1
|
Olivero G, Grilli M, Marchi M, Pittaluga A. Metamodulation of presynaptic NMDA receptors: New perspectives for pharmacological interventions. Neuropharmacology 2023; 234:109570. [PMID: 37146939 DOI: 10.1016/j.neuropharm.2023.109570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Metamodulation shifted the scenario of the central neuromodulation from a simplified unimodal model to a multimodal one. It involves different receptors/membrane proteins physically associated or merely colocalized that act in concert to control the neuronal functions influencing each other. Defects or maladaptation of metamodulation would subserve neuropsychiatric disorders or even synaptic adaptations relevant to drug dependence. Therefore, this "vulnerability" represents a main issue to be deeply analyzed to predict its aetiopathogenesis, but also to propose targeted pharmaceutical interventions. The review focusses on presynaptic release-regulating NMDA receptors and on some of the mechanisms of their metamodulation described in the literature. Attention is paid to the interactors, including both ionotropic and metabotropic receptors, transporters and intracellular proteins, which metamodulate their responsiveness in physiological conditions but also undergo adaptation that are relevant to neurological dysfunctions. All these structures are attracting more and more the interest as promising druggable targets for the treatment of NMDAR-related central diseases: these substances would not exert on-off control of the colocalized NMDA receptors (as usually observed with NMDAR full agonists/antagonists), but rather modulate their functions, with the promise of limiting side effects that would favor their translation from preclinic to clinic.
Collapse
Affiliation(s)
- Guendalina Olivero
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy.
| | - Mario Marchi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148, Genoa, Italy
| |
Collapse
|
2
|
Sucha P, Hermanova Z, Chmelova M, Kirdajova D, Camacho Garcia S, Marchetti V, Vorisek I, Tureckova J, Shany E, Jirak D, Anderova M, Vargova L. The absence of AQP4/TRPV4 complex substantially reduces acute cytotoxic edema following ischemic injury. Front Cell Neurosci 2022; 16:1054919. [PMID: 36568889 PMCID: PMC9773096 DOI: 10.3389/fncel.2022.1054919] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Astrocytic Aquaporin 4 (AQP4) and Transient receptor potential vanilloid 4 (TRPV4) channels form a functional complex that likely influences cell volume regulation, the development of brain edema, and the severity of the ischemic injury. However, it remains to be fully elucidated whether blocking these channels can serve as a therapeutic approach to alleviate the consequences of having a stroke. Methods and results In this study, we used in vivo magnetic resonance imaging (MRI) to quantify the extent of brain lesions one day (D1) and seven days (D7) after permanent middle cerebral artery occlusion (pMCAO) in AQP4 or TRPV4 knockouts and mice with simultaneous deletion of both channels. Our results showed that deletion of AQP4 or TRPV4 channels alone leads to a significant worsening of ischemic brain injury at both time points, whereas their simultaneous deletion results in a smaller brain lesion at D1 but equal tissue damage at D7 when compared with controls. Immunohistochemical analysis 7 days after pMCAO confirmed the MRI data, as the brain lesion was significantly greater in AQP4 or TRPV4 knockouts than in controls and double knockouts. For a closer inspection of the TRPV4 and AQP4 channel complex in the development of brain edema, we applied a real-time iontophoretic method in situ to determine ECS diffusion parameters, namely volume fraction (α) and tortuosity (λ). Changes in these parameters reflect alterations in cell volume, and tissue structure during exposure of acute brain slices to models of ischemic conditions in situ, such as oxygen-glucose deprivation (OGD), hypoosmotic stress, or hyperkalemia. The decrease in α was comparable in double knockouts and controls when exposed to hypoosmotic stress or hyperkalemia. However, during OGD, there was no decrease in α in the double knockouts as observed in the controls, which suggests less swelling of the cellular components of the brain. Conclusion Although simultaneous deletion of AQP4 and TRPV4 did not improve the overall outcome of ischemic brain injury, our data indicate that the interplay between AQP4 and TRPV4 channels plays a critical role during neuronal and non-neuronal swelling in the acute phase of ischemic injury.
Collapse
Affiliation(s)
- Petra Sucha
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Zuzana Hermanova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Martina Chmelova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Denisa Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Sara Camacho Garcia
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Valeria Marchetti
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Ivan Vorisek
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| | - Eyar Shany
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia
| | - Daniel Jirak
- Department of Diagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague, Czechia,First Faculty of Medicine, Institute of Biophysics and Informatics, Charles University, Prague, Czechia
| | - Miroslava Anderova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia,*Correspondence: Miroslava Anderova,
| | - Lydia Vargova
- Second Faculty of Medicine, Charles University, Prague, Czechia,Department of Cellular Neurophysiology, Institute of Experimental Medicine of the CAS, Prague, Czechia
| |
Collapse
|
3
|
Fagiani F, Baronchelli E, Pittaluga A, Pedrini E, Scacchi C, Govoni S, Lanni C. The Circadian Molecular Machinery in CNS Cells: A Fine Tuner of Neuronal and Glial Activity With Space/Time Resolution. Front Mol Neurosci 2022; 15:937174. [PMID: 35845604 PMCID: PMC9283971 DOI: 10.3389/fnmol.2022.937174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
The circadian molecular machinery is a fine timekeeper with the capacity to harmonize physiological and behavioral processes with the external environment. This tight-knit regulation is coordinated by multiple cellular clocks across the body. In this review, we focus our attention on the molecular mechanisms regulated by the clock in different brain areas and within different cells of the central nervous system. Further, we discuss evidence regarding the role of circadian rhythms in the regulation of neuronal activity and neurotransmitter systems. Not only neurons, but also astrocytes and microglia actively participate in the maintenance of timekeeping within the brain, and the diffusion of circadian information among these cells is fine-tuned by neurotransmitters (e.g., dopamine, serotonin, and γ-aminobutyric acid), thus impacting on the core clock machinery. The bidirectional interplay between neurotransmitters and the circadian clockwork is fundamental in maintaining accuracy and precision in daily timekeeping throughout different brain areas. Deepening the knowledge of these correlations allows us to define the basis of drug interventions to restore circadian rhythms, as well as to predict the onset of drug treatment/side effects that might promote daily desynchronization. Furthermore, it may lead to a deeper understanding of the potential impacts of modulations in rhythmic activities on the pace of aging and provide an insight in to the pathogenesis of psychiatric diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Francesca Fagiani
- Institute of Experimental Neurology, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Eva Baronchelli
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Anna Pittaluga
- Department of Pharmacy (DiFar), School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
- Center of Excellence for Biomedical Research, 3Rs Center, University of Genoa, Genoa, Italy
| | - Edoardo Pedrini
- Institute of Experimental Neurology, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Scacchi
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences, Pharmacology Section, University of Pavia, Pavia, Italy
- Centro 3R (Inter-University Center for the Promotion of the 3Rs Principles in Teaching and Research), Italy
- *Correspondence: Cristina Lanni
| |
Collapse
|
4
|
Presynaptic Release-Regulating Alpha2 Autoreceptors: Potential Molecular Target for Ellagic Acid Nutraceutical Properties. Antioxidants (Basel) 2021; 10:antiox10111759. [PMID: 34829630 PMCID: PMC8614955 DOI: 10.3390/antiox10111759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
Polyphenol ellagic acid (EA) possesses antioxidant, anti-inflammatory, anti-carcinogenic, anti-diabetic and cardio protection activities, making it an interesting multi-targeting profile. EA also controls the central nervous system (CNS), since it was proven to reduce the immobility time of mice in both the forced swimming and the tail-suspension tests, with an efficiency comparable to that of classic antidepressants. Interestingly, the anti-depressant-like effect was almost nulled by the concomitant administration of selective antagonists of the noradrenergic receptors, suggesting the involvement of these cellular targets in the central effects elicited by EA and its derivatives. By in silico and in vitro studies, we discuss how EA engages with human α2A-ARs and α2C-AR catalytic pockets, comparing EA behaviour with that of known agonists and antagonists. Structurally, the hydrophobic residues surrounding the α2A-AR pocket confer specificity on the intermolecular interactions and hence lead to favourable binding of EA in the α2A-AR, with respect to α2C-AR. Moreover, EA seems to better accommodate within α2A-ARs into the TM5 area, close to S200 and S204, which play a crucial role for activation of aminergic GPCRs such as the α2-AR, highlighting its promising role as a partial agonist. Consistently, EA mimics clonidine in inhibiting noradrenaline exocytosis from hippocampal nerve endings in a yohimbine-sensitive fashion that confirms the engagement of naïve α2-ARs in the EA-mediated effect.
Collapse
|
5
|
Somatostatin, a Presynaptic Modulator of Glutamatergic Signal in the Central Nervous System. Int J Mol Sci 2021; 22:ijms22115864. [PMID: 34070785 PMCID: PMC8198526 DOI: 10.3390/ijms22115864] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023] Open
Abstract
Somatostatin is widely diffused in the central nervous system, where it participates to control the efficiency of synaptic transmission. This peptide mainly colocalizes with GABA, in inhibitory, GABA-containing interneurons from which it is actively released in a Ca2+ dependent manner upon application of depolarizing stimuli. Once released in the synaptic cleft, somatostatin acts locally, or it diffuses in the extracellular space through "volume diffusion", a mechanism(s) of distribution which mainly operates in the cerebrospinal fluid and that assures the progression of neuronal signalling from signal-secreting sender structures towards receptor-expressing targeted neurons located extrasynaptically, in a non-synaptic, inter-neuronal form of communication. Somatostatin controls the efficiency of central glutamate transmission by either modulating presynaptically the glutamate exocytosis or by metamodulating the activity of glutamate receptors colocalized and functionally coupled with somatostatin receptors in selected subpopulations of nerve terminals. Deciphering the role of somatostatin in the mechanisms of "volume diffusion" and in the "receptor-receptor interaction" unveils new perspectives in the central role of this fine tuner of synaptic strength, paving the road to new therapeutic approaches for the cure of central disorders.
Collapse
|
6
|
Paul N, Raymond J, Lumbreras S, Bartsch D, Weber T, Lau T. Activation of the glucocorticoid receptor rapidly triggers calcium-dependent serotonin release in vitro. CNS Neurosci Ther 2021; 27:753-764. [PMID: 33715314 PMCID: PMC8193689 DOI: 10.1111/cns.13634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 12/01/2022] Open
Abstract
Aims Glucocorticoids rapidly provoke serotonin (5‐HT) release in vivo. We aimed to investigate molecular mechanisms of glucocorticoid receptor (GR)‐triggered 5‐HT release. Methods Employing 1C11 cells to model 5‐HT neurotransmission, immunofluorescence and Pearson's Correlation Coefficient were used to analyze colocalization of GR, 5‐HT, vesicle membrane protein synaptotagmin 1 and vesicle dye FM4‐64FX. FFN511 and FM4‐64FX dyes as well as calcium imaging were used to visualize vesicular 5‐HT release upon application of GR agonist dexamethasone, GR antagonist mifepristone and voltage‐gated calcium channel (VGCC) inhibitors. Results GR, 5‐HT, synaptotagmin 1 and FM4‐64FX showed overlapping staining patterns, with Pearson's Correlation Coefficient indicating colocalization. Similarly to potassium chloride, dexamethasone caused a release of FFN511 and uptake of FM4‐64FX, indicating vesicular 5‐HT release. Mifepristone, calcium depletion and inhibition of L‐type VGCC significantly diminished dexamethasone‐induced vesicular 5‐HT release. Conclusions In close proximity to 5‐HT releasing sites, activated GR rapidly triggers L‐type VGCC‐dependent vesicular 5‐HT release. These findings provide a better understanding of the interrelationship between glucocorticoids and 5‐HT release.
Collapse
Affiliation(s)
- Nicolas Paul
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Justine Raymond
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sara Lumbreras
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Bartsch
- Transgenic Models, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Tillmann Weber
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,MEDIAN Klinik Wilhelmsheim, Oppenweiler, Germany
| | - Thorsten Lau
- Department of Psychiatry and Psychotherapy, Biochemical Laboratory, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Translational Brain Research, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Hector Institute for Translational Brain Research, Mannheim, Germany.,German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
7
|
Pittaluga A. Presynaptic release-regulating NMDA receptors in isolated nerve terminals: A narrative review. Br J Pharmacol 2021; 178:1001-1017. [PMID: 33347605 PMCID: PMC9328659 DOI: 10.1111/bph.15349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 12/03/2020] [Indexed: 02/02/2023] Open
Abstract
The existence of presynaptic, release‐regulating NMDA receptors in the CNS has been long matter of discussion. Most of the reviews dedicated to support this conclusion have preferentially focussed on the results from electrophysiological studies, paying little or no attention to the data obtained with purified synaptosomes, even though this experimental approach has been recognized as providing reliable information concerning the presence and the role of presynaptic release‐regulating receptors in the CNS. To fill the gap, this review is dedicated to summarising the results from studies with synaptosomes published during the last 40 years, which support the existence of auto and hetero NMDA receptors controlling the release of transmitters such as glutamate, GABA, dopamine, noradrenaline, 5‐HT, acetylcholine and peptides, in the CNS of mammals. The review also deals with the results from immunochemical studies in isolated nerve endings that confirm the functional observations.
Collapse
Affiliation(s)
- Anna Pittaluga
- Department of Pharmacology (DIFAR), School of Medical and Pharmaceutical Sciences, 3Rs Center, University of Genova, Italy.,San Martino Hospital IRCCS, Genova, Italy
| |
Collapse
|
8
|
Jansch C, Ziegler GC, Forero A, Gredy S, Wäldchen S, Vitale MR, Svirin E, Zöller JEM, Waider J, Günther K, Edenhofer F, Sauer M, Wischmeyer E, Lesch KP. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna) 2021; 128:225-241. [PMID: 33560471 PMCID: PMC7914246 DOI: 10.1007/s00702-021-02303-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Charline Jansch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany.
| | - Andrea Forero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Sina Gredy
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sina Wäldchen
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Maria Rosaria Vitale
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Evgeniy Svirin
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Johanna E M Zöller
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - Katharina Günther
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
- Institute of Molecular Regenerative Medicine, SCI-TReCS, Paracelsus Medical University, Salzburg, Austria
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and CMBI, Leopold-Franzens-University Innsbruck, Innsbruck, Austria
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Erhard Wischmeyer
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany
- Institute of Physiology, Molecular Electrophysiology, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany.
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
9
|
Neuroinflammation in Aged Brain: Impact of the Oral Administration of Ellagic Acid Microdispersion. Int J Mol Sci 2020; 21:ijms21103631. [PMID: 32455600 PMCID: PMC7279224 DOI: 10.3390/ijms21103631] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The immune system and the central nervous system message each other to preserving central homeostasis. Both systems undergo changes during aging that determine central age-related defects. Ellagic acid (EA) is a natural product which is beneficial in both peripheral and central diseases, including aging. We analyzed the impact of the oral administration of a new oral ellagic acid micro-dispersion (EAm), that largely increased the EA solubility, in young and old mice. Oral EAm did not modify animal weight and behavioral skills in young and old mice, but significantly recovered changes in "ex-vivo, in vitro" parameters in old animals. Cortical noradrenaline exocytosis decreased in aged mice. EAm administration did not modify noradrenaline overflow in young animals, but recovered it in old mice. Furthermore, GFAP staining was increased in the cortex of aged mice, while IBA-1 and CD45 immunopositivities were unchanged when compared to young ones. EAm treatment significantly reduced CD45 signal in both young and old cortical lysates; it diminished GFAP immunopositivity in young mice, but failed to affect IBA-1 expression in both young and old animals. Finally, EAm treatment significantly reduced IL1beta expression in old mice. These results suggest that EAm is beneficial to aging and represents a nutraceutical ingredient for elders.
Collapse
|
10
|
Bán EG, Brassai A, Vizi ES. The role of the endogenous neurotransmitters associated with neuropathic pain and in the opioid crisis: The innate pain-relieving system. Brain Res Bull 2019; 155:129-136. [PMID: 31816407 DOI: 10.1016/j.brainresbull.2019.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/22/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
Neuropathic pain is a chronic pain caused by central and peripheral nerve injury, long-term diabetes or treatment with chemotherapy drugs, and it is dissimilar to other chronic pain conditions. Chronic pain usually seriously affects the quality of life, and its drug treatment may result in increased costs of social and medical care. As in the USA and Canada, in Europe, the demand for pain-relieving medicines used in chronic pain has also significantly increased, but most European countries are not experiencing an opioid crisis. In this review, the role of various endogenous transmitters (noradrenaline, dopamine, serotonin, met- and leu-enkephalins, β-endorphin, dynorphins, cannabinoids, ATP) and various receptors (α2, μ, etc.) in the innate pain-relieving system will be discussed. Furthermore, the modulation of pain processing pathways by transmitters, focusing on neuropathic pain and the role of the sympathetic nervous system in the side effects of excessive opioid treatment, will be explained.
Collapse
Affiliation(s)
- E Gy Bán
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - A Brassai
- Dept. ME1, Faculty of Medicine in English, "George Emil Palade" University of Medicine, Pharmacy, Science and Technology of Târgu-Mureș, Marosvásárhely, Romania
| | - E S Vizi
- Institute of Experimental Medicine, Budapest, Hungary; Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
11
|
Dambri OA, Cherkaoui S. Performance Enhancement of Diffusion-Based Molecular Communication. IEEE Trans Nanobioscience 2019; 19:48-58. [PMID: 31647441 DOI: 10.1109/tnb.2019.2949261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inter-Symbol Interference (ISI) is one of the challenges of bio-inspired diffusion-based molecular communication. The degradation of the remaining molecules from a previous transmission is the solution that biological systems use to mitigate this ISI. While most prior work has proposed the use of enzymes to catalyze the molecules degradation, enzymes also degrade the molecules carrying the information, which drastically decreases the signal strength. In this paper, we propose the use of photolysis reactions, which use the light to instantly transform the emitted molecules so they no longer be recognized after their detection. The light will be emitted in an optimal time, allowing the receiver to detect as many molecules as possible, which increases both the signal strength and ISI mitigation. A lower bound expression on the expectation of the observed molecules number at the receiver is derived. Bit error probability expression is also formulated, and both expressions are validated with simulation results, which show a visible enhancement when using photolysis reactions. The performance of the proposed method is evaluated using Interference-to-Total-Received molecules metric (ITR) and the derived bit error probability.
Collapse
|
12
|
Bonfiglio T, Vergassola M, Olivero G, Pittaluga A. Environmental Training and Synaptic Functions in Young and Old Brain: A Presynaptic Perspective. Curr Med Chem 2019; 26:3670-3684. [PMID: 29493441 DOI: 10.2174/0929867325666180228170450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Aging is an unavoidable, physiological process that reduces the complexity and the plasticity of the synaptic contacts in Central Nervous System (CNS), having profound implications for human well-being. The term "cognitive reserve" refers to central cellular adaptations that augment the resilience of human brain to damage and aging. The term "Cognitive training" indicates the cultural, social and physical stimulations proposed as add-on therapy for the cure of central neurological diseases. "Cognitive training" reinforces the "cognitive reserve" permitting to counteract brain impairments and rejuvenating synaptic complexity. The research has begun investigating the clinical impact of the "cognitive training" in aged people, but additional work is needed to definitively assess its effectiveness. In particular, there is a need to understand, from a preclinical point of view, whether "cognitive training" promotes compensatory effects or, alternatively, if it elicits genuine recovery of neuronal defects. Although the translation from rodent studies to the clinical situation could be difficult, the results from pre-clinical models are of high clinical relevance, since they should allow a better understanding of the effects of environmental interventions in aging-associated chronic derangements in mammals. CONCLUSION Data in literature and the recent results obtained in our laboratory concerning the impact of environmental stimulation on the presynaptic release of noradrenaline, glutamate and gamma amino butyric acid (GABA) suggest that these neurotransmitters undergo different adaptations during aging and that they are differently tuned by "cognitive training". The impact of "cognitive training" on neurotransmitter exocytosis might account for the cellular events involved in reinforcement of "cognitive reserve" in young and old animals.
Collapse
Affiliation(s)
- Tommaso Bonfiglio
- Department of Pharmacy, DIFAR, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Matteo Vergassola
- Department of Pharmacy, DIFAR, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Guendalina Olivero
- Department of Pharmacy, DIFAR, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Anna Pittaluga
- Department of Pharmacy, DIFAR, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy.,Center of Excellence for Biomedical Research, University of Genoa, Viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
13
|
Dyakonova TL, Sultanakhmetov GS, Mezheritskiy MI, Sakharov DA, Dyakonova VE. Storage and erasure of behavioural experiences at the single neuron level. Sci Rep 2019; 9:14733. [PMID: 31611611 PMCID: PMC6791831 DOI: 10.1038/s41598-019-51331-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/30/2019] [Indexed: 11/09/2022] Open
Abstract
Although predictions from the past about the future have been of major interest to current neuroscience, how past and present behavioral experience interacts at the level of a single neuron remains largely unknown. Using the pond snail Lymnaea stagnalis we found that recent experience of terrestrial locomotion (exercise) results in a long-term increase in the firing rate of serotonergic pedal (PeA) neurons. Isolation from the CNS preserved the "memory" about previous motor activity in the neurons even after the animals rested for two hours in deep water after the exercise. In contrast, in the CNS, no difference in the firing rate between the control and "exercise-rested" (ER) neurons was seen. ER snails, when placed again on a surface to exercise, nevertheless showed faster locomotor arousal. The difference in the firing rate between the control and ER isolated neurons disappeared when the neurons were placed in the microenvironment of their home ganglia. It is likely that an increased content of dopamine in the CNS masks an increased excitation of PeA neurons after rest: the dopamine receptor antagonist sulpiride produced sustained excitation in PeA neurons from ER snails but not in the control. Therefore, our data suggest the involvement of two mechanisms in the interplay of past and present experiences at the cellular level: intrinsic neuronal changes in the biophysical properties of the cell membrane and extrinsic modulatory environment of the ganglia.
Collapse
Affiliation(s)
- T L Dyakonova
- Koltzov Institute of Developmental Biology RAS, Vavilov St. 26, 119334, Moscow, Russia
| | - G S Sultanakhmetov
- Koltzov Institute of Developmental Biology RAS, Vavilov St. 26, 119334, Moscow, Russia
| | - M I Mezheritskiy
- Koltzov Institute of Developmental Biology RAS, Vavilov St. 26, 119334, Moscow, Russia
| | - D A Sakharov
- Koltzov Institute of Developmental Biology RAS, Vavilov St. 26, 119334, Moscow, Russia
| | - V E Dyakonova
- Koltzov Institute of Developmental Biology RAS, Vavilov St. 26, 119334, Moscow, Russia.
| |
Collapse
|
14
|
Saito K, Watanabe K, Yanaoka R, Kageyama L, Miura T. Potential role of serotonin as a biological reductant associated with copper transportation. J Inorg Biochem 2019; 199:110770. [PMID: 31336257 DOI: 10.1016/j.jinorgbio.2019.110770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
Serotonin (5-HT) is a neurotransmitter that is derived from tryptophan. Owing to a hydroxyl group attached to the indole nucleus, 5-HT exhibits a considerably higher redox activity than tryptophan. To gain insight into the biological relevance of the redox activity of 5-HT, the effect of Cu(I)-binding ligands on the 5-HT-mediated copper reduction was investigated. The d-d transition band of Cu(II) complexed with glycine [Cu(II)-Gly2] was not affected by addition of 5-HT alone but was diminished when a thioether-containing compound coexists with 5-HT. Concomitant with disappearance of the d-d transition band of Cu(II)-Gly2, the π-π* transition band of 5-hydroxyindole of 5-HT exhibits a red-shift which is consistently explained by oxidation of 5-HT and subsequent formation of a dimeric species. The redox reactions between 5-HT and copper are also accelerated by a peptide composed of a methionine (Met)-rich region in the extracellular domain of an integral membrane protein, copper transporter 1 (Ctr1). Since Ctr1 transports copper across the plasma membrane with specificity for Cu(I), reduction of extracellular Cu(II) to Cu(I) is required for copper uptake by Ctr1. Metalloreductases that can donate Cu(I) for Ctr1 have been identified in yeast but not yet been found in mammals. The results of this study indicate that the Met-rich region in the N-terminal extracellular domain of Ctr1 promotes the 5-HT-mediated Cu(II) reduction in order to acquire Cu(I) via a non-enzymatic process.
Collapse
Affiliation(s)
- Kaede Saito
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Kasumi Watanabe
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Risa Yanaoka
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Lisa Kageyama
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Takashi Miura
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan.
| |
Collapse
|
15
|
Different properties of neuronal networks matter for the emergence of chimera states: Comment on "Chimera states in neuronal networks: A review" by Majhi et al. Phys Life Rev 2019; 28:128-130. [PMID: 30827847 DOI: 10.1016/j.plrev.2019.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 01/08/2023]
|
16
|
Kuznetsov OP, Bazenkov NI, Boldyshev BA, Zhilyakova LY, Kulivets SG, Chistopolsky IA. An Asynchronous Discrete Model of Chemical Interactions in Simple Neuronal Systems. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING 2019. [DOI: 10.3103/s0147688218060072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Bazenkov N, Vorontsov D, Dyakonova V, Zhilyakova L, Zakharov I, Kuznetsov O, Kulivets S, Sakharov D. Discrete Modeling of Neuronal Interactions in Multi-Transmitter Networks. SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING 2018. [DOI: 10.3103/s0147688218050015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Verisokin AY, Verveyko DV, Kuryshovav EA, Postnov DE. Noise-sustained patterns in a model of volume-coupled neural tissue. CHAOS (WOODBURY, N.Y.) 2018; 28:106326. [PMID: 30384648 DOI: 10.1063/1.5039854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/17/2018] [Indexed: 06/08/2023]
Abstract
Computational neuroscience operates on models based on several important paradigms. Among them is the assumption that coupling in neural ensembles is provided by chemical or electrical synapses. This assumption works well under normal conditions. However, there is a growing body of data that show the importance of other communication pathways caused by bi-directional transport of substances between the cells and the intercellular space. This type of interaction is called "volume transmission" and has not been rarely addressed in the model studies. The volume transmission pathway naturally appears in multidimensional quantitative models of cellular processes, but is not sufficiently represented at the level of lumped and computationally effective neural models. In this paper, we propose a simple model that allows one to study the features of volume transmission coupling at various spatial scales and taking into account various inhomogeneities. This model is obtained by the extension of the well-known FitzHugh-Nagumo system by the addition of the nonlinear terms and equations to describe, at a qualitative level, the release of potassium into the intercellular space, its diffusion, and the reverse effect on the neurons. The study of model dynamics in various spatial configurations has revealed a number of characteristic spatio-temporal types of behavior that include self-organizing bursting and phase-locked firing patterns, different scenarios of excitation spreading, noise-sustained target patterns, and long-living slow moving wave segments.
Collapse
Affiliation(s)
- A Yu Verisokin
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, 305000 Kursk, Russia
| | - D V Verveyko
- Department of Theoretical Physics, Kursk State University, Radishcheva st., 33, 305000 Kursk, Russia
| | - E A Kuryshovav
- Saratov State University, Astrakhanskaya st., 83, 410012 Saratov, Russia
| | - D E Postnov
- Saratov State University, Astrakhanskaya st., 83, 410012 Saratov, Russia
| |
Collapse
|
19
|
Rho HJ, Kim JH, Lee SH. Function of Selective Neuromodulatory Projections in the Mammalian Cerebral Cortex: Comparison Between Cholinergic and Noradrenergic Systems. Front Neural Circuits 2018; 12:47. [PMID: 29988373 PMCID: PMC6023998 DOI: 10.3389/fncir.2018.00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Cortical processing is dynamically modulated by different neuromodulators. Neuromodulation of the cerebral cortex is crucial for maintaining cognitive brain functions such as perception, attention and learning. However, we do not fully understand how neuromodulatory projections are organized in the cerebral cortex to exert various functions. The basal forebrain (BF) cholinergic projection and the locus coeruleus (LC) noradrenergic projection are well-known neuromodulatory projections to the cortex. Decades of studies have identified anatomical and physiological characteristics of these circuits. While both cholinergic and noradrenergic neurons widely project to the cortex, they exhibit different levels of selectivity. Here, we summarize their anatomical and physiological features, highlighting selectivity and specificity of these circuits to different cortical regions. We discuss the importance of selective modulation by comparing their functions in the cortex. We highlight key features in the input-output circuits and target selectivity of these neuromodulatory projections and their roles in controlling four major brain functions: attention, reinforcement, learning and memory, sleep and wakefulness.
Collapse
Affiliation(s)
- Hee-Jun Rho
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Jae-Hyun Kim
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Seung-Hee Lee
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
20
|
Nichols IS, Jones MI, Okere C, Ananaba G, Bush B, Gray C, Brager A, Ehlen JC, Paul K. Nitrergic neurons of the dorsal raphe nucleus encode information about stress duration. PLoS One 2017; 12:e0187071. [PMID: 29125838 PMCID: PMC5681257 DOI: 10.1371/journal.pone.0187071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 10/12/2017] [Indexed: 11/19/2022] Open
Abstract
Nitrergic neurons of the dorsal raphe nucleus (DRN) may play a role in physiological stress responses. The caudal lateral wings (CLW) are unique compared to other rostral-caudal DRN sub-regions because they contain distinct nitric oxide (NO) synthase (NOS) populations that are independent of tryptophan hydroxylase (TPH). NOS neurons in the CLW are also highly activated during acute restraint stress. However, the effects of acute stress duration on NOS activation in the CLW are unclear. Here NADPH-d, an index of NOS activity, is used to show that sub-regions of the DRN have differential NOS activation in response to 6 hours of restraint stress in rats. We report increased NOS activity through 6 hours of restraint in the caudal lateral wings and ventromedial sub-regions. These data suggest that, NOS neurons may play a dynamic role in the response to stress duration.
Collapse
Affiliation(s)
- India S. Nichols
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Mary I. Jones
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Chuma Okere
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Godwin Ananaba
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Brittany Bush
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Cloe Gray
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Allison Brager
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - J. Christopher Ehlen
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Ketema Paul
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
21
|
Badin AS, Fermani F, Greenfield SA. The Features and Functions of Neuronal Assemblies: Possible Dependency on Mechanisms beyond Synaptic Transmission. Front Neural Circuits 2017; 10:114. [PMID: 28119576 PMCID: PMC5223595 DOI: 10.3389/fncir.2016.00114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/22/2016] [Indexed: 11/13/2022] Open
Abstract
"Neuronal assemblies" are defined here as coalitions within the brain of millions of neurons extending in space up to 1-2 mm, and lasting for hundreds of milliseconds: as such they could potentially link bottom-up, micro-scale with top-down, macro-scale events. The perspective first compares the features in vitro versus in vivo of this underappreciated "meso-scale" level of brain processing, secondly considers the various diverse functions in which assemblies may play a pivotal part, and thirdly analyses whether the surprisingly spatially extensive and prolonged temporal properties of assemblies can be described exclusively in terms of classic synaptic transmission or whether additional, different types of signaling systems are likely to operate. Based on our own voltage-sensitive dye imaging (VSDI) data acquired in vitro we show how restriction to only one signaling process, i.e., synaptic transmission, is unlikely to be adequate for modeling the full profile of assemblies. Based on observations from VSDI with its protracted spatio-temporal scales, we suggest that two other, distinct processes are likely to play a significant role in assembly dynamics: "volume" transmission (the passive diffusion of diverse bioactive transmitters, hormones, and modulators), as well as electrotonic spread via gap junctions. We hypothesize that a combination of all three processes has the greatest potential for deriving a realistic model of assemblies and hence elucidating the various complex brain functions that they may mediate.
Collapse
Affiliation(s)
- Antoine-Scott Badin
- Neuro-Bio Ltd., Culham Science CentreAbingdon, UK; Department of Physiology, Anatomy and Genetics, Mann Group, University of OxfordOxford, UK
| | | | | |
Collapse
|
22
|
Petrova ES. Neurons with different neurotransmitters in embryonic neocortical allografts in the rat sciatic nerve. BIOL BULL+ 2016. [DOI: 10.1134/s1062359016020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Neuronal Communication Beyond Synapses. Netw Neurosci 2016. [DOI: 10.1016/b978-0-12-801560-5.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
24
|
Rózsa M, Baka J, Bordé S, Rózsa B, Katona G, Tamás G. Unitary GABAergic volume transmission from individual interneurons to astrocytes in the cerebral cortex. Brain Struct Funct 2015; 222:651-659. [PMID: 26683686 DOI: 10.1007/s00429-015-1166-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023]
Abstract
Communication between individual GABAergic cells and their target neurons is mediated by synapses and, in the case of neurogliaform cells (NGFCs), by unitary volume transmission. Effects of non-synaptic volume transmission might involve non-neuronal targets, and astrocytes not receiving GABAergic synapses but expressing GABA receptors are suitable for evaluating this hypothesis. Testing several cortical interneuron types in slices of the rat cerebral cortex, we show selective unitary transmission from NGFCs to astrocytes with an early, GABAA receptor and GABA transporter-mediated component and a late component that results from the activation of GABA transporters and neuronal GABAB receptors. We could not detect Ca2+ influx in astrocytes associated with unitary GABAergic responses. Our experiments identify a presynaptic cell-type-specific, GABA-mediated communication pathway from individual neurons to astrocytes, assigning a role for unitary volume transmission in the control of ionic and neurotransmitter homeostasis.
Collapse
Affiliation(s)
- Márton Rózsa
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Judith Baka
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Sándor Bordé
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary
| | - Balázs Rózsa
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083, Hungary
| | - Gergely Katona
- Two-Photon Imaging Center, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, 1083, Hungary
| | - Gábor Tamás
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Anatomy, Physiology and Neuroscience, University of Szeged, Közép fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
25
|
Matthaeus F, Schloss P, Lau T. Differential Uptake Mechanisms of Fluorescent Substrates into Stem-Cell-Derived Serotonergic Neurons. ACS Chem Neurosci 2015; 6:1906-12. [PMID: 26503837 DOI: 10.1021/acschemneuro.5b00219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The actions of the neurotransmitters serotonin, dopamine, and norepinephrine are partly terminated by diffusion and in part by their uptake into neurons via the selective, high-affinity transporters for serotonin (SERT), dopamine (DAT), and norepinephrine (NET), respectively. There is also growing evidence that all three monoamines are taken up into neurons by low-affinity, high-capacity organic cation transporters (OCT) and the plasma membrane monoamine transporter (PMAT). Pharmacological characterization of these low-affinity recombinant transporter proteins in heterologous expression systems has revealed that they are not antagonized by classical inhibitors of SERT, DAT, or NET but that decynium-22 (D22) antagonizes OCT3 and PMAT, whereas corticosterone and progesterone selectively inhibit OCT3. Here, we show that SERT, PMAT, and OCT3, but not OCT1 and OCT2, are coexpressed in murine stem cell-derived serotonergic neurons. Using selective antagonists, we provide evidence that uptake of the fluorescent substrates FFN511, ASP+, and 5-HT into stem cell-derived serotonergic neurons is mediated differentially by these transporters and also involves an as yet unknown transport mechanism.
Collapse
Affiliation(s)
- Friederike Matthaeus
- Biochemical
Laboratory, Dept.
Psychiatry and Psychotherapy, Central Institute of Mental Health,
Medical Faculty Mannheim, Heidelberg University, 68159 Manheim, Germany
| | - Patrick Schloss
- Biochemical
Laboratory, Dept.
Psychiatry and Psychotherapy, Central Institute of Mental Health,
Medical Faculty Mannheim, Heidelberg University, 68159 Manheim, Germany
| | - Thorsten Lau
- Biochemical
Laboratory, Dept.
Psychiatry and Psychotherapy, Central Institute of Mental Health,
Medical Faculty Mannheim, Heidelberg University, 68159 Manheim, Germany
| |
Collapse
|
26
|
Golan M, Zelinger E, Zohar Y, Levavi-Sivan B. Architecture of GnRH-Gonadotrope-Vasculature Reveals a Dual Mode of Gonadotropin Regulation in Fish. Endocrinology 2015; 156:4163-73. [PMID: 26261873 DOI: 10.1210/en.2015-1150] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The function and components of the hypothalamic-pituitary axis are conserved among vertebrates; however, in fish, a neuroglandular mode of delivery (direct contact between axons and endocrine cells) was considered dominant, whereas in tetrapods hypothalamic signals are relayed to their targets via the hypophysial portal blood system (neurovascular delivery mode). By using a transgenic zebrafish model we studied the functional and anatomical aspects of gonadotrope regulation thus revisiting the existing model. FSH cells were found to be situated close to the vasculature whereas the compact organization of LH cells prevented direct contact of all cells with the circulation. GnRH3 fibers formed multiple boutons upon reaching the pituitary, but most of these structures were located in the neurohypophysis rather than adjacent to gonadotropes. A close association was observed between FSH cells and GnRH3 boutons, but only a fifth of the LH cells were in direct contact with GnRH3 axons, suggesting that FSH cells are more directly regulated than LH cells. GnRH3 fibers closely followed the vasculature in the neurohypophysis and formed numerous boutons along these tracts. These vessels were found to be permeable to relatively large molecules, suggesting the uptake of GnRH3 peptides. Our findings have important implications regarding the differential regulation of LH and FSH and contradict the accepted notion that fish pituitary cells are mostly regulated directly by hypothalamic fibers. Instead, we provide evidence that zebrafish apply a dual mode of gonadotrope regulation by GnRH3 that combines both neuroglandular and neurovascular components.
Collapse
Affiliation(s)
- Matan Golan
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| | - Einat Zelinger
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| | - Yonathan Zohar
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| | - Berta Levavi-Sivan
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| |
Collapse
|
27
|
Smith MO, Ball J, Holloway BB, Erdelyi F, Szabo G, Stone E, Graham J, Lawrence JJ. Measuring Aggregation of Events about a Mass Using Spatial Point Pattern Methods. SPATIAL STATISTICS 2015; 13:76-89. [PMID: 29046865 PMCID: PMC5642986 DOI: 10.1016/j.spasta.2015.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We present a methodology that detects event aggregation about a mass surface using 3-dimensional study regions with a point pattern and a mass present. The Aggregation about a Mass function determines aggregation, randomness, or repulsion of events with respect to the mass surface. Our method closely resembles Ripley's K function but is modified to discern the pattern about the mass surface. We briefly state the definition and derivation of Ripley's K function and explain how the Aggregation about a Mass function is different. We develop the novel function according to the definition: the Aggregation about a Mass function times the intensity is the expected number of events within a distance h of a mass. Special consideration of edge effects is taken in order to make the function invariant to the location of the mass within the study region. Significance of aggregation or repulsion is determined using simulation envelopes. A simulation study is performed to inform researchers how the Aggregation about a Mass function performs under different types of aggregation. Finally, we apply the Aggregation about a Mass function to neuroscience as a novel analysis tool by examining the spatial pattern of neurotransmitter release sites as events about a neuron.
Collapse
Affiliation(s)
- Michael O Smith
- Department of Mathematical and Statistical Sciences, University of Montana, Missoula, MT 59812
| | - Jackson Ball
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812
| | - Benjamin B Holloway
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812
| | - Ferenc Erdelyi
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Gabor Szabo
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary
| | - Emily Stone
- Department of Mathematical and Statistical Sciences, University of Montana, Missoula, MT 59812
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812
| | - Jonathan Graham
- Department of Mathematical and Statistical Sciences, University of Montana, Missoula, MT 59812
| | - J Josh Lawrence
- Center for Structural and Functional Neuroscience, University of Montana, Missoula, MT 59812
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812
| |
Collapse
|
28
|
Disney AA, McKinney C, Grissom L, Lu X, Reynolds JH. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain. J Neurosci Methods 2015; 255:29-37. [PMID: 26226654 DOI: 10.1016/j.jneumeth.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. NEW METHOD We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (<200 μm) and can be assembled into a device of arbitrary length. It is therefore well-suited for use in all major in vivo model systems in neuroscience, including non-human primates where the large brain and need for daily insertion and removal of recording devices places particularly strict demands on design. RESULTS We present a protocol for array fabrication. We then show that a device built in the manner described can record LFPs and perform enzyme-based amperometric detection of choline in the awake macaque monkey. Comparison with existing methods Existing methods allow single mode (electrophysiology or electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. CONCLUSIONS Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision.
Collapse
Affiliation(s)
- Anita A Disney
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Collin McKinney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Larry Grissom
- California Institute for Telecommunications and Information Technology (CalIT2), University of California San Diego, La Jolla, CA, USA
| | - Xuekun Lu
- California Institute for Telecommunications and Information Technology (CalIT2), University of California San Diego, La Jolla, CA, USA
| | - John H Reynolds
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| |
Collapse
|
29
|
Stern JE. Neuroendocrine-autonomic integration in the paraventricular nucleus: novel roles for dendritically released neuropeptides. J Neuroendocrinol 2015; 27:487-97. [PMID: 25546497 PMCID: PMC4447596 DOI: 10.1111/jne.12252] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/09/2014] [Accepted: 12/18/2014] [Indexed: 12/21/2022]
Abstract
Communication between pairs of neurones in the central nervous system typically involves classical 'hard-wired' synaptic transmission, characterised by high temporal and spatial precision. Over the last two decades, however, knowledge regarding the repertoire of communication modalities used in the brain has notably expanded to include less conventional forms, characterised by a diffuse and less temporally precise transfer of information. These forms are best suited to mediate communication among entire neuronal populations, now recognised to be a fundamental process in the brain for the generation of complex behaviours. In response to an osmotic stressor, the hypothalamic paraventricular nucleus (PVN) generates a multimodal homeostatic response that involves orchestrated neuroendocrine (i.e. systemic release of vasopressin) and autonomic (i.e. sympathetic outflow to the kidneys) components. The precise mechanisms that underlie interpopulation cross-talk between these two distinct neuronal populations, however, remain largely unknown. The present review summarises and discusses a series of recent studies that have identified the dendritic release of neuropeptides as a novel interpopulation signalling modality in the PVN. A current working model is described in which it is proposed that the activity-dependent dendritic release of vasopressin from neurosecretory neurones in the PVN acts in a diffusible manner to increase the activity of distant presympathetic neurones, resulting in an integrated sympathoexcitatory population response, particularly within the context of a hyperosmotic challenge. The cellular mechanism underlying this novel form of intercellular communication, as well as its physiological and pathophysiological implications, is discussed.
Collapse
Affiliation(s)
- J E Stern
- Department of Physiology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
30
|
Dyakonova V, Hernádi L, Ito E, Dyakonova T, Zakharov I, Sakharov D. The activity of isolated snail neurons controlling locomotion is affected by glucose. Biophysics (Nagoya-shi) 2015; 11:55-60. [PMID: 27493515 PMCID: PMC4736796 DOI: 10.2142/biophysics.11.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/18/2014] [Indexed: 12/02/2022] Open
Abstract
The involvement of serotonin in mediating hunger-related changes in behavioral state has been described in many invertebrates. However, the mechanisms by which hunger signals to serotonergic cells remain unknown. We tested the hypothesis that serotonergic neurons can directly sense the concentration of glucose, a metabolic indicator of nutritional state. In the snail Lymnaea stagnalis, we demonstrate that completely isolated pedal serotonergic neurons that control locomotion changed their biophysical characteristics in response to glucose application by lowering membrane potential and decreasing the firing rate. Additionally, the excitatory response of the isolated serotonergic neurons to the neuroactive microenvironment of the pedal ganglia was significantly lowered by glucose application. Because hunger has been reported to increase the activity of select neurons and their responses to the pedal ganglia microenvironment, these responses to glucose are in accordance with the hypothesis that direct glucose signaling is involved in the mediation of the hunger-related behavioral state.
Collapse
Affiliation(s)
- Varvara Dyakonova
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| | - László Hernádi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany,
Hungary
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki 769-2193,
Japan
| | - Taisia Dyakonova
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| | - Igor Zakharov
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| | - Dmitri Sakharov
- Laboratory of Comparative Physiology, Institute of Developmental Biology, Russian Academy of Sciences, Moscow,
Russia
| |
Collapse
|
31
|
Dyakonova VE, Hernádi L, Ito E, Dyakonova TL, Chistopolsky IA, Zakharov IS, Sakharov DA. The activity of isolated neurons and the modulatory state of an isolated nervous system represent a recent behavioural state. ACTA ACUST UNITED AC 2015; 218:1151-8. [PMID: 25714568 DOI: 10.1242/jeb.111930] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022]
Abstract
Behavioural/motivational state is known to influence nearly all aspects of physiology and behaviour. The cellular basis of behavioural state control is only partially understood. Our investigation, performed on the pond snail Lymnaea stagnalis whose nervous system is useful for work on completely isolated neurons, provided several results related to this problem. First, we demonstrated that the behavioural state can produce long-term changes in individual neurons that persist even after neuron isolation from the nervous system. Specifically, we found that pedal serotonergic neurons that control locomotion show higher activity and lower membrane potential after being isolated from the nervous systems of hungry animals. Second, we showed that the modulatory state (the chemical neuroactive microenvironment of the central ganglia) changes in accordance with the nutritional state of an animal and produces predicted changes in single isolated locomotor neurons. Third, we report that observed hunger-induced effects can be explained by the increased synthesis of serotonin in pedal serotonergic neurons, which has an impact on the electrical activity of isolated serotonergic neurons and the intensity of extrasynaptic serotonin release from the pedal ganglia.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Laszlo Hernádi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany H-8237, Hungary
| | - Etsuro Ito
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido, Sanuki 769-2193, Japan
| | - Taisia L Dyakonova
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Ilya A Chistopolsky
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Igor S Zakharov
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dmitri A Sakharov
- Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
32
|
Information handling by the brain: proposal of a new "paradigm" involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission. J Neural Transm (Vienna) 2014; 121:1431-49. [PMID: 24866694 DOI: 10.1007/s00702-014-1240-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022]
Abstract
The current view on the organization of the central nervous system (CNS) is basically anchored to the paradigm describing the brain as formed by networks of neurons interconnected by synapses. Synaptic contacts are a fundamental characteristic for describing CNS operations, but increasing evidence accumulated in the last 30 years pointed to a refinement of this view. A possible overcoming of the classical "neuroscience paradigm" will be here outlined, based on the following hypotheses: (1) the basic morpho-functional unit in the brain is a compartment of tissue (functional module) where different resident cells (not only neurons) work as an integrated unit; (2) in these complex networks, a spectrum of intercellular communication processes is exploited, that can be classified according to a dichotomous criterion: wiring transmission (occurring through physically delimited channels) and volume transmission (exploiting diffusion in the extracellular space); (3) the connections between cells can themselves be described as a network, leading to an information processing occurring at different levels from cell network down to molecular level; (4) recent evidence of the existence of specialized structures (microvesicles and tunneling nanotubes) for intercellular exchange of materials, could allow a further type of polymorphism of the CNS networks based on at least transient changes in cell phenotype. When compared to the classical paradigm, the proposed scheme of cellular organization could allow a strong increase of the degrees of freedom available to the whole system and then of its plasticity. Furthermore, long range coordination and correlation can be more easily accommodated within this framework.
Collapse
|
33
|
Morawski M, Filippov M, Tzinia A, Tsilibary E, Vargova L. ECM in brain aging and dementia. PROGRESS IN BRAIN RESEARCH 2014; 214:207-27. [PMID: 25410360 DOI: 10.1016/b978-0-444-63486-3.00010-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An essential component of the brain extracellular space is the extracellular matrix contributing to the spatial assembly of cells by binding cell-surface adhesion molecules, supporting cell migration, differentiation, and tissue development. The most interesting and complex functions of the central nervous system are the abilities to encode new information (learning) and to store this information (memory). The creation of perineuronal nets, consisting mostly of chondroitin sulfate proteoglycans, stabilizes the synapses and memory trails and forms protective shields against neurodegenerative processes but terminates plasticity and the potential for recovery of the tissue. Age-related changes in the extracellular matrix composition and the extracellular space volume and permissivity are major determinants of the onset and development of the most common neurodegenerative disorder, Alzheimer's disease. In this regard, heparan sulfate proteoglycans, involved in amyloid clearance from the brain, play an important role in Alzheimer's disease and other types of neurodegeneration. Additional key players in the modification of the extracellular matrix are matrix metalloproteinases. Recent studies show that the extracellular matrix and matrix metalloproteinases are important regulators of plasticity, learning, and memory and might be involved in different neurological disorders like epilepsy, schizophrenia, addiction, and dementia. The identification of molecules and mechanisms that modulate these processes is crucial for the understanding of brain function and dysfunction and for the design of new therapeutic approaches targeting the molecular mechanism underlying these neurological disorders.
Collapse
Affiliation(s)
- Markus Morawski
- University of Leipzig, EU-ESF Transnational Junior Research Group "MESCAMP", Paul Flechsig Institute for Brain Research, Leipzig, Germany.
| | - Mikhail Filippov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Athina Tzinia
- NCSR "Demokritos", Institute of Biosciences and Applications, Athens, Greece
| | - Effie Tsilibary
- NCSR "Demokritos", Institute of Biosciences and Applications, Athens, Greece
| | - Lydia Vargova
- Charles University, 2nd Faculty of Medicine, Department of Neuroscience, Prague, Czech Republic; Institute of Experimental Medicine AS CR, v.v.i., Department of Neuroscience, Prague, Czech Republic
| |
Collapse
|
34
|
Takács VT, Freund TF, Nyiri G. Neuroligin 2 is expressed in synapses established by cholinergic cells in the mouse brain. PLoS One 2013; 8:e72450. [PMID: 24039767 PMCID: PMC3764118 DOI: 10.1371/journal.pone.0072450] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/17/2013] [Indexed: 01/17/2023] Open
Abstract
Neuroligin 2 is a postsynaptic protein that plays a critical role in the maturation and proper function of GABAergic synapses. Previous studies demonstrated that deletion of neuroligin 2 impaired GABAergic synaptic transmission, whereas its overexpression caused increased inhibition, which suggest that its presence strongly influences synaptic function. Interestingly, the overexpressing transgenic mouse line showed increased anxiety-like behavior and other behavioral phenotypes, not easily explained by an otherwise strengthened GABAergic transmission. This suggested that other, non-GABAergic synapses may also express neuroligin 2. Here, we tested the presence of neuroligin 2 at synapses established by cholinergic neurons in the mouse brain using serial electron microscopic sections double labeled for neuroligin 2 and choline acetyltransferase. We found that besides GABAergic synapses, neuroligin 2 is also present in the postsynaptic membrane of cholinergic synapses in all investigated brain areas (including dorsal hippocampus, somatosensory and medial prefrontal cortices, caudate putamen, basolateral amygdala, centrolateral thalamic nucleus, medial septum, vertical- and horizontal limbs of the diagonal band of Broca, substantia innominata and ventral pallidum). In the hippocampus, the density of neuroligin 2 labeling was similar in GABAergic and cholinergic synapses. Moreover, several cholinergic contact sites that were strongly labeled with neuroligin 2 did not resemble typical synapses, suggesting that cholinergic axons form more synaptic connections than it was recognized previously. We showed that cholinergic cells themselves also express neuroligin 2 in a subset of their input synapses. These data indicate that mutations in human neuroligin 2 gene and genetic manipulations of neuroligin 2 levels in rodents will potentially cause alterations in the cholinergic system as well, which may also have a profound effect on the functional properties of brain circuits and behavior.
Collapse
Affiliation(s)
- Virág T. Takács
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tamás F. Freund
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
35
|
Goyal RK, Chaudhury A. Structure activity relationship of synaptic and junctional neurotransmission. Auton Neurosci 2013; 176:11-31. [PMID: 23535140 PMCID: PMC3677731 DOI: 10.1016/j.autneu.2013.02.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 12/28/2012] [Accepted: 02/18/2013] [Indexed: 12/18/2022]
Abstract
Chemical neurotransmission may include transmission to local or remote sites. Locally, contact between 'bare' portions of the bulbous nerve terminal termed a varicosity and the effector cell may be in the form of either synapse or non-synaptic contact. Traditionally, all local transmissions between nerves and effector cells are considered synaptic in nature. This is particularly true for communication between neurons. However, communication between nerves and other effectors such as smooth muscles has been described as nonsynaptic or junctional in nature. Nonsynaptic neurotransmission is now also increasingly recognized in the CNS. This review focuses on the relationship between structure and function that orchestrate synaptic and junctional neurotransmissions. A synapse is a specialized focal contact between the presynaptic active zone capable of ultrafast release of soluble transmitters and the postsynaptic density that cluster ionotropic receptors. The presynaptic and the postsynaptic areas are separated by the 'closed' synaptic cavity. The physiological hallmark of the synapse is ultrafast postsynaptic potentials lasting milliseconds. In contrast, junctions are juxtapositions of nerve terminals and the effector cells without clear synaptic specializations and the junctional space is 'open' to the extracellular space. Based on the nature of the transmitters, postjunctional receptors and their separation from the release sites, the junctions can be divided into 'close' and 'wide' junctions. Functionally, the 'close' and the 'wide' junctions can be distinguished by postjunctional potentials lasting ~1s and tens of seconds, respectively. Both synaptic and junctional communications are common between neurons; however, junctional transmission is the rule at many neuro-non-neural effectors.
Collapse
Affiliation(s)
- Raj K Goyal
- Center for Swallowing and Motility Disorders, GI Division, VA Boston Healthcare System and Harvard Medical School, Boston, USA.
| | | |
Collapse
|
36
|
Zhang WB, Zhao Y, Kjell F. Understanding propagated sensation along meridians by volume transmission in peripheral tissue. Chin J Integr Med 2013; 19:330-9. [PMID: 23674110 DOI: 10.1007/s11655-013-1456-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 02/03/2023]
Abstract
Propagated sensation along meridians (PSM) is a phenomenon that a sensation moves along meridians during stimulation of an acupoint. PSM has an appearance rate of 1.3% among people and have characteristics of low speed, going toward afflicted sites and being blocked by physical pressure which is difficult to be explained by known neural and blood transmission. Volume transmission (VT) is a widespread mode of intercellular communication in the central nervous system that occurs in the extracellular fluid and in the cerebrospinal fluid. VT signals moves from source to target cells via energy gradients leading to diffusion and convection (flow) which is slow, long distance and much less space filling. VT channel diffuse forming a plexus in the extracellular space with two parameters of volume fraction and tortuosity. Some experiments showed an information transmission between adjacent and distant acupoints along meridians cross spinal segments. This process is a cross-excitation between peripheral nerve terminals which is related to nonsynaptic transmission. Some neurotransmitters or neuropeptides such as glutamate, adenosine triphosphate (ATP) and neuropeptide such as substance P, neurokinin A and calcitonin gene-related peptide relate with the cross-excitation which can be regards as VT signals. Comparing the characteristics of PSM and VT, many similar aspects can be found leading to an assumption that PSM is a process of VT in peripheral tissue along meridians. The reason why VT signals transmit along meridians is that the meridian is rich in interstitial fluid under the condition of low hydraulic resistance which has been proven experimentally. According to Darcy's law which descript the flow of interstitial fluid and conservation equation, interstitial fluid will move toward meridians and flow along meridians that restrict the VT signals within the channel and accelerate the flow according to Fick's diffusion law. During the process, a degranulation of histamine from mast cells happens on the route which can expand capillary and increase the blood perfusion and interstitial fluid which had already been observed. The mechanism of PSM is featured by alternative axon reflex (wired transmission, WT) and VT in peripheral tissue along meridians, sending simultaneously a continuous sensate signal to control nerve system which can be felt like a PSM.
Collapse
Affiliation(s)
- Wei-Bo Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing 100700, China.
| | | | | |
Collapse
|
37
|
Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters. Brain Res Bull 2012; 93:110-9. [PMID: 23266673 DOI: 10.1016/j.brainresbull.2012.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 12/17/2012] [Indexed: 11/21/2022]
Abstract
Glycine is an amino acid neurotransmitter that is involved in both inhibitory and excitatory neurochemical transmission in the central nervous system. The role of glycine in excitatory neurotransmission is related to its coagonist action at glutamatergic N-methyl-D-aspartate receptors. The glycine levels in the synaptic cleft rise many times higher during synaptic activation assuring that glycine spills over into the extrasynaptic space. Another possible origin of extrasynaptic glycine is the efflux of glycine occurring from astrocytes associated with glutamatergic synapses. The release of glycine from neuronal or glial origins exhibits several differences compared to that of biogenic amines or other amino acid neurotransmitters. These differences appear in an external Ca(2+)- and temperature-dependent manner, conferring unique characteristics on glycine as a neurotransmitter. Glycine transporter type-1 at synapses may exhibit neural and glial forms and plays a role in controlling synaptic glycine levels and the spill over rate of glycine from the synaptic cleft into the extrasynaptic biophase. Non-synaptic glycine transporter type-1 regulates extrasynaptic glycine concentrations, either increasing or decreasing them depending on the reverse or normal mode operation of the carrier molecule. While we can, at best, only estimate synaptic glycine levels at rest and during synaptic activation, glycine concentrations are readily measurable via brain microdialysis technique applied in the extrasynaptic space. The non-synaptic N-methyl-D-aspartate receptor may obtain glycine for activation following its spill over from highly active synapses or from its release mediated by the reverse operation of non-synaptic glycine transporter-1. The sensitivity of non-synaptic N-methyl-D-aspartate receptors to glutamate and glycine is many times higher than that of synaptic N-methyl-D-aspartate receptors making the former type of receptor the primary target for drug action. Synaptic and non-synaptic N-methyl-D-aspartate receptors mediate different neural functions, many of which are not clearly defined at present. Non-synaptic glycine transporter-1 and its blockade by inhibitory drugs may be important in drug therapy interventions, such as for reducing negative symptoms of schizophrenia.
Collapse
|
38
|
Mitkovski M, Padovan-Neto FE, Raisman-Vozari R, Ginestet L, da-Silva CA, Del-Bel EA. Investigations into Potential Extrasynaptic Communication between the Dopaminergic and Nitrergic Systems. Front Physiol 2012; 3:372. [PMID: 23055978 PMCID: PMC3457048 DOI: 10.3389/fphys.2012.00372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022] Open
Abstract
Nitric oxide is unconstrained by cell membranes and can therefore act along a broad distance as a volume transmitter. Spillover of nitric oxide between neurons may have a major impact on central nervous system diseases and particularly on neurodegeneration. There is evidence whereby communication between nitrergic and dopaminergic systems plays an essential role in the control of the nigrostriatal pathway. However, there is sparse information for either the coexistence or overlap of nitric oxide and dopaminergic structures. The dual localization of immunoreactivity for nitric oxide synthase (NOS) and tyrosine hydroxylase, enzymes responsible for the synthesis of nitric oxide and dopamine, respectively, was examined in neurons of the nigrostriatal pathway in the rat brain by means of a double-immunohistochemical method and confocal laser scanning microscopy, acquired at the resolution limit. After perfusional fixation, the brains were cut and double-immunostained. A proximity analysis of tyrosine hydroxylase and NOS structures was done using binary masks generated from the respective maximum projections, using confocal laser microscopy. Unrevealed regions were determined somatodendritic positive for both NOS and tyrosine hydroxylase, within an image limit resolution at 2 μm-wide margin. The described interconnected localization of nNOS(+) and TH(+) containing neuronal fibers and cells bodies in the nigrostriatal pathway propose a close anatomical link between the two neurotransmitters.
Collapse
Affiliation(s)
- M Mitkovski
- Light Microscopy Facility, Max-Planck-Institute of Experimental Medicine Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Fuxe K, Borroto-Escuela DO, Romero-Fernandez W, Diaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Tarakanov AO, Garriga P, Narváez JA, Ciruela F, Guescini M, Agnati LF. Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. Front Physiol 2012; 3:136. [PMID: 22675301 PMCID: PMC3366473 DOI: 10.3389/fphys.2012.00136] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 04/23/2012] [Indexed: 12/20/2022] Open
Abstract
Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT) and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR) heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT) and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT) and histamine striatal afferents, the cholinergic interneurons, and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal cellular networks.
Collapse
Affiliation(s)
- Kjell Fuxe
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden
| | | | | | - Zaida Diaz-Cabiale
- Department of Physiology, School of Medicine, University of MálagaMálaga, Spain
| | - Alicia Rivera
- Department of Cell Biology, Faculty of Sciences, University of MálagaMálaga, Spain
| | - Luca Ferraro
- Pharmacology Section, Department of Clinical and Experimental Medicine, University of FerraraFerrara, Italy
| | - Sergio Tanganelli
- Pharmacology Section, Department of Clinical and Experimental Medicine, University of FerraraFerrara, Italy
| | - Alexander O. Tarakanov
- Russian Academy of Sciences, St. Petersburg Institute for Informatics and AutomationSaint Petersburg, Russia
| | - Pere Garriga
- Departament d’Enginyeria Química, Centre de Biotecnologia Molecular, Universitat Politècnica de CatalunyaBarcelona, Spain
| | - José Angel Narváez
- Department of Physiology, School of Medicine, University of MálagaMálaga, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Universitat de BarcelonaBarcelona, Spain
| | - Michele Guescini
- Department of Biomolecular Sciences, University of Urbino “CarloBo”Urbino, Italy
| | | |
Collapse
|
40
|
Agnati LF, Guidolin D, Guescini M, Battistin L, Stocchi V, De Caro R, Genedani S, Fuxe K. Aspects on the integrative actions of the brain from neural networks to "brain-body medicine". J Recept Signal Transduct Res 2012; 32:163-80. [PMID: 22620712 DOI: 10.3109/10799893.2012.687748] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
"Integration" is a key term in describing how nervous system can perform high level functions. A first condition to have "integration" is obviously the presence of efficient "communication processes" among the parts that have to be combined into the harmonious whole. In this respect, two types of communication processes, called wiring transmission (WT) and volume transmission (VT), respectively, were found to play a major role in the nervous system, allowing the exchange of signals not only between neurons, but rather among all cell types present in the central nervous system (CNS). A second fundamental aspect of a communication process is obviously the recognition/decoding process at target level. As far as this point is concerned, increasing evidence emphasizes the importance of supramolecular complexes of receptors (the so called receptor mosaics) generated by direct receptor-receptor interactions. Their assemblage would allow a first integration of the incoming information already at the plasma membrane level. Recently, evidence of two new subtypes of WT and VT has been obtained, namely the tunnelling nanotubes mediated WT and the microvesicle (in particular exosomes) mediated VT allowing the horizontal transfer of bioactive molecules, including receptors, RNAs and micro-RNAs. The physiological and pathological implications of these types of communication have opened up a new field that is largely still unexplored. In fact, likely unsuspected integrative actions of the nervous system could occur. In this context, a holistic approach to the brain-body complex as an indissoluble system has been proposed. Thus, the hypothesis has been introduced on the existence of a brain-body integrative structure formed by the "area postrema/nucleus tractus solitarius" (AP/NTS) and the "anteroventral third ventricle region/basal hypothalamus with the median eminence" (AV3V-BH). These highly interconnected regions operate as specialized interfaces between the brain and the body integrating brain-borne and body-borne neural and humoral signals.
Collapse
|
41
|
Zamecnik J, Homola A, Cicanic M, Kuncova K, Marusic P, Krsek P, Sykova E, Vargova L. The extracellular matrix and diffusion barriers in focal cortical dysplasias. Eur J Neurosci 2012; 36:2017-24. [PMID: 22536791 DOI: 10.1111/j.1460-9568.2012.08107.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Focal cortical dysplasias (FCDs) of the brain are recognized as a frequent cause of intractable epilepsy. To contribute to the current understanding of the mechanisms of epileptogenesis in FCD, our study provides evidence that not only cellular alterations and synaptic transmission, but also changed diffusion properties of the extracellular space (ECS), induced by modified extracellular matrix (ECM) composition and astrogliosis, might be involved in the generation or spread of seizures in FCD. The composition of the ECM in FCD and non-malformed cortex (in 163 samples from 62 patients) was analyzed immunohistochemically and correlated with the corresponding ECS diffusion parameter values determined with the real-time iontophoretic method in freshly resected cortex (i.e. the ECS volume fraction and the geometrical factor tortuosity, describing the hindrances to diffusion in the ECS). The ECS in FCD was shown to differ from that in non-malformed cortex, mainly by the increased accumulation of certain ECM molecules (tenascin R, tenascin C, and versican) or by their reduced expression (brevican), and by the presence of an increased number of astrocytic processes. The consequent increase of ECS diffusion barriers observed in both FCD type I and II (and, at the same time, the enlargement of the ECS volume in FCD type II) may alter the diffusion of neuroactive substances through the ECS, which mediates one of the important modes of intercellular communication in the brain - extrasynaptic volume transmission. Thus, the changed ECM composition and altered ECS diffusion properties might represent additional factors contributing to epileptogenicity in FCD.
Collapse
Affiliation(s)
- Josef Zamecnik
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, V Uvalu 84, 150 06 Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lau T, Schloss P. Differential regulation of serotonin transporter cell surface expression. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/wmts.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
43
|
Smalls SL, Okere CO. Acute restraint increases varicosity density and reduces the inter-varicosity distance in NADPH diaphorase-containing neurons in the rat dorsolateral periaqueductal gray matter. Neurosci Lett 2012; 511:23-7. [PMID: 22285727 DOI: 10.1016/j.neulet.2012.01.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/07/2012] [Accepted: 01/10/2012] [Indexed: 11/16/2022]
Abstract
The periaqueductal gray (PAG) is important for the organization of organismal response to different types of stress and painful stimuli. Its dorsolateral (dlPAG) column is distinctly characterized by the presence of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), which in many brain regions, is an indication of constitutive nitric oxide (NO) synthase (NOS)-containing neurons. Different stress paradigms activate the dlPAG NOS machinery presumably by a presynaptic influence of NO on dlPAG neurons to modulate the nuclear dynamics to elicit an appropriate response. Since presynaptic components of synapses reside in axonal varicosities, this study assessed the number of varicosities and inter-varicosity spacing of NADPH-d neurons in the dlPAG of free-behaving (control) and acutely restrained male rats. The study tested the hypothesis that stress-induced increase in endogenous NO synthesis involved changes in synaptic density and inter-varicosity spacing and therefore, a non-synaptic component of NO involvement in the dlPAG response to stress. Compared with control, the number of NADPH-d-positive cells, the staining intensity and the number of varicosities per microgram tissue were significantly higher in restrained animals. Also, the inter-varicosity spacing was significantly higher in control than restrained rats, presumably due to the increase in varicosities induced by restraint. Since neural connectivity and synaptogenesis depend on mean varicosity spacing and pattern of varicosity, respectively, the present observations suggest a mechanism whereby restraint stress induces increased activity via synaptic and non-synaptic NO-mediated neurotransmission within the dlPAG.
Collapse
Affiliation(s)
- Shaneka L Smalls
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | | |
Collapse
|
44
|
Lendvai B, Halmos GB, Polony G, Kapocsi J, Horváth T, Aller M, Sylvester Vizi E, Zelles T. Chemical neuroprotection in the cochlea: The modulation of dopamine release from lateral olivocochlear efferents. Neurochem Int 2011; 59:150-8. [DOI: 10.1016/j.neuint.2011.05.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 05/12/2011] [Accepted: 05/17/2011] [Indexed: 01/16/2023]
|
45
|
Zhang ZW, Kang JI, Vaucher E. Axonal varicosity density as an index of local neuronal interactions. PLoS One 2011; 6:e22543. [PMID: 21811630 PMCID: PMC3141066 DOI: 10.1371/journal.pone.0022543] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 06/29/2011] [Indexed: 01/09/2023] Open
Abstract
Diffuse transmission is an important non-synaptic communication mode in the cerebral neocortex, in which neurotransmitters released from en passant varicosities interact with surrounding cells. In a previous study we have shown that the cholinergic axonal segments which were in the microproximity with dopaminergic fibers possessed a greater density of en passant varicosities compared to more distant segments, suggesting an activity-dependent level of en passant varicosities in the axonal zone of interaction. To further evaluate this plastic relationship, the density of cholinergic varicosities was quantified on fiber segments within the microproximity of activated or non-activated pyramidal cells of the prefrontal cortex (mPFC). Repetitive 14 days patterned visual stimulation paired with an electrical stimulation of the cholinergic fibers projecting to the mPFC from the HDB was performed to induce persistent axonal plastic changes. The c-Fos early gene immunoreactivity was used as a neuronal activity marker of layer V pyramidal cells, labelled with anti-glutamate transporter EAAC1. Cholinergic fibers were labeled with anti-ChAT (choline acetyltransferase) immunostaining. The density of ChAT+ varicosities on and the length of fiber segments within the 3 µm microproximity of c-Fos positive/negative pyramidal cells were evaluated on confocal images. More than 50% of the pyramidal cells in the mPFC were c-Fos immunoreactive. Density of ChAT+ varicosities was significantly increased within 3 µm vicinity of activated pyramidal cells (0.50±0.01 per µm of ChAT+ fiber length) compared to non-activated cells in this group (0.34±0.001; p≤0.05) or control rats (0.32±0.02; p≤0.05). Different types of stimulation (visual, HDB or visual/HDB) induced similar increase of the density of ChAT+ varicosities within microproximity of activated pyramidal cells. This study demonstrated at the subcellular level an activity-dependent enrichment of ChAT+ varicosities in the axonal zone of interaction with other neuronal elements.
Collapse
Affiliation(s)
- Zi-Wei Zhang
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada
- Department of Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Jun Il Kang
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada
- Department of Physiology, Université de Montréal, Montréal, Quebec, Canada
| | - Elvire Vaucher
- School of Optometry, Université de Montréal, Montréal, Quebec, Canada
- * E-mail:
| |
Collapse
|
46
|
Zhang H, Gao Y, Zhao F, Dai Z, Meng T, Tu S, Yan Y. Hydrogen sulfide reduces mRNA and protein levels of beta-site amyloid precursor protein cleaving enzyme 1 in PC12 cells. Neurochem Int 2011; 58:169-75. [DOI: 10.1016/j.neuint.2010.11.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 11/27/2022]
|
47
|
Del Cid-Pellitero E, Garzón M. Medial prefrontal cortex receives input from dorsal raphe nucleus neurons targeted by hypocretin1/orexinA-containing axons. Neuroscience 2010; 172:30-43. [PMID: 21036204 DOI: 10.1016/j.neuroscience.2010.10.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/27/2010] [Accepted: 10/21/2010] [Indexed: 11/29/2022]
Abstract
The medial prefrontal cortex (mPFC) is strongly involved in cognition and behavior. It receives input from brainstem nuclei implicated in behavioral wakefulness and electrographic cortical activation, such as the dorsal raphe nucleus (DRN). Moreover, the hypocretinergic/orexinergic (Hcrt/Ox) hypothalamic neurons innervate DRN, thus modulating its activity and presumably allowing transitions between sleep-wakefulness cycle states. Dysfunction in this system is associated with narcolepsy. In this study we aimed to determine the precise location of DRN neurons projecting to mPFC and the extent to which they contain serotonin (5-hydroxytryptamine); we have also assessed whether Hcrt1/OxA neurons innervate DRN neurons that could sustain behavioral wakefulness through their projections to mPFC. The retrograde tracer Fluorogold was injected into mPFC and DRN sections were processed for double immunolabeling of anti-Fluorogold and either anti-5-hydroxytryptamine or anti-Hcrt1/OxA antisera. Most DRN neurons projecting to mPFC were located in the ventral sector of the rostral and intermediate DRN, and around half of them were serotonergic. Hcrt1/OxA-immunoreactivity in DRN was observed in unmyelinated axons and axon boutons (varicosities or axon terminals). Hcrt1/OxA immunoreactivity was observed within the cytoplasm and in dense-cored vesicles of these axons. Hcrt1/OxA-labeled boutons established both asymmetric synapses (n=30) and appositional contacts (n=102) with Fluorogold-labeled dendrites belonging to DRN neurons projecting to mPFC. Our results show that Hcrt1/OxA neurons may exert a direct synaptic influence on DRN neurons that could facilitate wakefulness, although other non-synaptic actions through volume transmission are also suggested.
Collapse
Affiliation(s)
- E Del Cid-Pellitero
- Department of Anatomy, Histology and Neuroscience, Medical School, Autónoma University of Madrid, Instituto de Investigación Hospital Universitario La Paz (IDIPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| | | |
Collapse
|
48
|
Weiss T, Veh RW. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience 2010; 172:74-93. [PMID: 20974229 DOI: 10.1016/j.neuroscience.2010.10.047] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/15/2010] [Accepted: 10/16/2010] [Indexed: 11/26/2022]
Abstract
Based on the specificity of its inputs and targets, the lateral habenular complex (LHb) constitutes a pivotal motor-limbic interface implicated in various cerebral functions particularly in regulating monoamine transmission. Despite its functional significance, cellular characteristics underlying LHb functionality have not been examined systematically. The present study aimed to correlate morphological and electrophysiological properties of neurons within the different subnuclei of the LHb using whole-cell recording and neurobiotin labeling in rat slice preparations. Morphological analysis revealed a heterogeneous population of projection neurons randomly distributed throughout the LHb. According to somatodendritic characteristics four main categories were classified including spherical, fusiform, polymorphic and vertical cells. Electrophysiological characterization of neurons within the different categories demonstrated homologous profiles and no significant differences between groups. Typically, LHb neurons possessed high input resistances and long membrane time constants. They also displayed time-dependent inward rectification and distinct afterhyperpolarization. A salient electrophysiological feature of LHb neurons was their ability to generate rebound bursts of action potentials in response to membrane hyperpolarization. Based on the pattern of spontaneous activity, neurons were classified as silent, tonic or bursting. The occurrence of distinctive firing modes was not related to topographic allocation. The patterns of spontaneous firing and evoked discharge were highly sensitive to alterations in membrane potential and merged upon de- and hyperpolarizing current injection and synaptic stimulation. Besides projection neurons, recordings revealed the existence of a subpopulation of cells possessing morphological and physiological properties of neocortical neurogliaform cells. They were considered to be interneurons. Our data suggest that neurons within the different LHb subnuclei behave electrophysiologically more similar than expected, considering their morphological heterogeneity. We conclude that the formation of functional neuronal entities within the LHb may be achieved through defined synaptic inputs to particular neurons, rather than by individual neuronal morphologies and intrinsic membrane properties.
Collapse
Affiliation(s)
- T Weiss
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité—Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
49
|
Grilli M, Patti L, Robino F, Zappettini S, Raiteri M, Marchi M. Release-enhancing pre-synaptic muscarinic and nicotinic receptors co-exist and interact on dopaminergic nerve endings of rat nucleus accumbens. J Neurochem 2010; 105:2205-13. [PMID: 18298664 DOI: 10.1111/j.1471-4159.2008.05307.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopaminergic nerve endings in the corpus striatum possess nicotinic (nAChRs) and muscarinic cholinergic receptors (mAChRs) mediating release of dopamine (DA). Whether nAChRs and mAChRs co-exist and interact on the same nerve endings is unknown. We here investigate on these possibilities using rat nucleus accumbens synaptosomes pre-labeled with [(3)H]DA and exposed in superfusion to cholinergic receptor ligands. The mixed nAChR-mAChR agonists acetylcholine (ACh) and carbachol provoked [(3)H]DA release partially sensitive to the mAChR antagonist atropine but totally blocked by the nAChR antagonist mecamylamine. Addition of the mAChR agonist oxotremorine at the minimally effective concentration of 30 micromol/L, together with 3, 10, or 100 micromol/L (-)nicotine provoked synergistic effect on [(3)H]DA overflow. The [(3)H]DA overflow elicited by 100 micromol/L (-)nicotine plus 30 micromol/L oxotremorine was reduced by atropine down to the release produced by (-)nicotine alone and it was abolished by mecamylamine. The ryanodine receptor blockers dantrolene or 8-bromo-cADP-ribose, but not the inositol 1,4,5-trisphosphate receptor blocker xestospongin C inhibited the (-)nicotine/oxotremorine evoked [(3)H]DA overflow similarly to atropine. This overflow was partly sensitive to 100 nmol/L methyllycaconitine which did not prevent the synergistic effect of (-)nicotine/oxotremorine. Similarly to (-)nicotine, the selective alpha4beta2 nAChR agonist RJR2403 exhibited synergism when added together with oxotremorine. To conclude, in rat nucleus accumbens, alpha4beta2 nAChRs exert a permissive role on the releasing function of reportedly M(5) mAChRs co-existing on the same dopaminergic nerve endings.
Collapse
Affiliation(s)
- Massimo Grilli
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
50
|
Dyakonova VE, Dyakonova TL. Coordination of rhythm-generating units via NO and extrasynaptic neurotransmitter release. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:529-41. [PMID: 20559642 DOI: 10.1007/s00359-010-0541-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 05/19/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
The buccal ganglia of the mollusc, Lymnaea stagnalis, contain two distinct but interacting rhythm-generating units: the central pattern generator for the buccal rhythm and nitrergic B2 neurons controlling gut motility. Nitric oxide (NO) has previously been demonstrated to be involved in the activation of the buccal rhythm. Here, we found that NO-generating substances (SNP and SNAP) activated the buccal rhythm while slowing the endogenous rhythm of B2 bursters. The inhibitor of NO-synthase, L-NNA, the NO scavenger PTIO, or the inhibitor of soluble guanylyl cyclase, ODQ, each produced opposite, depolarising effects on the B2 neuron. In isolated B2 cells, only depolarising effects of substances interfering with NO production or function (PTIO, L-NNA and ODQ) were detected, whereas the NO donors had no hyperpolarising effects. However, when an isolated B2 cell was placed close to its initial position in the ganglion, hyperpolarising effects could be obtained with NO donors. This indicates that extrasynaptic release of some unidentified factor(s) mediates the hyperpolarising effects of NO donors on the B2 bursters. The results suggest that NO is involved in coordination between the radula and foregut movements and that the effects of NO are partially mediated by the volume chemical neurotransmission of as yet unknown origin.
Collapse
Affiliation(s)
- Varvara E Dyakonova
- Laboratory of Comparative Physiology, Institute of Developmental Biology of the Russian Academy of Sciences, Vavilov Str. 26, Moscow, 119991, Russia.
| | | |
Collapse
|