1
|
Salucci S, Hitrec T, Piscitiello E, Occhinegro A, Alberti L, Taddei L, Burattini S, Luppi M, Tupone D, Amici R, Faenza I, Cerri M. Multiorgan ultrastructural changes in rats induced in synthetic torpor. Front Physiol 2024; 15:1451644. [PMID: 39628940 PMCID: PMC11611833 DOI: 10.3389/fphys.2024.1451644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/29/2024] [Indexed: 12/06/2024] Open
Abstract
Torpor is a state used by several mammals to survive harsh winters and avoid predation, characterized by a drastic reduction in metabolic rate followed by a decrease in body temperature, heart rate, and many physiological variables. During torpor, all organs and systems must adapt to the new low-energy expenditure conditions to preserve physiological homeostasis. These adaptations may be exploited in a translational perspective in several fields. Recently, many features of torpor were shown to be mimicked in non-hibernators by the inhibition of neurons within the brainstem region of the Raphe Pallidus. The physiological resemblance of this artificial state, called synthetic torpor, with natural torpor has so far been described only in physiological terms, but no data have been shown regarding the induced morphological changes. Here, we show the first description of the ultrastructural changes in the liver, kidney, lung, skeletal muscle, and testis induced by a 6-hours inhibition of Raphe Pallidus neurons in a non-hibernating species, the rat.
Collapse
Affiliation(s)
- Sara Salucci
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Timna Hitrec
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Emiliana Piscitiello
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Luca Alberti
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Sabrina Burattini
- Department of Biomolecular Sciences, Carlo Bo Urbino University, Urbino, Italy
| | - Marco Luppi
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences – University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Ferris E, Gonzalez Murcia JD, Cristina Rodriguez A, Steinwand S, Stacher Hörndli C, Traenkner D, Maldonado-Catala PJ, Gregg C. Genomic Convergence in Hibernating Mammals Elucidates the Genetics of Metabolic Regulation in the Hypothalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600891. [PMID: 38979381 PMCID: PMC11230405 DOI: 10.1101/2024.06.26.600891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Elucidating the genetic basis of mammalian metabolism could help define mechanisms central to health and disease. Here, we define conserved cis-regulatory elements (CREs) and programs for mammalian metabolic control. We delineate gene expression and chromatin responses in the mouse hypothalamus for 7 steps of the Fed-to-Fasted-to-Refed (FFR) response process. Comparative genomics of hibernating versus non-hibernating lineages then illuminates cis-elements showing convergent changes in hibernators. Hibernators accumulated loss-of-function effects for specific CREs regulating hypothalamic FFR responses. Multi-omics approaches pinpoint key CREs, genes, regulatory programs, and cell types in the divergence of hibernating and homeothermic lineages. The refeeding period after extended fasting is revealed as one critical period of chromatin remodeling with convergent genomic changes. This genetic framework is a step toward harnessing hibernator adaptations in medicine.
Collapse
Affiliation(s)
- Elliott Ferris
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | | | - Susan Steinwand
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | | | - Dimitri Traenkner
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
| | - Pablo J Maldonado-Catala
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Biomedical Informatics, University of Utah; Salt Lake City, 84105, USA
| | - Christopher Gregg
- Departments of Neurobiology, University of Utah; Salt Lake City, 84105, USA
- Human Genetics, University of Utah; Salt Lake City, 84105, USA
| |
Collapse
|
3
|
Hitrec T, Squarcio F, Piscitiello E, Cerri M, Martelli D, Occhinegro A, Taddei L, Tupone D, Amici R, Luppi M. Sleep deprivation soon after recovery from synthetic torpor enhances tau protein dephosphorylation in the rat brain. J Comp Physiol B 2024; 194:347-368. [PMID: 37812305 DOI: 10.1007/s00360-023-01516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Neuronal Tau protein hyperphosphorylation (PPtau) is a hallmark of tauopathic neurodegeneration. However, a reversible brain PPtau occurs in mammals during either natural or "synthetic" torpor (ST), a transient deep hypothermic state that can be pharmacologically induced in rats. Since in both conditions a high sleep pressure builds up during the regaining of euthermia, the aim of this work was to assess the possible role of post-ST sleep in PPtau dephosphorylation. Male rats were studied at the hypothermic nadir of ST, and 3-6 h after the recovery of euthermia, after either normal sleep (NS) or total sleep deprivation (SD). The effects of SD were studied by assessing: (i) deep brain temperature (Tb); (ii) immunofluorescent staining for AT8 (phosphorylated Tau) and Tau-1 (non-phosphorylated Tau), assessed in 19 brain structures; (iii) different phosphorylated forms of Tau and the main cellular factors involved in Tau phospho-regulation, including pro- and anti-apoptotic markers, assessed through western blot in the parietal cortex and hippocampus; (iv) systemic factors which are involved in natural torpor; (v) microglia activation state, by considering morphometric variations. Unexpectedly, the reversibility of PPtau was more efficient in SD than in NS animals, and was concomitant with a higher Tb, higher melatonin plasma levels, and a higher frequency of the microglia resting phenotype. Since the reversibility of ST-induced PPtau was previously shown to be driven by a latent physiological molecular mechanism triggered by deep hypothermia, short-term SD soon after the regaining of euthermia seems to boost the possible neuroprotective effects of this mechanism.
Collapse
Affiliation(s)
- Timna Hitrec
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
| | - Fabio Squarcio
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Emiliana Piscitiello
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
| | - Davide Martelli
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Roberto Amici
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy
| | - Marco Luppi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Piazza di Porta San Donato, 2, 40126, Bologna, Italy.
- Centre for Applied Biomedical Research - CRBA, University of Bologna, St. Orsola Hospital, Bologna, Italy.
| |
Collapse
|
4
|
Cerri M. Torpor: A whole-brain view of the underlying neural network. Curr Biol 2024; 34:R33-R35. [PMID: 38194928 DOI: 10.1016/j.cub.2023.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Torpor is a physiological state with substantial translational implications. In recent years, several brain regions responsible for controlling torpor have been pinpointed. The latest research, employing comprehensive whole-brain anatomical analysis, offers insights into a broader network responsible for regulating torpor.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40126 Bologna, Italy; National Institute for Nuclear Physics (INFN) - Sezione Di Bologna, 40126 Bologna, Italy; Genetics and Epigenetics of Behaviour (GEB), Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy.
| |
Collapse
|
5
|
Liu C, Yu H, Li Z, Chen S, Li X, Chen X, Chen B. The future of artificial hibernation medicine: protection of nerves and organs after spinal cord injury. Neural Regen Res 2024; 19:22-28. [PMID: 37488839 PMCID: PMC10479867 DOI: 10.4103/1673-5374.375305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/05/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries. At present, no effective clinical treatment exists. As one of the artificial hibernation techniques, mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury. However, its technical defects and barriers, along with serious clinical side effects, restrict its clinical application for spinal cord injury. Artificial hibernation is a future-oriented disruptive technology for human life support. It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons, reduce the central constant temperature setting point, disrupt the normal constant body temperature, make the body "adapt" to the external cold environment, and reduce the physiological resistance to cold stimulation. Thus, studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology. This review introduces artificial hibernation technologies, including mild hypothermia technology, hibernation inducers, and hibernation-related central neuromodulation technology. It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection. These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal cord injury through inflammatory inhibition, immunosuppression, oxidative defense, and possible central protection. It also promotes the repair and protection of respiratory and digestive, cardiovascular, locomotor, urinary, and endocrine systems. This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation. At present, artificial hibernation technology is not mature, and research faces various challenges. Nevertheless, the effort is worthwhile for the future development of medicine.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupucture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haixin Yu
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupucture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhengchao Li
- Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Shulian Chen
- Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Xiaoyin Li
- Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Xuyi Chen
- Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Bo Chen
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Research Center of Experimental Acupucture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Binhai New Area Hospital of TCM, Tianjin, China
- Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
| |
Collapse
|
6
|
Yang Y, Yuan J, Field RL, Ye D, Hu Z, Xu K, Xu L, Gong Y, Yue Y, Kravitz AV, Bruchas MR, Cui J, Brestoff JR, Chen H. Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound. Nat Metab 2023; 5:789-803. [PMID: 37231250 PMCID: PMC10229429 DOI: 10.1038/s42255-023-00804-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.
Collapse
Affiliation(s)
- Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Rachael L Field
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Kevin Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael R Bruchas
- Departments of Anesthesiology and Pain Medicine, Pharmacology, and Bioengineering, Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Neurotechnology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
7
|
Ma WX, Yuan PC, Zhang H, Kong LX, Lazarus M, Qu WM, Wang YQ, Huang ZL. Adenosine and P1 receptors: Key targets in the regulation of sleep, torpor, and hibernation. Front Pharmacol 2023; 14:1098976. [PMID: 36969831 PMCID: PMC10036772 DOI: 10.3389/fphar.2023.1098976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Graphical AbstractAdenosine mediates sleep, torpor and hibernation through P1 receptors. Recent reasearch has shown that P1 receptors play a vital role in the regulation of sleep-wake, torpor and hibernation-like states. In this review, we focus on the roles and neurobiological mechanisms of the CNS adenosine and P1 receptors in these three states. Among them, A1 and A2A receptors are key targets for sleep-wake regulation, A1Rs and A3Rs are very important for torpor induction, and activation of A1Rs is sufficient for hibernation-like state.
Collapse
Affiliation(s)
- Wei-Xiang Ma
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Hui Zhang
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Ling-Xi Kong
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wei-Min Qu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| | - Yi-Qun Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, Institutes of Brain Science, Fudan University, Shanghai, China
- *Correspondence: Wei-Min Qu, ; Yi-Qun Wang, ; Zhi-Li Huang,
| |
Collapse
|
8
|
Squarcio F, Hitrec T, Piscitiello E, Cerri M, Giovannini C, Martelli D, Occhinegro A, Taddei L, Tupone D, Amici R, Luppi M. Synthetic torpor triggers a regulated mechanism in the rat brain, favoring the reversibility of Tau protein hyperphosphorylation. Front Physiol 2023; 14:1129278. [PMID: 36969585 PMCID: PMC10034179 DOI: 10.3389/fphys.2023.1129278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Hyperphosphorylated Tau protein (PPTau) is the hallmark of tauopathic neurodegeneration. During "synthetic torpor" (ST), a transient hypothermic state which can be induced in rats by the local pharmacological inhibition of the Raphe Pallidus, a reversible brain Tau hyperphosphorylation occurs. The aim of the present study was to elucidate the - as yet unknown - molecular mechanisms underlying this process, at both a cellular and systemic level. Methods: Different phosphorylated forms of Tau and the main cellular factors involved in Tau phospho-regulation were assessed by western blot in the parietal cortex and hippocampus of rats induced in ST, at either the hypothermic nadir or after the recovery of euthermia. Pro- and anti-apoptotic markers, as well as different systemic factors which are involved in natural torpor, were also assessed. Finally, the degree of microglia activation was determined through morphometry. Results: Overall, the results show that ST triggers a regulated biochemical process which can dam PPTau formation and favor its reversibility starting, unexpectedly for a non-hibernator, from the hypothermic nadir. In particular, at the nadir, the glycogen synthase kinase-β was largely inhibited in both regions, the melatonin plasma levels were significantly increased and the antiapoptotic factor Akt was significantly activated in the hippocampus early after, while a transient neuroinflammation was observed during the recovery period. Discussion: Together, the present data suggest that ST can trigger a previously undescribed latent and regulated physiological process, that is able to cope with brain PPTau formation.
Collapse
Affiliation(s)
- Fabio Squarcio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Timna Hitrec
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Emiliana Piscitiello
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research—CRBA, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Catia Giovannini
- Centre for Applied Biomedical Research—CRBA, St. Orsola Hospital, University of Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicines, University of Bologna, Bologna, Italy
| | - Davide Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Occhinegro
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research—CRBA, St. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Ludovico Taddei
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Domenico Tupone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR, United States
| | - Roberto Amici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Luppi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research—CRBA, St. Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
9
|
Puspitasari A, Squarcio F, Quartieri M, Totis C, Hitrec T, Takahashi A, Yoshida Y, Hanamura K, Yako T, Cerri M, Simoniello P, Durante M, Tinganelli W. Synthetic torpor protects rats from exposure to accelerated heavy ions. Sci Rep 2022; 12:16405. [PMID: 36180516 PMCID: PMC9525701 DOI: 10.1038/s41598-022-20382-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Hibernation or torpor is considered a possible tool to protect astronauts from the deleterious effects of space radiation that contains high-energy heavy ions. We induced synthetic torpor in rats by injecting adenosine 5'-monophosphate monohydrate (5'-AMP) i.p. and maintaining in low ambient temperature room (+ 16 °C) for 6 h immediately after total body irradiation (TBI) with accelerated carbon ions (C-ions). The 5'-AMP treatment in combination with low ambient temperature reduced skin temperature and increased survival following 8 Gy C-ion irradiation compared to saline-injected animals. Analysis of the histology of the brain, liver and lungs showed that 5'-AMP treatment following 2 Gy TBI reduced activated microglia, Iba1 positive cells in the brain, apoptotic cells in the liver, and damage to the lungs, suggesting that synthetic torpor spares tissues from energetic ion radiation. The application of 5'-AMP in combination with either hypoxia or low temperature environment for six hours following irradiation of rat retinal pigment epithelial cells delays DNA repair and suppresses the radiation-induced mitotic catastrophe compared to control cells. We conclude that synthetic torpor protects animals from cosmic ray-simulated radiation and the mechanism involves both hypothermia and hypoxia.
Collapse
Affiliation(s)
- Anggraeini Puspitasari
- GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Planckstraße 1, 64291, Darmstadt, Germany.,Gunma University Heavy Ion Medical Center, Gunma, 371-8511, Maebashi, Japan
| | - Fabio Squarcio
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Martina Quartieri
- GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Planckstraße 1, 64291, Darmstadt, Germany
| | - Cristina Totis
- GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Planckstraße 1, 64291, Darmstadt, Germany
| | - Timna Hitrec
- Department of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, Gunma, 371-8511, Maebashi, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, Gunma, 371-8511, Maebashi, Japan
| | - Kenji Hanamura
- Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Tomoko Yako
- Gunma University Heavy Ion Medical Center, Gunma, 371-8511, Maebashi, Japan
| | - Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, 40126, Bologna, Italy.,Istituto Nazionale Di Fisica Nucleare (INFN)-Sezione Di Bologna, 40126, Bologna, Italy
| | - Palma Simoniello
- Department of Science and Technology, Parthenope University of Naples, 80133, Naples, Italy
| | - Marco Durante
- GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Planckstraße 1, 64291, Darmstadt, Germany
| | - Walter Tinganelli
- GSI Helmholtzzentrum Für Schwerionenforschung GmbH, Planckstraße 1, 64291, Darmstadt, Germany.
| |
Collapse
|
10
|
Ambler M, Hitrec T, Pickering A. Turn it off and on again: characteristics and control of torpor. Wellcome Open Res 2022; 6:313. [PMID: 35087956 PMCID: PMC8764563 DOI: 10.12688/wellcomeopenres.17379.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
Torpor is a hypothermic, hypoactive, hypometabolic state entered into by a wide range of animals in response to environmental challenge. This review summarises the current understanding of torpor. We start by describing the characteristics of the wide-ranging physiological adaptations associated with torpor. Next follows a discussion of thermoregulation, control of food intake and energy expenditure, and the interactions of sleep and thermoregulation, with particular emphasis on how those processes pertain to torpor. We move on to review the evidence for the systems that control torpor entry, including both the efferent circulating factors that signal the need for torpor, and the central processes that orchestrate it. Finally, we consider how the putative circuits responsible for torpor induction integrate with the established understanding of thermoregulation under non-torpid conditions and highlight important areas of uncertainty for future studies.
Collapse
Affiliation(s)
- Michael Ambler
- School of Physiology, Pharmacology, & Neuroscience, University of Bristol, Bristol, Bristol, BS8 1TD, UK
| | - Timna Hitrec
- School of Physiology, Pharmacology, & Neuroscience, University of Bristol, Bristol, Bristol, BS8 1TD, UK
| | - Anthony Pickering
- School of Physiology, Pharmacology, & Neuroscience, University of Bristol, Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
11
|
Sgarbi G, Hitrec T, Amici R, Baracca A, Di Cristoforo A, Liuzzi F, Luppi M, Solaini G, Squarcio F, Zamboni G, Cerri M. Mitochondrial respiration in rats during hypothermia resulting from central drug administration. J Comp Physiol B 2022; 192:349-360. [PMID: 35001173 DOI: 10.1007/s00360-021-01421-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
The ability to induce a hypothermia resembling that of natural torpor would be greatly beneficial in medical and non-medical fields. At present, two procedures based on central nervous pharmacological manipulation have been shown to be effective in bringing core body temperature well below 30 °C in the rat, a non-hibernator: the first, based on the inhibition of a key relay in the central thermoregulatory pathway, the other, based on the activation of central adenosine A1 receptors. Although the role of mitochondria in the activation and maintenance of torpor has been extensively studied, no data are available for centrally induced hypothermia in non-hibernators. Thus, in the present work the respiration rate of mitochondria in the liver and in the kidney of rats following the aforementioned hypothermia-inducing treatments was studied. Moreover, to have an internal control, the same parameters were assessed in a well-consolidated model, i.e., mice during fasting-induced torpor. Our results show that state 3 respiration rate, which significantly decreased in the liver of mice, was unchanged in rats. An increase of state 4 respiration rate was observed in both species, although it was not statistically significant in rats under central adenosine stimulation. Also, a significant decrease of the respiratory control ratio was detected in both species. Finally, no effects were detected in kidney mitochondria in both species. Overall, in these hypothermic conditions liver mitochondria of rats remained active and apparently ready to be re-activated to produce energy and warm up the cells. These findings can be interpreted as encouraging in view of the finalization of a translational approach to humans.
Collapse
Affiliation(s)
- Gianluca Sgarbi
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Piazza di Porta S. Donato, 2, 40126, Bologna, Italy
| | - Timna Hitrec
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Roberto Amici
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Piazza di Porta S. Donato, 2, 40126, Bologna, Italy
| | - Alessia Di Cristoforo
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Francesca Liuzzi
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Piazza di Porta S. Donato, 2, 40126, Bologna, Italy
| | - Marco Luppi
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Piazza di Porta S. Donato, 2, 40126, Bologna, Italy
| | - Fabio Squarcio
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Giovanni Zamboni
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Matteo Cerri
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| |
Collapse
|
12
|
Ambler M, Hitrec T, Pickering A. Turn it off and on again: characteristics and control of torpor. Wellcome Open Res 2021; 6:313. [DOI: 10.12688/wellcomeopenres.17379.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 11/20/2022] Open
Abstract
Torpor is a hypothermic, hypoactive, hypometabolic state entered into by a wide range of animals in response to environmental challenge. This review summarises the current understanding of torpor. We start by describing the characteristics of the wide-ranging physiological adaptations associated with torpor. Next follows a discussion of thermoregulation, control of food intake and energy expenditure, and the interactions of sleep and thermoregulation, with particular emphasis on how those processes pertain to torpor. We move on to take a critical view of the evidence for the systems that control torpor entry, including both the efferent circulating factors that signal the need for torpor, and the central processes that orchestrate it. Finally, we consider how the putative circuits responsible for torpor induction integrate with the established understanding of thermoregulation under non-torpid conditions and highlight important areas of uncertainty for future studies.
Collapse
|
13
|
Silvani A. Editorial: The Integrative Physiology of Metabolic Downstates. Front Physiol 2021; 12:758972. [PMID: 34589001 PMCID: PMC8473903 DOI: 10.3389/fphys.2021.758972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| |
Collapse
|