1
|
Dexter TD, Roberts BZ, Ayoub SM, Noback M, Barnes SA, Young JW. Cross-species translational paradigms for assessing positive valence system as defined by the RDoC matrix. J Neurochem 2024. [PMID: 39463161 DOI: 10.1111/jnc.16243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Functions associated with processing reward-related information are fundamental drivers of motivation, learning, and goal-directed behavior. Such functions have been classified as the positive valence system under the Research Domain and Criteria (RDoC) criteria and are negatively impacted across a range of psychiatric disorders and mental illnesses. The positive valence system is composed of three comprehensive categories containing related but dissociable functions that are organized into either Reward Responsiveness, Reward Learning, or Reward Valuation. The presence of overlapping behavioral dysfunction across diagnostic mental disorders is in-part what motivated the RDoC initiative, which emphasized that the study of mental illness focus on investigating relevant behavior and cognitive functions and their underlying mechanisms, rather than separating efforts on diagnostic categories (i.e., transdiagnostic). Moreover, the RDoC approach is well-suited for preclinical neuroscience research, as the rise in genetic toolboxes and associated neurotechnologies enables researchers to probe specific cellular targets with high specificity. Thus, there is an opportunity to dissect whether behaviors and cognitive functions are supported by shared or distinct neural mechanisms. For preclinical research to effectively inform our understandings of human behavior however, the cognitive and behavioral paradigms should have predictive, neurobiological, and pharmacological predictive validity to the human test. Touchscreen-based testing systems provide a further advantage for this endeavor enabling tasks to be presented to animals using the same media and task design as in humans. Here, we outline the primary categories of the positive valence system and review the work that has been done cross-species to investigate the neurobiology and neurochemistry underlying reward-related functioning. Additionally, we provide clinical tasks outlined by RDoC, along with validity and/or need for further validation for analogous rodent paradigms with a focus on implementing the touchscreen-based cognitive testing systems.
Collapse
Affiliation(s)
- Tyler D Dexter
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Michael Noback
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Samuel A Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
2
|
Ayoub SM, Holloway BM, Miranda AH, Roberts BZ, Young JW, Minassian A, Ellis RJ. The Impact of Cannabis Use on Cognition in People with HIV: Evidence of Function-Dependent Effects and Mechanisms from Clinical and Preclinical Studies. Curr HIV/AIDS Rep 2024; 21:87-115. [PMID: 38602558 PMCID: PMC11129923 DOI: 10.1007/s11904-024-00698-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Cannabis may have beneficial anti-inflammatory effects in people with HIV (PWH); however, given this population's high burden of persisting neurocognitive impairment (NCI), clinicians are concerned they may be particularly vulnerable to the deleterious effects of cannabis on cognition. Here, we present a systematic scoping review of clinical and preclinical studies evaluating the effects of cannabinoid exposure on cognition in HIV. RECENT FINDINGS Results revealed little evidence to support a harmful impact of cannabis use on cognition in HIV, with few eligible preclinical data existing. Furthermore, the beneficial/harmful effects of cannabis use observed on cognition were function-dependent and confounded by several factors (e.g., age, frequency of use). Results are discussed alongside potential mechanisms of cannabis effects on cognition in HIV (e.g., anti-inflammatory), and considerations are outlined for screening PWH that may benefit from cannabis interventions. We further highlight the value of accelerating research discoveries in this area by utilizing translatable cross-species tasks to facilitate comparisons across human and animal work.
Collapse
Affiliation(s)
- Samantha M Ayoub
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA.
| | - Breanna M Holloway
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Alannah H Miranda
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
- VA Center of Excellence for Stress and Mental Health, Veterans Administration San Diego HealthCare System, 3350 La Jolla Village Drive, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Chakravarty S, Delgado-Sallent C, Kane GA, Xia H, Do QH, Senne RA, Scott BB. A cross-species framework for investigating perceptual evidence accumulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589945. [PMID: 38659929 PMCID: PMC11042372 DOI: 10.1101/2024.04.17.589945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Cross-species studies are important for a comprehensive understanding of brain functions. However, direct quantitative comparison of behaviors across species presents a significant challenge. To enable such comparisons in perceptual decision-making, we developed a synchronized evidence accumulation task for rodents and humans, by aligning mechanics, stimuli, and training. Rats, mice and humans readily learned the task and exhibited qualitatively similar performance. Quantitative model comparison revealed that all three species employed an evidence accumulation strategy, but differed in speed, accuracy, and key decision parameters. Human performance prioritized accuracy, whereas rodent performance was limited by internal time-pressure. Rats optimized reward rate, while mice appeared to switch between evidence accumulation and other strategies trial-to-trial. Together, these results reveal striking similarities and species-specific priorities in decision-making. Furthermore, the synchronized behavioral framework we present may facilitate future studies involving cross-species comparisons, such as evaluating the face validity of animal models of neuropsychiatric disorders. Highlights Development of a free response evidence accumulation task for rats and miceSynchronized video game allows direct comparisons with humansRat, mouse and human behavior are well fit by the same decision modelsModel parameters reveal species-specific priorities in accumulation strategy.
Collapse
|
4
|
Noback M, Bhakta SG, Talledo JA, Kotz JE, Benster L, Roberts BZ, Nungaray JA, Light GA, Swerdlow NR, Brigman JL, Cavanagh JF, Young JW. Amphetamine increases motivation of humans and mice as measured by breakpoint, but does not affect an Electroencephalographic biomarker. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:269-278. [PMID: 38168850 PMCID: PMC11060428 DOI: 10.3758/s13415-023-01150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Translation of drug targets from preclinical studies to clinical trials has been aided by cross-species behavioral tasks, but evidence for brain-based engagement during task performance is still required. Cross-species progressive ratio breakpoint tasks (PRBTs) measure motivation-related behavior and are pharmacologically and clinically sensitive. We recently advanced elevated parietal alpha power as a cross-species electroencephalographic (EEG) biomarker of PRBT engagement. Given that amphetamine increases breakpoint in mice, we tested its effects on breakpoint and parietal alpha power in both humans and mice. Twenty-three healthy participants performed the PRBT with EEG after amphetamine or placebo in a double-blind design. C57BL/6J mice were trained on PRBT with EEG (n = 24) and were treated with amphetamine or vehicle. A second cohort of mice was trained on PRBT without EEG (n = 40) and was treated with amphetamine or vehicle. In humans, amphetamine increased breakpoint. In mice, during concomitant EEG, 1 mg/kg of amphetamine significantly decreased breakpoint. In cohort 2, however, 0.3 mg/kg of amphetamine increased breakpoint consistent with human findings. Increased alpha power was observed in both species as they reached breakpoint, replicating previous findings. Amphetamine did not affect alpha power in either species. Amphetamine increased effort in humans and mice. Consistent with previous reports, elevated parietal alpha power was observed in humans and mice as they performed the PRBT. Amphetamine did not affect this EEG biomarker of effort. Hence, these findings support the pharmacological predictive validity of the PRBT to measure effort in humans and mice and suggest that this EEG biomarker is not directly reflective of amphetamine-induced changes in effort.
Collapse
Affiliation(s)
- Michael Noback
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA
| | - Savita G Bhakta
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA
| | - Jo A Talledo
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA
| | - Juliana E Kotz
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA
| | - Lindsay Benster
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA
| | - John A Nungaray
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA
- Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - James F Cavanagh
- Psychology Department, University of New Mexico, Albuquerque, NM, USA
| | - Jared W Young
- Department of Psychiatry, University of California, San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA, 92093-0804, USA.
- Research Service MIRECC, VISN 22, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
5
|
Young JW, Roberts BZ. Decision-making for delaying punishment? A commentary to Minnes et al. (2024). COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:322-324. [PMID: 38459405 DOI: 10.3758/s13415-024-01173-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
- Department of Research, VA San Diego Healthcare System, La Jolla, CA, USA.
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
6
|
Young JW. 30 years of the International Behavioral Neuroscience Society: Perspectives on progress from Past Presidents. Neurosci Biobehav Rev 2023; 155:105457. [PMID: 37925092 DOI: 10.1016/j.neubiorev.2023.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|