1
|
Wang Y, Cheng L, Li D, Lu Y, Wang C, Wang Y, Gao C, Wang H, Erichsen CT, Vanduffel W, Hopkins WD, Sherwood CC, Jiang T, Chu C, Fan L. The Chimpanzee Brainnetome Atlas reveals distinct connectivity and gene expression profiles relative to humans. Innovation (N Y) 2025; 6:100755. [PMID: 39991479 PMCID: PMC11846036 DOI: 10.1016/j.xinn.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/07/2024] [Indexed: 02/25/2025] Open
Abstract
Chimpanzees (Pan troglodytes) are one of humans' closest living relatives, making them the most directly relevant comparison point for understanding human brain evolution. Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occurred along the human lineage. However, such comparisons are hindered by the absence of cross-species brain atlases established within the same framework. To address this gap, we developed the Chimpanzee Brainnetome Atlas (ChimpBNA) using a connectivity-based parcellation framework. Leveraging this new resource, we found substantial divergence in connectivity patterns between the two species across most association cortices, notably in the lateral temporal and dorsolateral prefrontal cortex. These differences deviate sharply from the pattern of cortical expansion observed when comparing humans to chimpanzees, highlighting more complex and nuanced connectivity changes in brain evolution than previously recognized. Additionally, we identified regions displaying connectional asymmetries that differed between species, likely resulting from evolutionary divergence. Genes highly expressed in regions of divergent connectivities were enriched in cell types crucial for cortical projection circuits and synapse formation, whose pronounced differences in expression patterns hint at genetic influences on neural circuit development, function, and evolution. Our study provides a fine-scale chimpanzee brain atlas and highlights the chimpanzee-human connectivity divergence in a rigorous and comparative manner. In addition, these results suggest potential gene expression correlates for species-specific differences by linking neuroimaging and genetic data, offering insights into the evolution of human-unique cognitive capabilities.
Collapse
Affiliation(s)
- Yufan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yaping Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chaohong Gao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
| | - Camilla T. Erichsen
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Shandong Key Lab of Complex Medical Intelligence and Aging, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
2
|
Zhang Y, Li J, Wu L, Sun M, Liu S, Tian B, Luo L, Chen B. Exploring Cortical and Hippocampal Changes in Temporal Lobe Epilepsy Using Automated MRI Segmentation Techniques. Int J Gen Med 2024; 17:5959-5971. [PMID: 39678688 PMCID: PMC11645949 DOI: 10.2147/ijgm.s484443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/16/2024] [Indexed: 12/17/2024] Open
Abstract
Background To investigate the applicability of MR-based automated segmentation techniques in evaluating cortical and hippocampal changes in adults with temporal lobe epilepsy (TLE), specifically emphasizing the affected hemisphere. Methods A retrospective analysis involved 48 cases diagnosed with TLE based on clinical and EEG criteria. The cohort comprised 30 patients with hippocampal sclerosis (HS) and 18 with nonlesional temporal lobe epilepsy (TLE-NL) on MR. 30 healthy volunteers constituted the control group. FreeSurfer software facilitated the segmentation of cortical regions and hippocampal subfields, generating numerical values for cortical thickness and hippocampal subfield volumes on the left hemisphere. Independent sample Wilcoxon rank-sum tests enabled pairwise comparisons of cortical thickness and hippocampal subfield volumes between the control, TLE-NL, and HS groups. Results Significant differences emerged in hippocampal total volume and volumes of the head, body, and tail regions between the control and HS groups and the TLE-NL and HS groups. Cortical thickness of 6 regions exhibited statistical differences between the control and TLE-NL groups, while 15 regions showed distinctions between the control and HS groups. 2 regions displayed variations in cortical thickness between the TLE-NL and HS groups. Conclusion MRI-based automated segmentation techniques provide valuable insights into cortical and hippocampal structural variations in distinct TLE subtypes. This methodology effectively delineates changes in cortical regions and hippocampal subfields, augmenting clinical comprehension of TLE progression.
Collapse
Affiliation(s)
- Yanling Zhang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Jian Li
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Linhua Wu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Mingxing Sun
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Shan Liu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Bo Tian
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Lei Luo
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| | - Bing Chen
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, People’s Republic of China
| |
Collapse
|
3
|
Pearson A, Polly PD. Temporal lobe evolution in Hominidae and the origin of human lobe proportions. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e25027. [PMID: 39360349 DOI: 10.1002/ajpa.25027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024]
Abstract
Objectives Evolutionary changes in hominin social complexity have been associated with increases in absolute brain size. The temporal lobes are nestled in the middle cranial fossae (MCF) of the skull, the dimensions of which allow estimation of temporal lobe volume (TLV) in extant and fossil taxa. Materials and Methods The main aim of this study is to determine where along the hominid phylogeny, major temporal lobe size transitions occurred. We used computed tomography (CT) scans of crania, 3D photogrammetry data, and laser surface scans of endocranial casts to measure seven MCF metrics in 11 extant anthropoid taxa using multiple regressions to estimate TLV in 5 extant hominids and 10 fossil hominins. Phylogenetic comparative methods mapped temporal lobe size, brain size, and temporal lobe proportions onto phylogenetic trees broadly for Hominidae and specifically for Hominini. Results Extant Homo sapiens were not an outlier in relative brain size, temporal lobe size, or proportions of the temporal lobes, but some proportions within the lobe were uniquely altered. The most notable changes in relative temporal lobe size and proportions saw a decrease in relative temporal lobe size and proportions in the genus Pan compared to other extant great apes and fossil hominins while there was a relative increase in the temporal lobe width and length in Australopithecus-Paranthropus clade compared to the genus Homo and other extant great apes including modern humans. Discussion We do not find support for the social brain, environmental or functional craniology hypotheses alone but think it prudent to consider the implications of cerebral reorganization between the temporal lobes and other regions of the brain within the context of these hypotheses and with future investigation is warranted.
Collapse
Affiliation(s)
- Alannah Pearson
- School of Archaeology and Anthropology, Australian National University, Canberra, Australia
| | - P David Polly
- Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
4
|
Amita H, Koyano KW, Kunimatsu J. Neuronal Mechanisms Underlying Face Recognition in Non-human Primates. JAPANESE PSYCHOLOGICAL RESEARCH 2024; 66:416-442. [PMID: 39611029 PMCID: PMC11601097 DOI: 10.1111/jpr.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/29/2024] [Indexed: 11/30/2024]
Abstract
Humans and primates rely on visual face recognition for social interactions. Damage to specific brain areas causes prosopagnosia, a condition characterized by the inability to recognize familiar faces, indicating the presence of specialized brain areas for face processing. A breakthrough finding came from a non-human primate (NHP) study conducted in the early 2000s; it was the first to identify multiple face processing areas in the temporal lobe, termed face patches. Subsequent studies have demonstrated the unique role of each face patch in the structural analysis of faces. More recent studies have expanded these findings by exploring the role of face patch networks in social and memory functions and the importance of early face exposure in the development of the system. In this review, we discuss the neuronal mechanisms responsible for analyzing facial features, categorizing faces, and associating faces with memory and social contexts within both the cerebral cortex and subcortical areas. Use of NHPs in neuropsychological and neurophysiological studies can highlight the mechanistic aspects of the neuronal circuit underlying face recognition at both the single-neuron and whole-brain network levels.
Collapse
|
5
|
Wang L, Wang S, Zheng W, Yang B, Yang Y, Chen X, Chen Q, Li X, Hu Y, Du J, Qin W, Lu J, Chen N. Altered Brain Function in Pediatric Patients With Complete Spinal Cord Injury: A Resting-State Functional MRI Study. J Magn Reson Imaging 2024; 60:304-313. [PMID: 37800893 DOI: 10.1002/jmri.29045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Injury to the spinal cord of children may cause potential brain reorganizations, affecting their rehabilitation. However, the specific functional alterations of children after complete spinal cord injury (CSCI) remain unclear. PURPOSE To explore the specific functional changes in local brain and the relationship with clinical characteristics in pediatric CSCI patients, clarifying the impact of CSCI on brain function in developing children. STUDY TYPE Prospective. SUBJECTS Thirty pediatric CSCI patients (7.83 ± 1.206 years) and 30 age-, gender-matched healthy children as controls (HCs) (8.77 ± 2.079 years). FIELD STRENGTH/SEQUENCE 3.0 T/Resting-state functional MRI (rs-fMRI) using echo-planar-imaging (EPI) sequence. ASSESSMENT Amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) were used to characterize regional neural function. STATISTICAL TESTS Two-sample t-tests were used to compare the ALFF, fALFF, ReHo values of the brain between pediatric CSCI and HCs (voxel-level FWE correction, P < 0.05). Spearman correlation analyses were performed to analyze the associations between the ALFF, fALFF, ReHo values in altered regions and the injury duration, sensory motor scores of pediatric CSCI patients (P < 0.05). Then receiver operating characteristic (ROC) analysis was conducted to identify possible sensitive imaging indicators for clinical therapy. RESULTS Compared with HCs, pediatric CSCI showed significantly decreased ALFF in the right postcentral gyrus (S1), orbitofrontal cortex, and left superior temporal gyrus (STG), increased ALFF in bilateral caudate nucleus, thalamus, middle cingulate gyrus, and cerebellar lobules IV-VI, and increased ReHo in left cerebellum Crus II and Brodmann area 21. The ALFF value in the right S1 negatively correlated with the pinprick and light touch sensory scores of pediatric CSCI. When the left STG was used as an imaging biomarker for pediatric CSCI, it achieved the highest area under the curve of 0.989. CONCLUSIONS These findings may provide potential neural mechanisms for sensory motor and cognitive-emotional deficits in children after CSCI. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Shengqiang Wang
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Weimin Zheng
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Beining Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Yanhui Yang
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Xin Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuejing Li
- Department of Radiology, China Rehabilitation Research Center, Beijing, China
| | - Yongsheng Hu
- Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jubao Du
- Department of Rehabilitation Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wen Qin
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| | - Nan Chen
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
| |
Collapse
|
6
|
Boch M, Huber L, Lamm C. Domestic dogs as a comparative model for social neuroscience: Advances and challenges. Neurosci Biobehav Rev 2024; 162:105700. [PMID: 38710423 PMCID: PMC7616343 DOI: 10.1016/j.neubiorev.2024.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Dogs and humans have lived together for thousands of years and share many analogous socio-cognitive skills. Dog neuroimaging now provides insight into the neural bases of these shared social abilities. Here, we summarize key findings from dog fMRI identifying neocortical brain areas implicated in visual social cognition, such as face, body, and emotion perception, as well as action observation in dogs. These findings provide converging evidence that the temporal cortex plays a significant role in visual social cognition in dogs. We further briefly review investigations into the neural base of the dog-human relationship, mainly involving limbic brain regions. We then discuss current challenges in the field, such as statistical power and lack of common template spaces, and how to overcome them. Finally, we argue that the foundation has now been built to investigate and compare the neural bases of more complex socio-cognitive phenomena shared by dogs and humans. This will strengthen and expand the role of the domestic dog as a powerful comparative model species and provide novel insights into the evolutionary roots of social cognition.
Collapse
Affiliation(s)
- Magdalena Boch
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria; Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna 1090, Austria.
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna 1210, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna 1010, Austria; Vienna Cognitive Science Hub, University of Vienna, Vienna 1010, Austria
| |
Collapse
|
7
|
Wang Y, Cheng L, Li D, Lu Y, Wang C, Wang Y, Gao C, Wang H, Vanduffel W, Hopkins WD, Sherwood CC, Jiang T, Chu C, Fan L. Comparative Analysis of Human-Chimpanzee Divergence in Brain Connectivity and its Genetic Correlates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597252. [PMID: 38895242 PMCID: PMC11185649 DOI: 10.1101/2024.06.03.597252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chimpanzees (Pan troglodytes) are humans' closest living relatives, making them the most directly relevant comparison point for understanding human brain evolution. Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occured along the human lineage. However, conducting comparisons of brain connectivity between humans and chimpanzees remains challenging, as cross-species brain atlases established within the same framework are currently lacking. Without the availability of cross-species brain atlases, the region-wise connectivity patterns between humans and chimpanzees cannot be directly compared. To address this gap, we built the first Chimpanzee Brainnetome Atlas (ChimpBNA) by following a well-established connectivity-based parcellation framework. Leveraging this new resource, we found substantial divergence in connectivity patterns across most association cortices, notably in the lateral temporal and dorsolateral prefrontal cortex between the two species. Intriguingly, these patterns significantly deviate from the patterns of cortical expansion observed in humans compared to chimpanzees. Additionally, we identified regions displaying connectional asymmetries that differed between species, likely resulting from evolutionary divergence. Genes associated with these divergent connectivities were found to be enriched in cell types crucial for cortical projection circuits and synapse formation. These genes exhibited more pronounced differences in expression patterns in regions with higher connectivity divergence, suggesting a potential foundation for brain connectivity evolution. Therefore, our study not only provides a fine-scale brain atlas of chimpanzees but also highlights the connectivity divergence between humans and chimpanzees in a more rigorous and comparative manner and suggests potential genetic correlates for the observed divergence in brain connectivity patterns between the two species. This can help us better understand the origins and development of uniquely human cognitive capabilities.
Collapse
Affiliation(s)
- Yufan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yaping Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chaohong Gao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| |
Collapse
|
8
|
Jiang X, Kuang H, Lv H, Xiong J, Li J, Hong S, Yan YI, Gu L, Jiang J. Aberrant functional and causal connectivity of the amygdala in herpes zoster and post-herpetic neuralgia patients. Br J Radiol 2023; 96:20230338. [PMID: 37750852 PMCID: PMC10646639 DOI: 10.1259/bjr.20230338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/08/2023] [Accepted: 08/10/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVE Resting-state functional magnetic resonance imaging (rs-fMRI) and Granger causality analysis (GCA) were used to observe the characteristics of amygdala and whole-brain effect connections in patients with herpes zoster (HZ) and post-herpetic neuralgia (PHN) and to determine their relationship with clinical features. METHODS Rs-fMRI scans were performed on 50 HZ; 50 PHN; and 50 age-, sex- and education-year-matched healthy controls (HCs). Bilateral amygdala subregions were used as seeds for functional connectivity (FC). GCA was used to analyze the effective connection of brain regions that were significantly different among groups. Then, the correlation between FC, and GCA values and clinical indices was investigated. RESULTS PHN had impaired FC between the amygdala subregion with the putamen, cortex, anterior cingulate cortex (ACC) to HCs and reduced FC of medial amygdala (MeA) with the parieto-occipital lobe and motor cortex to HZ; HZ had reduced FC of the lateral amygdala (LA) with the insula to HCs. GCA values from the bilateral LA to the bilateral ACC, left MeA to the bilateral ACC and left putamen, and right ACC to the bilateral MeA were reduced in PHN patients compared to HCs. Compared with HCs, the GCA values from the left MeA to the left ACC and right putamen were reduced in HZ. The GCA values from the amygdala subregion to the ACC were positively correlated with HAMA or HAMD scores in PHN. CONCLUSION PHN showed reduced FC between the amygdala subregions and cortico-putamen and decreased effective connectivity from the amygdala subregion to the ACC and putamen. ADVANCES IN KNOWLEDGE HZ and PHN patients had significant changes in effective connectivity in brain regions, including diverse functional areas emanating from and projecting to the amygdala. The current findings will provide a new perspective for understanding the neuropathophysiological mechanism HZ and PHN.
Collapse
Affiliation(s)
| | | | | | | | | | | | - YI Yan
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Lili Gu
- Department of Pain, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | | |
Collapse
|
9
|
Tapia-González S, DeFelipe J. Secretagogin as a marker to distinguish between different neuron types in human frontal and temporal cortex. Front Neuroanat 2023; 17:1210502. [PMID: 38020216 PMCID: PMC10646422 DOI: 10.3389/fnana.2023.1210502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
The principal aim of the present work was to chemically characterize the population of neurons labeled for the calcium binding protein secretagogin (SCGN) in the human frontal and temporal cortices (Brodmann's area 10 and 21, respectively). Both cortical regions are involved in many high cognitive functions that are especially well developed (or unique) in humans, but with different functional roles. The pattern of SCGN immunostaining was rather similar in BA10 and BA21, with all the labeled neurons displaying a non-pyramidal morphology (interneurons). Although SCGN cells were present throughout all layers, they were more frequently observed in layers II, III and IV, whereas in layer I they were found only occasionally. We examined the degree of colocalization of SCGN with parvalbumin (PV) and calretinin (CR), as well as with nitric oxide synthase (nNOS; the enzyme responsible for the synthesis of nitric oxide by neurons) by triple immunostaining. We looked for possible similarities or differences in the coexpression patterns of SCGN with PV, CR and nNOS between BA10 and BA21 throughout the different cortical layers (I-VI). The percentage of colocalization was estimated by counting the number of all labeled cells through columns (1,100-1,400 μm wide) across the entire thickness of the cortex (from the pial surface to the white matter) in 50 μm-thick sections. Several hundred neurons were examined in both cortical regions. We found that SCGN cells include multiple neurochemical subtypes, whose abundance varies according to the cortical area and layer. The present results further highlight the regional specialization of cortical neurons and underline the importance of performing additional experiments to characterize the subpopulation of SCGN cells in the human cerebral cortex in greater detail.
Collapse
Affiliation(s)
- Silvia Tapia-González
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Laboratorio de Neurofisiología Celular, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| |
Collapse
|
10
|
Pulvermüller F. Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks. Prog Neurobiol 2023; 230:102511. [PMID: 37482195 PMCID: PMC10518464 DOI: 10.1016/j.pneurobio.2023.102511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/02/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Neural networks are successfully used to imitate and model cognitive processes. However, to provide clues about the neurobiological mechanisms enabling human cognition, these models need to mimic the structure and function of real brains. Brain-constrained networks differ from classic neural networks by implementing brain similarities at different scales, ranging from the micro- and mesoscopic levels of neuronal function, local neuronal links and circuit interaction to large-scale anatomical structure and between-area connectivity. This review shows how brain-constrained neural networks can be applied to study in silico the formation of mechanisms for symbol and concept processing and to work towards neurobiological explanations of specifically human cognitive abilities. These include verbal working memory and learning of large vocabularies of symbols, semantic binding carried by specific areas of cortex, attention focusing and modulation driven by symbol type, and the acquisition of concrete and abstract concepts partly influenced by symbols. Neuronal assembly activity in the networks is analyzed to deliver putative mechanistic correlates of higher cognitive processes and to develop candidate explanations founded in established neurobiological principles.
Collapse
Affiliation(s)
- Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, 14195 Berlin, Germany; Berlin School of Mind and Brain, Humboldt Universität zu Berlin, 10099 Berlin, Germany; Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany; Cluster of Excellence 'Matters of Activity', Humboldt Universität zu Berlin, 10099 Berlin, Germany.
| |
Collapse
|
11
|
Guardiola-Ripoll M, Almodóvar-Payá C, Arias-Magnasco A, Latorre-Guardia M, Papiol S, Canales-Rodríguez EJ, García-León MÁ, Fuentes-Claramonte P, Salavert J, Tristany J, Torres L, Rodríguez-Cano E, Salvador R, Pomarol-Clotet E, Fatjó-Vilas M. Human-specific evolutionary markers linked to foetal neurodevelopment modulate brain surface area in schizophrenia. Commun Biol 2023; 6:1040. [PMID: 37833414 PMCID: PMC10576001 DOI: 10.1038/s42003-023-05356-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Schizophrenia may represent a trade-off in the evolution of human-specific ontogenetic mechanisms that guide neurodevelopment. Human Accelerated Regions (HARs) are evolutionary markers functioning as neurodevelopmental transcription enhancers that have been associated with brain configuration, neural information processing, and schizophrenia risk. Here, we have investigated the influence of HARs' polygenic load on neuroanatomical measures through a case-control approach (128 patients with schizophrenia and 115 controls). To this end, we have calculated the global schizophrenia Polygenic Risk Score (Global PRSSZ) and that specific to HARs (HARs PRSSZ). We have also estimated the polygenic burden restricted to the HARs linked to transcriptional regulatory elements active in the foetal brain (FB-HARs PRSSZ) and the adult brain (AB-HARs PRSSZ). We have explored the main effects of the PRSs and the PRSs x diagnosis interactions on brain regional cortical thickness (CT) and surface area (SA). The results indicate that a higher FB-HARs PRSSZ is associated with patients' lower SA in the lateral orbitofrontal cortex, the superior temporal cortex, the pars triangularis and the paracentral lobule. While noHARs-derived PRSs show an effect on the risk, our neuroanatomical findings suggest that the human-specific transcriptional regulation during the prenatal period underlies SA variability, highlighting the role of these evolutionary markers in the schizophrenia genomic architecture.
Collapse
Affiliation(s)
- Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain.
| | - Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain
| | | | | | - Sergi Papiol
- CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Erick J Canales-Rodríguez
- CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain
- Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - María Ángeles García-León
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain
| | - Paola Fuentes-Claramonte
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain
| | - Josep Salavert
- Hospital Sant Rafael, Germanes Hospitalàries, Barcelona, Spain
| | - Josep Tristany
- Hospital Sagrat Cor, Germanes Hospitalàries, Martorell, Spain
| | - Llanos Torres
- Hospital Mare de Déu de la Mercè, Germanes Hospitalàries, Barcelona, Spain
| | - Elena Rodríguez-Cano
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain
- Hospital Benito Menni, Germanes Hospitalàries, Sant Boi de Llobregat, Spain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health; Instituto de Salud Carlos III), Madrid, Spain.
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Rilling JK. Human temporal lobes have been reorganized: A response to Pearson et al, "updated imaging and phylogenetic comparative methods reassess relative temporal lobe size in anthropoids and modern humans". AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:3-6. [PMID: 37318075 DOI: 10.1002/ajpa.24798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Affiliation(s)
- James K Rilling
- Department of Anthropology, Emory University, Atlanta, Georgia, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia, USA
- Center for Behavioral Neuroscience, Emory University, Atlanta, Georgia, USA
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Center for Translational Social Neuroscience, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
13
|
Dunbar RIM, Shultz S. Four errors and a fallacy: pitfalls for the unwary in comparative brain analyses. Biol Rev Camb Philos Soc 2023; 98:1278-1309. [PMID: 37001905 DOI: 10.1111/brv.12953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Comparative analyses are the backbone of evolutionary analysis. However, their record in producing a consensus has not always been good. This is especially true of attempts to understand the factors responsible for the evolution of large brains, which have been embroiled in an increasingly polarised debate over the past three decades. We argue that most of these disputes arise from a number of conceptual errors and associated logical fallacies that are the result of a failure to adopt a biological systems-based approach to hypothesis-testing. We identify four principal classes of error: a failure to heed Tinbergen's Four Questions when testing biological hypotheses, misapplying Dobzhansky's Dictum when testing hypotheses of evolutionary adaptation, poorly chosen behavioural proxies for underlying hypotheses, and the use of inappropriate statistical methods. In the interests of progress, we urge a more careful and considered approach to comparative analyses, and the adoption of a broader, rather than a narrower, taxonomic perspective.
Collapse
Affiliation(s)
- Robin I M Dunbar
- Department of Experimental Psychology, Anna Watts Building, University of Oxford, Oxford, OX2 6GG, UK
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, Michael Smith Building, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
14
|
Boch M, Wagner IC, Karl S, Huber L, Lamm C. Functionally analogous body- and animacy-responsive areas are present in the dog (Canis familiaris) and human occipito-temporal lobe. Commun Biol 2023; 6:645. [PMID: 37369804 PMCID: PMC10300132 DOI: 10.1038/s42003-023-05014-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Comparing the neural correlates of socio-cognitive skills across species provides insights into the evolution of the social brain and has revealed face- and body-sensitive regions in the primate temporal lobe. Although from a different lineage, dogs share convergent visuo-cognitive skills with humans and a temporal lobe which evolved independently in carnivorans. We investigated the neural correlates of face and body perception in dogs (N = 15) and humans (N = 40) using functional MRI. Combining univariate and multivariate analysis approaches, we found functionally analogous occipito-temporal regions involved in the perception of animate entities and bodies in both species and face-sensitive regions in humans. Though unpredicted, we also observed neural representations of faces compared to inanimate objects, and dog compared to human bodies in dog olfactory regions. These findings shed light on the evolutionary foundations of human and dog social cognition and the predominant role of the temporal lobe.
Collapse
Affiliation(s)
- Magdalena Boch
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.
- Department of Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | - Isabella C Wagner
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Sabrina Karl
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Ludwig Huber
- Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria
| | - Claus Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Hub, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Pexman PM, Diveica V, Binney RJ. Social semantics: the organization and grounding of abstract concepts. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210363. [PMID: 36571120 PMCID: PMC9791475 DOI: 10.1098/rstb.2021.0363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
concepts, like justice and friendship, are central features of our daily lives. Traditionally, abstract concepts are distinguished from other concepts in that they cannot be directly experienced through the senses. As such, they pose a challenge for strongly embodied models of semantic representation that assume a central role for sensorimotor information. There is growing recognition, however, that it is possible for meaning to be 'grounded' via cognitive systems, including those involved in processing language and emotion. In this article, we focus on the specific proposal that social significance is a key feature in the representation of some concepts. We begin by reviewing recent evidence in favour of this proposal from the fields of psycholinguistics and neuroimaging. We then discuss the limited extent to which there is consensus about the definition of 'socialness' and propose essential next steps for research in this domain. Taking one such step, we describe preliminary data from an unprecedented large-scale rating study that can help determine how socialness is distinct from other facets of word meaning. We provide a backdrop of contemporary theories regarding semantic representation and social cognition and highlight important predictions for both brain and behaviour. This article is part of the theme issue 'Concepts in interaction: social engagement and inner experiences'.
Collapse
Affiliation(s)
- Penny M. Pexman
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada, T2N 1N4
| | - Veronica Diveica
- School of Human and Behavioural Sciences, Bangor University, Bangor LL57 2AS, UK
| | - Richard J. Binney
- School of Human and Behavioural Sciences, Bangor University, Bangor LL57 2AS, UK
| |
Collapse
|
16
|
Zhang J, Treyer V, Sun J, Zhang C, Gietl A, Hock C, Razansky D, Nitsch RM, Ni R. Automatic analysis of skull thickness, scalp-to-cortex distance and association with age and sex in cognitively normal elderly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524484. [PMID: 36711717 PMCID: PMC9882276 DOI: 10.1101/2023.01.19.524484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Personalized neurostimulation has been a potential treatment for many brain diseases, which requires insights into brain/skull geometry. Here, we developed an open source efficient pipeline BrainCalculator for automatically computing the skull thickness map, scalp-to-cortex distance (SCD), and brain volume based on T 1 -weighted magnetic resonance imaging (MRI) data. We examined the influence of age and sex cross-sectionally in 407 cognitively normal older adults (71.9±8.0 years, 60.2% female) from the ADNI. We demonstrated the compatibility of our pipeline with commonly used preprocessing packages and found that BrainSuite Skullfinder was better suited for such automatic analysis compared to FSL Brain Extraction Tool 2 and SPM12- based unified segmentation using ground truth. We found that the sphenoid bone and temporal bone were thinnest among the skull regions in both females and males. There was no increase in regional minimum skull thickness with age except in the female sphenoid bone. No sex difference in minimum skull thickness or SCD was observed. Positive correlations between age and SCD were observed, faster in females (0.307%/y) than males (0.216%/y) in temporal SCD. A negative correlation was observed between age and whole brain volume computed based on brain surface (females -1.031%/y, males -0.998%/y). In conclusion, we developed an automatic pipeline for MR-based skull thickness map, SCD, and brain volume analysis and demonstrated the sex-dependent association between minimum regional skull thickness, SCD and brain volume with age. This pipeline might be useful for personalized neurostimulation planning.
Collapse
Affiliation(s)
- Junhao Zhang
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Li Q, Han M, Luo X, Han X, Zheng L, Li J. Application of diffusion tensor imaging and functional alterations in evaluating brain alterations related to heatstroke in a rat model. Magn Reson Imaging 2023; 95:63-69. [PMID: 36368494 DOI: 10.1016/j.mri.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVES To assess the alterations in resting-state functions and neural structures in the brain of a heatstroke rat model and explore the underlying relationship. METHODS In total, 17 male Sprague Dawley rats were randomly divided into a control group (CTRL, n = 7) and a heatstroke group (HS, n = 10). All rats underwent 7.0 T magnetic resonance imaging (MRI). T2-weighted imaging, resting-state functional MRI (rs-fMRI), and diffusion tensor imaging (DTI) were obtained. On day 25, the surviving HS group rats (the follow-up group, FU, n = 7) were scanned again. RESULTS Heatstroke resulted in functional alterations and structural damage in the cerebellar molecular layer (CML), right perirhinal area (PA), pretectal region (PR), right dentate gyrus, and external cortex of the inferior colliculus (ECIC). Further functional changes occur in the right temporal associative cortex (TAC), left retrosplenial cortex (RC), and CML during convalescence. The fractional anisotropy values were significantly positively correlated with the amplitude of low-frequency fluctuation (ALFF) (HS-CML: r = 0.746, p = 0.034; right PR: r = 0.648, p = 0.049; FU-right PA: r = 0.817, p = 0.025)/regional homogeneity (ReHo) ratio (HS-CML: r = 0.833, p = 0.008; ECIC: r = 0.678, p = 0.045) and negatively correlated with the ALFF (FU-left RC: r = -0.818, p = 0.024; right TAC: r = -0.813, p = 0.049). CONCLUSION DTI and rs-fMRI allow meticulous monitoring of the progression of neurological and functional alterations in the brain after heatstroke.
Collapse
Affiliation(s)
- Qinglong Li
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China; School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Mingxing Han
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China; School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Xunrong Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Han
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China; School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Lei Zheng
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China; School of Medical Imaging, Binzhou Medical University, Yantai, China
| | - Jun Li
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China.
| |
Collapse
|
18
|
Kubon J, Romagnano V, Sokolov AN, Fallgatter AJ, Braun C, Pavlova MA. Neural circuits underpinning face tuning in male depression. Cereb Cortex 2022; 33:3827-3839. [PMID: 35989312 DOI: 10.1093/cercor/bhac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Reading bodies and faces is essential for efficient social interactions, though it may be thought-provoking for individuals with depression. Yet aberrations in the face sensitivity and underwriting neural circuits are not well understood, in particular, in male depression. Here, we use cutting-edge analyses of time course and dynamic topography of gamma oscillatory neuromagnetic cortical activity during administration of a task with Arcimboldo-like images. No difference in face tuning was found between individuals with depression and their neurotypical peers. Furthermore, this behavioral outcome nicely dovetails with magnetoencephalographic data: at early processing stages, the gamma oscillatory response to images resembling a face was rather similar in patients and controls. These bursts originated primarily from the right medioventral occipital cortex and lateral occipital cortex. At later processing stages, however, its topography altered remarkably in depression with profound engagement of the frontal circuits. Yet the primary difference in depressive individuals as compared with their neurotypical peers occurred over the left middle temporal cortices, a part of the social brain, engaged in feature integration and meaning retrieval. The outcome suggests compensatory recruitment of neural resources in male depression.
Collapse
Affiliation(s)
- Julian Kubon
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Valentina Romagnano
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Alexander N Sokolov
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| | - Christoph Braun
- MEG Center, Medical School and University Hospital, Eberhard Karls University of Tübingen, Otfried Müller Str. 47, 72076 Tübingen, Germany
| | - Marina A Pavlova
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), Medical School and University Hospital, Eberhard Karls University of Tübingen, Calwerstr. 14, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Sallet J. On the evolutionary roots of human social cognition. Neurosci Biobehav Rev 2022; 137:104632. [PMID: 35358568 DOI: 10.1016/j.neubiorev.2022.104632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/30/2022]
Abstract
The aim of this commentary is to highlight the complementarity of the approaches used to investigate the neuronal basis of social cognition. From neuroanatomy, to neurophysiology, to neuroimaging and behavioral studies, the research presented by Braunsdorf, Noritake, Terenzi and colleagues are revealing a complex architecture supporting social cognition as well as the diversity of factors driving our social decisions (Braunsdorf et al., 2021; Noritake et al., 2021; Terenzi et al., 2021). From an evolutionary perspective, results presented indicate strong phylogenic origins to human social cognition, but also point out some issues about the evolution of the social brain that remain to be investigated.
Collapse
Affiliation(s)
- Jérôme Sallet
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France.
| |
Collapse
|
20
|
Asano R, Boeckx C, Fujita K. Moving beyond domain-specific vs. domain-general options in cognitive neuroscience. Cortex 2022; 154:259-268. [DOI: 10.1016/j.cortex.2022.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/07/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
|
21
|
Tang S, Nie L, Liu X, Chen Z, Zhou Y, Pan Z, He L. Application of Quantitative Magnetic Resonance Imaging in the Diagnosis of Autism in Children. Front Med (Lausanne) 2022; 9:818404. [PMID: 35646984 PMCID: PMC9133426 DOI: 10.3389/fmed.2022.818404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the application of quantitative magnetic resonance imaging in the diagnosis of autism in children. Methods Sixty autistic children aged 2–3 years and 60 age- and sex-matched healthy children participated in the study. All the children were scanned using head MRI conventional sequences, 3D-T1, diffusion kurtosis imaging (DKI), enhanced T2*- weighted magnetic resonance angiography (ESWAN) and 3D-pseudo continuous Arterial Spin-Labeled (3D-pcASL) sequences. The quantitative susceptibility mapping (QSM), cerebral blood flow (CBF), and brain microstructure of each brain area were compared between the groups, and correlations were analyzed. Results The iron content and cerebral blood flow in the frontal lobe, temporal lobe, hippocampus, caudate nucleus, substantia nigra, and red nucleus of the study group were lower than those in the corresponding brain areas of the control group (P < 0.05). The mean kurtosis (MK), radial kurtosis (RK), and axial kurtosis (AK) values of the frontal lobe, temporal lobe, putamen, hippocampus, caudate nucleus, substantia nigra, and red nucleus in the study group were lower than those of the corresponding brain areas in the control group (P < 0.05). The mean diffusivity (MD) and fractional anisotropy of kurtosis (FAK) values of the frontal lobe, temporal lobe and hippocampus in the control group were lower than those in the corresponding brain areas in the study group (P < 0.05). The values of CBF, QSM, and DKI in frontal lobe, temporal lobe and hippocampus could distinguish ASD children (AUC > 0.5, P < 0.05), among which multimodal technology (QSM, CBF, DKI) had the highest AUC (0.917) and DKI had the lowest AUC (0.642). Conclusion Quantitative magnetic resonance imaging (including QSM, 3D-pcASL, and DKI) can detect abnormalities in the iron content, cerebral blood flow and brain microstructure in young autistic children, multimodal technology (QSM, CBF, DKI) could be considered as the first choice of imaging diagnostic technology. Clinical Trial Registration [http://www.chictr.org.cn/searchprojen.aspx], identifier [ChiCTR2000029699].
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Xianfan Liu
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhuo Chen
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yu Zhou
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhengxia Pan
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- *Correspondence: Zhengxia Pan,
| | - Ling He
- Department of Radiology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
- Ling He,
| |
Collapse
|
22
|
Motivational and Cognitive Control: From motor inhibition to social decision making. Neurosci Biobehav Rev 2022; 136:104600. [PMID: 35248675 DOI: 10.1016/j.neubiorev.2022.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Huang Z, Ruan D, Huang B, Zhou T, Shi C, Yu X, Chan RCK, Wang Y, Pu C. Negative symptoms correlate with altered brain structural asymmetry in amygdala and superior temporal region in schizophrenia patients. Front Psychiatry 2022; 13:1000560. [PMID: 36226098 PMCID: PMC9548644 DOI: 10.3389/fpsyt.2022.1000560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Negative symptoms play an important role in development and treatment of schizophrenia. However, brain changes relevant to negative symptoms are still unclear. This study examined brain structural abnormalities and their asymmetry in schizophrenia patients and the association with negative symptoms. Fifty-nine schizophrenia patients and 66 healthy controls undertook structural brain scans. Schizophrenia patients were further divided into predominant negative symptoms (PNS, n = 18) and non-PNS (n = 34) subgroups. Negative symptoms were assessed by the Negative Symptom Assessment (NSA). T1-weighted images were preprocessed with FreeSurfer to estimate subcortical volumes, cortical thickness and surface areas, asymmetry Index (AI) was then calculated. MANOVA was performed for group differences while partial correlations in patients were analyzed between altered brain structures and negative symptoms. Compared to healthy controls, schizophrenia patients exhibited thinner cortices in frontal and temporal regions, and decreased leftward asymmetry of superior temporal gyrus (STG) in cortical thickness. Patients with PNS exhibited increased rightward asymmetry of amygdala volumes than non-PNS subgroup. In patients, AI of cortical thickness in the STG was negatively correlated with NSA-Emotion scores (r = -0.30, p = 0.035), while AI of amygdala volume was negatively correlated with NSA-Communication (r = -0.30, p = 0.039) and NSA-Total scores (r = -0.30, p = 0.038). Our findings suggested schizophrenia patients exhibited cortical thinning and altered lateralization of brain structures. Emotion and communication dimensions of negative symptoms also correlated with the structural asymmetry of amygdala and superior temporal regions in schizophrenia patients.
Collapse
Affiliation(s)
- Zetao Huang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Dun Ruan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Bingjie Huang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Tianhang Zhou
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Chuan Shi
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Pu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
24
|
Tang S, Liu X, Nie L, Chen Z, Ran Q, He L. Diagnosis of children with attention-deficit/hyperactivity disorder (ADHD) comorbid autistic traits (ATs) by applying quantitative magnetic resonance imaging techniques. Front Psychiatry 2022; 13:1038471. [PMID: 36465303 PMCID: PMC9712964 DOI: 10.3389/fpsyt.2022.1038471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To explore the feasibility of applying quantitative magnetic resonance imaging techniques for the diagnosis of children with attention-deficit/hyperactivity disorder (ADHD) comorbid autistic traits (ATs). METHODS A prospective study was performed by selecting 56 children aged 4-5 years with ADHD-ATs as the study group and 53 sex- and age-matched children with ADHD without ATs as the control group. All children underwent magnetic resonance scans with enhanced T2*- weighted magnetic resonance angiography (ESWAN), 3D-PCASL, and 3D-T1 sequences. Iron content and cerebral blood flow parameters were obtained via subsequent software processing, and the parameter values in particular brain regions in both groups were compared and analyzed to determine the characteristics of these parameters in children with ADHD-ATs. RESULTS Iron content and cerebral blood flow in the frontal lobe, temporal lobe, hippocampus, and caudate nucleus of children with ADHD-ATs were lower than those of children with ADHD without ATs (p < 0.05). Iron content and CBF values in the frontal lobe, temporal lobe and caudate nucleus could distinguish children with ADHD-ATs from those without ATs (AUC > 0.5, p < 0.05). CONCLUSIONS Quantitative magnetic resonance techniques could distinguish children with ADHD-ATs. TRIAL REGISTRATION This study protocol was registered at the Chinese clinical trial registry (ChiCTR2100046616).
Collapse
Affiliation(s)
- Shilong Tang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xianfan Liu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Lisha Nie
- GE Healthcare, MR Research China, Beijing, China
| | - Zhuo Chen
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qiying Ran
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ling He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
25
|
Becker Y, Loh KK, Coulon O, Meguerditchian A. The Arcuate Fasciculus and language origins: Disentangling existing conceptions that influence evolutionary accounts. Neurosci Biobehav Rev 2021; 134:104490. [PMID: 34914937 DOI: 10.1016/j.neubiorev.2021.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
The Arcuate Fasciculus (AF) is of considerable interdisciplinary interest, because of its major implication in language processing. Theories about language brain evolution are based on anatomical differences in the AF across primates. However, changing methodologies and nomenclatures have resulted in conflicting findings regarding interspecies AF differences: Historical knowledge about the AF originated from human blunt dissections and later from monkey tract-tracing studies. Contemporary tractography studies reinvestigate the fasciculus' morphology, but remain heavily bound to unclear anatomical priors and methodological limitations. First, we aim to disentangle the influences of these three epistemological steps on existing AF conceptions, and to propose a contemporary model to guide future work. Second, considering the influence of various AF conceptions, we discuss four key evolutionary changes that propagated current views about language evolution: 1) frontal terminations, 2) temporal terminations, 3) greater Dorsal- versus Ventral Pathway expansion, 4) lateralisation. We conclude that new data point towards a more shared AF anatomy across primates than previously described. Language evolution theories should incorporate this continuous AF evolution across primates.
Collapse
Affiliation(s)
- Yannick Becker
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France.
| | - Kep Kee Loh
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix-Marseille Univ, CNRS UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, Aix-Marseille Univ, CNRS UMR 7290, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille Univ, Marseille, France; Station de Primatologie CNRS, Rousset, France
| |
Collapse
|