1
|
Tsui HKH, Luk SL, Hsiao J, Chan SKW. Facial emotion perception in individuals with clinical high risk for psychosis compared with healthy controls, first-episode psychosis, and in predicting psychosis transition: A systematic review and meta-analysis. Psychiatry Res 2024; 340:116143. [PMID: 39167864 DOI: 10.1016/j.psychres.2024.116143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
Facial emotion perception deficits, a possible indicator of illness progression and transdiagnostic phenotype, were examined in high-risk psychosis (CHR) patients through a systematic review and meta-analysis of 35 studies (2567 CHR individuals, 1103 non-transitioned [CHR-NT], 212 transitioned [CHR-T], 512 first-episode psychosis [FEP], and 1936 healthy controls [HC]). CHR showed overall (g = -0.369 [95 % CI, -0.485 to -0.253]) and specific impairments in detecting anger, disgust, fear, happiness, neutrality, and sadness compared to HC, except for surprise. FEP revealed a general deficit than CHR (g = -0.378 [95 % CI, -0.509 to -0.247]), and CHR-T displayed more pronounced baseline impairments than CHR-NT (g = -0.217 [95 % CI, -0.365 to -0.068]). FEP only exhibited a poorer ability to perceive fear, but not other individual emotions, compared to CHR. Similar performances in perceiving individual emotions were observed regardless of transition status (CHR-NT and CHR-T). However, literature comparing the perception of individual emotions among FEP, CHR-T, and CHR is limited. This study primarily characterized the general and overall impairments of facial emotion perception in CHR which could predict transition risk, emphasizing the need for future research on multimodal parameters of emotion perception and associations with other psychiatric outcomes.
Collapse
Affiliation(s)
- Harry Kam Hung Tsui
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Siu Lee Luk
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR
| | - Janet Hsiao
- Division of Social Science, Hong Kong University of Science & Technology, Hong Kong SAR, China
| | - Sherry Kit Wa Chan
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
2
|
Chung CF, Dugré JR, Potvin S. Dysconnectivity of the Nucleus Accumbens and Amygdala in Youths with Thought Problems: A Dimensional Approach. Brain Connect 2024; 14:226-238. [PMID: 38526373 DOI: 10.1089/brain.2023.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Background: Youths with thought problems (TP) are at risk to develop psychosis and obsessive-compulsive disorder (OCD). Yet, the pathophysiological mechanisms underpinning TP are still unclear. Functional magnetic resonance imaging (fMRI) studies have shown that striatal and limbic alterations are associated with psychosis-like and obsessive-like symptoms in individuals at clinical risk for psychosis, schizophrenia, and OCD. More specifically, nucleus accumbens (NAcc) and amygdala are mainly involved in these associations. The current study aims to investigate the neural correlates of TP in youth populations using a dimensional approach and explore potential cognitive functions and neurotransmitters associated with it. Methods: Seed-to-voxels functional connectivity analyses using NAcc and amygdala as regions-of-interest were conducted with resting-state fMRI data obtained from 1360 young individuals, and potential confounders related to TP such as anxiety and cognitive functions were included as covariates in multiple regression analyses. Replicability was tested in using an adult cohort. In addition, functional decoding and neurochemical correlation analyses were performed to identify the associated cognitive functions and neurotransmitters. Results: The altered functional connectivities between the right NAcc and posterior parahippocampal gyrus, between the right amygdala and lateral prefrontal cortex, and between the left amygdala and the secondary visual area were the best predictors of TP in multiple regression model. These functional connections are mainly involved in social cognition and reward processing. Conclusions: The results show that alterations in the functional connectivity of the NAcc and the amygdala in neural pathways involved in social cognition and reward processing are associated with severity of TP in youths.
Collapse
Affiliation(s)
- Chen-Fang Chung
- Centre de Recherche de l'Institut, Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Department of Psychiatry and Addiction, Faculty of medicine, University of Montreal, Montreal, Canada
| | - Jules R Dugré
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Stéphane Potvin
- Centre de Recherche de l'Institut, Universitaire en Santé Mentale de Montréal, Montreal, Canada
- Department of Psychiatry and Addiction, Faculty of medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
3
|
Okada N, Yahata N, Koshiyama D, Morita K, Sawada K, Kanata S, Fujikawa S, Sugimoto N, Toriyama R, Masaoka M, Koike S, Araki T, Kano Y, Endo K, Yamasaki S, Ando S, Nishida A, Hiraiwa-Hasegawa M, Edden RAE, Sawa A, Kasai K. Longitudinal trajectories of anterior cingulate glutamate and subclinical psychotic experiences in early adolescence: the impact of bullying victimization. Mol Psychiatry 2024; 29:939-950. [PMID: 38182806 PMCID: PMC11176069 DOI: 10.1038/s41380-023-02382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
Previous studies reported decreased glutamate levels in the anterior cingulate cortex (ACC) in non-treatment-resistant schizophrenia and first-episode psychosis. However, ACC glutamatergic changes in subjects at high-risk for psychosis, and the effects of commonly experienced environmental emotional/social stressors on glutamatergic function in adolescents remain unclear. In this study, adolescents recruited from the general population underwent proton magnetic resonance spectroscopy (MRS) of the pregenual ACC using a 3-Tesla scanner. We explored longitudinal data on the association of combined glutamate-glutamine (Glx) levels, measured by MRS, with subclinical psychotic experiences. Moreover, we investigated associations of bullying victimization, a risk factor for subclinical psychotic experiences, and help-seeking intentions, a coping strategy against stressors including bullying victimization, with Glx levels. Finally, path analyses were conducted to explore multivariate associations. For a contrast analysis, gamma-aminobutyric acid plus macromolecule (GABA+) levels were also analyzed. Negative associations were found between Glx levels and subclinical psychotic experiences at both Times 1 (n = 219, mean age 11.5 y) and 2 (n = 211, mean age 13.6 y), as well as for over-time changes (n = 157, mean interval 2.0 y). Moreover, effects of bullying victimization and bullying victimization × help-seeking intention interaction effects on Glx levels were found (n = 156). Specifically, bullying victimization decreased Glx levels, whereas help-seeking intention increased Glx levels only in bullied adolescents. Finally, associations among bullying victimization, help-seeking intention, Glx levels, and subclinical psychotic experiences were revealed. GABA+ analysis revealed no significant results. This is the first adolescent study to reveal longitudinal trajectories of the association between glutamatergic function and subclinical psychotic experiences and to elucidate the effect of commonly experienced environmental emotional/social stressors on glutamatergic function. Our findings may deepen the understanding of how environmental emotional/social stressors induce impaired glutamatergic neurotransmission that could be the underpinning of liability for psychotic experiences in early adolescence.
Collapse
Affiliation(s)
- Naohiro Okada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Noriaki Yahata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Chiba, 263-8555, Japan
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba, Chiba, 263-8555, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kentaro Morita
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kingo Sawada
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Center for Research on Counseling and Support Services, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Sho Kanata
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Psychiatry, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Shinya Fujikawa
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Noriko Sugimoto
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Rie Toriyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mio Masaoka
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
- The University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Tsuyoshi Araki
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Department of Psychiatry, Teikyo University Mizonokuchi Hospital, Futago 5-1-1, Takatsu-ku, Kawasaki, Kanagawa, 213-8507, Japan
| | - Yukiko Kano
- Department Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kaori Endo
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Syudo Yamasaki
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Shuntaro Ando
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Atsushi Nishida
- Research Center for Social Science & Medicine, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa 2-1-6, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Mariko Hiraiwa-Hasegawa
- Department of Evolutionary Studies of Biosystems, School of Advanced Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N Broadway Street, Baltimore, MD, 21205, USA
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, Genetic Medicine, and Pharmacology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-8655, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
4
|
Kent J, Pinkham A. Cerebral and cerebellar correlates of social cognitive impairment in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110850. [PMID: 37657639 DOI: 10.1016/j.pnpbp.2023.110850] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Social cognition is a broad construct encompassing the ways in which individuals perceive, process, and use information about other people. Social cognition involves both lower- and higher-level processes such as emotion recognition and theory of mind, respectively. Social cognitive impairments have been repeatedly demonstrated in schizophrenia spectrum illnesses and, crucially, are related to functional outcomes. In this review, we summarize the literature investigating the brain networks implicated in social cognitive impairments in schizophrenia spectrum illnesses. In addition to cortical and limbic loci and networks, we also discuss evidence for cerebellar contributions to social cognitive impairment in this population. We conclude by synthesizing these two literatures, with an emphasis on current knowledge gaps, particularly in regard to cerebellar influences, and future directions.
Collapse
Affiliation(s)
- Jerillyn Kent
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Amy Pinkham
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States.
| |
Collapse
|
5
|
Lemmers-Jansen I, Velthorst E, Fett AK. The social cognitive and neural mechanisms that underlie social functioning in individuals with schizophrenia - a review. Transl Psychiatry 2023; 13:327. [PMID: 37865631 PMCID: PMC10590451 DOI: 10.1038/s41398-023-02593-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/23/2023] Open
Abstract
In many individuals with a diagnosis of schizophrenia social functioning is impaired across the lifespan. Social cognition has emerged as one of the possible factors that may contribute to these challenges. Neuroimaging research can give further insights into the underlying mechanisms of social (cognitive) difficulties. This review summarises the evidence on the associations between social cognition in the domains of theory of mind and emotion perception and processing, and individuals' social functioning and social skills, as well as associated neural mechanisms. Eighteen behavioural studies were conducted since the last major review and meta-analysis in the field (inclusion between 7/2017 and 1/2022). No major review has investigated the link between the neural mechanisms of social cognition and their association with social functioning in schizophrenia. Fourteen relevant studies were included (from 1/2000 to 1/2022). The findings of the behavioural studies showed that associations with social outcomes were slightly stronger for theory of mind than for emotion perception and processing. Moreover, performance in both social cognitive domains was more strongly associated with performance on social skill measures than questionnaire-based assessment of social functioning in the community. Studies on the underlying neural substrate of these associations presented mixed findings. In general, higher activation in various regions of the social brain was associated with better social functioning. The available evidence suggests some shared regions that might underlie the social cognition-social outcome link between different domains. However, due to the heterogeneity in approaches and findings, the current knowledge base will need to be expanded before firm conclusions can be drawn.
Collapse
Affiliation(s)
- Imke Lemmers-Jansen
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Institute for Brain and Behaviour (iBBA) Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Eva Velthorst
- GGZ Noord-Holland-Noord, Heerhugowaard, The Netherlands
| | - Anne-Kathrin Fett
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Psychology, City, University of London, London, UK.
| |
Collapse
|
6
|
Matéos M, Hacein-Bey L, Hanafi R, Mathys L, Amad A, Pruvo JP, Krystal S. Advanced imaging in first episode psychosis: a systematic review. J Neuroradiol 2023; 50:464-469. [PMID: 37028754 DOI: 10.1016/j.neurad.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
First-episode psychosis (FEP) is defined as the first occurrence of delusions, hallucinations, or psychic disorganization of significant magnitude, lasting more than 7 days. Evolution is difficult to predict since the first episode remains isolated in one third of cases, while recurrence occurs in another third, and the last third progresses to a schizo-affective disorder. It has been suggested that the longer psychosis goes unnoticed and untreated, the more severe the probability of relapse and recovery. MRI has become the gold standard for imaging psychiatric disorders, especially first episode psychosis. Besides ruling out some neurological conditions that may have psychiatric manifestations, advanced imaging techniques allow for identifying imaging biomarkers of psychiatric disorders. We performed a systematic review of the literature to determine how advanced imaging in FEP may have high diagnostic specificity and predictive value regarding the evolution of disease.
Collapse
Affiliation(s)
- Marjorie Matéos
- Lille University Hospital Center, Department of Neuroradiology, Lille, France.
| | - Lotfi Hacein-Bey
- Neuroradiology, Radiology Department, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Riyad Hanafi
- Lille University Hospital Center, Department of Neuroradiology, Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Luc Mathys
- Lille University Hospital Center, Department of Neuroradiology, Lille, France
| | - Ali Amad
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France; Department of neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Jean-Pierre Pruvo
- Lille University Hospital Center, Department of Neuroradiology, Lille, France; Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Sidney Krystal
- Lille University Hospital Center, Department of Neuroradiology, Lille, France; Radiology Department, A. de Rothschild Foundation Hospital, Paris, France; Neurospin, CEA, Université Paris-Saclay, Gif-Sur-Yvette, Paris, France
| |
Collapse
|
7
|
Mamah D. A Review of Potential Neuroimaging Biomarkers of Schizophrenia-Risk. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230005. [PMID: 37427077 PMCID: PMC10327607 DOI: 10.20900/jpbs.20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The risk for developing schizophrenia is increased among first-degree relatives of those with psychotic disorders, but the risk is even higher in those meeting established criteria for clinical high risk (CHR), a clinical construct most often comprising of attenuated psychotic experiences. Conversion to psychosis among CHR youth has been reported to be about 15-35% over three years. Accurately identifying individuals whose psychotic symptoms will worsen would facilitate earlier intervention, but this has been difficult to do using behavior measures alone. Brain-based risk markers have the potential to improve the accuracy of predicting outcomes in CHR youth. This narrative review provides an overview of neuroimaging studies used to investigate psychosis risk, including studies involving structural, functional, and diffusion imaging, functional connectivity, positron emission tomography, arterial spin labeling, magnetic resonance spectroscopy, and multi-modality approaches. We present findings separately in those observed in the CHR state and those associated with psychosis progression or resilience. Finally, we discuss future research directions that could improve clinical care for those at high risk for developing psychotic disorders.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, 63110, USA
| |
Collapse
|
8
|
Zouraraki C, Karamaouna P, Giakoumaki SG. Facial emotion recognition and schizotypal traits: A systematic review of behavioural studies. Early Interv Psychiatry 2023; 17:121-140. [PMID: 35840128 DOI: 10.1111/eip.13328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 03/19/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022]
Abstract
AIM Previous research has indicated that individuals expressing high schizotypal traits and patients with Schizotypal Personality Disorder (SPD), show deficits in facial emotion recognition, compared to low schizotypal or control groups. On the other hand, non-significant findings also exist and the association of facial emotion recognition deficits with the different schizotypal dimensions is not well defined, thus limiting any conclusive outcomes. Therefore, the aim of this systematic review was to further clarify this relationship. METHODS PsychInfo, Web of Science, Scopus and PubMed were systematically searched, and 23 papers with a cross-sectional design were selected. Nineteen studies examined individuals with high schizotypal traits and four studies evaluated SPD individuals with behavioural facial emotion recognition paradigms and self-report measures or clinical interviews for schizotypal traits. All selected studies were published between 1994 and August 2020. RESULTS According to the evidence of studies, high schizotypal individuals and SPD patients have poorer performance in facial emotion recognition tasks. Negative schizotypy was related to lower accuracy for positive and negative emotions and faster emotion labeling while positive schizotypy was associated with worse accuracy for positive, negative and neutral emotions and more biases. Disorganized schizotypy was associated with poorer accuracy for negative emotions and suspiciousness with higher accuracy for disgust faces but lower total accuracy. CONCLUSIONS These findings are consistent with the vulnerability for schizophrenia spectrum disorders and support the idea that emotion recognition deficits are trait markers for these conditions. Thus, the effectiveness of early-intervention programmes could increase by also targeting this class of deficits.
Collapse
Affiliation(s)
- Chrysoula Zouraraki
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece
- University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| | - Penny Karamaouna
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece
- University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| | - Stella G Giakoumaki
- Laboratory of Neuropsychology, Department of Psychology, Faculty of Social Sciences, University of Crete, Rethymno, Greece
- University of Crete Research Center for the Humanities, The Social and Educational Sciences (UCRC), University of Crete, Rethymno, Greece
| |
Collapse
|
9
|
Fiorito AM, Aleman A, Blasi G, Bourque J, Cao H, Chan RCK, Chowdury A, Conrod P, Diwadkar VA, Goghari VM, Guinjoan S, Gur RE, Gur RC, Kwon JS, Lieslehto J, Lukow PB, Meyer-Lindenberg A, Modinos G, Quarto T, Spilka MJ, Shivakumar V, Venkatasubramanian G, Villarreal M, Wang Y, Wolf DH, Yun JY, Fakra E, Sescousse G. Are Brain Responses to Emotion a Reliable Endophenotype of Schizophrenia? An Image-Based Functional Magnetic Resonance Imaging Meta-analysis. Biol Psychiatry 2023; 93:167-177. [PMID: 36085080 DOI: 10.1016/j.biopsych.2022.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Impaired emotion processing constitutes a key dimension of schizophrenia and a possible endophenotype of this illness. Empirical studies consistently report poorer emotion recognition performance in patients with schizophrenia as well as in individuals at enhanced risk of schizophrenia. Functional magnetic resonance imaging studies also report consistent patterns of abnormal brain activation in response to emotional stimuli in patients, in particular, decreased amygdala activation. In contrast, brain-level abnormalities in at-risk individuals are more elusive. We address this gap using an image-based meta-analysis of the functional magnetic resonance imaging literature. METHODS Functional magnetic resonance imaging studies investigating brain responses to negative emotional stimuli and reporting a comparison between at-risk individuals and healthy control subjects were identified. Frequentist and Bayesian voxelwise meta-analyses were performed separately, by implementing a random-effect model with unthresholded group-level T-maps from individual studies as input. RESULTS In total, 17 studies with a cumulative total of 677 at-risk individuals and 805 healthy control subjects were included. Frequentist analyses did not reveal significant differences between at-risk individuals and healthy control subjects. Similar results were observed with Bayesian analyses, which provided strong evidence for the absence of meaningful brain activation differences across the entire brain. Region of interest analyses specifically focusing on the amygdala confirmed the lack of group differences in this region. CONCLUSIONS These results suggest that brain activation patterns in response to emotional stimuli are unlikely to constitute a reliable endophenotype of schizophrenia. We suggest that future studies instead focus on impaired functional connectivity as an alternative and promising endophenotype.
Collapse
Affiliation(s)
- Anna M Fiorito
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France; Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France.
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Groningen, The Netherlands
| | - Giuseppe Blasi
- Group of Psychiatric Neuroscience, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Josiane Bourque
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, New York
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Asadur Chowdury
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Patricia Conrod
- CHU Sainte-Justine Research Center, Department of Psychiatry and Addiction, University of Montréal, Montreal, Quebec, Canada
| | - Vaibhav A Diwadkar
- Department of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Vina M Goghari
- Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Johannes Lieslehto
- University of Eastern Finland, Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland
| | - Paulina B Lukow
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | | | - Michael J Spilka
- Department of Psychology, University of Georgia, Athens, Georgia
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, India
| | | | - Mirta Villarreal
- Instituto de Neurociencias FLENI-CONICET, Facultad de Ciencias Exactas y Naturales, UBA, Buenos Aires, Argentina
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Daniel H Wolf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Je-Yeon Yun
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eric Fakra
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France; Department of Psychiatry, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR 5292, PSYR2 Team, University of Lyon, Lyon, France; Centre Hospitalier Le Vinatier, Bron, France
| |
Collapse
|
10
|
Chen ZS, Kulkarni P(P, Galatzer-Levy IR, Bigio B, Nasca C, Zhang Y. Modern views of machine learning for precision psychiatry. PATTERNS (NEW YORK, N.Y.) 2022; 3:100602. [PMID: 36419447 PMCID: PMC9676543 DOI: 10.1016/j.patter.2022.100602] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In light of the National Institute of Mental Health (NIMH)'s Research Domain Criteria (RDoC), the advent of functional neuroimaging, novel technologies and methods provide new opportunities to develop precise and personalized prognosis and diagnosis of mental disorders. Machine learning (ML) and artificial intelligence (AI) technologies are playing an increasingly critical role in the new era of precision psychiatry. Combining ML/AI with neuromodulation technologies can potentially provide explainable solutions in clinical practice and effective therapeutic treatment. Advanced wearable and mobile technologies also call for the new role of ML/AI for digital phenotyping in mobile mental health. In this review, we provide a comprehensive review of ML methodologies and applications by combining neuroimaging, neuromodulation, and advanced mobile technologies in psychiatry practice. We further review the role of ML in molecular phenotyping and cross-species biomarker identification in precision psychiatry. We also discuss explainable AI (XAI) and neuromodulation in a closed human-in-the-loop manner and highlight the ML potential in multi-media information extraction and multi-modal data fusion. Finally, we discuss conceptual and practical challenges in precision psychiatry and highlight ML opportunities in future research.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, USA
| | | | - Isaac R. Galatzer-Levy
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Meta Reality Lab, New York, NY, USA
| | - Benedetta Bigio
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carla Nasca
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- The Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
11
|
Zhang M, Yang F, Fan H, Fan F, Wang Z, Xiang H, Huang W, Tan Y, Tan S, Hong LE. Increased connectivity of insula sub-regions correlates with emotional dysregulation in patients with first-episode schizophrenia. Psychiatry Res Neuroimaging 2022; 326:111535. [PMID: 36084435 DOI: 10.1016/j.pscychresns.2022.111535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Dysfunctional insula is crucial in the development of social cognition deficits, especially emotional dysregulation in patients with schizophrenia. However, function networks of insula sub-regions in schizophrenia are rarely investigated. In this study, functional connectivity between insula sub-regions and whole-brain voxels and its relationship with social cognition ability were investigated in patients with first-episode schizophrenia (FES). This study included 47 patients with FES and 47 healthy controls (HCs). Resting-state functional connectivity (rsFC) was assessed using a seed-based approach, and social cognition was measured by the "managing emotions" branch of the Mayer-Salovey-Caruso Emotional Intelligence Test. Differences in rsFC of insula sub-regions between the two groups were examined. Patients with FES showed increased rsFC between the left anterior insula (AI) and the right inferior frontal gyrus or the right anterior middle cingulate cortex (aMCC) and between the right middle insula and the right aMCC. Moreover, the increased AI-aMCC connectivity correlated negatively with the "managing emotion" scores in patients. This study highlights the altered functional connectivity of insula sub-regions and its correlation with emotional dysregulation in patients with FES. Our findings provide some insights into underlying neuropathological mechanisms associated with emotional regulation deficiency in patients with schizophrenia.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China.
| | - Hongzhen Fan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Fengmei Fan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Hong Xiang
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Wenqian Huang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21288, United States of America
| |
Collapse
|
12
|
Hou J, Schmitt S, Zhao X, Wang J, Chen J, Mao Z, Qi A, Lu Z, Kircher T, Yang Y, Shi J. Neural Correlates of Facial Emotion Recognition in Non-help-seeking University Students With Ultra-High Risk for Psychosis. Front Psychol 2022; 13:812208. [PMID: 35756282 PMCID: PMC9226575 DOI: 10.3389/fpsyg.2022.812208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background Since the introduction of the neurodevelopmental perspective of schizophrenia research on individuals at ultra-high risk for psychosis (UHR) has gained increasing interest, aiming at early detection and intervention. Results from fMRI studies investigating behavioral and brain functional changes in UHR during facial emotion recognition, an essential component of social cognition, showed heterogenous results, probably due clinical diversity across these investigations. This fMRI study investigated emotion recognition in a sub-group of the UHR spectrum, namely non-help-seeking, drug-naïve UHR with high cognitive functioning to reveal the neurofunctional underpinnings of their social functioning in comparison to healthy controls. Methods Two large cohorts of students from an elite University (n 1 = 4,040, n 2 = 4,364) were screened firstly with the Prodromal Questionnaires and by surpassing predefined cut-offs then interviewed with the semi-structured Interview for Psychosis-Risk Syndromes to verify their UHR status. Twenty-one identified non-help-seeking UHR and 23 non-UHR control subjects were scanned with functional magnetic resonance imaging while classifying emotions (i.e., neutral, happy, disgust and fear) in a facial emotion recognition task. Results Behaviorally, no group differences were found concerning accuracy, reaction times, sensitivity or specificity, except that non-help-seeking UHR showed higher specificity when recognizing neutral facial expressions. In comparison to healthy non-UHR controls, non-help-seeking UHR showed generally higher activation in the superior temporal and left Heschl's gyrus as well as in the somatosensory, insular and midcingulate cortex than the control subjects during the entire recognition task regardless of the emotion categories. In an exploratory analysis, in the non-help-seeking UHR group, functional activity in the left superior temporal gyrus was significantly correlated with deficits in the ability to experience emotions at uncorrected statistical thresholds. Conclusions Compared to healthy controls, non-help-seeking UHR show no behavioral deficits during facial emotion recognition, but functional hyperactivities in brain regions associated with this cognitive process. Our study may inspire future early intervention and provide loci for treatment using neural stimulation.
Collapse
Affiliation(s)
- Jiaojiao Hou
- Department of Psychosomatic Medicine, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
- Hannover Medical School, Clinics for Psychiatry, Social Psychiatry and Psychotherapy, Hannover, Germany
| | - Xudong Zhao
- Department of Psychosomatic Medicine, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Tongji University School of Medicine, Shanghai, China
| | - Jianxing Chen
- Tongji University School of Medicine, Shanghai, China
| | - Ziyu Mao
- Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ansi Qi
- Department of Medical Psychology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Lu
- Department of Psychiatry, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tilo Kircher
- Department of Psychiatry, University of Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior, University of Marburg, Marburg, Germany
| | - Yunbo Yang
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Jingyu Shi
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
- Division of Medical Humanities and Behavioral Sciences, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Leshem R, Icht M, Ben-David BM. Processing of Spoken Emotions in Schizophrenia: Forensic and Non-forensic Patients Differ in Emotional Identification and Integration but Not in Selective Attention. Front Psychiatry 2022; 13:847455. [PMID: 35386523 PMCID: PMC8977511 DOI: 10.3389/fpsyt.2022.847455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with schizophrenia (PwS) typically demonstrate deficits in visual processing of emotions. Less is known about auditory processing of spoken-emotions, as conveyed by the prosodic (tone) and semantics (words) channels. In a previous study, forensic PwS (who committed violent offenses) identified spoken-emotions and integrated the emotional information from both channels similarly to controls. However, their performance indicated larger failures of selective-attention, and lower discrimination between spoken-emotions, than controls. Given that forensic schizophrenia represents a special subgroup, the current study compared forensic and non-forensic PwS. Forty-five PwS listened to sentences conveying four basic emotions presented in semantic or prosodic channels, in different combinations. They were asked to rate how much they agreed that the sentences conveyed a predefined emotion, focusing on one channel or on the sentence as a whole. Their performance was compared to that of 21 forensic PwS (previous study). The two groups did not differ in selective-attention. However, better emotional identification and discrimination, as well as better channel integration were found for the forensic PwS. Results have several clinical implications: difficulties in spoken-emotions processing might not necessarily relate to schizophrenia; attentional deficits might not be a risk factor for aggression in schizophrenia; and forensic schizophrenia might have unique characteristics as related to spoken-emotions processing (motivation, stimulation).
Collapse
Affiliation(s)
- Rotem Leshem
- Department of Criminology, Bar-Ilan University, Ramat Gan, Israel
| | - Michal Icht
- Department of Communication Disorders, Ariel University, Ariel, Israel
| | - Boaz M Ben-David
- Baruch Ivcher School of Psychology, Reichman University (IDC), Herzliya, Israel.,Department of Speech-Language Pathology, University of Toronto, Toronto, ON, Canada.,Toronto Rehabilitation Institute, University Health Networks, Toronto, ON, Canada
| |
Collapse
|