1
|
Gao M, Dong Q, Zou D, Yang Z, Guo L, Xu R. Induced neural stem cells regulate microglial activation through Akt-mediated upregulation of CXCR4 and Crry in a mouse model of closed head injury. Neural Regen Res 2025; 20:1416-1430. [PMID: 38934402 DOI: 10.4103/nrr.nrr-d-23-01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/27/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202505000-00025/figure1/v/2024-07-28T173839Z/r/image-tiff Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair. We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling, influencing their activation such that they can promote neurological recovery. However, the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear. In this study, we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-α expression but suppressed insulin-like growth factor-1 expression. However, recombinant complement receptor 2-conjugated Crry (CR2-Crry) reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia, CXCL12, and tumor necrosis factor-α. Additionally, we observed that, in response to stimulation (including stimulation by CXCL12 secreted by activated microglia), CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4, Crry, and Akt signaling to modulate microglial activation. In agreement with these in vitro experimental results, we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation, leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice. Notably, these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury, cerebral edema, and neurological disorders post-closed head injury. In conclusion, our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry, thereby promoting induced neural stem cell-mediated improvement of neuronal injury, cerebral edema, and neurological disorders following closed head injury.
Collapse
Affiliation(s)
- Mou Gao
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Qin Dong
- Department of Neurology, Fu Xing Hospital, Capital Medical University, Beijing, China
| | - Dan Zou
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Zhijun Yang
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Lili Guo
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Liu N, Cui X, Guo T, Wei X, Sun Y, Liu J, Zhang Y, Ma W, Yan W, Chen L. Baicalein Ameliorates Insulin Resistance of HFD/STZ Mice Through Activating PI3K/AKT Signal Pathway of Liver and Skeletal Muscle in a GLP-1R-Dependent Manner. Antioxidants (Basel) 2024; 13:1246. [PMID: 39456499 PMCID: PMC11505556 DOI: 10.3390/antiox13101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Insulin resistance (IR) is the principal pathophysiological change occurring in diabetes mellitus (DM). Baicalein, a bioactive flavonoid primarily extracted from the medicinal plant Scutellaria baicalensis Georgi, has been shown in our previous research to be a potential natural glucagon-like peptide-1 receptor (GLP-1R) agonist. However, the exact therapeutic effect of baicalein on DM and its underlying mechanisms remain elusive. In this study, we investigated the therapeutic effects of baicalein on diabetes and sought to clarify its underlying molecular mechanisms. Our results demonstrated that baicalein improves hyperglycemic, hyperinsulinemic, and glucometabolic disorders in mice with induced diabetes via GLP-1R. This was confirmed by the finding that baicalein's effects on improving IR were largely diminished in mice with whole-body Glp1r ablation. Complementarily, network pharmacology analysis highlighted the pivotal involvement of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) insulin signaling pathway in the therapeutic actions of baicalein on IR. Our mechanism research significantly confirmed that baicalein mitigates hepatic and muscular IR through the PI3K/AKT signal pathway, both in vitro and in vivo. Furthermore, we demonstrated that baicalein enhances glucose uptake in skeletal muscle cells under IR conditions through the Ca2+/calmodulin-dependent protein kinase II (CaMKII)-adenosine 5'-monophosphate-activated protein kinase (AMPK)-glucose transporter 4 (GLUT4) signaling pathway in a GLP-1R-dependent manner. In conclusion, our findings confirm the therapeutic effects of baicalein on IR and reveal that it improves IR in liver and muscle tissues through the PI3K/AKT insulin signaling pathway in a GLP-1R dependent manner. Moreover, we clarified that baicalein enhances the glucose uptake in skeletal muscle tissue through the Ca2+/CaMKII-AMPK-GLUT4 signal pathway.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Xin Cui
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Tingli Guo
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Xiaotong Wei
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Yuzhuo Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Jieyun Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Yangyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Weina Ma
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Wenhui Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
| | - Lina Chen
- Department of Pharmacology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an 710061, China; (N.L.); (X.C.); (T.G.); (X.W.); (Y.S.); (J.L.); (Y.Z.)
- Key Laboratory of Environment and Genes Related to Diseases (Xi’an Jiaotong University), Ministry of Education, Xi’an 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi’an 710061, China
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
3
|
Zeng L, Yu T, Liu H, Li M, Wang J, Wang C, Xu P. IGF-1's protective effect on OSAS rats' learning and memory. Sleep Breath 2024; 28:1919-1928. [PMID: 38858326 PMCID: PMC11450044 DOI: 10.1007/s11325-024-03047-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/19/2024] [Accepted: 04/26/2024] [Indexed: 06/12/2024]
Abstract
PURPOSE Patients with obstructive sleep apnea syndrome (OSAS) frequently experience cognitive dysfunction, which may be connected to chronic intermittent hypoxia (CIH). Insulin-like growth factor-1 (IGF-1) is thought to be closely associated with cognitive function, but its role in cognitive impairment caused by OSAS is unclear. The purpose of this study was to investigate the potential protective effect of IGF-1 on cognitive impairment in OSAS rats. METHODS Healthy male SD rats (n = 40) were randomly assigned into four groups: control group, CIH group, NS + CIH group, and IGF-1 + CIH group. All experimental rats except for those in the control group were exposed to intermittent hypoxic (IH) environments for 8 h per day over 28 days. Prior to daily exposure to IH, rats in the IGF-1 + CIH group received subcutaneous injections of IGF-1. The Morris water maze test was conducted on all experimental rats. Brain tissue testing methods included Enzyme-Linked Immunosorbent Assay, Hematoxylin and eosin staining, Immunohistochemistry, and Western blotting. RESULTS The rat model of OSAS was successfully established following exposure to CIH and exhibited significant cognitive impairment. However, daily subcutaneous injections of IGF-1 partially restored the impaired cognitive function in OSAS rats. Compared with the control group, there was a significant decrease in the expression levels of IGF-1, p-IGF-IR, and SYP in the CIH group; however, these expression levels increased significantly in the IGF-I + CIH group. CONCLUSION In OSAS rats, IGF-1 enhances learning memory; this effect may be linked to increased p-IGF-1R and SYP protein production in the hippocampus.
Collapse
Affiliation(s)
- Ling Zeng
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Ting Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Mi Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Changsheng Wang
- Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Zunyi, Guizhou, 563000, China.
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
4
|
Fan X, Wang Y, Zhang Z, Yang R, Zhou Y, Gu J. Assessing the causal relationship between frailty and sex hormone-binding globulin or insulin-like growth factor-1 levels: A sex-stratified bidirectional Mendelian Randomization study. Exp Gerontol 2024; 195:112545. [PMID: 39154868 DOI: 10.1016/j.exger.2024.112545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND The association between frailty and sex hormone-binding globulin (SHBG) or insulin-like growth factor-1(IGF-1) levels demonstrates sex differences with inconsistent conclusions. This study aims to explore the causal relationship between frailty and SHBG or IGF-1 levels through bidirectional Mendelian randomization (MR). METHODS We conducted two-sample bidirectional sex-stratified MR analyses using summary-level data from genome-wide association studies (GWASs) to examine the causal relationship between frailty and IGF-1 or SHBG levels, as measured by frailty index (FI) and frailty phenotype (FP). We use the random-effects inverse-variance weighted (IVW), weighted median, MR-Egger, MR-Egger intercept, and leave-one-out approaches. RESULT The relationship between frailty and SHBG or IGF-1 levels is inversely related, with a significant decrease in SHBG levels in females. Specifically, SHBG levels significantly decrease with FI (β = -5.49; 95 % CI: -9.67 to -1.32; FDR = 0.02) and more pronounced with FP (β = -10.14; 95 % CI: -16.16 to -4.13; FDR = 0.01), as determined by the IVW approach. However, reverse analysis shows no significant effect of IGF-1 or SHBG levels on either FI or FP (p > 0.05). CONCLUSION Our study indicates a negative correlation between frailty and the levels of SHBG and IGF-1. It is suggested that further research is required to establish cut-off values for SHBG and IGF-1 levels in the frailty population. This is particularly important for females at higher risk, such as those undergoing menopause, to enable comprehensive assessment and early prevention efforts. While the findings imply that reduced IGF-1 and SHBG levels may not directly contribute to frailty, it is important not to overlook the underlying mechanisms through which they may indirectly influence frailty.
Collapse
Affiliation(s)
- Xinying Fan
- Department of General Practice, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Yuxin Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, Zhejiang, China
| | - Zhaoyu Zhang
- Department of General Practice, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Runjun Yang
- Department of Nuclear Medicine, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Yajing Zhou
- Department of Biostatistics, NHC Key Laboratory for Health Technology Assessment, Key Laboratory of Public Health Safety of Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jie Gu
- Department of General Practice, Zhongshan Hospital of Fudan University, Shanghai 200032, China; International Medical Center, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
An J, Wen L, Yu H, Bu Z, Feng J. Insulin-Like Growth Factor Binding Protein 2 Drives Neurodegeneration in Parkinson's Disease: Insights From In Vivo and In Vitro Studies. CNS Neurosci Ther 2024; 30:e70076. [PMID: 39412224 PMCID: PMC11480970 DOI: 10.1111/cns.70076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
AIMS Insulin-like growth factor binding protein 2 (IGFBP2) is implicated in various neurodegenerative diseases. However, its role in Parkinson's disease (PD) is unclear. METHODS PD rat model was established by 6-OHDA injection. After 3 weeks, mRNA-seq was conducted. Rats received rIGFBP2 via intra-MFB injection 6 h prior to 6-OHDA infusion, and the effect of IGFBP2 in PD rats was investigated by western blotting, IHC, specific kits, JC-1 staining, and TUNEL analysis. In vitro, PC12 cells were treated with 6-OHDA, and CCK-8, specific kits, Hoechst 33258 staining, Western blotting, and JC-1 staining were performed to assess the IGFBP2's role. RESULTS mRNA-seq revealed DEGs in PD, with attention to downregulated IGFBP2. rIGFBP2 treatment aggravated neurobehavioral deficits, decreased TH expression, Ψm, ATP level and SOD, GSH-Px activities but increased α-synuclein, ROS, MDA, mitochondrial cytochrome c contents, cell apoptosis in 6-OHDA-lesioned rats, which might be mediated through inactivating IGF-1R/AKT pathway. In 6-OHDA-treated PC12 cells, rIGFBP2 aggravated cell injury, demonstrated by decreased cell viability and increased apoptosis, oxidative stress, and mitochondrial dysfunction. Co-treatment with rIGFBP2 and rIGF-1 partially reversed the effect of rIGFBP2 on cell damage. CONCLUSION IGFBP2 exacerbates neurodegeneration in PD through increasing oxidative stress, mitochondrial dysfunction, and apoptosis via inhibiting IGF-1R/AKT pathway.
Collapse
Affiliation(s)
- Jing An
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Lulu Wen
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Haiyang Yu
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongqi Bu
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Juan Feng
- Department of NeurologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
6
|
Yang K, Zhang T, Niu R, Zhao L, Cheng Z, Li J, Wang L. Unveiling the role of IGF1R in autism spectrum disorder: a multi-omics approach to decipher common pathogenic mechanisms in the IGF signaling pathway. Front Genet 2024; 15:1483574. [PMID: 39376742 PMCID: PMC11456441 DOI: 10.3389/fgene.2024.1483574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition marked by impairments in social interaction, communication, and repetitive behaviors. Emerging evidence suggests that the insulin-like growth factor (IGF) signaling pathway plays a critical role in ASD pathogenesis; however, the precise pathogenic mechanisms remain elusive. This study utilizes multi-omics approaches to investigate the pathogenic mechanisms of ASD susceptibility genes within the IGF pathway. Whole-exome sequencing (WES) revealed a significant enrichment of rare variants in key IGF signaling components, particularly the IGF receptor 1 (IGF1R), in a cohort of Chinese Han individuals diagnosed with ASD, as well as in ASD patients from the SFARI SPARK WES database. Subsequent single-cell RNA sequencing (scRNA-seq) of cortical tissues from children with ASD demonstrated elevated expression of IGF receptors in parvalbumin (PV) interneurons, suggesting a substantial impact on their development. Notably, IGF1R appears to mediate the effects of IGF2R on these neurons. Additionally, transcriptomic analysis of brain organoids derived from ASD patients indicated a significant association between IGF1R and ASD. Protein-protein interaction (PPI) and gene regulatory network (GRN) analyses further identified ASD susceptibility genes that interact with and regulate IGF1R expression. In conclusion, IGF1R emerges as a central node within the IGF signaling pathway, representing a potential common pathogenic mechanism and therapeutic target for ASD. These findings highlight the need for further investigation into the modulation of this pathway as a strategy for ASD intervention.
Collapse
Affiliation(s)
- Kang Yang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Tian Zhang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruize Niu
- Affiliated Mental Health Center of Kuming Medical University, Yunnan Psychiatric Hospital, Kunming, China
| | - Liyang Zhao
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Zhonghe Cheng
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Jun Li
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| | - Lifang Wang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China
| |
Collapse
|
7
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
8
|
Sun Y, Sun W, Liu J, Zhang B, Zheng L, Zou W. The dual role of microglia in intracerebral hemorrhage. Behav Brain Res 2024; 473:115198. [PMID: 39128628 DOI: 10.1016/j.bbr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Intracerebral hemorrhage has the characteristics of high morbidity, disability and mortality, which has caused a heavy burden to families and society. Microglia are resident immune cells in the central nervous system, and their activation plays a dual role in tissue damage after intracerebral hemorrhage. The damage in cerebral hemorrhage is embodied in the following aspects: releasing inflammatory factors and inflammatory mediators, triggering programmed cell death, producing glutamate induced excitotoxicity, and destroying blood-brain barrier; The protective effect is reflected in the phagocytosis and clearance of harmful substances by microglia, and the secretion of anti-inflammatory and neurotrophic factors. This article summarizes the function of microglia and its dual regulatory mechanism in intracerebral hemorrhage. In the future, drugs, acupuncture and other clinical treatments can be used to intervene in the activation state of microglia, so as to reduce the harm of microglia.
Collapse
Affiliation(s)
- Yue Sun
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Wentao Sun
- Faculty of Chinese Medicine Sciense Guangxi University of Chinese Medicine, Nanning, Guangxi 530000, China
| | - Jiawei Liu
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China
| | - Baiwen Zhang
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Lei Zheng
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, China.
| |
Collapse
|
9
|
An C, Gao L, Xiang L, Qi J. IGF-1 and Glucocorticoid Receptors Are Potential Target Proteins for the NGF-Mimic Effect of β-Cyclocitral from Lavandula angustifolia Mill. in PC12 Cells. Int J Mol Sci 2024; 25:9763. [PMID: 39337253 PMCID: PMC11432015 DOI: 10.3390/ijms25189763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
In the present study, the PC12 cells as a bioassay system were used to screen the small molecules with nerve growth factor (NGF)- mimic effect from Lavandula angustifolia Mill. The β-Cyclocitral (β-cyc) as an active compound was discovered, and its chemical structure was also determined. Furthermore, we focused on the bioactive and action mechanism of this compound to do an intensive study with specific protein inhibitors and Western blotting analysis. The β-cyc had novel NGF-mimic and NGF-enhancer effects on PC12 cells, while the insulin-like growth factor-1 receptor (IGF-1R)/phosphatidylinositol 3 kinase, (PI3K)/serine/threonine-protein kinase (AKT), and glucocorticoid receptor (GR)/phospholipase C (PLC)/protein kinase C (PKC) signaling pathways were involved in the bioactivity of β-cyc. In addition, the important role of the rat sarcoma (Ras)/protooncogene serine-threonine protein kinase (Raf) signaling pathway was observed, although it was independent of tyrosine kinase (Trk) receptors. Moreover, the non-label target protein discovery techniques, such as the cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS), were utilized to make predictions of its target protein. The stability of IGF-R and GR, proteins for temperature and protease, was dose-dependently increased after treatment of β-cyc compared with control groups, respectively. These findings indicated that β-cyc promoted the neuron differentiation of PC12 cells via targeting IGF-1R and GR and modification of downstream signaling pathways.
Collapse
Affiliation(s)
| | | | - Lan Xiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China; (C.A.); (L.G.)
| | - Jianhua Qi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China; (C.A.); (L.G.)
| |
Collapse
|
10
|
Jiang S, Sanders S, Welch P, Gan RZ. Therapeutic Function of Liraglutide for Mitigation of Blast-Induced Hearing Damage: An Initial Investigation in Animal Model of Chinchilla. Mil Med 2024; 189:407-415. [PMID: 39160824 DOI: 10.1093/milmed/usae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Auditory injuries induced by repeated exposures to blasts reduce the operational performance capability and the life quality of military personnel. The treatment for blast-induced progressive hearing damage is lacking. We have recently investigated the therapeutic function of liraglutide, a glucagon-like peptide-1 receptor agonist, to mitigate blast-induced hearing damage in the animal model of chinchilla, under different blast intensities, wearing earplugs (EPs) or not during blasts, and drug-treatment plan. The goal of this study was to investigate the therapeutical function of liraglutide by comparing the results obtained under different conditions. MATERIALS AND METHODS Previous studies on chinchillas from two under-blast ear conditions (EP/open), two blast plans (G1: 6 blasts at 3-5 psi or G2:3 blasts at 15-25 psi), and three treatment plans (blast control, pre-blast drug treatment, and post-blast drug treatment) were summarized. The auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and middle latency response (MLR) recorded within 14 days after the blasts were used. Statistical analysis was performed to evaluate the effect of liraglutide under different conditions. RESULTS ABR threshold shifts indicated that the conditions of the EP and open ears were substantially different. Results from EP chinchillas indicated that the pre-blast treatment reduced the acute ABR threshold elevation on the day of blasts, and the significance of such an effect increased with the blast level. Liraglutide-treated open chinchillas showed lower ABR threshold shifts at the later stage of the experiment regardless of the blast levels. The DPOAE was less damaged after G2 blasts compared to G1 when pre-blast liraglutide was administrated. Lower post-blast MLR amplitudes were observed in the pre-blast treatment groups. CONCLUSIONS This study indicated that the liraglutide mitigated the blast-induced auditory injuries. In EP ears, the pre-blast administration of liraglutide reduced the severity of blast-induced acute damage in ears with EP protection, especially under G2. In animals with open ears, the effect of liraglutide on the restoration of hearing increased with time. The liraglutide potentially benefits post-blast hearing through multiple approaches with different mechanics.
Collapse
Affiliation(s)
- Shangyuan Jiang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Sarah Sanders
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Paige Welch
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Rong Z Gan
- School of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
11
|
Guerra-Cantera S, Frago LM, Espinoza-Chavarria Y, Collado-Pérez R, Jiménez-Hernaiz M, Torrecilla-Parra M, Barrios V, Belsham DD, Laursen LS, Oxvig C, Argente J, Chowen JA. Palmitic Acid Modulation of the Insulin-Like Growth Factor System in Hypothalamic Astrocytes and Neurons. Neuroendocrinology 2024; 114:958-974. [PMID: 39043147 DOI: 10.1159/000540442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Insulin-like growth factor (IGF)1 and IGF2 have neuroprotective effects, but less is known regarding how other members of the IGF system, including IGF binding proteins (IGFBPs) and the regulatory proteinase pappalysin-1 (PAPP-A) and its endogenous inhibitor stanniocalcin-2 (STC2) participate in this process. Here, we analyzed whether these members of the IGF system are modified in neurons and astrocytes in response to palmitic acid (PA), a fatty acid that induces cell stress when increased centrally. METHODS Primary hypothalamic astrocyte cultures from male and female PND2 rats and the pro-opiomelanocortin (POMC) neuronal cell line, mHypoA-POMC/GFP-2, were treated with PA, IGF1 or both. To analyze the role of STC2 in astrocytes, siRNA assays were employed. RESULTS In astrocytes of both sexes, PA rapidly increased cell stress factors followed by increased Pappa and Stc2 mRNA levels and then a decrease in Igf1, Igf2, and Igfbp2 expression and cell number. Exogenous IGF1 did not revert these effects. In mHypoA-POMC/GFP-2 neurons, PA reduced cell number and Pomc and Igf1 mRNA levels, and increased Igfbp2 and Stc2, again with no effect of exogenous IGF1. PA increased STC2 expression, but no effects of decreasing its levels by interference assays or exogenous STC2 treatment in astrocytes were found. CONCLUSIONS The response of the IGF system to PA was cell and sex specific, but no protective effects of the IGFs were found. However, the modifications in hypothalamic PAPP-A and STC2 indicate that further studies are required to determine their role in the response to fatty acids and possibly in metabolic control.
Collapse
Affiliation(s)
- Santiago Guerra-Cantera
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura M Frago
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Yesenia Espinoza-Chavarria
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Roberto Collado-Pérez
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Jiménez-Hernaiz
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Torrecilla-Parra
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
| | - Vicente Barrios
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lisbeth S Laursen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
12
|
Hou L, Ma J, Feng X, Chen J, Dong BH, Xiao L, Zhang X, Guo B. Caffeic acid and diabetic neuropathy: Investigating protective effects and insulin-like growth factor 1 (IGF-1)-related antioxidative and anti-inflammatory mechanisms in mice. Heliyon 2024; 10:e32623. [PMID: 38975173 PMCID: PMC11225750 DOI: 10.1016/j.heliyon.2024.e32623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Diabetic neuropathy (DN) represents a common and debilitating complication of diabetes, affecting a significant proportion of patients. Despite available treatments focusing on symptom management, there remains an unmet need for therapies that address the underlying pathophysiology. In pursuit of novel interventions, this study evaluated the therapeutic effects of caffeic acid-a natural phenolic compound prevalent in various foods-on diabetic neuropathy using a mouse model, particularly examining its interaction with the Insulin-like Growth Factor 1 (IGF-1) signaling pathway. Caffeic acid was administered orally at two dosages (5 mg/kg and 10 mg/kg), and a comprehensive set of outcomes including fasting blood glucose levels, body weight, sensory behavior, spinal cord oxidative stress markers, inflammatory cytokines, and components of the IGF-1 signaling cascade were assessed. Additionally, to determine the specific contribution of IGF-1 signaling to the observed benefits, IGF1R inhibitor Picropodophyllin (PPP) was co-administered with caffeic acid. Our results demonstrated that caffeic acid, at both dosages, effectively reduced hyperglycemia and alleviated sensory behavioral deficits in diabetic mice. This was accompanied by a marked decrease in oxidative stress markers and an increase in antioxidant enzyme activities within the spinal cord. Significantly lowered microglial activation and inflammatory cytokine expression highlighted the potent antioxidative and anti-inflammatory effects of caffeic acid. Moreover, increases in both serum and spinal levels of IGF-1, along with elevated phosphorylated IGF1R, implicated the IGF-1 signaling pathway as a mediator of caffeic acid's neuroprotective actions. The partial reversal of caffeic acid's benefits by PPP substantiated the pivotal engagement of IGF-1 signaling in mediating its effects. Our findings delineate the capability of caffeic acid to mitigate DN symptoms, particularly through reducing spinal oxidative stress and inflammation, and pinpoint the integral role of IGF-1 signaling in these protective mechanisms. The insights gleaned from this study not only position caffeic acid as a promising dietary adjunct for managing diabetic neuropathy but also highlight the therapeutic potential of targeting spinal IGF-1 signaling as part of a strategic treatment approach.
Collapse
Affiliation(s)
- Leina Hou
- Department of Anesthesiology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Jiaqi Ma
- Department of Radiology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Xugang Feng
- Department of General Surgery, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Jing Chen
- Department of Medical Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, 710049, China
| | - Bu-huai Dong
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| | - Li Xiao
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| | - Xi Zhang
- Department of Pediatric Neurology, Northwest Women and Children's Hospital, Xi'an, 710049, China
| | - Bin Guo
- Department of Anesthesiology, Xi'an Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, 710049, China
| |
Collapse
|
13
|
Li JJ, Sun WD, Zhu XJ, Mei YZ, Li WS, Li JH. Nicotinamide N-Methyltransferase (NNMT): A New Hope for Treating Aging and Age-Related Conditions. Metabolites 2024; 14:343. [PMID: 38921477 PMCID: PMC11205546 DOI: 10.3390/metabo14060343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The complex process of aging leads to a gradual deterioration in the function of cells, tissues, and the entire organism, thereby increasing the risk of disease and death. Nicotinamide N-methyltransferase (NNMT) has attracted attention as a potential target for combating aging and its related pathologies. Studies have shown that NNMT activity increases over time, which is closely associated with the onset and progression of age-related diseases. NNMT uses S-adenosylmethionine (SAM) as a methyl donor to facilitate the methylation of nicotinamide (NAM), converting NAM into S-adenosyl-L-homocysteine (SAH) and methylnicotinamide (MNA). This enzymatic action depletes NAM, a precursor of nicotinamide adenine dinucleotide (NAD+), and generates SAH, a precursor of homocysteine (Hcy). The reduction in the NAD+ levels and the increase in the Hcy levels are considered important factors in the aging process and age-related diseases. The efficacy of RNA interference (RNAi) therapies and small-molecule inhibitors targeting NNMT demonstrates the potential of NNMT as a therapeutic target. Despite these advances, the exact mechanisms by which NNMT influences aging and age-related diseases remain unclear, and there is a lack of clinical trials involving NNMT inhibitors and RNAi drugs. Therefore, more in-depth research is needed to elucidate the precise functions of NNMT in aging and promote the development of targeted pharmaceutical interventions. This paper aims to explore the specific role of NNMT in aging, and to evaluate its potential as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Hua Li
- Physical Education College, Jiangxi Normal University, Nanchang 330022, China; (J.-J.L.); (W.-D.S.); (X.-J.Z.); (Y.-Z.M.); (W.-S.L.)
| |
Collapse
|
14
|
Song F, Hu Y, Hong Y, Sun H, Han Y, Mao Y, Wu W, Li G, Wang Y. Deletion of endothelial IGFBP5 protects against ischaemic hindlimb injury by promoting angiogenesis. Clin Transl Med 2024; 14:e1725. [PMID: 38886900 PMCID: PMC11182737 DOI: 10.1002/ctm2.1725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Angiogenesis is critical for forming new blood vessels from antedating vascular vessels. The endothelium is essential for angiogenesis, vascular remodelling and minimisation of functional deficits following ischaemia. The insulin-like growth factor (IGF) family is crucial for angiogenesis. Insulin-like growth factor-binding protein 5 (IGFBP5), a binding protein of the IGF family, may have places in angiogenesis, but the mechanisms are not yet completely understood. We sought to probe whether IGFBP5 is involved in pathological angiogenesis and uncover the molecular mechanisms behind it. METHODS AND RESULTS IGFBP5 expression was elevated in the vascular endothelium of gastrocnemius muscle from critical limb ischaemia patients and hindlimb ischaemic (HLI) mice and hypoxic human umbilical vein endothelial cells (HUVECs). In vivo, loss of endothelial IGFBP5 (IGFBP5EKO) facilitated the recovery of blood vessel function and limb necrosis in HLI mice. Moreover, skin damage healing and aortic ring sprouting were faster in IGFBP5EKO mice than in control mice. In vitro, the genetic inhibition of IGFBP5 in HUVECs significantly promoted tube formation, cell proliferation and migration by mediating the phosphorylation of IGF1R, Erk1/2 and Akt. Intriguingly, pharmacological treatment of HUVECs with recombinant human IGFBP5 ensued a contrasting effect on angiogenesis by inhibiting the IGF1 or IGF2 function. Genetic inhibition of IGFBP5 promoted cellular oxygen consumption and extracellular acidification rates via IGF1R-mediated glycolytic adenosine triphosphate (ATP) metabolism. Mechanistically, IGFBP5 exerted its role via E3 ubiquitin ligase Von Hippel-Lindau (VHL)-regulated HIF1α stability. Furthermore, the knockdown of the endothelial IGF1R partially abolished the reformative effect of IGFBP5EKO mice post-HLI. CONCLUSION Our findings demonstrate that IGFBP5 ablation enhances angiogenesis by promoting ATP metabolism and stabilising HIF1α, implying IGFBP5 is a novel therapeutic target for treating abnormal angiogenesis-related conditions.
Collapse
Affiliation(s)
- Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yu Hu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yi‐Xiang Hong
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Hu Sun
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yue Han
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Yi‐Jie Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
| | - Wei‐Yin Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen UniversityXiamenChina
- Xiamen Key Laboratory of Cardiovascular DiseasesXiamenChina
| |
Collapse
|
15
|
Xu XY, Wang JX, Chen JL, Dai M, Wang YM, Chen Q, Li YH, Zhu GQ, Chen AD. GLP-1 in the Hypothalamic Paraventricular Nucleus Promotes Sympathetic Activation and Hypertension. J Neurosci 2024; 44:e2032232024. [PMID: 38565292 PMCID: PMC11112640 DOI: 10.1523/jneurosci.2032-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and its analogs are widely used for diabetes treatment. The paraventricular nucleus (PVN) is crucial for regulating cardiovascular activity. This study aims to determine the roles of GLP-1 and its receptors (GLP-1R) in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male normotensive rats and spontaneously hypertensive rats (SHR). Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. GLP-1 and GLP-1R expressions were present in the PVN. PVN microinjection of GLP-1R agonist recombinant human GLP-1 (rhGLP-1) or EX-4 increased RSNA and MAP, which were prevented by GLP-1R antagonist exendin 9-39 (EX9-39) or GLP-1R antagonist 1, superoxide scavenger tempol, antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor apocynin, adenylyl cyclase (AC) inhibitor SQ22536 or protein kinase A (PKA) inhibitor H89. PVN microinjection of rhGLP-1 increased superoxide production, NADPH oxidase activity, cAMP level, AC, and PKA activity, which were prevented by SQ22536 or H89. GLP-1 and GLP-1R were upregulated in the PVN of SHR. PVN microinjection of GLP-1 agonist increased RSNA and MAP in both WKY and SHR, but GLP-1 antagonists caused greater effects in reducing RSNA and MAP in SHR than in WKY. The increased superoxide production and NADPH oxidase activity in the PVN of SHR were augmented by GLP-1R agonists but attenuated by GLP-1R antagonists. These results indicate that activation of GLP-1R in the PVN increased sympathetic outflow and blood pressure via cAMP-PKA-mediated NADPH oxidase activation and subsequent superoxide production. GLP-1 and GLP-1R upregulation in the PVN partially contributes to sympathetic overactivity and hypertension.
Collapse
Affiliation(s)
- Xiao-Yu Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Liu Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Min Dai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yi-Ming Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Ai-Dong Chen
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
16
|
Lutfy RH, Essawy AE, Mohammed HS, Shakweer MM, Salam SA. Transcranial Irradiation Mitigates Paradoxical Sleep Deprivation Effect in an Age-Dependent Manner: Role of BDNF and GLP-1. Neurochem Res 2024; 49:919-934. [PMID: 38114728 PMCID: PMC10902205 DOI: 10.1007/s11064-023-04071-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
The growing prevalence of aged sleep-deprived nations is turning into a pandemic state. Acute sleep deprivation (SD) accompanies aging, changing the hippocampal cellular pattern, neurogenesis pathway expression, and aggravating cognitive deterioration. The present study investigated the ability of Near Infra Red (NIR) light laser to ameliorate cognitive impairment induced by SD in young and senile rats. Wistar rats ≤ 2 months (young) and ≥ 14 months (senile) were sleep-deprived for 72 h with or without transcranial administration of NIR laser of 830 nm. Our results showed that NIR photobiomodulation (PBM) attenuated cognitive deterioration made by SD in young, but not senile rats, while both sleep-deprived young and senile rats exhibited decreased anxiety (mania)-like behavior in response to PBM. NIR PBM had an inhibitory effect on AChE, enhanced the production of ACh, attenuated ROS, and regulated cell apoptosis factors such as Bax and Bcl-2. NIR increased mRNA expression of BDNF and GLP-1 in senile rats, thus facilitating neuronal survival and differentiation. The present findings also revealed that age exerts an additive factor to the cellular assaults produced by SD where hippocampal damages made in 2-month rats were less severe than those of the aged one. In conclusion, NIR PBM seems to promote cellular longevity of senile hippocampal cells by combating ROS, elevating neurotrophic factors, thus improving cognitive performance. The present findings provide NIR as a possible candidate for hippocampal neuronal insults accompanying aging and SD.
Collapse
Affiliation(s)
- Radwa H Lutfy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, 11829, Egypt
| | - Amina E Essawy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Haitham S Mohammed
- Department of Biophysics, Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa M Shakweer
- Department of Pathology, Faculty of Medicine, Badr University in Cairo (BUC), Cairo, Egypt
- Department of Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sherine Abdel Salam
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt.
| |
Collapse
|
17
|
Wu R, Xiong Y, Gu Y, Cao LY, Zhang SY, Song ZX, Fan P, Lin L. Traditional Pediatric Massage Enhanced Hippocampal GR, BDNF and IGF-1 Expressions and Exerted an Anti-depressant Effect in an Adolescent Rat Model of CUMS-induced Depression. Neuroscience 2024; 542:47-58. [PMID: 38364964 DOI: 10.1016/j.neuroscience.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
This study aimed to investigate the anti-depressant effect of traditional pediatric massage (TPM) in adolescent rats and its possible mechanism. The adolescent depression model in rats was established by using chronic unpredictable mild stress (CUMS). All rats were randomly divided into five groups (seven per group), including the groups of control (CON), CUMS, CUMS with TPM, CUMS with back stroking massage (BSM) and CUMS with fluoxetine (FLX). The tests of sucrose preference, Morris water maze and elevated plus maze were used to evaluate depression-related behaviors. Plasma corticosterone (CORT) level was measured by ELISA. The gene and protein expressions of glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) were measured by RT-qPCR and IHC respectively. The results showed that CUMS induced depression-related behaviors in the adolescent rats, along with decreased weight gain and reduced hippocampal expressions of GR, IGF-1 and BDNF. TPM could effectively prevent depression-related behaviors in CUMS-exposed adolescent rats, manifested as increasing weight gain, sucrose consumption, ratio of open-arm entry, times of crossing the specific quadrant and shortening escape latency. TPM also decreased CORT level in plasma, together with enhancing expressions of GR, IGF-1 and BDNF in the hippocampus. These results may support the clinical application of TPM to prevent and treat adolescent depression.
Collapse
Affiliation(s)
- Rong Wu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Xiong
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Yun Gu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, China
| | - Li-Yue Cao
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Ying Zhang
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Xiu Song
- College of Health and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pu Fan
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lin Lin
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Mohan S, Alhazmi HA, Hassani R, Khuwaja G, Maheshkumar VP, Aldahish A, Chidambaram K. Role of ferroptosis pathways in neuroinflammation and neurological disorders: From pathogenesis to treatment. Heliyon 2024; 10:e24786. [PMID: 38314277 PMCID: PMC10837572 DOI: 10.1016/j.heliyon.2024.e24786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
Ferroptosis is a newly discovered non-apoptotic and iron-dependent type of cell death. Ferroptosis mainly takes place owing to the imbalance of anti-oxidation and oxidation in the body. It is regulated via a number of factors and pathways both inside and outside the cell. Ferroptosis is closely linked with brain and various neurological disorders (NDs). In the human body, the brain contains the highest levels of polyunsaturated fatty acids, which are known as lipid peroxide precursors. In addition, there is also a connection of glutathione depletion and lipid peroxidation with NDs. There is growing evidence regarding the possible link between neuroinflammation and multiple NDs, such as Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, Huntington's disease, and stroke. Recent studies have demonstrated that disruptions of lipid reactive oxygen species (ROS), glutamate excitatory toxicity, iron homeostasis, and various other manifestations linked with ferroptosis can be identified in various neuroinflammation-mediated NDs. It has also been reported that damage-associated molecular pattern molecules including ROS are generated during the events of ferroptosis and can cause glial activation via activating neuroimmune pathways, which subsequently leads to the generation of various inflammatory factors that play a role in various NDs. This review summarizes the regulation pathways of ferroptosis, the link between ferroptosis as well as inflammation in NDs, and the potential of a range of therapeutic agents that can be used to target ferroptosis and inflammation in the treatment of neurological disorders.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Rym Hassani
- Department of Mathematics, University College AlDarb, Jazan University, Jazan, Saudi Arabia
| | - Gulrana Khuwaja
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - V P Maheshkumar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, Tamil Nadu, India
| | - Afaf Aldahish
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
19
|
Chen F, Lu K, Bai N, Hao Y, Wang H, Zhao X, Yue F. Oral administration of ellagic acid mitigates perioperative neurocognitive disorders, hippocampal oxidative stress, and neuroinflammation in aged mice by restoring IGF-1 signaling. Sci Rep 2024; 14:2509. [PMID: 38291199 PMCID: PMC10827749 DOI: 10.1038/s41598-024-53127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
This study investigates the potential of ellagic acid (EA), a phytochemical with antioxidant and anti-inflammatory properties, in managing perioperative neurocognitive disorders (PND). PND, which represents a spectrum of cognitive impairments often faced by elderly patients, is principally linked to surgical and anesthesia procedures, and heavily impacted by oxidative stress in the hippocampus and microglia-induced neuroinflammation. Employing an aged mice model subjected to abdominal surgery, we delve into EA's ability to counteract postoperative oxidative stress and cerebral inflammation by engaging the Insulin-like growth factor-1 (IGF-1) pathway. Our findings revealed that administering EA orally notably alleviated post-surgical cognitive decline in older mice, a fact that was manifested in improved performance during maze tests. This enhancement in the behavioral performance of the EA-treated mice corresponded with the rejuvenation of IGF-1 signaling, a decrease in oxidative stress markers in the hippocampus (like MDA and carbonylated protein), and an increase in the activity of antioxidant enzymes such as SOD and CAT. Alongside these, we observed a decrease in microglia-driven neuroinflammation in the hippocampus, thus underscoring the antioxidant and anti-inflammatory roles of EA. Interestingly, when EA was given in conjunction with an IGF1R inhibitor, these benefits were annulled, accentuating the pivotal role that the IGF-1 pathway plays in the neuroprotective potential of EA. Hence, EA could serve as a potent candidate for safeguarding against PND in older patients by curbing oxidative stress and neuroinflammation through the activation of the IGF-1 pathway.
Collapse
Affiliation(s)
- Fang Chen
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Kai Lu
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Ning Bai
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Yabo Hao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Hui Wang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Xinrong Zhao
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China
| | - Fang Yue
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, The Third Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
20
|
Wang Q, Jiang T, Li R, Zheng T, Han Q, Wang M. Whether serum leptin and insulin-like growth factor-1 are predictive biomarkers for post-stroke depression: A meta-analysis and systematic review. J Psychiatr Res 2024; 169:347-354. [PMID: 38091723 DOI: 10.1016/j.jpsychires.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 01/15/2024]
Abstract
Leptin and insulin-like growth factor-1 (IGF-1) may play a role in clinical identification of post-stroke depression (PSD). Here, eight databases (including CNKI, Wanfang, SinoMed, VIP, PubMed, the Cochrane Library, Embase, and the Web of Science) were employed to search for studies on serum leptin and insulin-like growth factor-1 expression levels in patients with PSD. In total, 13 articles were included, of which 6 studies investigated the expression level of serum leptin in patients with PSD, 7 studies explored the serum IGF-1 in PSD patients. Then, the RevMan 5.4 software was used for meta-analysis. The results showed that serum leptin levels were significantly higher in PSD patients than in patients without PSD (SMD = 1.54, 95% CI: 0.84, 2.23; P = 0.006). The result of subgroup analysis showed that the serum leptin levels in PSD patients were significantly higher than those without PSD in acute phase (SMD = 1.38, 95% CI: 0.04, 2.71; P = 0.04), subacute phase (SMD = 2.31, 95% CI: 0.88, 3.73; P = 0.001), and chronic phase (SMD = 1.02, 95% CI: 0.43, 1.60; P = 0.0007); There was no significant difference in serum IGF-1 level between PSD patients and patients without PSD (SMD = 0.49, 95% CI: -0.55, 1.52; P = 0.36). Moreover, the subgroup analysis also showed that there was no statistical difference in acute stage (SMD = 0.36, 95% CI: 0.89, 1.60; P = 0.57). Our study provides evidence to prove that serum leptin level has potential clinical application value as biomarkers for identifying PSD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Taotao Jiang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Rundong Li
- Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Ting Zheng
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730030, China
| | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
21
|
Wan T, Zhang FS, Qin MY, Jiang HR, Zhang M, Qu Y, Wang YL, Zhang PX. Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment - Molecular mechanisms and delivery platforms. Biomed Pharmacother 2024; 170:116024. [PMID: 38113623 DOI: 10.1016/j.biopha.2023.116024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Bioactive macromolecular drugs known as Growth Factors (GFs), approved by the Food and Drug Administration (FDA), have found successful application in clinical practice. They hold significant promise for addressing peripheral nerve injuries (PNIs). Peripheral nerve guidance conduits (NGCs) loaded with GFs, in the context of tissue engineering, can ensure sustained and efficient release of these bioactive compounds. This, in turn, maintains a stable, long-term, and effective GF concentration essential for treating damaged peripheral nerves. Peripheral nerve regeneration is a complex process that entails the secretion of various GFs. Following PNI, GFs play a pivotal role in promoting nerve cell growth and survival, axon and myelin sheath regeneration, cell differentiation, and angiogenesis. They also regulate the regenerative microenvironment, stimulate plasticity changes post-nerve injury, and, consequently, expedite nerve structure and function repair. Both exogenous and endogenous GFs, including NGF, BDNF, NT-3, GDNF, IGF-1, bFGF, and VEGF, have been successfully loaded onto NGCs using techniques like physical adsorption, blend doping, chemical covalent binding, and engineered transfection. These approaches have effectively promoted the repair of peripheral nerves. Numerous studies have demonstrated similar tissue functional therapeutic outcomes compared to autologous nerve transplantation. This evidence underscores the substantial clinical application potential of GFs in the domain of peripheral nerve repair. In this article, we provide an overview of GFs in the context of peripheral nerve regeneration and drug delivery systems utilizing NGCs. Looking ahead, commercial materials for peripheral nerve repair hold the potential to facilitate the effective regeneration of damaged peripheral nerves and maintain the functionality of distant target organs through the sustained release of GFs.
Collapse
Affiliation(s)
- Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Ming-Yu Qin
- Suzhou Medical College, Soochow University, Suzhou 215026, China
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yang Qu
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing 100044, China; Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China; National Centre for Trauma Medicine, Beijing 100044, China; Peking University People's Hospital Qingdao Hospital, Qingdao 266000, China.
| |
Collapse
|
22
|
Abstract
Rett syndrome is a neurodevelopmental disorder caused by loss-of-function mutations in the methyl-CpG binding protein-2 (MeCP2) gene that is characterized by epilepsy, intellectual disability, autistic features, speech deficits, and sleep and breathing abnormalities. Neurologically, patients with all three disorders display microcephaly, aberrant dendritic morphology, reduced spine density, and an imbalance of excitatory/inhibitory signaling. Loss-of-function mutations in the cyclin-dependent kinase-like 5 (CDKL5) and FOXG1 genes also cause similar behavioral and neurobiological defects and were referred to as congenital or variant Rett syndrome. The relatively recent realization that CDKL5 deficiency disorder (CDD), FOXG1 syndrome, and Rett syndrome are distinct neurodevelopmental disorders with some distinctive features have resulted in separate focus being placed on each disorder with the assumption that distinct molecular mechanisms underlie their pathogenesis. However, given that many of the core symptoms and neurological features are shared, it is likely that the disorders share some critical molecular underpinnings. This review discusses the possibility that deregulation of common molecules in neurons and astrocytes plays a central role in key behavioral and neurological abnormalities in all three disorders. These include KCC2, a chloride transporter, vGlut1, a vesicular glutamate transporter, GluD1, an orphan-glutamate receptor subunit, and PSD-95, a postsynaptic scaffolding protein. We propose that reduced expression or activity of KCC2, vGlut1, PSD-95, and AKT, along with increased expression of GluD1, is involved in the excitatory/inhibitory that represents a key aspect in all three disorders. In addition, astrocyte-derived brain-derived neurotrophic factor (BDNF), insulin-like growth factor 1 (IGF-1), and inflammatory cytokines likely affect the expression and functioning of these molecules resulting in disease-associated abnormalities.
Collapse
Affiliation(s)
- Santosh R D’Mello
- Department of Biological Sciences, Louisiana State University Shreveport, Shreveport, LA 71104, USA
| |
Collapse
|
23
|
Giri A, Mehan S, Khan Z, Gupta GD, Narula AS. Melatonin-mediated IGF-1/GLP-1 activation in experimental OCD rats: Evidence from CSF, blood plasma, brain and in-silico investigations. Biochem Pharmacol 2023; 217:115831. [PMID: 37777162 DOI: 10.1016/j.bcp.2023.115831] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition characterized by intrusive, repetitive thoughts and behaviors. Our study uses a validated 8-OH-DPAT-induced experimental model of OCD in rodents. We focus on the modulatory effects of Insulin-like growth factor-1 (IGF-1) and glucagon-like peptide-1 (GLP-1), which are linked to neurodevelopment and survival. Current research investigates melatonin, a molecule with neuroprotective properties and multiple functions. Melatonin has beneficial effects on various illnesses, including Alzheimer's, Parkinson's, and depression, indicating its potential efficacy in treating OCD. In the present study, we employed two doses of melatonin, 5 mg/kg and 10 mg/kg, demonstrating a dose-dependent effect on 8-OH-DPAT-induced rat changes. In addition, the melatonin antagonist luzindole 5 mg/kg was utilized to compare and validate the efficacy of melatonin. In-silico studies alsocontribute to understanding the activation of IGF-1/GLP-1 pathways by melatonin. Current research indicates restoring neurochemical measurements on various biological samples (brain homogenates, CSF, and blood plasma) and morphological and histological analyses. In addition, the current research seeks to increase understanding of OCD and investigate potential new treatment strategies. Therefore, it is evident from the aforementioned research that the protective effect of melatonin can serve as a strong basis for developing a new OCD treatment by upregulating IGF-1 and GLP-1 levels. The primary focus of current study revolves around the examination of melatonin as an activator of IGF-1/GLP-1, with the aim of potentially mitigating behavioral, neurochemical, and histopathological abnormalities in an experimental model of obsessive-compulsive disorder caused by 8-OH-DPAT in adult Wistar rats.
Collapse
Affiliation(s)
- Aditi Giri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
24
|
Masliukov PM. Changes of Signaling Pathways in Hypothalamic Neurons with Aging. Curr Issues Mol Biol 2023; 45:8289-8308. [PMID: 37886966 PMCID: PMC10605528 DOI: 10.3390/cimb45100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR), mitogen activated protein kinase (MAPK), janus kinase (JAK)/signal transducer and activator of transcription (STAT), AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), and nitric oxide (NO). In the current review, I have summarized the current understanding of the changes in the above-mentioned pathways in aging with a focus on hypothalamic alterations.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, ul. Revoliucionnaya 5, 150000 Yaroslavl, Russia
| |
Collapse
|
25
|
Lee Q, Han X, Zheng M, Lv F, Liu B, Zeng F. Preparation of low molecular weight polysaccharides from Tremella fuciformis by ultrasonic-assisted H 2O 2-Vc method: Structural characteristics, in vivo antioxidant activity and stress resistance. ULTRASONICS SONOCHEMISTRY 2023; 99:106555. [PMID: 37582309 PMCID: PMC10448212 DOI: 10.1016/j.ultsonch.2023.106555] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023]
Abstract
Different methods were used to degrade Tremella fuciformis polysaccharides (TFP) and prepare low molecular weight polysaccharides of Tremella fuciformis (TFLP) to improve their bioavailability. It was found that the TFLP prepared by ultrasonic-assisted H2O2-Vc method showed the highest level of antioxidant activity and stress resistance in C. elegans. The structural characteristics, in vivo antioxidant and stress resistance of TFLP-1 were evaluated after isolation and purification of TFLP, it was found that TFLP-1 was an acid polysaccharide with a molecular weight of 75770 Da, which mainly composed of mannose. Meanwhile, it could regulate the antioxidant activity and stress resistance in C. elegans by upregulating the transcription of fat-5, fat-7, acs-2, glp-1, hsf-1, hsp-1, mtl-1, nhr-49, skn-1 and sod-3 mRNA. The improvement effects were closely related to the significant regulation of galactose metabolism, alpha linolenic acid metabolism, and pantothenate and CoA biosynthesis metabolic pathways. These results provided insights into the high value application of Tremella fuciformis in the food industry and the development of antioxidant related functional foods.
Collapse
Affiliation(s)
- Quancen Lee
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianjing Han
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingfeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
26
|
Rodriguez M, Owens F, Perry M, Stone N, Soler Y, Almohtadi R, Zhao Y, Batrakova EV, El-Hage N. Implication of the Autophagy-Related Protein Beclin1 in the Regulation of EcoHIV Replication and Inflammatory Responses. Viruses 2023; 15:1923. [PMID: 37766329 PMCID: PMC10537636 DOI: 10.3390/v15091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The protein Beclin1 (BECN1, a mammalian homologue of ATG6 in yeast) plays an important role in the initiation and the normal process of autophagy in cells. Moreover, we and others have shown that Beclin1 plays an important role in viral replication and the innate immune signaling pathways. We previously used the cationic polymer polyethyleneimine (PEI) conjugated to mannose (Man) as a non-viral tool for the delivery of a small interfering (si) Beclin1-PEI-Man nanoplex, which specifically targets mannose receptor-expressing glia (microglia and astrocytes) in the brain when administered intranasally to conventional mice. To expand our previous reports, first we used C57BL/6J mice infected with EcoHIV and exposed them to combined antiretroviral therapy (cART). We show that EcoHIV enters the mouse brain, while intranasal delivery of the nanocomplex significantly reduces the secretion of HIV-induced inflammatory molecules and downregulates the expression of the transcription factor nuclear factor (NF)-kB. Since a spectrum of neurocognitive and motor problems can develop in people living with HIV (PLWH) despite suppressive antiretroviral therapy, we subsequently measured the role of Beclin1 in locomotor activities using EcoHIV-infected BECN1 knockout mice exposed to cART. Viral replication and cytokine secretion were reduced in the postmortem brains recovered from EcoHIV-infected Becn1+/- mice when compared to EcoHIV-infected Becn1+/+ mice, although the impairment in locomotor activities based on muscle strength were comparable. This further highlights the importance of Beclin1 in the regulation of HIV replication and in viral-induced cytokine secretion but not in HIV-induced locomotor impairments. Moreover, the cause of HIV-induced locomotor impairments remains speculative, as we show that this may not be entirely due to viral load and/or HIV-induced inflammatory cytokines.
Collapse
Affiliation(s)
- Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Florida Owens
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Marissa Perry
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Nicole Stone
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Yemmy Soler
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Rianna Almohtadi
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (E.V.B.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (E.V.B.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (M.R.); (F.O.); (M.P.); (N.S.); (Y.S.); (R.A.)
| |
Collapse
|
27
|
Rashchupkin IM, Shevela EY, Maksimova AA, Tikhonova MA, Ostanin AA, Chernykh ER. Effect of Differently Polarized Human Macrophages on the SH-SY5Y Cells Damaged by Ischemia and Hypoxia In Vitro. J Immunol Res 2023; 2023:5595949. [PMID: 37692837 PMCID: PMC10484653 DOI: 10.1155/2023/5595949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Abstract
Macrophages are the major cells of innate immunity with a wide range of biological effects due to their great plasticity and heterogeneity. Macrophages play a key role in neuroregeneration following nervous tissue injury. However, the neuroregenerative potential of various macrophage phenotypes, including those polarized by efferocytosis, remains unexplored. The aim of this study was to compare the neuroregenerative and neuroprotective activity of soluble factors secreted by variously activated human macrophages on the functions of neural progenitors in an in vitro model of ischemia or ischemia/hypoxia. Macrophages were polarized by interferon-γ (M1), IL-4 (M2a), or interaction with apoptotic cells (M2(LS)). The effect of macrophages conditioned media on the proliferation, differentiation, and survival of SH-SY5Y cells damaged by serum deprivation alone (ischemic conditions) or in combination with CoCl2 (ischemic/hypoxic conditions) was assessed. All studied macrophages stimulated the proliferation and differentiation of SH-SY5Y cells. On day 3, the pro-proliferating effect of M1 and M2 was similar and did not depend on the severity of the damaging effect (ischemia or ischemia/hypoxia), while on day 7 and under ischemic/hypoxic conditions, the effects of M2(LS) exceeded those of M1 and M2a cells. The prodifferentiation effects of macrophages were manifested in both short- and long-term cultures, mainly under ischemic/hypoxic conditions, and were most characteristic of M2(LS) cells. Importantly, the ischemia/hypoxia model was accompanied by the pronounced death of SH-SY5Y cells. Only macrophages with the M2 phenotype demonstrated antiapoptotic activity, and the effect of M2(LS) was higher than that of M2a. The results obtained indicate that human macrophages have neuroprotective and neuroregenerative activity, which is mediated by soluble factors, is most characteristic for macrophages activated by efferocytosis (M2(LS)), and is most prominent under in vitro conditions simulating the combined effect of ischemia/hypoxia.
Collapse
Affiliation(s)
| | | | | | | | | | - Elena Removna Chernykh
- Scientific Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| |
Collapse
|
28
|
Szałach ŁP, Lisowska KA, Cubała WJ, Barbuti M, Perugi G. The immunomodulatory effect of lithium as a mechanism of action in bipolar disorder. Front Neurosci 2023; 17:1213766. [PMID: 37662097 PMCID: PMC10469704 DOI: 10.3389/fnins.2023.1213766] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Bipolar disorder (BD) is a chronic mental disorder characterized by recurrent episodes of mania and depression alternating with periods of euthymia. Although environmental and genetic factors have been described, their pathogenesis is not fully understood. Much evidence suggests a role for inflammatory mediators and immune dysregulation in the development of BD. The first-line treatment in BD are mood-stabilizing agents, one of which is lithium (Li) salts. The Li mechanism of action is not fully understood, but it has been proposed that its robust immunomodulatory properties might be one of the mechanisms responsible for its effectiveness. In this article, the authors present the current knowledge about immune system changes accompanying BD, as well as the immunomodulatory effect of lithium. The results of studies describing connections between immune system changes and lithium effectiveness are often incoherent. Further research is needed to understand the connection between immune system modulation and the therapeutic action of lithium in BD.
Collapse
Affiliation(s)
- Łukasz P. Szałach
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna A. Lisowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Wiesław J. Cubała
- Department of Psychiatry, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Margherita Barbuti
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulio Perugi
- Psychiatry Unit 2, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
29
|
Gautam RK, Unnisa A, Greig NH, Kamal MA. Current update on management strategies for neurological and psychological disorders. Neurosci Biobehav Rev 2023; 149:105128. [PMID: 36921703 PMCID: PMC11335025 DOI: 10.1016/j.neubiorev.2023.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Rupesh K Gautam
- Department of Pharmacology, Indore Institute of Pharmacy, Rau, Indore 453331, India
| | - Aziz Unnisa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Kingdom of Saudi Arabia
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia.
| |
Collapse
|
30
|
El-Hage N, Haney MJ, Zhao Y, Rodriguez M, Wu Z, Liu M, Swain CJ, Yuan H, Batrakova EV. Extracellular Vesicles Released by Genetically Modified Macrophages Activate Autophagy and Produce Potent Neuroprotection in Mouse Model of Lysosomal Storage Disorder, Batten Disease. Cells 2023; 12:1497. [PMID: 37296618 PMCID: PMC10252192 DOI: 10.3390/cells12111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Over the recent decades, the use of extracellular vesicles (EVs) has attracted considerable attention. Herein, we report the development of a novel EV-based drug delivery system for the transport of the lysosomal enzyme tripeptidyl peptidase-1 (TPP1) to treat Batten disease (BD). Endogenous loading of macrophage-derived EVs was achieved through transfection of parent cells with TPP1-encoding pDNA. More than 20% ID/g was detected in the brain following a single intrathecal injection of EVs in a mouse model of BD, ceroid lipofuscinosis neuronal type 2 (CLN2) mice. Furthermore, the cumulative effect of EVs repetitive administrations in the brain was demonstrated. TPP1-loaded EVs (EV-TPP1) produced potent therapeutic effects, resulting in efficient elimination of lipofuscin aggregates in lysosomes, decreased inflammation, and improved neuronal survival in CLN2 mice. In terms of mechanism, EV-TPP1 treatments caused significant activation of the autophagy pathway, including altered expression of the autophagy-related proteins LC3 and P62, in the CLN2 mouse brain. We hypothesized that along with TPP1 delivery to the brain, EV-based formulations can enhance host cellular homeostasis, causing degradation of lipofuscin aggregates through the autophagy-lysosomal pathway. Overall, continued research into new and effective therapies for BD is crucial for improving the lives of those affected by this condition.
Collapse
Affiliation(s)
- Nazira El-Hage
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (N.E.-H.); (M.R.)
| | - Matthew J. Haney
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Yuling Zhao
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (N.E.-H.); (M.R.)
| | - Zhanhong Wu
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (Z.W.); (H.Y.)
| | - Mori Liu
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Carson J. Swain
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| | - Hong Yuan
- Department of Radiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; (Z.W.); (H.Y.)
| | - Elena V. Batrakova
- Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.J.H.); (Y.Z.)
- Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (M.L.); (C.J.S.)
| |
Collapse
|
31
|
Zhou J, Lin S, Hu Q, Li X, Chen X, Luo L, Ye S, Liu W, Ye J. Microglial CD11b Knockout Contributes to Axonal Debris Clearance and Axonal Degradation Attenuation via IGF-1 After Acute Optic Nerve Injury. Invest Ophthalmol Vis Sci 2023; 64:7. [PMID: 37145604 PMCID: PMC10168008 DOI: 10.1167/iovs.64.5.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Purpose Microglial clearance of axonal debris is an essential response for management of traumatic optic neuropathy. Inadequate removal of axonal debris leads to increased inflammation and axonal degeneration after traumatic optic neuropathy. The present study investigated the role of CD11b (Itgam) in axonal debris clearance and axonal degeneration. Methods Western blot and immunofluorescence were used to detect CD11b expression in the mouse optic nerve crush (ONC) model. Bioinformatics analysis predicted the possible role of CD11b. Cholera toxin subunit B (CTB) and zymosan were used to assay phagocytosis by microglia in vivo and in vitro, respectively. CTB was also used to label functionally intact axons after ONC. Results CD11b is abundantly expressed after ONC and participates in phagocytosis. Microglia from Itgam-/- mice exhibited more significant phagocytosis of axonal debris than wild-type microglia. In vitro experiments confirmed that the CD11b gene defect in M2 microglia leads to increased insulin-like growth factor-1 secretion and thus promotes phagocytosis. Lastly, following ONC, Itgam-/- mice exhibited elevated expression of neurofilament heavy peptide and Tuj1, along with more intact CTB-labeled axons when compared with wild-type mice. Moreover, the inhibition of insulin-like growth factor-1 decreased CTB labeling in Itgam-/- mice after injury. Conclusions CD11b limits microglial phagocytosis of axonal debris in traumatic optic neuropathy, as demonstrated by increased phagocytosis with CD11b knockout. The inhibition of CD11b activity may be a novel approach to promote central nerve repair.
Collapse
Affiliation(s)
- Jiaxing Zhou
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sen Lin
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiumei Hu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xue Li
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xi Chen
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linlin Luo
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiyang Ye
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center of PLA, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
32
|
Villoslada P, Masso M, Paris S, Hutchings S, Koch A. A Phase 1 randomized study on the safety and pharmacokinetics of OCS-05, a neuroprotective disease modifying treatment for Acute Optic Neuritis and Multiple Sclerosis. Sci Rep 2023; 13:5099. [PMID: 36991169 PMCID: PMC10060579 DOI: 10.1038/s41598-023-32278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
OCS-05 (aka BN201) is a peptidomimetic that binds to serum glucocorticoid kinase-2 (SGK2), displaying neuroprotective activity. The objective of this randomized, double-blind 2-part study was to test safety and pharmacokinetics of OCS-05 administered by intravenous (i.v.) infusion in healthy volunteers. Subjects (n = 48) were assigned to receive placebo (n = 12) or OCS-05 (n = 36). , Doses tested were 0.05, 0.2, 0.4, 0.8, 1.6, 2.4 and 3.2 mg/kg in the single ascending dose (SAD) part. In the multiple ascending dose (MAD) part, 2.4 and 3.0 mg/kg doses were administered with 2 h i.v. infusion for 5 consecutive days. Safety assessments included adverse events, blood tests, ECG, Holter monitoring, brain MRI and EEG. No serious adverse events were reported in the OCS-05 group (there was one serious adverse event in the placebo group). Adverse events reported in the MAD part were not clinically significant, and no changes on the ECG, EEG or brain MRI were observed. Single-dose (0.05-3.2 mg/kg) exposure (Cmax and AUC) increased in a dose-proportional manner. Steady state was reached by Day 4 and no accumulation was observed. Elimination half-life ranged from 3.35 to 8.23 h (SAD) and 8.63 to 12.2 h (MAD). Mean individual Cmax concentrations in the MAD part were well below the safety thresholds. OCS-05 administered as 2-h i.v. infusions of multiple doses up to 3.0 mg/Kg daily for up to 5 consecutive days was safe and well tolerated. Based on this safety profile, OCS-05 is currently being tested in a phase 2 trial in patient with acute optic neuritis (NCT04762017, date registration 21/02/2021).
Collapse
Affiliation(s)
- Pablo Villoslada
- Institut d'Investigacions Biomediques August Pi Sunyer, Rosello 149, 08036, Barcelona, Spain.
| | - Mar Masso
- Bionure Farma/Accure Therapeutics SL, Barcelona, Spain
| | | | | | | |
Collapse
|
33
|
Numakawa T, Kajihara R. Neurotrophins and Other Growth Factors in the Pathogenesis of Alzheimer’s Disease. Life (Basel) 2023; 13:life13030647. [PMID: 36983803 PMCID: PMC10051261 DOI: 10.3390/life13030647] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The involvement of the changed expression/function of neurotrophic factors in the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD), has been suggested. AD is one of the age-related dementias, and is characterized by cognitive impairment with decreased memory function. Developing evidence demonstrates that decreased cell survival, synaptic dysfunction, and reduced neurogenesis are involved in the pathogenesis of AD. On the other hand, it is well known that neurotrophic factors, especially brain-derived neurotrophic factor (BDNF) and its high-affinity receptor TrkB, have multiple roles in the central nervous system (CNS), including neuronal maintenance, synaptic plasticity, and neurogenesis, which are closely linked to learning and memory function. Thus, many investigations regarding therapeutic approaches to AD, and/or the screening of novel drug candidates for its treatment, focus on upregulation of the BDNF/TrkB system. Furthermore, current studies also demonstrate that GDNF, IGF1, and bFGF, which play roles in neuroprotection, are associated with AD. In this review, we introduce data demonstrating close relationships between the pathogenesis of AD, neurotrophic factors, and drug candidates, including natural compounds that upregulate the BDNF-mediated neurotrophic system.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
- Correspondence:
| | - Ryutaro Kajihara
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto 862-0976, Japan
| |
Collapse
|
34
|
Beaver M, Noe D, Thapa I, Ali H, Snowden J, Kielian T, Skar GL. Bacteria commonly associated with central nervous system catheter infections elicit distinct CSF proteome signatures. Front Neurol 2023; 14:1102356. [PMID: 36864917 PMCID: PMC9971802 DOI: 10.3389/fneur.2023.1102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Background Cerebrospinal fluid (CSF) shunt infection is a common and devastating complication of the treatment of hydrocephalus. Timely and accurate diagnosis is essential as these infections can lead to long-term neurologic consequences including seizures, decreased intelligence quotient (IQ) and impaired school performance in children. Currently the diagnosis of shunt infection relies on bacterial culture; however, culture is not always accurate since these infections are frequently caused by bacteria capable of forming biofilms, such as Staphylococcus epidermidis, Cutibacterium acnes, and Pseudomonas aeruginosa resulting in few planktonic bacteria detectable in the CSF. Therefore, there is a critical need to identify a new rapid, and accurate method for diagnosis of CSF shunt infection with broad bacterial species coverage to improve the long-term outcomes of children suffering from these infections. Methods To investigate potential biomarkers that would discriminate S. epidermidis, C. acnes and P. aeruginosa central nervous system (CNS) catheter infection we leveraged our previously published rat model of CNS catheter infection to perform serial CSF sampling to characterize the CSF proteome during these infections compared to sterile catheter placement. Results P. aeruginosa infection demonstrated a far greater number of differentially expressed proteins when compared to S. epidermidis and C. acnes infection and sterile catheters, and these changes persisted throughout the 56-day time course. S. epidermidis demonstrated an intermediate number of differentially expressed proteins, primarily at early time points that dissipated over the course of infection. C. acnes induced the least amount of change in the CSF proteome when compared to the other pathogens. Conclusions Despite the differences in the CSF proteome with each organism compared to sterile injury, several proteins were common across all bacterial species, especially at day 5 post-infection, which are candidate diagnostic biomarkers.
Collapse
Affiliation(s)
- Matthew Beaver
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dragana Noe
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ishwor Thapa
- College of Information Science and Technology, University of Nebraska Omaha, Omaha, NE, United States
| | - Hesham Ali
- College of Information Science and Technology, University of Nebraska Omaha, Omaha, NE, United States
| | - Jessica Snowden
- Departments of Pediatrics and Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Gwenn L. Skar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Gwenn L. Skar ✉
| |
Collapse
|
35
|
Panchal SK, Brown L. Potential Benefits of Anthocyanins in Chronic Disorders of the Central Nervous System. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010080. [PMID: 36615279 PMCID: PMC9822395 DOI: 10.3390/molecules28010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Anthocyanins have been shown to be effective in chronic diseases because of their antioxidant and anti-inflammatory effects together with changes in the gut microbiota and modulation of neuropeptides such as insulin-like growth factor-1. This review will examine whether these mechanisms may be effective to moderate the symptoms of disorders of the central nervous system in humans, including schizophrenia, Parkinson's disease, Alzheimer's disease, autism spectrum disorder, depression, anxiety, attention-deficit hyperactivity disorder and epilepsy. Thus, anthocyanins from fruits and berries should be considered as complementary interventions to improve these chronic disorders.
Collapse
Affiliation(s)
- Sunil K. Panchal
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
| | - Lindsay Brown
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-433-062-123
| |
Collapse
|