1
|
Dores AR, Peixoto M, Fernandes C, Marques A, Barbosa F. The Effects of Social Feedback Through the "Like" Feature on Brain Activity: A Systematic Review. Healthcare (Basel) 2025; 13:89. [PMID: 39791696 PMCID: PMC11719588 DOI: 10.3390/healthcare13010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Problematic social media (SM) use is a growing concern, particularly among adolescents who are drawn to these platforms for social interactions important to their age group. SM dependence is characterized by excessive, uncontrolled usage that impairs personal, social, and professional aspects. Despite the ongoing debate over recognizing SM addiction as a distinct diagnostic category, the impact of social feedback, particularly through the "like" button, on brain activity remains under scrutiny. OBJECTIVE This systematic review aims to study the neural correlates of online social feedback, focusing on the effects of the "like" feedback on brain activity using fMRI and EEG. METHODS The review followed the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA). RESULTS The review included 11 studies with 504 participants, identifying key brain structures such as the amygdala, ventromedial prefrontal cortex (vmPFC), and ventral striatum involved in reward processing. Positive feedback ("likes") activates areas like the nucleus accumbens (NACC), vmPFC, and amygdala, with NACC correlating with increased SM use intensity. Negative feedback activates the ventrolateral prefrontal cortex (vlPFC) and left medial prefrontal cortex (mPFC). Behavioral data indicates that positive feedback influences subsequent social interactions. CONCLUSIONS The review highlights disparities in the literature regarding the neural response to social feedback, emphasizing the need for further research to clarify the roles of sex, personality traits, and the person giving feedback. Overall, understanding the neurobiological underpinnings of SM engagement is essential for developing effective interventions to prevent or address the negative effects of excessive SM use.
Collapse
Affiliation(s)
- Artemisa R. Dores
- Psychosocial Rehabilitation Laboratory, Center for Rehabilitation Research (LabRP-CIR), Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal (A.M.)
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal; (C.F.); (F.B.)
| | - Miguel Peixoto
- Psychosocial Rehabilitation Laboratory, Center for Rehabilitation Research (LabRP-CIR), Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal (A.M.)
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal; (C.F.); (F.B.)
| | - Carina Fernandes
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal; (C.F.); (F.B.)
- Faculty of Human and Social Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO (CI-IPOP) & RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - António Marques
- Psychosocial Rehabilitation Laboratory, Center for Rehabilitation Research (LabRP-CIR), Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal (A.M.)
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal; (C.F.); (F.B.)
| |
Collapse
|
2
|
Nicolaou S, Vega D, Marco-Pallarés J. Opening the Pandora box: Neural processing of self-relevant negative social information. Biol Psychol 2025; 194:108982. [PMID: 39743175 DOI: 10.1016/j.biopsycho.2024.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/21/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Curiosity is a powerful motivator of information-seeking behavior. People seek not only positive, but also aversive social information about others. However, whether people also seek unfavorable social information about themselves, as well as the neural mechanisms that may drive such seemingly counterintuitive behavior remain unclear. To address this gap, we developed a novel electroencephalography-compatible Social Incentive Delay (SID) task, which was implemented in 30 healthy young adults as they responded as fast as possible to a target to receive positive or avoid negative comments about their own or about others' Instagram photos. Reaction times were slower for negative vs positive comments' conditions, but only for participants' own photos, revealing less motivation to avoid negative rather than seek positive self-relevant social feedback. Coherently, receiving negative feedback, as opposed to avoiding it, evoked larger amplitudes in the Reward Positivity (RewP) and FB-P3 time-range, especially for participants' own photos, indicating that receiving a negative comment was more rewarding and more salient than not receiving any comment at all. Our findings challenge prior evidence suggesting that humans instinctively avoid aversive stimuli, and they shed light on the neurophysiological mechanisms that may underlie this counterintuitive behavior.
Collapse
Affiliation(s)
- Stella Nicolaou
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Department of Psychiatry and Mental Health, Consorci Sanitari de l'Anoia & Fundació Sanitària d'Igualada, Hospital Universitari d'Igualada, Barcelona, Spain
| | - Daniel Vega
- Department of Psychiatry and Mental Health, Consorci Sanitari de l'Anoia & Fundació Sanitària d'Igualada, Hospital Universitari d'Igualada, Barcelona, Spain.
| | - Josep Marco-Pallarés
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
3
|
Nie Y, Pan T, He J, Li Y. Blunted neural response to real-life social reward anticipation in internet gaming disorder: An event-related potential study. Int J Psychophysiol 2025; 207:112479. [PMID: 39637947 DOI: 10.1016/j.ijpsycho.2024.112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Recent research indicates that individuals with Internet gaming disorder (IGD) exhibit impaired social reward processing, evidenced by reduced neural sensitivity to real-life social reward. The aim of the present study is to further investigate the impaired processing of social reward anticipation and reward consumption in individuals with IGD, and explore the relationship between these two components. Using a social incentive delay task with game-related and real-life versions, combined with event-related potential (ERP) technology, we examined 25 individuals with IGD and 25 matched healthy game players. The results showed that, at the behavioral level, individuals with IGD showed significantly slower reaction times to real-life target stimuli compared with game-related target stimuli, which is not observed in healthy controls. At the neural level, the Cue-P3 elicited by real-life incentive cues in individuals with IGD was significantly smaller than that elicited by game-related incentive cues. However, these effects were no longer significant after adding depression and anxiety scores as covariates. There was no significant difference in reward positivity (RewP) elicited between the two types of reward consumption. Furthermore, individuals with IGD showed a positive correlation between Cue-P3 elicited by game-related social incentive cue and RewP elicited by game-related social reward. However, this effect was not observed in the healthy controls. In conclusion, the present study suggests that the blunted allocation of motivated neural attention resources to real-life social incentive cues in individuals with IGD may be the key mechanism underlying their impaired social reward processing. This impairment may be influenced by the higher levels of depression and anxiety symptoms commonly observed in individuals with IGD.
Collapse
Affiliation(s)
- Yufeng Nie
- Institute of Psychology and Behavior, Henan University, Jinming Avenue, Kaifeng, Henan Province, China; Key Laboratory of Adolescent Cyberpsychology and Behavior(CCNU), Ministry of Education, Wuhan 430079, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Ting Pan
- Key Laboratory of Adolescent Cyberpsychology and Behavior(CCNU), Ministry of Education, Wuhan 430079, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Jinbo He
- Key Laboratory of Adolescent Cyberpsychology and Behavior(CCNU), Ministry of Education, Wuhan 430079, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan 430079, China.
| | - Yongxin Li
- Institute of Psychology and Behavior, Henan University, Jinming Avenue, Kaifeng, Henan Province, China.
| |
Collapse
|
4
|
Dexter TD, Roberts BZ, Ayoub SM, Noback M, Barnes SA, Young JW. Cross-species translational paradigms for assessing positive valence system as defined by the RDoC matrix. J Neurochem 2025; 169:e16243. [PMID: 39463161 DOI: 10.1111/jnc.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Functions associated with processing reward-related information are fundamental drivers of motivation, learning, and goal-directed behavior. Such functions have been classified as the positive valence system under the Research Domain and Criteria (RDoC) criteria and are negatively impacted across a range of psychiatric disorders and mental illnesses. The positive valence system is composed of three comprehensive categories containing related but dissociable functions that are organized into either Reward Responsiveness, Reward Learning, or Reward Valuation. The presence of overlapping behavioral dysfunction across diagnostic mental disorders is in-part what motivated the RDoC initiative, which emphasized that the study of mental illness focus on investigating relevant behavior and cognitive functions and their underlying mechanisms, rather than separating efforts on diagnostic categories (i.e., transdiagnostic). Moreover, the RDoC approach is well-suited for preclinical neuroscience research, as the rise in genetic toolboxes and associated neurotechnologies enables researchers to probe specific cellular targets with high specificity. Thus, there is an opportunity to dissect whether behaviors and cognitive functions are supported by shared or distinct neural mechanisms. For preclinical research to effectively inform our understandings of human behavior however, the cognitive and behavioral paradigms should have predictive, neurobiological, and pharmacological predictive validity to the human test. Touchscreen-based testing systems provide a further advantage for this endeavor enabling tasks to be presented to animals using the same media and task design as in humans. Here, we outline the primary categories of the positive valence system and review the work that has been done cross-species to investigate the neurobiology and neurochemistry underlying reward-related functioning. Additionally, we provide clinical tasks outlined by RDoC, along with validity and/or need for further validation for analogous rodent paradigms with a focus on implementing the touchscreen-based cognitive testing systems.
Collapse
Affiliation(s)
- Tyler D Dexter
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Michael Noback
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
5
|
Szczypiński J, Golec-Staśkiewicz K, Pluta A, Marchewka A. How does teaching experience impact brain processes underlying the theory of mind? Study on primary school educators. Soc Neurosci 2024:1-19. [PMID: 39637912 DOI: 10.1080/17470919.2024.2437404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/28/2024] [Indexed: 12/07/2024]
Abstract
Despite its importance for daily social interactions, few studies have explored interindividual differences in the Theory of Mind (ToM) abilities of healthy adults. We used Children's False-Attribution (CFA), Children's False-Beliefs (CFB), and Belief-Desire Reasoning tasks, along with fMRI-based assessments, in a comparative analysis of ToM among primary school teachers (PST; n = 27), skilled in social interactions with children, and matched controls (MC; n = 24), who lacked such experience. PST demonstrated slower reaction times than MC in Adult and Child false-belief stories of CFB. However, no other behavioral differences between the groups and between-group differences were observed at the brain level. Both groups presented similar valence ratings for stories in the CFA. Notably, fMRI analysis revealed a group-by-condition interaction effect in the right lateral orbitofrontal cortex (OFC). In PSTs, OFC activation decreased during negative false-attribution stories regarding children compared to stories related to adults, whereas MC demonstrated an opposite activation pattern. Between-group differences in right lateral OFC activity possibly signify a neural efficiency effect secondary to frequent social interactions of PSTs, unlike the MCs, with children in the working environment. These results underscore the significance of everyday social experiences in the functional plasticity of ToM networks.
Collapse
Affiliation(s)
- Jan Szczypiński
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Agnieszka Pluta
- Faculty of Psychology, University of Warsaw, Warsaw, Poland
- Bioimaging Research Center, World Hearing Center, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Pu J, Huang YH, Chen H, Lui SSY, Wang Y, Chan RCK. Differential manifestations of anhedonia in people with social anhedonia and subsyndromal depression. Asian J Psychiatr 2024; 100:104188. [PMID: 39089075 DOI: 10.1016/j.ajp.2024.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/12/2024] [Accepted: 07/27/2024] [Indexed: 08/03/2024]
Abstract
Empirical findings suggested that anhedonia, a reduced capability to access pleasure and a core symptom in both schizophrenia and the major depressive disorder, can be present in people with high levels of social anhedonia and people with subsyndromal depression. Few studies have adopted a multidimensional framework to investigate anhedonia in these subclinical samples. We recruited 35 participants with high social anhedonia (SA), 53 participants with subsyndromal depression (SD), 20 participants with co-occurrence of both traits (CO), and 47 participants with low levels of both traits (CN) to complete a self-report questionnaire capturing the pleasure experience, and the Monetary Incentives Delay (MID) Task and the Social Incentives Delay (SID) Task capturing the motivation of reward. Results indicated that people with SA, SD and CO exhibited lower abstract anticipatory pleasure compared to CN. Moreover, people with SD and CO exhibited specific impairment in response to social incentives. Together, our findings characterized the multidimensional features of anhedonia performances of subclinical samples with SA, SD and CO, which may contribute to the formulation of early identification of at-risk groups.
Collapse
Affiliation(s)
- Jie Pu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology and Behavioral Science, Zhejiang University, Hangzhou, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi-Hang Huang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Chen
- Department of Psychology and Behavioral Science, Zhejiang University, Hangzhou, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Sepcial Administrative Region, China
| | - Yi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Raymond C K Chan
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Do KT, Paolizzi SG, Hallquist MN. How adolescents learn to build social bonds: A developmental computational account of social explore-exploit decision-making. Dev Cogn Neurosci 2024; 69:101415. [PMID: 39089173 PMCID: PMC11342119 DOI: 10.1016/j.dcn.2024.101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 08/03/2024] Open
Abstract
Building social bonds is a critical task of adolescence that affords opportunities for learning, identity formation, and social support. Failing to develop close relationships in adolescence hinders adult interpersonal functioning and contributes to problems such as loneliness and depression. During adolescence, increased reward sensitivity and greater social flexibility both contribute to healthy social development, yet we lack a clear theory of how these processes interact to support social functioning. Here, we propose synthesizing these two literatures using a computational reinforcement learning framework that recasts how adolescents pursue and learn from social rewards as a social explore-exploit problem. To become socially skilled, adolescents must balance both their efforts to form individual bonds within specific groups and manage memberships across multiple groups to maximize access to social resources. We draw on insights from sociological studies on social capital in collective networks and neurocognitive research on foraging and cooperation to describe the social explore-exploit dilemma faced by adolescents navigating a modern world with increasing access to diverse resources and group memberships. Our account provides important new directions for examining the dynamics of adolescent behavior in social groups and understanding how social value computations can support positive relationships into adulthood.
Collapse
Affiliation(s)
- Kathy T Do
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States.
| | - Sophie G Paolizzi
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States
| | - Michael N Hallquist
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States
| |
Collapse
|
8
|
Manto M, Adamaszek M, Apps R, Carlson E, Guarque-Chabrera J, Heleven E, Kakei S, Khodakhah K, Kuo SH, Lin CYR, Joshua M, Miquel M, Mitoma H, Larry N, Péron JA, Pickford J, Schutter DJLG, Singh MK, Tan T, Tanaka H, Tsai P, Van Overwalle F, Yamashiro K. Consensus Paper: Cerebellum and Reward. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2169-2192. [PMID: 38769243 DOI: 10.1007/s12311-024-01702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Cerebellum is a key-structure for the modulation of motor, cognitive, social and affective functions, contributing to automatic behaviours through interactions with the cerebral cortex, basal ganglia and spinal cord. The predictive mechanisms used by the cerebellum cover not only sensorimotor functions but also reward-related tasks. Cerebellar circuits appear to encode temporal difference error and reward prediction error. From a chemical standpoint, cerebellar catecholamines modulate the rate of cerebellar-based cognitive learning, and mediate cerebellar contributions during complex behaviours. Reward processing and its associated emotions are tuned by the cerebellum which operates as a controller of adaptive homeostatic processes based on interoceptive and exteroceptive inputs. Lobules VI-VII/areas of the vermis are candidate regions for the cortico-subcortical signaling pathways associated with loss aversion and reward sensitivity, together with other nodes of the limbic circuitry. There is growing evidence that the cerebellum works as a hub of regional dysconnectivity across all mood states and that mental disorders involve the cerebellar circuitry, including mood and addiction disorders, and impaired eating behaviors where the cerebellum might be involved in longer time scales of prediction as compared to motor operations. Cerebellar patients exhibit aberrant social behaviour, showing aberrant impulsivity/compulsivity. The cerebellum is a master-piece of reward mechanisms, together with the striatum, ventral tegmental area (VTA) and prefrontal cortex (PFC). Critically, studies on reward processing reinforce our view that a fundamental role of the cerebellum is to construct internal models, perform predictions on the impact of future behaviour and compare what is predicted and what actually occurs.
Collapse
Affiliation(s)
- Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium.
- Service Des Neurosciences, Université de Mons, 7000, Mons, Belgium.
- Unité Des Ataxies Cérébelleuses, CHU-Charleroi, Service Des Neurosciences, University of Mons, 7000, Mons, Belgium.
| | - Michael Adamaszek
- Department of Clinical and Cognitive Neurorehabilitation, Klinik Bavaria Kreischa, 01731, Kreischa, Germany
| | - Richard Apps
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Erik Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, 98108, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Julian Guarque-Chabrera
- Área de Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, 12071, Castellón de La Plana, Spain
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Shinji Kakei
- Department of Anatomy and Physiology, Jissen Women's University, Tokyo, 191-8510, Japan
| | - Kamran Khodakhah
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
- Initiative of Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chi-Ying R Lin
- Alzheimer's Disease and Memory Disorders Center, Department of Neurology, Baylor College of Medicine, Houston, 77030 TX, USA
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, 77030 TX, USA
| | - Mati Joshua
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Marta Miquel
- Área de Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, 12071, Castellón de La Plana, Spain
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Noga Larry
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Julie Anne Péron
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, 1205, Geneva, Switzerland
| | - Jasmine Pickford
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Manpreet K Singh
- Psychiatry and Behavioral Sciences, University of California Davis, 2230 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Tommy Tan
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Tokyo, 158-8557, Japan
| | - Peter Tsai
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA
- Departments of Neuroscience, Pediatrics, Psychiatry, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Kunihiko Yamashiro
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| |
Collapse
|
9
|
Zhong S, Lin J, Zhang L, Wang S, Kemp GJ, Li L, Gong Q. Neural correlates of harm avoidance: a multimodal meta-analysis of brain structural and resting-state functional neuroimaging studies. Transl Psychiatry 2024; 14:384. [PMID: 39304648 PMCID: PMC11415487 DOI: 10.1038/s41398-024-03091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
Harm avoidance (HA) is a Cloninger personality trait that describes behavioural inhibition to avoid aversive stimuli. It serves as a predisposing factor that contributes to the development of mental disorders such as anxiety and major depressive disorder. Neuroimaging research has identified some brain anatomical and functional correlates of HA, but reported findings are inconsistent. We therefore conducted a multimodal meta-analysis of whole-brain structural and resting-state functional neuroimaging studies to identify the most stable neural substrate of HA. Included were a total of 10 structural voxel-based morphometry studies (11 datasets) and 13 functional positron emission tomography or single photon emission computed tomography studies (16 datasets) involving 3053 healthy participants without any psychiatric or neurological disorders evaluated for HA using the Three-Dimensional Personality Questionnaire (TPQ) or the Temperament and Character Inventory (TCI). The meta-analysis revealed brain volumetric correlates of HA in parietal and temporal cortices, and resting-state functional correlates in prefrontal, temporal and parietal gray matter. Volumetric and functional correlates co-occurred in the left superior frontal gyrus and left middle frontal gyrus, and were dissociated in the left rectus gyrus. Our meta-analysis is the first study to give a comprehensive picture of the structural and functional correlates of HA, a contribution that may help bridge the grievous gap between the neurobiology of HA and the pathogenesis, prevention and treatment of HA-related mental disorders.
Collapse
Affiliation(s)
- Shitong Zhong
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Jinping Lin
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
- The Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Xiamen, China
| | - Lingsheng Zhang
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Song Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Lei Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
| | - Qiyong Gong
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
- The Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Xiamen, China.
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Bore MC, Liu X, Huang X, Kendrick KM, Zhou B, Zhang J, Klugah-Brown B, Becker B. Common and separable neural alterations in adult and adolescent depression - Evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 2024; 164:105835. [PMID: 39084585 DOI: 10.1016/j.neubiorev.2024.105835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Depression is a highly prevalent and debilitating mental disorder that often begins in adolescence. However, it remains unclear whether adults and adolescents with depression exhibit common or distinct brain dysfunctions during reward processing. We aimed to identify common and separable neurofunctional alterations during receipt of rewards and brain structure in adolescents and adults with depression. A coordinate-based meta-analysis was employed using Seed-based d mapping with permutation of subject images (SDM-PSI). Compared with healthy controls, both age groups exhibited common activity decreases in the right striatum (putamen, caudate) and subgenual ACC. Adults with depression showed decreased reactivity in the right putamen and subgenual ACC, while adolescents with depression showed decreased activity in the left mid cingulate, right caudate but increased reactivity in the right postcentral gyrus. This meta-analysis revealed shared (caudate) and separable (putamen and mid cingulate cortex) reward-related alterations in adults and adolescents with depression. The findings suggest age-specific neurofunctional alterations and stress the importance of adolescent-specific interventions that target social functions.
Collapse
Affiliation(s)
- Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular lmaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; The Xiaman Key Lab of Psychoradiology and Neuromodulation, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Keith M Kendrick
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Benjamin Klugah-Brown
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Zhang Q, Du Y, Bao C, Hua L, Yan R, Dai Z, Xia Y, Zou H, He C, Sun H, Lu Q, Yao Z. Aberrant high-beta band functional connectivity during reward processing in melancholic major depressive disorder: An MEG study. Neuroimage Clin 2024; 43:103666. [PMID: 39232415 PMCID: PMC11404173 DOI: 10.1016/j.nicl.2024.103666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE To identify the spatial-temporal pattern variation of whole-brain functional connectivity (FC) during reward processing in melancholic major depressive disorder (MDD) patients, and to determine the clinical correlates of connectomic differences. METHODS 61 MDD patients and 32 healthy controls were enrolled into the study. During magnetoencephalography (MEG) scanning, all participants completed the facial emotion recognition task. The MDD patients were further divided into two groups: melancholic (n = 31) and non-melancholic (n = 30), based on the Mini International Neuropsychiatric Interview (M.I.N.I.) assessment. Melancholic symptoms were examined by using the 6-item melancholia subscale from the Hamilton Depression Rating Scale (HAM-D6). The whole-brain orthogonalized power envelope connections in the high-beta band (20-35 Hz) were constructed in each period after the happy emotional stimuli (0-200 ms, 100-300 ms, 200-400 ms, 300-500 ms, and 400-600 ms). Then, the network-based statistic (NBS) was used to determine the specific abnormal connection patterns in melancholic MDD patients. RESULTS The NBS identified a sub-network difference at the mid-late period (300-500 ms) in response to happy faces among the three groups (corrected P = 0.035). Then, the post hoc and correlation analyses found five FCs were decreased in melancholic MDD patients and were related to HAM-D6 score, including FCs of left fusiform gyrus-right orbital inferior frontal gyrus (r = -0.52, P < 0.001), left fusiform gyrus-left amygdala (r = -0.26, P = 0.049), left posterior cingulate gyrus-right precuneus (r = -0.32, P = 0.025), left precuneus-right precuneus (r = -0.27, P = 0.049), and left precuneus-left inferior occipital gyrus (r = -0.32, P = 0.025). CONCLUSION In response to happy faces, melancholic MDD patients demonstrated a disrupted functional connective pattern (20-35 Hz, 300-500 ms), which involved brain regions in visual information processing and the limbic system. The aberrant functional connective pattern in reward processing might be a biomarker of melancholic MDD.
Collapse
Affiliation(s)
- Qiaoyang Zhang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Psychology, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Yishan Du
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ciqing Bao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chen He
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, Nanjing, 210093, China..
| |
Collapse
|
12
|
Alí Diez I, Fàbrega-Camps G, Parra-Tíjaro J, Marco-Pallarés J. Anticipatory and consummatory neural correlates of monetary and music rewarding stimuli. Brain Cogn 2024; 179:106186. [PMID: 38843763 DOI: 10.1016/j.bandc.2024.106186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/17/2024]
Abstract
Most of the literature on the neural bases of human reward and punishment processing has used monetary gains and losses, but less is known about the neurophysiological mechanisms underlying the anticipation and consumption of other types of rewarding stimuli. In the present study, EEG was recorded from 19 participants who completed a modified version of the Monetary Incentive Delay (MID) task. During the task, cues providing information about potential future outcomes were presented to the participants. Then, they had to respond rapidly to a target stimulus to win money or listening to pleasant music, or to avoid losing money or listening to unpleasant music. Results revealed similar responses for monetary and music cues, with increased activity for cues indicating potential gains compared to losses. However, differences emerged in the outcome phase between money and music. Monetary outcomes showed an interaction between the type of the cue and the outcome in the Feedback Related Negativity and Fb-P3 ERPs and increased theta activity increased for negative feedbacks. In contrast, music outcomes showed significant interactions in the Fb-P3 and theta activities. These findings suggest similar neurophysiological mechanisms in processing cues for potential positive or negative outcomes in these two types of stimuli.
Collapse
Affiliation(s)
- Italo Alí Diez
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Spain; Department of Psychology, University of La Frontera, Chile
| | - Gemma Fàbrega-Camps
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Spain
| | - Jeison Parra-Tíjaro
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Spain
| | - Josep Marco-Pallarés
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Spain.
| |
Collapse
|
13
|
Lewis AF, Bohnenkamp R, Myers M, den Ouden DB, Fritz SL, Stewart JC. Effect of positive social comparative feedback on the resting state connectivity of dopaminergic neural pathways: A preliminary investigation. Neurobiol Learn Mem 2024; 212:107930. [PMID: 38692391 DOI: 10.1016/j.nlm.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Positive social comparative feedback is hypothesized to generate a dopamine response in the brain, similar to reward, by enhancing expectancies to support motor skill learning. However, no studies have utilized neuroimaging to examine this hypothesized dopaminergic mechanism. Therefore, the aim of this preliminary study was to investigate the effect of positive social comparative feedback on dopaminergic neural pathways measured by resting state connectivity. Thirty individuals practiced an implicit, motor sequence learning task and were assigned to groups that differed in feedback type. One group received feedback about their actual response time to complete the task (RT ONLY), while the other group received feedback about their response time with positive social comparison (RT + POS). Magnetic resonance imaging was acquired at the beginning and end of repetitive motor practice with feedback to measure practice-dependent changes in resting state brain connectivity. While both groups showed improvements in task performance and increases in performance expectancies, ventral tegmental area and the left nucleus accumbens (mesolimbic dopamine pathway) resting state connectivity increased in the RT + POS group but not in the RT ONLY group. Instead, the RT ONLY group showed increased connectivity between ventral tegmental area and primary motor cortex. Positive social comparative feedback during practice of a motor sequence task may induce a dopaminergic response in the brain along the mesolimbic pathway. However, given that absence of effects on expectancies and motor learning, more robust and individualized approaches may be needed to provide beneficial psychological and behavioral effects.
Collapse
Affiliation(s)
- Allison F Lewis
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Rachel Bohnenkamp
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Makenzie Myers
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Dirk B den Ouden
- University of South Carolina, Department of Communication Sciences and Disorders, Columbia, SC, USA
| | - Stacy L Fritz
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | | |
Collapse
|
14
|
Wyngaarden JB, Johnston CR, Sazhin D, Dennison JB, Zaff O, Fareri D, McCloskey M, Alloy LB, Smith DV, Jarcho JM. Corticostriatal responses to social reward are linked to trait reward sensitivity and subclinical substance use in young adults. Soc Cogn Affect Neurosci 2024; 19:nsae033. [PMID: 38779870 PMCID: PMC11182064 DOI: 10.1093/scan/nsae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/14/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Aberrant levels of reward sensitivity have been linked to substance use disorder and are characterized by alterations in reward processing in the ventral striatum (VS). Less is known about how reward sensitivity and subclinical substance use relate to striatal function during social rewards (e.g. positive peer feedback). Testing this relation is critical for predicting risk for development of substance use disorder. In this pre-registered study, participants (N = 44) underwent fMRI while completing well-matched tasks that assess neural response to reward in social and monetary domains. Contrary to our hypotheses, aberrant reward sensitivity blunted the relationship between substance use and striatal activation during receipt of rewards, regardless of domain. Moreover, exploratory whole-brain analyses showed unique relations between substance use and social rewards in temporoparietal junction. Psychophysiological interactions demonstrated that aberrant reward sensitivity is associated with increased connectivity between the VS and ventromedial prefrontal cortex during social rewards. Finally, we found that substance use was associated with decreased connectivity between the VS and dorsomedial prefrontal cortex for social rewards, independent of reward sensitivity. These findings demonstrate nuanced relations between reward sensitivity and substance use, even among those without substance use disorder, and suggest altered reward-related engagement of cortico-VS responses as potential predictors of developing disordered behavior.
Collapse
Affiliation(s)
- James B Wyngaarden
- Department of Psychology & Neuroscience, Temple University, 1701 N 13th St Philadelphia, PA 19122, USA
| | - Camille R Johnston
- Department of Psychology & Neuroscience, Temple University, 1701 N 13th St Philadelphia, PA 19122, USA
| | - Daniel Sazhin
- Department of Psychology & Neuroscience, Temple University, 1701 N 13th St Philadelphia, PA 19122, USA
| | - Jeff B Dennison
- Department of Psychology & Neuroscience, Temple University, 1701 N 13th St Philadelphia, PA 19122, USA
| | - Ori Zaff
- Department of Psychology & Neuroscience, Temple University, 1701 N 13th St Philadelphia, PA 19122, USA
| | - Dominic Fareri
- Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
| | - Michael McCloskey
- Department of Psychology & Neuroscience, Temple University, 1701 N 13th St Philadelphia, PA 19122, USA
| | - Lauren B Alloy
- Department of Psychology & Neuroscience, Temple University, 1701 N 13th St Philadelphia, PA 19122, USA
| | - David V Smith
- Department of Psychology & Neuroscience, Temple University, 1701 N 13th St Philadelphia, PA 19122, USA
| | - Johanna M Jarcho
- Department of Psychology & Neuroscience, Temple University, 1701 N 13th St Philadelphia, PA 19122, USA
| |
Collapse
|
15
|
Nie Y, Pan T, He J, Li Y. Impaired social reward processing in individuals with Internet gaming disorder and its relationship with early face perception. Addict Behav 2024; 153:108006. [PMID: 38457987 DOI: 10.1016/j.addbeh.2024.108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Previous research has found that individuals with Internet gaming disorder (IGD) show different patterns of social function impairments in game-related and real-life social contexts. Impaired social reward processing may be the underlying mechanism according to the Social Motivation Theory. Thus, in this study, event-related potentials were recorded from 24 individuals with IGD and 24 healthy gamers during a social judgement task. We focused on reward positivity (RewP) elicited by game-related and real-life social rewards, and N170 elicited by game avatar faces and real faces. These indicators were used to explore the neurocognitive mechanism of impaired social reward processing in individuals with IGD and its relationship with early face perception. Results showed that (1) the RewP elicited by real-life social reward was considerably reduced in individuals with IGD relative to healthy gamers. (2) The N170 elicited by game avatar faces in individuals with IGD was larger than that elicited by real faces. However, the N170 was not associated with RewP in either group. (3) The score for IGD severity was correlated with the RewP elicited by real-life social reward and the N170 elicited by game avatar face. In conclusion, the present study suggests that the impaired social reward processing in individuals with IGD is mainly manifested in a decreased neural sensitivity to real-life social reward. Meanwhile, the reduced RewP elicited by real-life social reward and the enhanced N170 elicited by game avatar face might serve as potential biomarkers for IGD.
Collapse
Affiliation(s)
- Yufeng Nie
- Institute of Psychology and Behavior, Henan University, Jinming Avenue, Kaifeng, Henan Province, China; Key Laboratory of Adolescent Cyberpsychology and Behavior of Ministry of Education, School of Psychology, Central China Normal University, Wuhan, China
| | - Ting Pan
- Key Laboratory of Adolescent Cyberpsychology and Behavior of Ministry of Education, School of Psychology, Central China Normal University, Wuhan, China
| | - Jinbo He
- Key Laboratory of Adolescent Cyberpsychology and Behavior of Ministry of Education, School of Psychology, Central China Normal University, Wuhan, China.
| | - Yongxin Li
- Institute of Psychology and Behavior, Henan University, Jinming Avenue, Kaifeng, Henan Province, China.
| |
Collapse
|
16
|
Sequeira SL, Silk JS, Jones NP, Forbes EE, Hanson JL, Hallion LS, Ladouceur CD. Pathways to adolescent social anxiety: Testing interactions between neural social reward function and perceived social threat in daily life. Dev Psychopathol 2024:1-16. [PMID: 38801123 PMCID: PMC11599470 DOI: 10.1017/s0954579424001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent theories suggest that for youth highly sensitive to incentives, perceiving more social threat may contribute to social anxiety (SA) symptoms. In 129 girls (ages 11-13) oversampled for shy/fearful temperament, we thus examined how interactions between neural responses to social reward (vs. neutral) cues (measured during anticipation of peer feedback) and perceived social threat in daily peer interactions (measured using ecological momentary assessment) predict SA symptoms two years later. No significant interactions emerged when neural reward function was modeled as a latent factor. Secondary analyses showed that higher perceived social threat was associated with more severe SA symptoms two years later only for girls with higher basolateral amygdala (BLA) activation to social reward cues at baseline. Interaction effects were specific to BLA activation to social reward (not threat) cues, though a main effect of BLA activation to social threat (vs. neutral) cues on SA emerged. Unexpectedly, interactions between social threat and BLA activation to social reward cues also predicted generalized anxiety and depression symptoms two years later, suggesting possible transdiagnostic risk pathways. Perceiving high social threat may be particularly detrimental for youth highly sensitive to reward incentives, potentially due to mediating reward learning processes, though this remains to be tested.
Collapse
Affiliation(s)
| | - Jennifer S. Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil P. Jones
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erika E. Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jamie L. Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren S. Hallion
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
17
|
Wyngaarden JB, Johnston CR, Sazhin D, Dennison JB, Zaff O, Fareri D, McCloskey M, Alloy LB, Smith DV, Jarcho JM. Corticostriatal Responses to Social Reward are Linked to Trait Reward Sensitivity and Subclinical Substance Use in Young Adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.17.524305. [PMID: 36711485 PMCID: PMC9882176 DOI: 10.1101/2023.01.17.524305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aberrant levels of reward sensitivity have been linked to substance use disorder and are characterized by alterations in reward processing in the ventral striatum (VS). Less is known about how reward sensitivity and subclinical substance use relate to striatal function during social rewards (e.g., positive peer feedback). Testing this relation is critical for predicting risk for development of substance use disorder. In this pre-registered study, participants (N=44) underwent fMRI while completing well-matched tasks that assess neural response to reward in social and monetary domains. Contrary to our hypotheses, aberrant reward sensitivity blunted the relationship between substance use and striatal activation during receipt of rewards, regardless of domain. Moreover, exploratory whole-brain analyses showed unique relations between substance use and social rewards in temporoparietal junction. Psychophysiological interactions demonstrated that aberrant reward sensitivity is associated with increased connectivity between the VS and ventromedial prefrontal cortex during social rewards. Finally, we found that substance use was associated with decreased connectivity between the VS and dorsomedial prefrontal cortex for social rewards, independent of reward sensitivity. These findings demonstrate nuanced relations between reward sensitivity and substance use, even among those without substance use disorder, and suggest altered reward-related engagement of cortico-VS responses as potential predictors of developing disordered behavior.
Collapse
Affiliation(s)
- James B. Wyngaarden
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Camille R. Johnston
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Daniel Sazhin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Jeff B. Dennison
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Ori Zaff
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Dominic Fareri
- Derner School of Psychology, Adelphi University, Garden City, NY, USA
| | - Michael McCloskey
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Lauren B. Alloy
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - David V. Smith
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| | - Johanna M. Jarcho
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, USA
| |
Collapse
|
18
|
Shen W, Wang X, Li Q, Ding Q, Zhang H, Qian Z, Sun Z, Chen X, Zhang J, Zhao M, Huang L, Xing W. Research on adults with subthreshold depression after aerobic exercise: a resting-state fMRI study based on regional homogeneity (ReHo). Front Neurosci 2024; 18:1231883. [PMID: 38533447 PMCID: PMC10963409 DOI: 10.3389/fnins.2024.1231883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/31/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Subthreshold depression (StD)/subsyndromal depression refers to a threatening precursor to depression. Aerobic exercise is a promising self-supportive adjunctive intervention and an effective measure for StD. Our study utilizes regional homogeneity (ReHo) to investigate the impact of aerobic exercise on resting-state brain function. Methods A total of 78 subjects, aged between 18 and 48 years, (StD group, n = 44; healthy control (HC) group, n = 34) engaged in moderate-intensity aerobic exercise 3-4 times per week for 8 weeks. Resting-state brain function and structural images were acquired before and after the exercise intervention. The ReHo method was employed to analyze abnormal changes in regional brain function, and a correlation analysis was performed using the Patient Health Questionnaire-9 (PHQ-9) and Self-Rating Anxiety Scale (SAS) scores. Results The principal observation reveals synchronous abnormalities in the right anterior cingulate gyrus of the brain in StD subjects compared to HCs at baseline, with these differences dissipating after the implementation of aerobic exercise. After completing the aerobic exercise program, the StD group exhibited a difference in the right middle cingulate gyrus, while the left supplementary motor area (SMA) was altered in the HC group. Conclusion Disparities in neural synchronization are evident between HCs and StD subjects, and the implementation of aerobic exercise intervention can effectively mitigate these distinctions, leading to a significant reduction in depressive symptoms among StD subjects. The primary mechanism of StD symptoms may involve the inhibition of the anterior cingulate gyrus, while the effects of aerobic exercise may be related to the modulation of neural synchronization of emotional reflexes. The discovery of these fMRI evidence findings may offer novel strategies for early detection and intervention in cases of StD.
Collapse
Affiliation(s)
- Wenbin Shen
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, Changshu No.2 People's Hospital, Changshu, Jiangsu, China
| | - Xiaoxiao Wang
- School of Foreign Studies, China University of Petroleum, Qingdao, Shandong, China
| | - Qin Li
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, Changshu No.2 People's Hospital, Changshu, Jiangsu, China
| | - Qingguo Ding
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, Changshu No.2 People's Hospital, Changshu, Jiangsu, China
| | - Hongqiang Zhang
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, Changshu No.2 People's Hospital, Changshu, Jiangsu, China
| | - Zheng Qian
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, Changshu No.2 People's Hospital, Changshu, Jiangsu, China
| | - Zhixin Sun
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, Changshu No.2 People's Hospital, Changshu, Jiangsu, China
| | - Xingyu Chen
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, Changshu No.2 People's Hospital, Changshu, Jiangsu, China
| | - Jun Zhang
- Department of Psychiatry, Changshu Third People's Hospital, Changshu, Jiangsu, China
| | - Mengqi Zhao
- School of Psychology, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Lina Huang
- Department of Radiology, The Affiliated Changshu Hospital of Nantong University, Changshu No.2 People's Hospital, Changshu, Jiangsu, China
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
19
|
Taylor CT, Stein MB, Simmons AN, He F, Oveis C, Shakya HB, Sieber WJ, Fowler JH, Jain S. Amplification of Positivity Treatment for Anxiety and Depression: A Randomized Experimental Therapeutics Trial Targeting Social Reward Sensitivity to Enhance Social Connectedness. Biol Psychiatry 2024; 95:434-443. [PMID: 37607657 DOI: 10.1016/j.biopsych.2023.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Social disconnection is common and causes significant impairment in anxiety and depressive disorders, and it does not respond sufficiently to available treatments. The positive valence system supports social bond formation and maintenance but is often hyporesponsive in people with anxiety or depression. We conducted an experimental therapeutics trial to test the hypothesis that targeting positive valence processes through cognitive and behavioral strategies would enhance responsivity to social rewards, a core mechanism underlying social connectedness. METHODS Sixty-eight adults who endorsed clinically elevated anxiety and/or depression with social impairment were randomized 1:1:1 to 5 (n = 23) or 10 (n = 22) sessions of amplification of positivity (AMP) treatment or waitlist (n = 23). Pre- to posttreatment change in striatal activity (primary outcome) during social reward anticipation was measured using functional magnetic resonance imaging, and reactivity to a social affiliation task (secondary) and self-reported social connectedness (exploratory) were examined. Primary analyses compared AMP (doses combined) versus waitlist. A second aim was to compare the effects of different doses. RESULTS AMP engaged the hypothesized treatment target, leading to greater striatal activation during anticipation of social rewards versus waitlist (d = 1.01 [95% CI = 0.42-1.61]; largest striatal volume). AMP yielded larger improvements in positive affect and approach behavior during the affiliation task (but not other outcomes) and social connectedness. Larger striatal and social connectedness increases were observed for 5-session versus 10-session AMP (d range = 0.08-1.03). CONCLUSIONS Teaching people with anxiety or depression strategies to increase positive thoughts, behaviors, and emotions enhances activity in brain regions that govern social reward processing and promotes social connectedness. Social reward sensitivity may be a transdiagnostic target for remediating social disconnection.
Collapse
Affiliation(s)
- Charles T Taylor
- Department of Psychiatry, University of California San Diego, San Diego, California.
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, San Diego, California; VA San Diego Healthcare System, San Diego, California
| | - Alan N Simmons
- Department of Psychiatry, University of California San Diego, San Diego, California; VA San Diego Healthcare System, San Diego, California
| | - Feng He
- Herbert Wertheim School of Public Health & Human Longevity Science, University of California San Diego, San Diego, California
| | - Christopher Oveis
- Rady School of Management, University of California San Diego, San Diego, California
| | - Holly B Shakya
- Herbert Wertheim School of Public Health & Human Longevity Science, University of California San Diego, San Diego, California
| | - William J Sieber
- Department of Family Medicine, University of California San Diego, San Diego, California
| | - James H Fowler
- Department of Political Science, University of California San Diego, San Diego, California
| | - Sonia Jain
- Herbert Wertheim School of Public Health & Human Longevity Science, University of California San Diego, San Diego, California
| |
Collapse
|
20
|
Bore MC, Liu X, Gan X, Wang L, Xu T, Ferraro S, Li L, Zhou B, Zhang J, Vatansever D, Biswal B, Klugah-Brown B, Becker B. Distinct neurofunctional alterations during motivational and hedonic processing of natural and monetary rewards in depression - a neuroimaging meta-analysis. Psychol Med 2024; 54:639-651. [PMID: 37997708 DOI: 10.1017/s0033291723003410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Reward processing dysfunctions are considered a candidate mechanism underlying anhedonia and apathy in depression. Neuroimaging studies have documented that neurofunctional alterations in mesocorticolimbic circuits may neurally mediate these dysfunctions. However, common and distinct neurofunctional alterations during motivational and hedonic evaluation of monetary and natural rewards in depression have not been systematically examined. Here, we capitalized on pre-registered neuroimaging meta-analyses to (1) establish general reward-related neural alterations in depression, (2) determine common and distinct alterations during the receipt and anticipation of monetary v. natural rewards, and, (3) characterize the differences on the behavioral, network, and molecular level. The pre-registered meta-analysis (https://osf.io/ay3r9) included 633 depressed patients and 644 healthy controls and revealed generally decreased subgenual anterior cingulate cortex and striatal reactivity toward rewards in depression. Subsequent comparative analyses indicated that monetary rewards led to decreased hedonic reactivity in the right ventral caudate while natural rewards led to decreased reactivity in the bilateral putamen in depressed individuals. These regions exhibited distinguishable profiles on the behavioral, network, and molecular level. Further analyses demonstrated that the right thalamus and left putamen showed decreased activation during the anticipation of monetary reward. The present results indicate that distinguishable neurofunctional alterations may neurally mediate reward-processing alterations in depression, in particular, with respect to monetary and natural rewards. Given that natural rewards prevail in everyday life, our findings suggest that reward-type specific interventions are warranted and challenge the generalizability of experimental tasks employing monetary incentives to capture reward dysregulations in everyday life.
Collapse
Affiliation(s)
- Mercy Chepngetich Bore
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Wang
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Stefania Ferraro
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Li
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Zhou
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Benjamin Klugah-Brown
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Benjamin Becker
- Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Yang C, Wang XK, Ma SZ, Lee NY, Zhang QR, Dong WQ, Zang YF, Yuan LX. Abnormal functional connectivity of the reward network is associated with social communication impairments in autism spectrum disorder: A large-scale multi-site resting-state fMRI study. J Affect Disord 2024; 347:608-618. [PMID: 38070748 DOI: 10.1016/j.jad.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/28/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND The social motivation hypothesis proposes that the social deficits of autism spectrum disorder (ASD) are related to reward system dysfunction. However, functional connectivity (FC) patterns of the reward network in ASD have not been systematically explored yet. METHODS The reward network was defined as eight regions of interest (ROIs) per hemisphere, including the nucleus accumbens (NAc), caudate, putamen, anterior cingulate cortex (ACC), ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex (OFC), amygdala, and insula. We computed both the ROI-wise resting-state FC and seed-based whole-brain FC in 298 ASD participants and 348 typically developing (TD) controls from the Autism Brain Imaging Data Exchange I dataset. Two-sample t-tests were applied to obtain the aberrant FCs. Then, the association between aberrant FCs and clinical symptoms was assessed with Pearson's correlation or Spearman's correlation. In addition, Neurosynth Image Decoder was used to generate word clouds verifying the cognitive functions of the aberrant pathways. Furthermore, a three-way multivariate analysis of variance (MANOVA) was conducted to examine the effects of gender, subtype and age on the atypical FCs. RESULTS For the within network analysis, the left ACC showed weaker FCs with both the right amygdala and left NAc in ASD compared with TD, which were negatively correlated with the Autism Diagnostic Observation Schedule (ADOS) total scores and Social Responsiveness Scale (SRS) total scores respectively. For the whole-brain analysis, weaker FC (i.e., FC between the left vmPFC and left calcarine gyrus, and between the right vmPFC and left precuneus) accompanied by stronger FC (i.e., FC between the left caudate and right insula) were exhibited in ASD relative to TD, which were positively associated with the SRS motivation scores. Additionally, we detected the main effect of age on FC between the left vmPFC and left calcarine gyrus, of subtype on FC between the right vmPFC and left precuneus, of age and age-by-gender interaction on FC between the left caudate and right insula. CONCLUSIONS Our findings highlight the crucial role of abnormal FC patterns of the reward network in the core social deficits of ASD, which have the potential to reveal new biomarkers for ASD.
Collapse
Affiliation(s)
- Chen Yang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Xing-Ke Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Sheng-Zhi Ma
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Nathan Yee Lee
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Qiu-Rong Zhang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Wen-Qiang Dong
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China
| | - Yu-Feng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang, China; TMS Center, Hangzhou Normal University Affiliated Deqing Hospital, Huzhou, China
| | - Li-Xia Yuan
- School of Physics, Zhejiang University, Hangzhou, China; National Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China.
| |
Collapse
|
22
|
Kwon SJ, Prinstein MJ, Lindquist KA, Telzer EH. Friendship changes differentially predict neural correlates of decision-making for friends across adolescence. Dev Cogn Neurosci 2024; 65:101342. [PMID: 38219708 PMCID: PMC10825619 DOI: 10.1016/j.dcn.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024] Open
Abstract
Adolescents' peer world is highly dynamic with constant dissolution of old friendships and formation of new ones. Though many of adolescents' risky decisions involve their peers, little is known about how adolescents' ever-changing friendships shape their ability to make these peer-involving risky decisions, particularly adaptive ones, and whether this association shifts over time. In a 5-wave longitudinal fMRI study, 173 adolescents (at wave 1: Mage = 12.8, SDage = 0.52; range = 11.9-14.5) made risky choices to win money for their best friend. We assessed whether participants nominated the same or different best friend as their previous participation year (a total of 340 data points of friendship maintenance / change). In early adolescence, adolescents with the same best friend took more adaptive risks for that best friend than those with a different best friend. In late adolescence, however, adolescents with a different best friend took more adaptive risks for the new best friend than those with the same best friend. Further, the amygdala was differentially sensitive to friendship maintenance / change during these peer-involving adaptive risks across time. This study has implications for how stable and flexible peer landscapes differentially modulate social motivation and social decision-making over the course of adolescence.
Collapse
Affiliation(s)
- Seh-Joo Kwon
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC, USA
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC, USA
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC, USA
| | - Eva H Telzer
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC, USA.
| |
Collapse
|
23
|
Delgado MR, Fareri DS, Chang LJ. Characterizing the mechanisms of social connection. Neuron 2023; 111:3911-3925. [PMID: 37804834 PMCID: PMC10842352 DOI: 10.1016/j.neuron.2023.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 10/09/2023]
Abstract
Understanding how individuals form and maintain strong social networks has emerged as a significant public health priority as a result of the increased focus on the epidemic of loneliness and the myriad protective benefits conferred by social connection. In this review, we highlight the psychological and neural mechanisms that enable us to connect with others, which in turn help buffer against the consequences of stress and isolation. Central to this process is the experience of rewards derived from positive social interactions, which encourage the sharing of perspectives and preferences that unite individuals. Sharing affective states with others helps us to align our understanding of the world with another's, thereby continuing to reinforce bonds and strengthen relationships. These psychological processes depend on neural systems supporting reward and social cognitive function. Lastly, we also consider limitations associated with pursuing healthy social connections and outline potential avenues of future research.
Collapse
Affiliation(s)
- Mauricio R Delgado
- Department of Psychology, Rutgers University-Newark, Newark, NJ 07102, USA.
| | - Dominic S Fareri
- Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY 11530, USA
| | - Luke J Chang
- Consortium for Interacting Minds, Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
24
|
van Sleeuwen C, van Zuiden M, Koch SBJ, Frijling JL, Veltman DJ, Olff M, Nawijn L. How does it feel? An exploration of neurobiological and clinical correlates of alexithymia in trauma-exposed police-officers with and without PTSD. Eur J Psychotraumatol 2023; 14:2281187. [PMID: 38154073 PMCID: PMC10990451 DOI: 10.1080/20008066.2023.2281187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/25/2023] [Indexed: 12/30/2023] Open
Abstract
Background: Alexithymia, an inability to recognise one's emotions, has been associated with trauma-exposure and posttraumatic stress disorder (PTSD). Previous research suggests involvement of the oxytocin system, and socio-emotional neural processes. However, the paucity of neurobiological research on alexithymia, particularly in trauma-exposed populations, warrants further investigation.Objective: Explore associations between alexithymia, endogenous oxytocin levels, and socio-emotional brain function and morphometry in a trauma-exposed sample.Method: Dutch trauma-exposed police officers with (n = 38; 18 females) and without PTSD (n = 40; 20 females) were included. Alexithymia was assessed with the Toronto Alexithymia Scale (TAS-20). Endogenous salivary oxytocin was assessed during rest, using radioimmunoassay. Amygdala and insula reactivity to socio-emotional stimuli were assessed with functional MRI, amygdala and insula grey matter volume were derived using Freesurfer.Results: Alexithymia was higher in PTSD patients compared to trauma-exposed controls (F(1,70) = 54.031, p < .001). Within PTSD patients, alexithymia was positively associated with PTSD severity (ρ(36) = 0.497, p = .002). Alexithymia was not associated with childhood trauma exposure (β = 0.076, p = .509), police work-related trauma exposure (β = -0.107, p = .355), oxytocin levels (β = -0.164, p = .161), insula (β = -0.170, p = .158) or amygdala (β = -0.175, p = .135) reactivity, or amygdala volume (β = 0.146, p = .209). Insula volume was positively associated with alexithymia (β = 0.222, p = .016), though not significant after multiple testing corrections. Bayesian analyses supported a lack of associations.Conclusions: No convincing neurobiological correlates of alexithymia were observed with any of the markers included in the current study. Yet, the current study confirmed high levels of alexithymia in PTSD patients, independent of trauma-exposure, substantiating alexithymia's relevance in the clinical phenotype of PTSD.
Collapse
Affiliation(s)
- Cindy van Sleeuwen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
| | - Saskia B. J. Koch
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, the Netherlands
| | - Jessie L. Frijling
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Department of Psychiatry and Medical Psychology, OLVG Hospital, Amsterdam, the Netherlands
| | - Dick J. Veltman
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Miranda Olff
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Arq National Psychotrauma Centre, Diemen, the Netherlands
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam UMC, Location University of Amsterdam, Amsterdam, the Netherlands
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam Public Health, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Solomonov N, Victoria LW, Lyons K, Phan DK, Alexopoulos GS, Gunning FM, Flückiger C. Social reward processing in depressed and healthy individuals across the lifespan: A systematic review and a preliminary coordinate-based meta-analysis of fMRI studies. Behav Brain Res 2023; 454:114632. [PMID: 37598904 PMCID: PMC10557626 DOI: 10.1016/j.bbr.2023.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Social rewards (e.g., social feedback, praise, and social interactions) are fundamental to social learning and relationships across the life span. Exposure to social rewards is linked to activation in key brain regions, that are impaired in major depression. This is the first summary of neuroimaging literature on social reward processing in depressed and healthy individuals. METHOD We screened 409 studies and identified 25 investigating task-based fMRI activation during exposure to social stimuli in depressed and healthy populations across the lifespan. We conducted a systematic review followed by an Activation Likelihood Estimation (ALE) analysis of three main contrasts: a) positive social feedback vs. neutral stimuli; b) negative social feedback vs. neutral stimuli; c) positive vs. negative social feedback. We also compared activation patterns in depressed versus healthy controls. RESULTS Systematic review revealed that social rewards elicit increased activation in subcortical reward regions (NAcc, amygdala, ventral striatum, thalamus) in healthy and depressed individuals; and decreased activation in prefrontal reward regions (medial prefrontal cortex, orbitofrontal cortex) among depressed persons. Our meta-analysis showed, in both depressed and healthy individuals, increased cluster activation of the putamen and caudate in response to negative social stimuli vs. positive stimuli. We also found increased cluster activation in the inferior frontal gyrus (IFG) and the medial frontal gyrus (MFG) in healthy controls vs. depressed individuals, in response to negative social stimuli. CONCLUSIONS Processing of social stimuli elicits activation of key brain regions involved in affective and social information processing. Interventions for depression can increase social reward responsivity to improve outcomes.
Collapse
Affiliation(s)
- Nili Solomonov
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY, USA.
| | - Lindsay W Victoria
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY, USA
| | - Krystalle Lyons
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY, USA
| | - Dustin K Phan
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY, USA; University of Kassel, Germany
| | - George S Alexopoulos
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY, USA
| | - Faith M Gunning
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY, USA
| | | |
Collapse
|
26
|
Wu Y, Wang H, Li C, Zhang C, Li Q, Shao Y, Yang Z, Li C, Fan Q. Deficits in Key Brain Network for Social Interaction in Individuals with Schizophrenia. Brain Sci 2023; 13:1403. [PMID: 37891773 PMCID: PMC10605178 DOI: 10.3390/brainsci13101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Individuals with schizophrenia (SZ) show impairment in social functioning. The reward network and the emotional salience network are considered to play important roles in social interaction. The current study investigated alterations in the resting-state (rs-) amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), regional homogeneity (ReHo) and functional connectivity (fc) in the reward network and the emotional salience network in SZ patients. MRI scans were collected from 60 subjects, including 30 SZ patients and 30 matched healthy controls. SZ symptoms were measured using the Positive and Negative Syndrome Scale (PANSS). We analyzed the ALFF, fALFF and ReHo in key brain regions in the reward network and emotional salience network as well as rs-fc among the bilateral amygdala, lateral orbitofrontal cortex (OFC), medial OFC and insula between groups. The SZ patients demonstrated increased ALFF in the right caudate and right putamen, increased fALFF and ReHo in the bilateral caudate, putamen and pallidum, along with decreased fALFF in the bilateral insula. Additionally, reduced rs-fc was found between the right lateral OFC and the left amygdala, which simultaneously belong to the reward network and the emotional salience network. These findings highlight the association between impaired social functioning in SZ patients and aberrant resting-state ALFF, fALFF, ReHo and fc. Future studies are needed to conduct network-based statistical analysis and task-state fMRI, reflecting live social interaction to advance our understanding of the mechanism of social interaction deficits in SZ.
Collapse
Affiliation(s)
- Yiwen Wu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Hongyan Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chuoran Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Qingfeng Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yang Shao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zhi Yang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders and National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai 200030, China
- Mental Health Branch, China Hospital Development Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
27
|
Hamel R, Pearson J, Sifi L, Patel D, Hinder MR, Jenkinson N, Galea JM. The intracortical excitability changes underlying the enhancing effects of rewards and punishments on motor performance. Brain Stimul 2023; 16:1462-1475. [PMID: 37777109 DOI: 10.1016/j.brs.2023.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Monetary rewards and punishments enhance motor performance and are associated with corticospinal excitability (CSE) increases within the motor cortex (M1) during movement preparation. However, such CSE changes have unclear origins. Based on converging evidence, one possibility is that they stem from increased glutamatergic (GLUTergic) facilitation and/or decreased type A gamma-aminobutyric acid (GABAA)-mediated inhibition within M1. To investigate this, paired-pulse transcranial magnetic stimulation was used over the left M1 to evaluate intracortical facilitation (ICF) and short intracortical inhibition (SICI), indirect assays of GLUTergic activity and GABAA-mediated inhibition, in an index finger muscle during the preparation of sequences initiated by either the right index or little finger. Behaviourally, rewards and punishments enhanced both reaction and movement time. During movement preparation, regardless of rewards or punishments, ICF increased when the index finger initiated sequences, whereas SICI decreased when both the index and little fingers initiated sequences. This finding suggests that GLUTergic activity increases in a finger-specific manner whilst GABAA-mediated inhibition decreases in a finger-unspecific manner during preparation. In parallel, both rewards and punishments non-specifically increased ICF, but only rewards non-specifically decreased SICI as compared to neutral. This suggests that to enhance performance rewards both increase GLUTergic activity and decrease GABAA-mediated inhibition, whereas punishments selectively increase GLUTergic activity. A control experiment revealed that such changes were not observed post-movement as participants processed reward and punishment feedback, indicating they were selective to movement preparation. Collectively, these results map the intracortical excitability changes in M1 by which incentives enhance motor performance.
Collapse
Affiliation(s)
- R Hamel
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom; School of Sport, Exercise, and Rehabilitation, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| | - J Pearson
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - L Sifi
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - D Patel
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - M R Hinder
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | - N Jenkinson
- School of Sport, Exercise, and Rehabilitation, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - J M Galea
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
28
|
Sobczak A, Bunzeck N. Effects of positive and negative social feedback on motivation, evaluative learning, and socio-emotional processing. NPJ SCIENCE OF LEARNING 2023; 8:28. [PMID: 37587116 PMCID: PMC10432544 DOI: 10.1038/s41539-023-00178-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/12/2023] [Indexed: 08/18/2023]
Abstract
Social rewards and punishments are strong motivators. Since experimental work has focused on young adults using simplistic feedback, the effects of more naturalistic stimuli on motivation, evaluative learning, and socio-emotional processing with advanced age remain unclear. Therefore, we compared the effects of static (photos) vs dynamic (videos) social feedback in a social incentive delay (SID) task in young (18-35 years) and older adults (50-84 years) with neutral, positive, and negative feedback, on response times (RTs), and assessed the emotional valence of feedback cues and feedback videos. We found that anticipating positive and negative social feedback accelerated RTs regardless of age and without additional effects of video feedback. Furthermore, the results suggest a valence transfer from positive feedback videos to predictive cues in both groups (i.e., evaluative learning). Finally, older adults reported less pronounced negative affect for negative feedback videos, indicating age differences in socio-emotional processing. As such, our findings foster our understanding of the underlying cognitive and emotional aspects involved in the processing of social rewards and punishments.
Collapse
Affiliation(s)
- Alexandra Sobczak
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
- Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
29
|
Peng S, Tao D, Xuan B. Social Rejection but Not Ostracism Increases Cognitive Effort Avoidance. Psychol Res Behav Manag 2023; 16:2829-2839. [PMID: 37521567 PMCID: PMC10386862 DOI: 10.2147/prbm.s414450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose Social exclusion has been found to have a significant impact on cognitive control processing. However, the existing research on this topic has yielded inconsistent findings, possibly due to variations in the type of exclusion and individuals' cognitive effort. Two studies were conducted to explore the influence of social rejection and ostracism on cognitive effort avoidance. Participants and Methods Study 1 involved forty-six adults who were randomly divided into a rejection group and a control group using a get-acquainted paradigm. The demand selection task (DST) was used to measure cognitive effort avoidance. In Study 2, forty-eight adults were recruited, Cyberball and DST paradigms were used to evoke ostracism and test cognitive effort avoidance, respectively. Results The results of study 1 showed that individuals who were socially rejected by their partners exhibited impaired response accuracy of cognitive control and increased cognitive effort avoidance. This indicates that social rejection has a negative impact on cognitive control processing and that individuals may be more likely to avoid cognitive effort when experiencing social rejection. The results of study 2 showed that ostracism had an impact on both response speed and accuracy, but it did not significantly affect cognitive effort avoidance. This indicates that social rejection affects cognitive control processing differently than ostracism, and individuals are more likely to avoid cognitive effort when experiencing social rejection. Conclusion These findings suggest that social rejection and ostracism have different effects on cognitive effort, which may contribute to the inconsistent cognitive performance during social exclusion. Future research may explore the underlying mechanisms that lead to these differences and examine how individuals can mitigate the negative effects of social exclusion on cognitive control processing.
Collapse
Affiliation(s)
- Suhao Peng
- Department of Psychology, School of Education, Anhui Normal University, Wuhu, People’s Republic of China
| | - Dan Tao
- School of Early-Childhood Education, Nanjing Xiaozhuang University, Nanjing, People’s Republic of China
| | - Bin Xuan
- Department of Psychology, School of Education, Anhui Normal University, Wuhu, People’s Republic of China
| |
Collapse
|
30
|
Xu J, Liu N, Polemiti E, Garcia-Mondragon L, Tang J, Liu X, Lett T, Yu L, Nöthen MM, Feng J, Yu C, Marquand A, Schumann G. Effects of urban living environments on mental health in adults. Nat Med 2023; 29:1456-1467. [PMID: 37322117 PMCID: PMC10287556 DOI: 10.1038/s41591-023-02365-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/25/2023] [Indexed: 06/17/2023]
Abstract
Urban-living individuals are exposed to many environmental factors that may combine and interact to influence mental health. While individual factors of an urban environment have been investigated in isolation, no attempt has been made to model how complex, real-life exposure to living in the city relates to brain and mental health, and how this is moderated by genetic factors. Using the data of 156,075 participants from the UK Biobank, we carried out sparse canonical correlation analyses to investigate the relationships between urban environments and psychiatric symptoms. We found an environmental profile of social deprivation, air pollution, street network and urban land-use density that was positively correlated with an affective symptom group (r = 0.22, Pperm < 0.001), mediated by brain volume differences consistent with reward processing, and moderated by genes enriched for stress response, including CRHR1, explaining 2.01% of the variance in brain volume differences. Protective factors such as greenness and generous destination accessibility were negatively correlated with an anxiety symptom group (r = 0.10, Pperm < 0.001), mediated by brain regions necessary for emotion regulation and moderated by EXD3, explaining 1.65% of the variance. The third urban environmental profile was correlated with an emotional instability symptom group (r = 0.03, Pperm < 0.001). Our findings suggest that different environmental profiles of urban living may influence specific psychiatric symptom groups through distinct neurobiological pathways.
Collapse
Grants
- R01 DA049238 NIDA NIH HHS
- European Union-funded Horizon Europe project ‘environMENTAL’ (101057429 to G.S.), the Horizon 2020 funded ERC Advanced Grant ‘STRATIFY’ (695313 to G.S.), the Human Brain Project (HBP SGA3, 945539 to G.S.), the National Institute of Health (NIH) (R01DA049238 to G.S.), the German Research Foundation (DFG) (COPE; 675346 to G.S.), the National Natural Science Foundation of China (82150710554 to G.S.),the Chinese National High-end Foreign Expert Recruitment Plan to G.S. and the Alexander von Humboldt Foundation to G.S.
- the National Natural Science Foundation of China (82001797 to J.X.),Tianjin Applied Basic Research Diversified Investment Foundation (21JCYBJC01360 to J.X.), Tianjin Health Technology Project (TJWJ2021QN002 to J.X.), Science&Technology Development Fund of Tianjin Education Commission for Higher Education (2019KJ195 to J.X.)
- National Natural Science Foundation of China (82202093)
- National Key R&D Program of China (2022YFE0209400), Tsinghua University Initiative Scientific Research Program (2021Z11GHX002), the National Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab)
- National Natural Science Foundation of China (82030053);National Key Research and Development Program of China (2018YFC1314301)
Collapse
Affiliation(s)
- Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, People's Republic of China.
| | - Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Elli Polemiti
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health, Department of Psychiatry and Neurosciences, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jie Tang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
| | - Xiaoxuan Liu
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Tristram Lett
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, People's Republic of China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health, Department of Psychiatry and Neurosciences, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Le Yu
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, People's Republic of China
- Department of Earth System Science, Ministry of Education Ecological Field Station for East Asian Migratory Birds, Tsinghua University, Beijing, People's Republic of China
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital of Bonn, Bonn, Germany
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, People's Republic of China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, People's Republic of China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Andre Marquand
- Predictive Clinical Neuroscience Group at the Donders Institute, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine, Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, People's Republic of China.
- Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health, Department of Psychiatry and Neurosciences, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
31
|
Kolobaric A, Mizuno A, Yang X, George CJ, Seidman A, Aizenstein HJ, Kovacs M, Karim HT. History of major depressive disorder is associated with differences in implicit learning of emotional faces. J Psychiatr Res 2023; 161:324-332. [PMID: 36996725 PMCID: PMC10202097 DOI: 10.1016/j.jpsychires.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
Major depressive disorder is often associated with worsened reward learning, with blunted reward response persisting after remission. In this study, we developed a probabilistic learning task with social rewards as a learning signal. We examined the impacts of depression on social rewards (facial affect displays) as an implicit learning signal. Fifty-seven participants without a history of depression and sixty-two participants with a history of depression (current or remitted) completed a structured clinical interview and an implicit learning task with social reward. Participants underwent an open-ended interview to evaluate whether they knew the rule consciously. Linear mixed effects models revealed that participants without a history of depression learned faster and showed a stronger preference towards the positive than the negative stimulus when compared to the participants with a history of depression. In contrast, those with a history depression learned slower on average and displayed greater variability in stimulus preference. We did not detect any differences in learning between those with current and remitted depression. The results indicate that on a probabilistic social reward task, people with a history of depression exhibit slower reward learning and greater variability in their learning behavior. Improving our understanding of alterations in social reward learning and their associations with depression and anhedonia may help to develop translatable psychotherapeutic approaches for modification of maladaptive emotion regulation.
Collapse
Affiliation(s)
| | - Akiko Mizuno
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiao Yang
- Department of Psychology, Old Dominion University, Norfolk, VA, USA
| | | | - Andrew Seidman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Howard J Aizenstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria Kovacs
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Helmet T Karim
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
32
|
Sobczak A, Yousuf M, Bunzeck N. Anticipating social feedback involves basal forebrain and mesolimbic functional connectivity. Neuroimage 2023; 274:120131. [PMID: 37094625 DOI: 10.1016/j.neuroimage.2023.120131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023] Open
Abstract
The mesolimbic system and basal forebrain (BF) are implicated in processing rewards and punishment, but their interplay and functional properties of subregions with respect to future social outcomes remain unclear. Therefore, this study investigated regional responses and interregional functional connectivity of the lateral (l), medial (m), and ventral (v) Substantia Nigra (SN), Nucleus Accumbens (NAcc), Nucleus basalis of Meynert (NBM), and Medial Septum/Diagonal Band (MS/DB) during reward and punishment anticipation in a social incentive delay task with neutral, positive, and negative feedback using high-resolution fMRI (1.5mm3). Neuroimaging data (n=36 healthy humans) of the anticipation phase was analyzed using mass-univariate, functional connectivity, and multivariate-pattern analysis. As expected, participants responded faster when anticipating positive and negative compared to neutral social feedback. At the neural level, anticipating social information engaged valence-related and valence-unrelated functional connectivity patterns involving the BF and mesolimbic areas. Precisely, valence-related connectivity between the lSN and NBM was associated with anticipating neutral social feedback, while connectivity between the vSN and NBM was associated with anticipating positive social feedback. A more complex pattern was observed for anticipating negative social feedback, including connectivity between the lSN and MS/DB, lSN and NAcc, as well as mSN and NAcc. To conclude, behavioral responses are modulated by the possibility to obtain positive and avoid negative social feedback. The neural processing of feedback anticipation relies on functional connectivity patterns between the BF and mesolimbic areas associated with the emotional valence of the social information. As such, our findings give novel insights into the underlying neural processes of social information processing.
Collapse
Affiliation(s)
- Alexandra Sobczak
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| | - Mushfa Yousuf
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Nico Bunzeck
- Department of Psychology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
33
|
Bomyea J, Sweet A, Davey DK, Boland M, Paulus MP, Stein MB, Taylor CT. Randomized controlled trial of computerized approach/avoidance training in social anxiety disorder: Neural and symptom outcomes. J Affect Disord 2023; 324:36-45. [PMID: 36549342 DOI: 10.1016/j.jad.2022.12.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Social anxiety is associated with diminished automatic approach toward positive social cues that may limit the ability to connect with others. This diminished approach bias may be a modifiable treatment target. We evaluated the effects of an approach avoidance training procedure on positive emotions, social relationship outcomes, clinical symptoms, and neural indices of social approach and reward processing. Forty-five individuals with social anxiety disorder were randomized (parallel 1:1 randomization) to complete computerized Approach Positive training (n = 21) or Balanced training(n = 24). Sessions included a standardized social interaction task. Participants were blind to training group. Participants completed clinical outcome measures and functional magnetic resonance imaging at baseline and post intervention with an MRI-compatible AAT and the social incentive delay task (SID). Both groups displayed significant improvements of similar magnitude on the primary outcome of social connectedness (between group post-treatment d = -0.21) but not positive affect (d = -0.09), from before to after treatment, persisting through follow-up. Groups demonstrated significant improvements on additional outcomes including anxiety, depression, and anhedonia symptoms. Participants in Approach Positive AAT demonstrated increased activation in the thalamus and medial prefrontal cortex during social versus neutral- approach relative to Balanced AAT during the fMRI AAT. Participants in Balanced AAT showed increased activation in regions within an a priori-defined striatum region of interest mask during anticipation of social reward (vs. baseline) in the SID relative to Approach Positive AAT. At a neural processing level AAT may influence the valuation and motivations associated with positive social cues regulated by the mPFC and thalamus. NCT02136212, NIMH R00MH090243.
Collapse
Affiliation(s)
- Jessica Bomyea
- VA San Diego Center of Excellence for Stress and Mental Health, United States of America; University of California San Diego, United States of America
| | - Alison Sweet
- University of California San Diego, United States of America
| | - Delaney K Davey
- VA San Diego Center of Excellence for Stress and Mental Health, United States of America; University of California San Diego, United States of America
| | - Matthew Boland
- University of Nevada Reno, United States of America; University of Nevada School of Medicine
| | - Martin P Paulus
- University of California San Diego, United States of America; Laureate Institute for Brain Research, United States of America
| | - Murray B Stein
- University of California San Diego, United States of America
| | | |
Collapse
|
34
|
Wang L, Zhou X, Song X, Gan X, Zhang R, Liu X, Xu T, Jiao G, Ferraro S, Bore MC, Yu F, Zhao W, Montag C, Becker B. Fear of missing out (FOMO) associates with reduced cortical thickness in core regions of the posterior default mode network and higher levels of problematic smartphone and social media use. Addict Behav 2023; 143:107709. [PMID: 37004381 DOI: 10.1016/j.addbeh.2023.107709] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
BACKGROUND AND AIMS Fear of missing out (FOMO) promotes the desire or urge to stay continuously connected with a social reference group and updated on their activities, which may result in escalating and potentially addictive smartphone and social media use. The present study aimed to determine whether the neurobiological basis of FOMO encompasses core regions of the reward circuitry or social brain, and associations with levels of problematic smartphone or social media use. METHODS We capitalized on a dimensional neuroimaging approach to examine cortical thickness and subcortical volume associations in a sample of healthy young individuals (n = 167). Meta-analytic network and behavioral decoding analyses were employed to further characterize the identified regions. RESULTS Higher levels of FOMO associated with lower cortical thickness in the right precuneus. In contrast, no associations between FOMO and variations in striatal morphology were observed. Meta-analytic decoding revealed that the identified precuneus region exhibited a strong functional interaction with the default mode network (DMN) engaged in social cognitive and self-referential domains. DISCUSSION AND CONCLUSIONS Together the present findings suggest that individual variations in FOMO are associated with the brain structural architecture of the right precuneus, a core hub within a large-scale functional network resembling the DMN and involved in social and self-referential processes. FOMO may promote escalating social media and smartphone use via social and self-referential processes rather than reward-related processes per se.
Collapse
Affiliation(s)
- Lan Wang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Zhou
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Xinwei Song
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ran Zhang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Xu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Stefania Ferraro
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy Chepngetich Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Fangwen Yu
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Weihua Zhao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany.
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, and, MOE Key Laboratory of NeuroInformation, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
35
|
Seitz KI, Ueltzhöffer K, Rademacher L, Paulus FM, Schmitz M, Herpertz SC, Bertsch K. Your smile won't affect me: Association between childhood maternal antipathy and adult neural reward function in a transdiagnostic sample. Transl Psychiatry 2023; 13:70. [PMID: 36828811 PMCID: PMC9958053 DOI: 10.1038/s41398-023-02364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Aberrant activation in the ventral striatum (VS) during reward anticipation may be a key mechanism linking adverse childhood experiences (ACE) to transdiagnostic psychopathology. This study aimed to elucidate whether retrospectively reported ACE, specifically maternal antipathy, relate to monetary and social reward anticipation in a transdiagnostic adult sample. A cross-sectional neuroimaging study was conducted in 118 participants with varying levels of ACE, including 25 participants with posttraumatic stress disorder (PTSD), 32 with major depressive disorder (MDD), 29 with somatic symptom disorder (SSD), and 32 healthy volunteers (HVs). Participants underwent functional magnetic resonance imaging during a monetary and social incentive delay task, and completed a self-report measure of ACE, including maternal antipathy. Neural correlates of monetary and social reward anticipation and their association with ACE, particularly maternal antipathy, were analyzed. Participants showed elevated activation in brain regions underlying reward processing, including the VS, only while anticipating social, but not monetary rewards. Participants reporting higher levels of maternal antipathy exhibited reduced activation in the brain reward network, including the VS, only during social, but not monetary reward anticipation. Group affiliation moderated the association between maternal antipathy and VS activation to social reward anticipation, with significant associations found in participants with PTSD and HVs, but not in those with MDD and SSD. Results were not associated with general psychopathology or psychotropic medication use. Childhood maternal antipathy may confer risk for aberrant social reward anticipation in adulthood, and may thus be considered in interventions targeting reward expectations from social interactions.
Collapse
Affiliation(s)
- Katja I. Seitz
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Kai Ueltzhöffer
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Lena Rademacher
- grid.4562.50000 0001 0057 2672Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Frieder M. Paulus
- grid.4562.50000 0001 0057 2672Social Neuroscience Lab, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany ,grid.4562.50000 0001 0057 2672Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| | - Marius Schmitz
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sabine C. Herpertz
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Katja Bertsch
- grid.7700.00000 0001 2190 4373Department of General Psychiatry, Center for Psychosocial Medicine, Medical Faculty, Heidelberg University, Heidelberg, Germany ,grid.5252.00000 0004 1936 973XDepartment of Psychology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
36
|
Pabst A, Bollen Z, Masson N, Billaux P, de Timary P, Maurage P. An eye-tracking study of biased attentional processing of emotional faces in severe alcohol use disorder. J Affect Disord 2023; 323:778-787. [PMID: 36529408 DOI: 10.1016/j.jad.2022.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Social cognition impairments in severe alcohol use disorder (SAUD) are increasingly established. However, fundamental aspects of social cognition, and notably the attentional processing of socio-affective information, remain unexplored, limiting our understanding of underlying mechanisms. Here, we determined whether patients with SAUD show attentional biases to specific socio-affective cues, namely emotional faces. METHOD In a modified dot-probe paradigm, 30 patients with SAUD and 30 demographically matched healthy controls (HC) were presented with pairs of neutral-emotional (angry, disgusted, happy, sad) faces while having their eye movements recorded. Indices of early/automatic (first fixations, latency to first fixations) and later/controlled (number of fixations, dwell-time) processes were computed. RESULTS Patients with SAUD did not differ from HC in their attention to angry/disgusted/sad vs. neutral faces. However, patients with SAUD fixated/dwelled less on happy vs. neutral faces in the first block of stimuli than HC, who presented an attentional bias to happy faces. LIMITATIONS Sample-size was determined to detect medium-to-large effects and subtler ones may have been missed. Further, our cross-sectional design provides no explanation as to whether the evidenced biases precede or are a consequence of SAUD. CONCLUSIONS These results extend the social cognition literature in SAUD to the attentional domain, by evidencing the absence of a controlled attentional bias toward positive social cues in SAUD. This may reflect reduced sensitivity to social reward and could contribute to higher order social cognition difficulties and social dysfunction.
Collapse
Affiliation(s)
- Arthur Pabst
- Louvain Experimental Psychopathology research group (LEP), Psychological Sciences Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Zoé Bollen
- Louvain Experimental Psychopathology research group (LEP), Psychological Sciences Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Nicolas Masson
- Numerical Cognition Group, Psychological Sciences Research Institute and Neuroscience Institute, UCLouvain, Louvain-la-Neuve, Belgium; Cognitive Science and Assessment Institute, University of Luxembourg, Luxembourg
| | - Pauline Billaux
- Louvain Experimental Psychopathology research group (LEP), Psychological Sciences Research Institute, UCLouvain, Louvain-la-Neuve, Belgium
| | - Philippe de Timary
- Louvain Experimental Psychopathology research group (LEP), Psychological Sciences Research Institute, UCLouvain, Louvain-la-Neuve, Belgium; Department of Adult Psychiatry, Saint-Luc Academic Hospital & Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Pierre Maurage
- Louvain Experimental Psychopathology research group (LEP), Psychological Sciences Research Institute, UCLouvain, Louvain-la-Neuve, Belgium.
| |
Collapse
|
37
|
Guo XD, Zheng H, Ruan D, Wang Y, Wang YY, Chan RCK. Altered empathy correlates with reduced social and non-social reward anticipation in individuals with high social anhedonia. Psych J 2023; 12:92-99. [PMID: 36058882 DOI: 10.1002/pchj.592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023]
Abstract
This study examined the correlations of affective and cognitive components of empathy with reward anticipation toward monetary and social incentives in individuals with social anhedonia (SocAnh). According to the scores on the Revised Social Anhedonia Scale, 109 participants were divided into high (n = 57) and low (n = 52) SocAnh groups. Empathy was assessed with the Questionnaire of Cognitive and Affective Empathy (QCAE) and the Interpersonal Reactivity Index (IRI) Scale. Social and non-social reward anticipations were assessed by the Social and Monetary Incentive Delay Tasks, respectively. We performed independent-sample t tests and repeated-measures ANOVAs to examine the group differences on empathy and reward anticipation. Correlation analyses between empathy and reward anticipation were conducted. Results showed that the high SocAnh group reported reduced scores on empathy and reward anticipation for monetary and social incentives compared to their low SocAnh counterparts. Correlation analysis further indicated that monetary reward anticipation correlated with cognitive empathy, while social reward anticipation correlated with affective empathy. Our findings suggested that participants with high SocAnh exhibited poorer empathy and reduced reward anticipation than those with low SocAnh level. More importantly, social and non-social reward anticipation may distinctly contribute to affective and cognitive components of empathy.
Collapse
Affiliation(s)
- Xiao-Dong Guo
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Zheng
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Dun Ruan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Yu Wang
- School of Psychology, Weifang Medical University, Shandong, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
The Angiotensin Antagonist Losartan Modulates Social Reward Motivation and Punishment Sensitivity via Modulating Midbrain-Striato-Frontal Circuits. J Neurosci 2023; 43:472-483. [PMID: 36639890 PMCID: PMC9864573 DOI: 10.1523/jneurosci.1114-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Social deficits and dysregulations in dopaminergic midbrain-striato-frontal circuits represent transdiagnostic symptoms across psychiatric disorders. Animal models suggest that interactions between the dopamine (DA) and renin-angiotensin system (RAS) may modulate learning and reward-related processes. The present study therefore examined the behavioral and neural effects of the Angiotensin II type 1 receptor (AT1R) antagonist losartan on social reward and punishment processing in humans. A preregistered randomized double-blind placebo-controlled between-subject pharmacological design was combined with a social incentive delay (SID) functional MRI (fMRI) paradigm during which subjects could avoid social punishment or gain social reward. Healthy volunteers received a single-dose of losartan (50 mg, n = 43, female = 17) or placebo (n = 44, female = 20). We evaluated reaction times (RTs) and emotional ratings as behavioral and activation and functional connectivity as neural outcomes. Relative to placebo, losartan modulated the reaction time and arousal differences between social punishment and social reward. On the neural level the losartan-enhanced motivational salience of social rewards was accompanied by stronger ventral striatum-prefrontal connectivity during reward anticipation. Losartan increased the reward-neutral difference in the ventral tegmental area (VTA) and attenuated VTA associated connectivity with the bilateral insula in response to punishment during the outcome phase. Thus, losartan modulated approach-avoidance motivation and emotional salience during social punishment versus social reward via modulating distinct core nodes of the midbrain-striato-frontal circuits. The findings document a modulatory role of the renin-angiotensin system in these circuits and associated social processes, suggesting a promising treatment target to alleviate social dysregulations.SIGNIFICANCE STATEMENT Social deficits and anhedonia characterize several mental disorders and have been linked to the midbrain-striato-frontal circuits of the brain. Based on initial findings from animal models we here combine the pharmacological blockade of the Angiotensin II type 1 receptor (AT1R) via losartan with functional MRI (fMRI) to demonstrate that AT1R blockade enhances the motivational salience of social rewards and attenuates the negative impact of social punishment via modulating the communication in the midbrain-striato-frontal circuits in humans. The findings demonstrate for the first time an important role of the AT1R in social reward processing in humans and render the AT1R as promising novel treatment target for social and motivational deficits in mental disorders.
Collapse
|
39
|
Zhang YJ, Hu HX, Wang LL, Wang X, Wang Y, Huang J, Wang Y, Lui SSY, Hui L, Chan RCK. Altered neural mechanism of social reward anticipation in individuals with schizophrenia and social anhedonia. Eur Arch Psychiatry Clin Neurosci 2022:10.1007/s00406-022-01505-6. [PMID: 36305919 DOI: 10.1007/s00406-022-01505-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
Abstract
Altered social reward anticipation could be found in schizophrenia (SCZ) patients and individuals with high levels of social anhedonia (SA). However, few research investigated the putative neural processing for altered social reward anticipation in these populations on the SCZ spectrum. This study aimed to examine the underlying neural mechanisms of social reward anticipation in these populations. Twenty-three SCZ patients and 17 healthy controls (HC), 37 SA individuals and 50 respective HCs completed the Social Incentive Delay (SID) imaging task while they were undertaking MRI brain scans. We used the group contrast to examine the alterations of BOLD activation and functional connectivity (FC, psychophysiological interactions analysis). We then characterized the beta-series social brain network (SBN) based on the meta-analysis results from NeuroSynth and examined their prediction effects on real-life social network (SN) characteristics using the partial least squared regression analysis. The results showed that SCZ patients exhibited hypo-activation of the left medial frontal gyrus and the negative FCs with the left parietal regions, while individuals with SA showed the hyper-activation of the left middle frontal gyrus when anticipating social reward. For the beta-series SBNs, SCZ patients had strengthened cerebellum-temporal FCs, while SA individuals had strengthened left frontal regions FCs. However, such FCs of the SBN failed to predict the real-life SN characteristics. These preliminary findings suggested that SCZ patients and SA individuals appear to exhibit altered neural processing for social reward anticipation, and such neural activities showed a weakened association with real-life SN characteristics.
Collapse
Affiliation(s)
- Yi-Jing Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Xin Hu
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ling-Ling Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jia Huang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Simon S Y Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Li Hui
- The Affiliated Guangji Hospital of Soochow University, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Institute of Psychology, CAS Key Laboratory of Mental Health, Chinese Academy of Sciences, 16 Lincui Road, Beijing, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
40
|
Wang S, Leri F, Rizvi SJ. Clinical and Preclinical Assessments of Anhedonia in Psychiatric Disorders. Curr Top Behav Neurosci 2022; 58:3-21. [PMID: 35435647 DOI: 10.1007/7854_2022_318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anhedonia is a prevalent symptom across many psychiatric disorders. The contemporary scope of anhedonia across various models includes interest, reward anticipation, motivation, effort expenditure, reward valuation, expectation, pleasure, satiation, and learning. In order to further elucidate the impact of anhedonia on treatment outcomes, quality of life, as well as brain function, validated tools to probe the various facets of anhedonia are necessary. This chapter evaluates assessment tools for anhedonia in clinical populations and in animals. Subjective clinical scales have been in use for decades, and as the construct of anhedonia evolved, contemporary scales were developed to integrate these new concepts. Clinical scales are useful for understanding the subjective experience of anhedonia but do not account for objective aspects of anhedonia, including implicit learning. Behavioral tasks that probe responses to rewarding stimuli have been useful to fill this gap and to delineate the specific brain processes underlying facets of anhedonia. Although there have been translational challenges in the assessments of anhedonia and reward deficits from preclinical to clinical (and vice versa), the multifaceted clinical scales and reward tasks provide valuable insights into the conceptualization of anhedonia and its neural basis across psychiatric disorders.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Unit, St. Michael's Hospital, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Guelph, ON, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Unit, St. Michael's Hospital, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Fortier AV, Meisner OC, Nair AR, Chang SWC. Prefrontal Circuits guiding Social Preference: Implications in Autism Spectrum Disorder. Neurosci Biobehav Rev 2022; 141:104803. [PMID: 35908593 PMCID: PMC10122914 DOI: 10.1016/j.neubiorev.2022.104803] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/10/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Although Autism Spectrum Disorder (ASD) is increasing in diagnostic prevalence, treatment options are inadequate largely due to limited understanding of ASD's underlying neural mechanisms. Contributing to difficulties in treatment development is the vast heterogeneity of ASD, from physiological causes to clinical presentations. Recent studies suggest that distinct genetic and neurological alterations may converge onto similar underlying neural circuits. Therefore, an improved understanding of neural circuit-level dysfunction in ASD may be a more productive path to developing broader treatments that are effective across a greater spectrum of ASD. Given the social preference behavioral deficits commonly seen in ASD, dysfunction in circuits mediating social preference may contribute to the atypical development of social cognition. We discuss some of the animal models used to study ASD and examine the function and effects of dysregulation of the social preference circuits, notably the medial prefrontal cortex-amygdala and the medial prefrontal cortex-nucleus accumbens circuits, in these animal models. Using the common circuits underlying similar behavioral disruptions of social preference behaviors as an example, we highlight the importance of identifying disruption in convergent circuits to improve the translational success of animal model research for ASD treatment development.
Collapse
Affiliation(s)
- Abigail V Fortier
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Molecular, Cellular, Developmental Biology, New Haven, CT 06520, USA
| | - Olivia C Meisner
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Amrita R Nair
- Department of Psychology, Yale University, New Haven, CT 06520, USA
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
42
|
Iftimovici A, Chaumette B, Duchesnay E, Krebs MO. Brain anomalies in early psychosis: From secondary to primary psychosis. Neurosci Biobehav Rev 2022; 138:104716. [PMID: 35661683 DOI: 10.1016/j.neubiorev.2022.104716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/12/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Brain anomalies are frequently found in early psychoses. Although they may remain undetected for many years, their interpretation is critical for differential diagnosis. In secondary psychoses, their identification may allow specific management. They may also shed light on various pathophysiological aspects of primary psychoses. Here we reviewed cases of secondary psychoses associated with brain anomalies, reported over a 20-year period in adolescents and young adults aged 13-30 years old. We considered age at first psychotic symptoms, relevant medical history, the nature of psychiatric symptoms, clinical red flags, the nature of the brain anomaly reported, and the underlying disease. We discuss the relevance of each brain area in light of normal brain function, recent case-control studies, and postulated pathophysiology. We show that anomalies in all regions, whether diffuse, multifocal, or highly localized, may lead to psychosis, without necessarily being associated with non-psychiatric symptoms. This underlines the interest of neuroimaging in the initial workup, and supports the hypothesis of psychosis as a global network dysfunction that involves many different regions.
Collapse
Affiliation(s)
- Anton Iftimovici
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; NeuroSpin, Atomic Energy Commission, Gif-sur Yvette, France; GHU Paris Psychiatrie et Neurosciences, Paris, France.
| | - Boris Chaumette
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | | | - Marie-Odile Krebs
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, GDR 3557-Institut de Psychiatrie, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| |
Collapse
|
43
|
Mancuso L, Cavuoti-Cabanillas S, Liloia D, Manuello J, Buzi G, Cauda F, Costa T. Tasks activating the default mode network map multiple functional systems. Brain Struct Funct 2022; 227:1711-1734. [PMID: 35179638 PMCID: PMC9098625 DOI: 10.1007/s00429-022-02467-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022]
Abstract
Recent developments in network neuroscience suggest reconsidering what we thought we knew about the default mode network (DMN). Although this network has always been seen as unitary and associated with the resting state, a new deconstructive line of research is pointing out that the DMN could be divided into multiple subsystems supporting different functions. By now, it is well known that the DMN is not only deactivated by tasks, but also involved in affective, mnestic, and social paradigms, among others. Nonetheless, it is starting to become clear that the array of activities in which it is involved, might also be extended to more extrinsic functions. The present meta-analytic study is meant to push this boundary a bit further. The BrainMap database was searched for all experimental paradigms activating the DMN, and their activation likelihood estimation maps were then computed. An additional map of task-induced deactivations was also created. A multidimensional scaling indicated that such maps could be arranged along an anatomo-psychological gradient, which goes from midline core activations, associated with the most internal functions, to that of lateral cortices, involved in more external tasks. Further multivariate investigations suggested that such extrinsic mode is especially related to reward, semantic, and emotional functions. However, an important finding was that the various activation maps were often different from the canonical representation of the resting-state DMN, sometimes overlapping with it only in some peripheral nodes, and including external regions such as the insula. Altogether, our findings suggest that the intrinsic-extrinsic opposition may be better understood in the form of a continuous scale, rather than a dichotomy.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | | | - Donato Liloia
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Giulia Buzi
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | - Franco Cauda
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- FOCUS Lab Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
| |
Collapse
|
44
|
Lu S, Wu C, Jia L, Fang Z, Lu J, Mou T, Hu S, He H, Huang M, Xu Y. Increased plasma levels of IL-6 are associated with striatal structural atrophy in major depressive disorder patients with anhedonia. Front Psychiatry 2022; 13:1016735. [PMID: 36405925 PMCID: PMC9669641 DOI: 10.3389/fpsyt.2022.1016735] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Anhedonia, as the core endophenotype of major depressive disorder (MDD), is closely related to poor prognosis, but the mechanism of this feature remains to be understood. The aim of this study was to investigate the inflammatory factors and brain structural alterations in MDD patients with anhedonia and evaluate the relationship between these factors. METHODS We assessed the plasma levels of interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) in MDD patients with anhedonia (n = 22), MDD patients without anhedonia (n = 20), and age- and sex-matched healthy controls (HCs, n = 20) by enzyme-linked immunosorbent assay kits. All participants underwent high-resolution brain magnetic resonance imaging (MRI) scans, and voxel-based morphometry (VBM) was used to evaluate their gray matter volume (GMV). We compared inflammatory factors and GMV among the three groups and explored their relationships in MDD patients with anhedonia. RESULTS Compared with those of HCs, plasma levels of IL-1β were increased in patients with MDD independent of anhedonia features, while plasma levels of IL-6 were elevated in MDD patients with anhedonia only. Meanwhile, MDD patients with anhedonia exhibited reduced GMV in the left striatal structures compared to MDD patients without anhedonia and HCs. Moreover, a significant association was observed between increased plasma levels of IL-6 and decreased GMV of the left putamen in MDD patients with anhedonia. CONCLUSIONS The present research outcomes suggest that anhedonia is associated with increased plasma levels of IL-6 and decreased GMV in the left striatal structures. In addition, this study demonstrates that GMV loss in the left putamen is related to increased plasma levels of IL-6 in MDD with anhedonia, which provides further insights into the possible mechanisms of anhedonia.
Collapse
Affiliation(s)
- Shaojia Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Congchong Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Jia
- Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Clinical Psychology, The Fifth Peoples' Hospital of Lin'an District, Hangzhou, China
| | - Zhe Fang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China.,Faculty of Clinical Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Hongjian He
- College of Biomedical Engineering and Instrument Science, Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou, China
| | - Manli Huang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| | - Yi Xu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Mental Disorder's Management of Zhejiang Province, Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou, China
| |
Collapse
|
45
|
Votinov M, Myznikov A, Zheltyakova M, Masharipov R, Korotkov A, Cherednichenko D, Habel U, Kireev M. The Interaction Between Caudate Nucleus and Regions Within the Theory of Mind Network as a Neural Basis for Social Intelligence. Front Neural Circuits 2021; 15:727960. [PMID: 34720887 PMCID: PMC8552029 DOI: 10.3389/fncir.2021.727960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/27/2021] [Indexed: 12/04/2022] Open
Abstract
The organization of socio-cognitive processes is a multifaceted problem for which many sophisticated concepts have been proposed. One of these concepts is social intelligence (SI), i.e., the set of abilities that allow successful interaction with other people. The theory of mind (ToM) human brain network is a good candidate for the neural substrate underlying SI since it is involved in inferring the mental states of others and ourselves and predicting or explaining others’ actions. However, the relationship of ToM to SI remains poorly explored. Our recent research revealed an association between the gray matter volume of the caudate nucleus and the degree of SI as measured by the Guilford-Sullivan test. It led us to question whether this structural peculiarity is reflected in changes to the integration of the caudate with other areas of the brain associated with socio-cognitive processes, including the ToM system. We conducted seed-based functional connectivity (FC) analysis of resting-state fMRI data for 42 subjects with the caudate as a region of interest. We found that the scores of the Guilford-Sullivan test were positively correlated with the FC between seeds in the right caudate head and two clusters located within the right superior temporal gyrus and bilateral precuneus. Both regions are known to be nodes of the ToM network. Thus, the current study demonstrates that the SI level is associated with the degree of functional integration between the ToM network and the caudate nuclei.
Collapse
Affiliation(s)
- Mikhail Votinov
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia.,Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Artem Myznikov
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| | - Maya Zheltyakova
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| | - Ruslan Masharipov
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| | - Alexander Korotkov
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| | - Denis Cherednichenko
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia
| | - Ute Habel
- Institute of Neuroscience and Medicine, Research Centre Jülich, Jülich, Germany.,Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Maxim Kireev
- N.P. Bechtereva Institute of Human Brain, Russian Academy of Science, Saint Petersburg, Russia.,Institute for Cognitive Studies, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
46
|
Neural basis of in-group bias and prejudices: A systematic meta-analysis. Neurosci Biobehav Rev 2021; 131:1214-1227. [PMID: 34715150 DOI: 10.1016/j.neubiorev.2021.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 01/06/2023]
Abstract
In-group favoritism and prejudices relate to discriminatory behaviors but, despite decades of research, understanding of their neural correlates has been limited. A systematic coordinate-based meta-analysis of functional magnetic resonance imaging (fMRI) studies (altogether 87 original datasets, n = 2328) was conducted to investigate neural inter-group biases, i.e., responses toward in-group vs. out-group in different contexts. We found inter-group biases in some previously identified brain regions (e.g., the medial prefrontal cortex, insula) but also in many previously non-identified brain regions (e.g., the cerebellum, precentral gyrus). Sub-group analyses indicated that neural correlates of inter-group biases may be mostly context-specific. Regarding different types of group memberships, inter-group bias toward trivial groups was evident only in the cingulate cortex, while inter-group biases toward "real" groups (ethnic, national, or political groups) involved broader sets of brain regions. Additionally, there were heightened neural threat responses toward out-groups' faces and stronger neural empathic responses toward in-groups' suffering. We did not obtain significant publication bias. Overall, the findings provide novel implications for theory and prejudice-reduction interventions.
Collapse
|
47
|
Better living through understanding the insula: Why subregions can make all the difference. Neuropharmacology 2021; 198:108765. [PMID: 34461066 DOI: 10.1016/j.neuropharm.2021.108765] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/19/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023]
Abstract
Insula function is considered critical for many motivated behaviors, with proposed functions ranging from attention, behavioral control, emotional regulation, goal-directed and aversion-resistant responding. Further, the insula is implicated in many neuropsychiatric conditions including substance abuse. More recently, multiple insula subregions have been distinguished based on anatomy, connectivity, and functional contributions. Generally, posterior insula is thought to encode more somatosensory inputs, which integrate with limbic/emotional information in middle insula, that in turn integrate with cognitive processes in anterior insula. Together, these regions provide rapid interoceptive information about the current or predicted situation, facilitating autonomic recruitment and quick, flexible action. Here, we seek to create a robust foundation from which to understand potential subregion differences, and provide direction for future studies. We address subregion differences across humans and rodents, so that the latter's mechanistic interventions can best mesh with clinical relevance of human conditions. We first consider the insula's suggested roles in humans, then compare subregional studies, and finally describe rodent work. One primary goal is to encourage precision in describing insula subregions, since imprecision (e.g. including both posterior and anterior studies when describing insula work) does a disservice to a larger understanding of insula contributions. Additionally, we note that specific task details can greatly impact recruitment of various subregions, requiring care and nuance in design and interpretation of studies. Nonetheless, the central ethological importance of the insula makes continued research to uncover mechanistic, mood, and behavioral contributions of paramount importance and interest. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
48
|
Mayer AV, Preckel K, Ihle K, Piecha FA, Junghanns K, Reiche S, Rademacher L, Müller-Pinzler L, Stolz DS, Kamp-Becker I, Stroth S, Roepke S, Küpper C, Engert V, Singer T, Kanske P, Paulus FM, Krach S. Assessment of Reward-Related Brain Function After a Single Dose of Oxytocin in Autism: A Randomized Controlled Trial. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:136-146. [PMID: 36325162 PMCID: PMC9616329 DOI: 10.1016/j.bpsgos.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is characterized by difficulties in social communication and interaction, which have been related to atypical neural processing of rewards, especially in the social domain. As intranasal oxytocin has been shown to modulate activation of the brain’s reward circuit, oxytocin might ameliorate the processing of social rewards in ASD and thus improve social difficulties. Methods In this randomized, double-blind, placebo-controlled, crossover functional magnetic resonance imaging study, we examined effects of a 24-IU dose of intranasal oxytocin on reward-related brain function in 37 men with ASD without intellectual impairment and 37 age- and IQ-matched control participants. Participants performed an incentive delay task that allows the investigation of neural activity associated with the anticipation and receipt of monetary and social rewards. Results Nonsignificant tests suggested that oxytocin did not influence neural processes related to the anticipation of social or monetary rewards in either group. Complementary Bayesian analyses indicated moderate evidence for a null model, relative to an alternative model. Our results were inconclusive regarding possible oxytocin effects on amygdala responsiveness to social rewards during reward consumption. There were no significant differences in reward-related brain function between the two groups under placebo. Conclusions Our results do not support the hypothesis that intranasal oxytocin generally enhances activation of reward-related neural circuits in men with and without ASD.
Collapse
|
49
|
Simoes E, Sokolov AN, Hahn M, Fallgatter AJ, Brucker SY, Wallwiener D, Pavlova MA. How Negative Is Negative Information. Front Neurosci 2021; 15:742576. [PMID: 34557072 PMCID: PMC8452949 DOI: 10.3389/fnins.2021.742576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022] Open
Abstract
Daily, we face a plenty of negative information that can profoundly affect our perception and behavior. During devastating events such as the current COVID-19 pandemic, negative messages may hinder reasoning at individual level and social decisions in the society at large. These effects vary across genders in neurotypical populations (being more evident in women) and may be even more pronounced in individuals with neuropsychiatric disorders such as depression. Here, we examine how negative information impacts reasoning on a social perception task in females with breast cancer, a life-threatening disease. Two groups of patients and two groups of matched controls (NTOTAL = 80; median age, 50 years) accomplished a psychometrically standardized social cognition and reasoning task receiving either the standard instruction solely or additional negative information. Performance substantially dropped in patients and matched controls who received negative information compared to those who did not. Moreover, patients with negative information scored much lower not only compared with controls but also with patients without negative information. We suggest the effects of negative information are mediated by the distributed brain networks involved in affective processing and emotional memory. The findings offer novel insights on the impact of negative information on social perception and decision making during life-threatening events, fostering better understanding of its neurobiological underpinnings.
Collapse
Affiliation(s)
- Elisabeth Simoes
- Department of Women's Health, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.,Executive Department for Social Medicine, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Alexander N Sokolov
- Department of Women's Health, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen and Tübingen Center for Mental Health (TüCMH), Tübingen, Germany
| | - Markus Hahn
- Department of Women's Health, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen and Tübingen Center for Mental Health (TüCMH), Tübingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Diethelm Wallwiener
- Department of Women's Health, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen and Tübingen Center for Mental Health (TüCMH), Tübingen, Germany
| |
Collapse
|
50
|
Zhang D, Shen J, Li S, Gao K, Gu R. I, robot: depression plays different roles in human-human and human-robot interactions. Transl Psychiatry 2021; 11:438. [PMID: 34420040 PMCID: PMC8380250 DOI: 10.1038/s41398-021-01567-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Socially engaging robots have been increasingly applied to alleviate depressive symptoms and to improve the quality of social life among different populations. Seeing that depression negatively influences social reward processing in everyday interaction, we investigate this influence during simulated interactions with humans or robots. In this study, 35 participants with mild depression and 35 controls (all from nonclinical populations) finished the social incentive delay task with event-related potential recording, in which they received performance feedback from other persons or from a robot. Compared to the controls, the mild depressive symptom (MDS) group represented abnormalities of social reward processing in the human feedback condition: first, the MDS group showed a lower hit rate and a smaller contingent-negative variation (correlated with each other) during reward anticipation; second, depression level modulated both the early phase (indexed by the feedback-related negativity (FRN)) and the late phase (indexed by the P3) of reward consumption. In contrast, the effect of depression was evident only on FRN amplitude in the robot feedback condition. We suggest that compared to human-human interaction, the rewarding properties of human-robot interaction are less likely to be affected by depression. These findings have implications for the utilization of robot-assisted intervention in clinical practice.
Collapse
Affiliation(s)
- Dandan Zhang
- School of Psychology, Shenzhen University, 518060, Shenzhen, China.
- Magnetic Resonance Imaging Center, Shenzhen University, 518060, Shenzhen, China.
| | - Junshi Shen
- School of Psychology, Shenzhen University, 518060, Shenzhen, China
| | - Sijin Li
- School of Psychology, Shenzhen University, 518060, Shenzhen, China
| | - Kexiang Gao
- School of Psychology, Shenzhen University, 518060, Shenzhen, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, 100101, Beijing, China.
- Department of Psychology, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|