 1-4 years of age is the autism spectrum disorder (ASD). A pathological glial-neuronal interplay is thought to increase the risk for clinical manifestation of ASD in at-risk children, but the mechanisms remain poorly understood, and integrative, multi-scale models are needed. We propose a model that integrates the data across the scales of physiological organization, from genome to phenotype, and provides a foundation to explain the disparate findings on the genomic level. We hypothesize that via gene-environment interactions, fetal neuroinflammation and PS may reprogram glial immunometabolic phenotypes that impact neurodevelopment and neurobehavior. Drawing on genomic data from the recently published series of ovine and rodent glial transcriptome analyses with fetuses exposed to neuroinflammation or PS, we conducted an analysis on the Simons Foundation Autism Research Initiative (SFARI) Gene database. We confirmed 21 gene hits. Using unsupervised statistical network analysis, we then identified six clusters of probable protein-protein interactions mapping onto the immunometabolic and stress response networks and epigenetic memory. These findings support our hypothesis. We discuss the implications for ASD etiology, early detection, and novel therapeutic approaches. We conclude with delineation of the next steps to verify our model on the individual gene level in an assumption-free manner. The proposed model is of interest for the multidisciplinary community of stakeholders engaged in ASD research, the development of novel pharmacological and non-pharmacological treatments, early prevention, and detection as well as for policy makers.
Collapse
Affiliation(s)
- Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
- Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Byung-Jun Yoon
- Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Dario Lucas Helbing
- Institute for Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Friedrich Schiller University Jena, 07747 Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| | - Gal Snir
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Marta C Antonelli
- Instituto de Biología Celular y Neurociencia "Prof. Eduardo De Robertis", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2 a, 85748 Garching, Germany
| | - Reinhard Bauer
- Institute for Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University, 07747 Jena, Germany
| |
Collapse
|
7
|
Sener EF, Dana H, Tahtasakal R, Hamurcu Z, Taheri S, Delibasi N, Mehmetbeyoglu E, Sukranli ZY, Dal F, Tufan E, Oflamaz AO, Doganyigit Z, Ozkul Y, Rassoulzadegan M. Heterozygous Cc2d1a mice show sex-dependent changes in the Beclin-1/p62 ratio with impaired prefrontal cortex and hippocampal autophagy. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110764. [PMID: 37059290 DOI: 10.1016/j.pnpbp.2023.110764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders characterized by repetitive behaviors, lack of social interaction and communication. CC2D1A is identified in patients as an autism risk gene. Recently, we suggested that heterozygous Cc2d1a mice exhibit impaired autophagy in the hippocampus. We now report the analysis of autophagy markers (Lc3, Beclin and p62) in different regions hippocampus, prefrontal cortex, hypothalamus and cerebellum, with an overall decrease in autophagy and changes in Beclin-1/p62 ratio in the hippocampus. We observed sex-dependent variations in transcripts and protein expression levels. Moreover, our analyses suggest that alterations in autophagy initiated in Cc2d1a heterozygous parents are variably transmitted to offspring, even when the offspring's genotype is wild type. Aberration in the autophagy mechanism may indirectly contribute to induce synapse alteration in the ASD brain.
Collapse
Affiliation(s)
- Elif Funda Sener
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| | - Halime Dana
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Reyhan Tahtasakal
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Zuhal Hamurcu
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Serpil Taheri
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey
| | - Nesrin Delibasi
- Cappodoccia University, Cappadocia Vocational School Medical Laboratory Techniques Programme, Nevsehir, Turkey; Cardiff University, School of Medicine Department of Hematology, Division of Cancer and Genetics, Cardiff, UK.
| | - Ecmel Mehmetbeyoglu
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| | - Zeynep Yilmaz Sukranli
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Fatma Dal
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Esra Tufan
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Asli Okan Oflamaz
- Bozok University, Medical Faculty Department of Histology and Embryology, 66100 Yozgat, Turkey
| | - Zuleyha Doganyigit
- Bozok University, Medical Faculty Department of Histology and Embryology, 66100 Yozgat, Turkey
| | - Yusuf Ozkul
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Genetics, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| | - Minoo Rassoulzadegan
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Université Cote d'Azur (UCA), INSERM-CNRS, IRCAN, 06107 Nice, France; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| |
Collapse
|
8
|
Recent Developments in Autism Genetic Research: A Scientometric Review from 2018 to 2022. Genes (Basel) 2022; 13:genes13091646. [PMID: 36140813 PMCID: PMC9498399 DOI: 10.3390/genes13091646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic research in Autism Spectrum Disorder (ASD) has progressed tremendously in recent decades. Dozens of genetic loci and hundreds of alterations in the genetic sequence, expression, epigenetic transformation, and interactions with other physiological and environmental systems have been found to increase the likelihood of developing ASD. There is therefore a need to represent this wide-ranging yet voluminous body of literature in a systematic manner so that this information can be synthesised and understood at a macro level. Therefore, this study made use of scientometric methods, particularly document co-citation analysis (DCA), to systematically review literature on ASD genetic research from 2018 to 2022. A total of 14,818 articles were extracted from Scopus and analyzed with CiteSpace. An optimized DCA analysis revealed that recent literature on ASD genetic research can be broadly organised into 12 major clusters representing various sub-topics. These clusters are briefly described in the manuscript and potential applications of this study are discussed.
Collapse
|
9
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
10
|
Lin XB, Lim CG, Lee TS. Social Deficits or Interactional Differences? Interrogating Perspectives on Social Functioning in Autism. Front Psychiatry 2022; 13:823736. [PMID: 35546922 PMCID: PMC9084456 DOI: 10.3389/fpsyt.2022.823736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Social dysfunction is a key characteristic of autism. Determining and treating autism-related social deficits have been challenging. The medical model views interpersonal difficulties in autism as a localized set of deficits to be managed, whereas the neurodiversity movement calls for the accommodation of differences by the larger community. One common assumption underlying these perspectives is a misalignment in social behaviors between autistic individuals and neurotypicals. This paper reviews and interrogates current perspectives on social functioning in autism to uncover the intricacies of such a notion. Even though extant literature has alluded to a misalignment in social behaviors between autistic and neurotypical individuals, it is uncertain where this disparity lies. Implications for future research and practice are discussed.
Collapse
Affiliation(s)
- Xiangting Bernice Lin
- Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore.,School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Choon Guan Lim
- Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore.,School of Social Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Child and Adolescent Psychiatry, Institute of Mental Health, Singapore, Singapore
| | - Tih-Shih Lee
- Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore.,Department of Psychiatry, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
11
|
Luhach K, Kulkarni GT, Singh VP, Sharma B. Cilostazol attenuated prenatal valproic acid-induced behavioural and biochemical deficits in a rat model of autism spectrum disorder. J Pharm Pharmacol 2021; 73:1460-1469. [PMID: 34459916 DOI: 10.1093/jpp/rgab115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 07/30/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Autism spectrum disorder (ASD) is categorized as a neurodevelopmental disorder, presenting with a variety of aetiological and phenotypical features. Inhibiting the enzyme phosphodiesterase-3 (PDE3) with cilostazol is known to produce beneficial effects in several brain disorders. The pharmacological outcome of cilostazol administration was investigated in prenatal valproic acid (VPA)-induced ASD deficits in albino Wistar rats. METHODS Cilostazol was administered in two doses (30/60 mg/kg) to male rats born of females administered with VPA on gestational day 12. Behavioural assays on locomotion (open field), social interaction, repetitive behaviour (y-maze) and anxiety (elevated plus maze) were performed in all groups. Further, biochemical assessments of markers associated with neuronal function (BDNF, pCREB), inflammation (TNF-α, IL-6, IL-10) and oxidative stress were carried out in frontal cortex, hippocampus, striatum and cerebellum. KEY FINDINGS The cilostazol regimen, attenuated prenatal VPA exposure associated hyperlocomotion, social interaction deficits, repetitive behavior, and anxiety. Further, biochemical markers such as BDNF, pCREB, IL-10 and GSH were found to be significantly increased contrary to markers such as TNF-α, IL-6 and TBARS in the assessed brain regions. CONCLUSIONS Cilostazol rectified core behavioural traits while producing significant changes to biochemistry in the brain, suggesting benefits of cilostazol administration in experimental models of ASD.
Collapse
Affiliation(s)
- Kanishk Luhach
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Gokaraju Rangaraju College of Pharmacy, Hyderabad, India
| | - Vijay P Singh
- CSIR-Institute of Genomics & Integrative Biology, Academy of Scientific and Innovative Research, New Delhi, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- CNS and CVS Pharmacology, Conscience Research, New Delhi, India
| |
Collapse
|
12
|
Sakurai T. LOCATION, LOCATION, LOCATION: Location of neuroinflammation is important in pathogenesis of schizophrenia. Brain Behav Immun 2020; 88:842-843. [PMID: 32592860 DOI: 10.1016/j.bbi.2020.06.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Japan; Department of Pathology, Columbia University Vagelos College of Physicians and Surgeons, NY, New York 10032, United States.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyra Feuer
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marah Wahbeh
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Chd8 Rescued TBI-Induced Neurological Deficits by Suppressing Apoptosis and Autophagy Via Wnt Signaling Pathway. Cell Mol Neurobiol 2020; 40:1165-1184. [DOI: 10.1007/s10571-020-00806-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 01/30/2020] [Indexed: 12/30/2022]
|
15
|
Cognitive functions associated with developing prefrontal cortex during adolescence and developmental neuropsychiatric disorders. Neurobiol Dis 2019; 131:104322. [DOI: 10.1016/j.nbd.2018.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 12/30/2022] Open
|
16
|
Hui KK, Chen YK, Endo R, Tanaka M. Translation from the Ribosome to the Clinic: Implication in Neurological Disorders and New Perspectives from Recent Advances. Biomolecules 2019; 9:E680. [PMID: 31683805 PMCID: PMC6920867 DOI: 10.3390/biom9110680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/27/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
De novo protein synthesis by the ribosome and its multitude of co-factors must occur in a tightly regulated manner to ensure that the correct proteins are produced accurately at the right time and, in some cases, also in the proper location. With novel techniques such as ribosome profiling and cryogenic electron microscopy, our understanding of this basic biological process is better than ever and continues to grow. Concurrently, increasing attention is focused on how translational regulation in the brain may be disrupted during the progression of various neurological disorders. In fact, translational dysregulation is now recognized as the de facto pathogenic cause for some disorders. Novel mechanisms including ribosome stalling, ribosome-associated quality control, and liquid-liquid phase separation are closely linked to translational regulation, and may thus be involved in the pathogenic process. The relationships between translational dysregulation and neurological disorders, as well as the ways through which we may be able to reverse those detrimental effects, will be examined in this review.
Collapse
Affiliation(s)
- Kelvin K Hui
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Yi-Kai Chen
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Ryo Endo
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
17
|
Zhang R, Cai Y, Xiao R, Zhong H, Li X, Guo L, Xu H, Fan X. Human amniotic epithelial cell transplantation promotes neurogenesis and ameliorates social deficits in BTBR mice. Stem Cell Res Ther 2019; 10:153. [PMID: 31151403 PMCID: PMC6545017 DOI: 10.1186/s13287-019-1267-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/12/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interactions and communication and stereotypical patterns of behaviors, interests, or activities. Even with the increased prevalence of ASD, there is no defined standard drug treatment for ASD patients. Currently, stem cells, including human amniotic epithelial cell (hAEC) transplantation, seem to be a promising treatment for ASD, but the effectiveness needs to be verified, and the mechanism has not been clarified. Methods We intraventricularly transplanted hAECs into a 2-month-old BTBR T+tf/J (BTBR) mouse model of ASD. Behavior tests were detected 1 month later; hippocampal neurogenesis, neuroprogenitor cell (NPC) pool, and microglia activation were analyzed with immunohistochemistry and immunofluorescence; the levels of pro-inflammatory cytokines, brain-derived neurotrophic factor (BDNF), and TrkB in the hippocampus were determined by real-time PCR or western blotting. Results After intraventricular injection of hAECs into adult males, social deficits in BTBR mice were significantly ameliorated. In addition, hAEC transplantation restored the decline of neurogenesis and NPCs in the hippocampus of BTBR mice by expanding the stem cell pool, and the decreased levels of BDNF and TrkB were also rescued in the hippocampus of the hAEC-injected BTBR mice. Meanwhile, the transplantation of hAECs did not induce microglial overactivation or excessive production of pro-inflammatory cytokines in the hippocampus of BTBR mice. Conclusions Based on these results, we found that hAEC transplantation ameliorated social deficits and promoted hippocampal neurogenesis in BTBR mice. Our study indicates a promising therapeutic option that could be applied to ASD patients in the future.
Collapse
Affiliation(s)
- Ruiyu Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Amy Medical University), Chongqing, 400038, China
| | - Yulong Cai
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Amy Medical University), Chongqing, 400038, China
| | - Rui Xiao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Amy Medical University), Chongqing, 400038, China
| | - Hongyu Zhong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Amy Medical University), Chongqing, 400038, China
| | - Xin Li
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Amy Medical University), Chongqing, 400038, China
| | - Lihe Guo
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Amy Medical University), Chongqing, 400038, China.
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University (Amy Medical University), Chongqing, 400038, China.
| |
Collapse
|