1
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
2
|
Koohfar A, Eslami F, Shayan M, Rahimi N, Moradi F, Golroudbari HT, Ghasemi M, Dehpour AR. Dapsone Protects Against Lithium-Pilocarpine-Induced Status Epilepticus in Rats through Targeting Tumor Necrosis Factor-α and Nitrergic Pathway. J Epilepsy Res 2022; 12:39-47. [PMID: 36685747 PMCID: PMC9830027 DOI: 10.14581/jer.22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 12/30/2022] Open
Abstract
Background and Purpose Status epilepticus (SE) results in permanent neuronal brain damage in the central nervous system. One of the complex etiologies underlying SE pathogenesis is neuroinflammation. Dapsone has been recently considered as a potential neuroprotective agent in neuroinflammatory conditions. Therefore, the present study aims to investigate effects of dapsone on lithium-pilocarpine-induced SE in rats and assess whether tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO) pathway participate in this effect. Methods SE was established by injecting lithium chloride (127 mg/kg, intraperitoneally [i.p.]) and pilocarpine (60 mg/kg, i.p.). The animals received pre-treatment dapsone (2, 5, 10, and 20 mg/kg, oral gavage) and post-treatment dapsone (10 mg/kg). Subsequently, seizure score and mortality rate were documented. To assess the underlying signaling pathway, L-Nω-Nitro-L-arginine methyl ester hydrochloride (a non-specific NO synthase [NOS] inhibitor), 7-nitroindazole (a specific neuronal NOS inhibitor), and aminoguanidine (a specific inducible NOS inhibitor) were administered 15 minutes before dapsone (10 mg/kg) pre- or post-treatment. Hippocampal tissue TNF-α and NO concentrations were quantified using the enzyme-linked immunosorbent assay method. Results Dapsone (10 mg/kg) pre-and post-treatment significantly attenuated the increased seizure score and mortality rate due to lithium-pilocarpine-induced SE. The development of SE in animals was associated with higher TNF-α and NO metabolites levels, which notably decreased in the dapsone-treated rats. Moreover, co-administration of NOS inhibitors with dapsone markedly reversed the anti-epileptic effects of dapsone and caused an escalation in TNF-α level but a significant reduction in NO concentration level. Conclusions It seems that dapsone may exert an anti-epileptic effect on lithium-pilocarpine-induced SE through TNF-α inhibition and modulation of the nitrergic pathway.
Collapse
Affiliation(s)
- Amirhossein Koohfar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Faezeh Eslami
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran,Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL,
USA
| | - Maryam Shayan
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Farid Moradi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Hasti Tashak Golroudbari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA,
USA
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran,
Iran,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
3
|
Pisani F, Statello R, Pedrazzi G, Miragoli M, Piccolo B, Turco EC. The duration of successive epileptic seizures is monotonically correlated in neonates. Neurophysiol Clin 2022; 52:472-481. [DOI: 10.1016/j.neucli.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
|
4
|
Han W, Jiang L, Song X, Li T, Chen H, Cheng L. VEGF Modulates Neurogenesis and Microvascular Remodeling in Epileptogenesis After Status Epilepticus in Immature Rats. Front Neurol 2022; 12:808568. [PMID: 35002944 PMCID: PMC8739962 DOI: 10.3389/fneur.2021.808568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis and angiogenesis are widely recognized to occur during epileptogenesis and important in brain development. Because vascular endothelial growth factor (VEGF) is a critical neurovascular target in neurological diseases, its effect on neurogenesis, microvascular remodeling and epileptogenesis in the immature brain after lithium-pilocarpine-induced status epilepticus (SE) was investigated. The dynamic changes in and the correlation between hippocampal neurogenesis and microvascular remodeling after SE and the influence of VEGF or SU5416 injection into the lateral ventricles at different stages after SE on neurogenesis and microvascular remodeling through regulation of VEGF expression were assessed by immunofluorescence and immunohistochemistry. Western blot analysis revealed that the VEGFR2 signaling pathway promotes phosphorylated ERK and phosphorylated AKT expression. The effects of VEGF expression regulation at different stages after SE on pathological changes in hippocampal structure and spontaneous recurrent seizures (SRS) were evaluated by Nissl staining and electroencephalography (EEG). The results showed that hippocampal neurogenesis after SE is related to microvascular regeneration. VEGF promotion in the acute period and inhibition in the latent period after SE alleviates loss of hippocampal neuron, abnormal vascular regeneration and inhibits neural stem cells (NSCs) ectopic migration, which may effectively alleviate SRS severity. Interfering with VEGF via the AKT and ERK pathways in different phases after SE may be a promising strategy for treating and preventing epilepsy in children.
Collapse
Affiliation(s)
- Wei Han
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Jiang
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaojie Song
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tianyi Li
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hengsheng Chen
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Cheng
- Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
5
|
Schüssler SC, Schmidt M, Deiters L, Candova A, Fahlbusch FB, Trollmann R. Long-term outcomes of very-low-birth-weight and low-birth-weight preterm newborns with neonatal seizures: A single-center perspective. Eur J Paediatr Neurol 2022; 36:137-142. [PMID: 34973622 DOI: 10.1016/j.ejpn.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/17/2021] [Accepted: 12/19/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Newborn seizures are frequent in preterm newborns and indicate brain lesions in many cases. The objective of this observational study was to investigate the long-term outcome of very-low-birth-weight (VLBW) and low-birth-weight (LBW) preterm infants with neonatal seizures. METHODS We examined 54 preterm infants (40 VLBW and 14 LBW cases) born between 2008 and 2011 with clinical seizures during the neonatal period confirmed by interictal or ictal electroencephalography recordings in a retrospective single-center study. Neurodevelopmental follow-up included an expert neurological examination and cognitive testing (Kaufman Assessment Battery for Children) at a mean age of six years. RESULTS The (mean ± standard deviation) gestational ages of the VLBW and LBW infants were 27.2 ± 1.9 weeks and 33.4 ± 1.7 weeks, respectively, and the postnatal age at seizure onset was 13 ± 11 days in VLBW infants and 9 ± 8 days in LBW infants, with a wide range of one to 62 days. LBW infants more frequently developed non-motor seizures (50.0%) than VLBW infants did (25.0%), and higher-grade intracranial hemorrhage was the predominant etiology in the VLBW group (18.0%), while the etiology in the LBW group was more heterogeneous and included central nervous system malformations and genetic syndromes. At the mean age of 6.2 ± 2.0, years, 25/54 patients were assessed and 44.4% of the VLBW group and 71.4% of the LBW group showed intellectual impairment. Infantile cerebral palsy was present in 22% of VLBW and 42.9% of LBW infants, respectively. SIGNIFICANCE The present analysis of long-term neurodevelopmental outcomes of preterm neonates who experienced seizures shows that the risk for intellectual impairment is not limited only to VLBW infants but may significantly affect LBW infants as well. The etiological spectrum differs in relation to gestational age.
Collapse
Affiliation(s)
- S C Schüssler
- Department of Pediatrics, Division of Pediatric Neurology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - M Schmidt
- Department of Pediatrics, Division of Pediatric Neurology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - L Deiters
- Department of Pediatrics, Division of Pediatric Neurology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - A Candova
- Department of Pediatrics, Division of Pediatric Neurology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - F B Fahlbusch
- Department of Pediatrics, Division of Neonatology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - R Trollmann
- Department of Pediatrics, Division of Pediatric Neurology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
6
|
Postnikova TY, Diespirov GP, Amakhin DV, Vylekzhanina EN, Soboleva EB, Zaitsev AV. Impairments of Long-Term Synaptic Plasticity in the Hippocampus of Young Rats during the Latent Phase of the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. Int J Mol Sci 2021; 22:ijms222413355. [PMID: 34948152 PMCID: PMC8705146 DOI: 10.3390/ijms222413355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Status epilepticus (SE) causes persistent abnormalities in the functioning of neuronal networks, often resulting in worsening epileptic seizures. Many details of cellular and molecular mechanisms of seizure-induced changes are still unknown. The lithium–pilocarpine model of epilepsy in rats reproduces many features of human temporal lobe epilepsy. In this work, using the lithium–pilocarpine model in three-week-old rats, we examined the morphological and electrophysiological changes in the hippocampus within a week following pilocarpine-induced seizures. We found that almost a third of the neurons in the hippocampus and dentate gyrus died on the first day, but this was not accompanied by impaired synaptic plasticity at that time. A diminished long-term potentiation (LTP) was observed following three days, and the negative effect of SE on plasticity increased one week later, being accompanied by astrogliosis. The attenuation of LTP was caused by the weakening of N-methyl-D-aspartate receptor (NMDAR)-dependent signaling. NMDAR-current was more than two-fold weaker during high-frequency stimulation in the post-SE rats than in the control group. Application of glial transmitter D-serine, a coagonist of NMDARs, allows the enhancement of the NMDAR-dependent current and the restoration of LTP. These results suggest that the disorder of neuron–astrocyte interactions plays a critical role in the impairment of synaptic plasticity.
Collapse
|
7
|
Chindo BA, Howes MJR, Abuhamdah S, Yakubu MI, Ayuba GI, Battison A, Chazot PL. New Insights Into the Anticonvulsant Effects of Essential Oil From Melissa officinalis L. (Lemon Balm). Front Pharmacol 2021; 12:760674. [PMID: 34721045 PMCID: PMC8551917 DOI: 10.3389/fphar.2021.760674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 11/25/2022] Open
Abstract
Melissa officinalis L. is used in traditional European and Iranian folk medicines to treat a plethora of neurological diseases including epilepsy. We utilized the in vitro and in vivo models of epilepsy to probe the anticonvulsant potentials of essential oil from M. officinalis (MO) to gain insight into the scientific basis for its applications in traditional medicine for the management of convulsive disorders. MO was evaluated for effects on maximal electroshock (MES) and pentylenetetrazole (PTZ) -induced seizures in mice, on 4–aminopyridine (4-AP)-brain slice model of epilepsy and sustained repetitive firing of current clamped neurons; and its ameliorative effects were examined on seizure severity, anxiety, depression, cognitive dysfunction, oxidative stress and neuronal cell loss in PTZ-kindled rats. MO reversibly blocked spontaneous ictal-like discharges in the 4-AP-brain slice model of epilepsy and secondary spikes from sustained repetitive firing, suggesting anticonvulsant effects and voltage-gated sodium channel blockade. MO protected mice from PTZ– and MES–induced seizures and mortality, and ameliorated seizure severity, fear-avoidance, depressive-like behavior, cognitive deficits, oxidative stress and neuronal cell loss in PTZ–kindled rats. The findings warrant further study for the potential use of MO and/or its constituent(s) as adjunctive therapy for epileptic patients.
Collapse
Affiliation(s)
- Ben A Chindo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | | | - Sawsan Abuhamdah
- Department of Biosciences, Durham University, Durham, United Kingdom.,College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates.,Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Musa I Yakubu
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria
| | - Godwin I Ayuba
- Department of Anatomic Pathology and Forensic Medicine, College of Medicine, Kaduna State University, Kaduna, Nigeria
| | | | - Paul L Chazot
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
8
|
Kaplan AT, Oskan Yalcın S, Sager SG. Evaluation of optical coherence tomography findings in adolescents with genetic generalized epilepsy. Eur J Ophthalmol 2021; 32:3650-3656. [PMID: 34657446 DOI: 10.1177/11206721211049710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To evaluate retinal nerve fiber layer (RNFL) thickness, central macular thickness (CMT), and subfoveal choroid thickness (CT) by using optical coherence tomography (OCT) in adolescents with newly diagnosed epilepsy and patients who had been using Na valproate (VPA) for at least 1 year. METHODS We examined 60 patients with genetic generalized epilepsy (GGE) aged 8-17 years. Thirty patients with newly diagnosed GGE who were evaluated before the beginning of the therapy and another 30 patients who were chosen from among adolescents with epilepsy using VPA for at least 1 year were included in the study. RESULTS Nasal quadrant RNFL thickness and CMT measurements were significantly lower in the monotherapy group compared with the newly diagnosed group (p = 0.044 and p = 0.032, respectively). CT measurements were not significantly different between the groups (p = 0.413). There was a negative correlation in regression analysis between the duration of drug use and RNFL thickness in all quadrants. CONCLUSION According to our study, we observed thinning of the nasal RNFL and macular thickness in adolescents with epilepsy who were using Na valproate for at least 1 year and that as the duration of use increased, the thinning occurred in all RNFL quadrants. Further studies with larger series are needed to better understand the effects of both epilepsy and VPA on the eye.
Collapse
Affiliation(s)
- Aysin Tuba Kaplan
- Ophthalmology Department, 147015Kartal Dr Lutfi Kırdar State Hospital, Kartal, Istanbul, Turkey
| | - Sibel Oskan Yalcın
- Ophthalmology Department, 147015Kartal Dr Lutfi Kırdar State Hospital, Kartal, Istanbul, Turkey
| | - Safiye Gunes Sager
- Pediatric Neurology Department, 147015Kartal Dr Lutfi Kirdar State Hospital, Kartal, Istanbul, Turkey
| |
Collapse
|
9
|
Qureshi I, Riaz A, Khan R, Baig M, Rajput MA. Effects of Pregabalin, Nimodipine, and Their Combination in the Inhibition of Status Epilepticus and the Prevention of Death in Mice. Turk J Pharm Sci 2021; 18:398-404. [PMID: 34496479 DOI: 10.4274/tjps.galenos.2020.95776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives The current study aims to evaluate the combined antiepileptic effects of pregabalin (PGB) and nimodipine (NMD) in an acute seizure model of epilepsy in mice. Materials and Methods This study assessed the combined antiepileptic effects of PGB with NMD on death protection in mice. Pentylenetetrazole was used to induce seizures. Both drugs were used singly and in combination to judge anticonvulsant effects on an acute seizure model of epilepsy in mice. Diazepam (DZ) and valproate (VPT) were used as standard antiepileptic drugs. Results The death protection in mice by both these drugs was observed in percentage and deliberated as marked change when the outcome of the tested drug was equal to ED50 of PGB and measured highly marked when the result was more than ED50 for PGB. Treatment with pregabalin and nimodipine combination revealed substantial mortality protection at 30+2.5 mg/kg dose and highly marked at doses from 35+5 mg/kg to 55+15 mg/kg, these effects were superior to individual effects of PGB, showing synergism, however lesser then classic drugs valproate and diazepam. Conclusion NMD showed synergistic anticonvulsant effect with PGB. However, clinical studies are required to establish the effectiveness of this combination in humans.
Collapse
Affiliation(s)
- Itefaq Qureshi
- University of Karachi, Department of Pharmacology, Karachi, Pakistan
| | - Azra Riaz
- University of Karachi, Department of Pharmacology, Karachi, Pakistan
| | - Rafeeq Khan
- Ziauddin University, Faculty of Pharmacy, Karachi, Pakistan
| | - Moona Baig
- University of Karachi, Department of Pharmacology, Karachi, Pakistan
| | | |
Collapse
|
10
|
Xu Y, Yang F, Hu Z, He Y, Zhang Q, Xu Q, Weng Y, Bernhardt BC, Xie X, Xiao J, Peled N, Stufflebeam SM, Lu G, Zhang Z. Anti-seizure medication correlated changes of cortical morphology in childhood epilepsy with centrotemporal spikes. Epilepsy Res 2021; 173:106621. [PMID: 33873105 DOI: 10.1016/j.eplepsyres.2021.106621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/02/2021] [Accepted: 03/20/2021] [Indexed: 12/01/2022]
Abstract
To investigate the morphological changes of cerebral cortex correlating with anti-seizure medication in Childhood Epilepsy with Centrotemporal Spikes (CECTS), and their relationships with seizure control. This study included a total of 188 children, including 62 patients with CECTS taking anti-seizure drugs, 56 patients with drug-naive, and 70 healthy controls. A portion of cases were also followed-up for longitudinal analysis. Cortical morphological parameters were quantitatively measured by applying surface-based morphometry analysis to high-resolution three-dimension T1 weighted images. Among the three groups, the morphological indices were compared to quantify any cortical changes affected by seizures and medication. The relationships among anti-seizure medication, seizure controls and cortical morphometry were investigated using causal mediator analysis. The Rolandic cortex of the drug-naive patients showed abnormal cortical thickness by comparing with that of healthy controls, and thinning by comparing with that of patients with medication. The cortical thickness in the Rolandic regions was negatively correlated with duration of medication and duration of seizure-free. Longitudinal analysis further demonstrated that the thickness of Rolandic cortex thinned in post-medication state relative to the pre-medication state. Mediation analysis revealed that morphological alteration of the Rolandic cortex might act as a mediator in the path of anti-seizure medication on seizure control. Our findings highlighted that anti-seizure medication was associated with regression of abnormal increment of cortical thickness in the Rolandic regions in CECTS. The neuroanatomical alteration might be a mediating factor in the process of seizure control by anti-seizure medication.
Collapse
Affiliation(s)
- Yin Xu
- Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Institute of Neurology, Anhui University of Traditional Chinese Medicine, China
| | - Fang Yang
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Zheng Hu
- Department of Neurology, Children's Hospital of Nanjing Medical University, China
| | - Yan He
- Department of Neurology, Children's Hospital of Nanjing Medical University, China
| | - Qirui Zhang
- Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Yifei Weng
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Xinyu Xie
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Junhao Xiao
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China
| | - Noam Peled
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Steven M Stufflebeam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA, 02129, USA
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, 210002, China; State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, 210093, China; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Suite 2301, Charlestown, MA, 02129, USA.
| |
Collapse
|
11
|
Recurrent seizures cause immature brain injury and changes in GABA a receptor α1 and γ2 subunits. Epilepsy Res 2020; 163:106328. [DOI: 10.1016/j.eplepsyres.2020.106328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023]
|
12
|
Pacífico AM, Batista SP, Ribeiro FT, Santos PBD, Silveira GB, Pedrico do Nascimento BP, Junior ED, Barbosa GHL, Ribeiro MO, da Silva SG, Cysneiros RM. Dataset on sociability, cognitive function, gene and protein expression of molecules involved in social behavior, reward system and synapse function following early-life status epilepticus in Wistar rats. Data Brief 2020; 31:105819. [PMID: 32596424 PMCID: PMC7306614 DOI: 10.1016/j.dib.2020.105819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/30/2023] Open
Abstract
Early-life status epilepticus produces deficit in social interaction and vocalization, enhances anxiety, no cognitive impairment and alters functional connectivity within the hippocampus (CA3-CA1) and between the hippocampus and prefrontal cortex [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], but the underlying mechanisms remain unknown. This data article contains behavioral and molecular data of the adult male Wistar rats subjected to early life pilocarpine-induced seizures. Animal's behaviors were assessed to social memory and social motivation, working and reference memories and cognitive flexibility. The brain tissues (hypothalamus, hippocampus, amygdala, and striatum) were probed to gene and protein expression of molecules related to social behavior, reward system and synaptic function.
Collapse
Affiliation(s)
- Ana Miriã Pacífico
- Developmental Disabilities Graduate Program. Mackenzie Presbyterian University, São Paulo, Brazil. Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Samuel P. Batista
- Developmental Disabilities Graduate Program. Mackenzie Presbyterian University, São Paulo, Brazil. Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Fernanda T. Ribeiro
- Developmental Disabilities Graduate Program. Mackenzie Presbyterian University, São Paulo, Brazil. Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Pedro B. dos Santos
- Developmental Disabilities Graduate Program. Mackenzie Presbyterian University, São Paulo, Brazil. Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Gabriel Bruno Silveira
- Developmental Disabilities Graduate Program. Mackenzie Presbyterian University, São Paulo, Brazil. Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Bruna Pascarelli Pedrico do Nascimento
- Developmental Disabilities Graduate Program. Mackenzie Presbyterian University, São Paulo, Brazil. Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Eduardo Dias Junior
- Developmental Disabilities Graduate Program. Mackenzie Presbyterian University, São Paulo, Brazil. Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Geraldo Henrique L. Barbosa
- Developmental Disabilities Graduate Program. Mackenzie Presbyterian University, São Paulo, Brazil. Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Miriam Oliveira Ribeiro
- Developmental Disabilities Graduate Program. Mackenzie Presbyterian University, São Paulo, Brazil. Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Sergio Gomes da Silva
- Hospital do Câncer de Muriaé - Fundação Cristiano Varella, Muriaé, Brazil
- Centro Universitário UNIFAMINAS, Muriaé, Brazil
| | - Roberta M. Cysneiros
- Developmental Disabilities Graduate Program. Mackenzie Presbyterian University, São Paulo, Brazil. Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
- Corresponding author.
| |
Collapse
|
13
|
Revisiting the Impact of Neurodegenerative Proteins in Epilepsy: Focus on Alpha-Synuclein, Beta-Amyloid, and Tau. BIOLOGY 2020; 9:biology9060122. [PMID: 32545604 PMCID: PMC7344698 DOI: 10.3390/biology9060122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Lack of disease-modifying therapy against epileptogenesis reflects the complexity of the disease pathogenesis as well as the high demand to explore novel treatment strategies. In the pursuit of developing new therapeutic strategies against epileptogenesis, neurodegenerative proteins have recently gained increased attention. Owing to the fact that neurodegenerative disease and epileptogenesis possibly share a common underlying mechanism, targeting neurodegenerative proteins against epileptogenesis might represent a promising therapeutic approach. Herein, we review the association of neurodegenerative proteins, such as α-synuclein, amyloid-beta (Aβ), and tau protein, with epilepsy. Providing insight into the α-synuclein, Aβ and tau protein-mediated neurodegeneration mechanisms, and their implication in epileptogenesis will pave the way towards the development of new agents and treatment strategies.
Collapse
|
14
|
Synaptic Injury in the Thalamus Accompanies White Matter Injury in Hypoxia/Ischemia-Mediated Brain Injury in Neonatal Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5249675. [PMID: 31687391 PMCID: PMC6803747 DOI: 10.1155/2019/5249675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/15/2019] [Accepted: 09/13/2019] [Indexed: 12/01/2022]
Abstract
The broad spectrum of disabilities caused by white matter injury (WMI) cannot be explained simply by hypomyelination. Synaptic injury in the thalamus may be related to disabilities in WMI survivors. Neuronal injury in the thalamus has been found most commonly in autopsy cases of preterm WMI. We hypothesized that hypoxia/ischemia (HI) in neonatal rats results in synaptic abnormalities in the thalamus that contribute to disabilities in WMI survivors. We examined changes in synapses in a neonatal rat model of HI-induced WMI. Right common carotid artery ligation and hypoxia (8% oxygen for 2.5 hours (h)) were performed in three-day-old Sprague-Dawley rats. We found HI rats performed worse in the Morris water maze test than sham rats, suggesting long-term cognition impairment after HI injury. A loss of synapses in the thalamus accompanied by hypomyelination and oligodendrocytes (OLs) reduction was observed. At the ultrastructural level, reductions in active zone (AZ) length and postsynaptic density (PSD) thickness were detected at 2 weeks after HI exposure. Furthermore, increased expression of synaptophysin and PSD-95 in both groups was observed from 3 days (d) to 21 d after hypoxic/ischemic (HI) injury. PSD-95 expression was significantly lower in HI rats than in sham rats from 14 d to 21 d after HI injury, and synaptophysin expression was significantly lower in HI rats from 7 d to 14 d after HI injury. However, no significant difference in synaptophysin expression was observed between HI rats and sham rats at 21 d after HI injury. The results demonstrated synaptic abnormalities in the thalamus accompanied by hypomyelination in WMI in response to HI exposure, which may contribute to the diverse neurological defects observed in WMI patients. Although synaptic reorganization occurred as a compensatory response to HI injury, the impairments in synaptic transmission were not reversed.
Collapse
|
15
|
Zhang J, Han Y, Zhao Y, Li Q, Jin H, Qin J. Inhibition of TRIB3 Protects Against Neurotoxic Injury Induced by Kainic Acid in Rats. Front Pharmacol 2019; 10:585. [PMID: 31191318 PMCID: PMC6538922 DOI: 10.3389/fphar.2019.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/06/2019] [Indexed: 11/13/2022] Open
Abstract
Epilepsy refers to a group of neurological disorders of varying etiologies characterized by recurrent seizures, resulting in brain dysfunction. Endoplasmic reticulum (ER) stress is highly activated in the process of epilepsy-related brain injury. However, the mechanisms by which ER stress triggers neuronal apoptosis remain to be fully elucidated. Tribbles pseudokinase 3 (TRIB3) is a pseudokinase that affects a number of cellular functions, and its expression is increased during ER stress. Here, we sought to clarify the role of TRIB3 in neuronal apoptosis mediated by ER stress. In the kainic acid (KA) (10 mg/kg)-induced rat seizure model, we characterized neuronal injury and apoptosis after KA injection. KA induced an ER stress response, as indicated by elevated expression of glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). TRIB3 protein was upregulated concomitantly with the downregulation of phosphorylated-protein kinase B (p-AKT) in rats following KA administration. In rat cortical neurons treated with KA, TRIB3 knockdown by siRNA reduced the number of dying neurons, decreased the induction of GRP78 and CHOP and the activation of caspase-3, and blocked the dephosphorylation of AKT after KA treatment. Our findings indicate that TRIB3 is involved in neuronal apoptosis occurring after KA-induced seizure. The knockdown of TRIB3 effectively protects against neuronal apoptosis in vitro, suggesting that TRIB3 may be a potential therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Han
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yang Zhao
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Qinrui Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| |
Collapse
|
16
|
Excitotoxicity, neuroinflammation and oxidant stress as molecular bases of epileptogenesis and epilepsy-derived neurodegeneration: The role of vitamin E. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1098-1112. [PMID: 30703511 DOI: 10.1016/j.bbadis.2019.01.026] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/15/2019] [Accepted: 01/24/2019] [Indexed: 12/14/2022]
Abstract
Glutamate-mediated excitotoxicity, neuroinflammation, and oxidative stress are common underlying events in neurodegeneration. This pathogenic "triad" characterizes the neurobiology of epilepsy, leading to seizure-induced cell death, increased susceptibility to neuronal synchronization and network alterations. Along with other maladaptive changes, these events pave the way to spontaneous recurrent seizures and progressive degeneration of the interested brain areas. In vivo models of epilepsy are available to explore such epileptogenic mechanisms, also assessing the efficacy of chemoprevention and therapy strategies at the pre-clinical level. The kainic acid model of pharmacological excitotoxicity and epileptogenesis is one of the most investigated mimicking the chronicization profile of temporal lobe epilepsy in humans. Its pathogenic cues include inflammatory and neuronal death pathway activation, mitochondrial disturbances and lipid peroxidation of several regions of the brain, the most vulnerable being the hippocampus. The importance of neuroinflammation and lipid peroxidation as underlying molecular events of brain damage was demonstrated in this model by the possibility to counteract the related maladaptive morphological and functional changes of this organ with vitamin E, the main fat-soluble cellular antioxidant and "conditional" co-factor of enzymatic pathways involved in polyunsaturated lipid metabolism and inflammatory signaling. The present review paper provides an overview of the literature supporting the potential for a timely intervention with vitamin E therapy in clinical management of seizures and epileptogenic processes associated with excitotoxicity, neuroinflammation and lipid peroxidation, i.e. the pathogenic "triad".
Collapse
|
17
|
Loss CM, da Rosa NS, Mestriner RG, Xavier LL, Oliveira DL. Blockade of GluN2B-containing NMDA receptors reduces short-term brain damage induced by early-life status epilepticus. Neurotoxicology 2019; 71:138-149. [PMID: 30639357 DOI: 10.1016/j.neuro.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/22/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022]
Abstract
Status epilepticus (SE) during developmental periods can cause short- and long-term consequences to the brain. Brain damage induced by SE is associated to NMDA receptors (NMDAR)-mediated excitotoxicity. This study aimed to investigate whether blockade of GluN2B-containing NMDAR is neuroprotective against SE-induced neurodegeneration and neuroinflammation in young rats. Forty-eight Wistar rats (16 days of life) were injected with pilocarpine (60 mg/kg; i.p.) 12-18 h after LiCl (3 mEq/kg; i.p.). Fifteen minutes after pilocarpine administration, animals received i.p. injections of saline solution (0.9% NaCl; SE + SAL group), ketamine (a non-selective and noncompetitive NMDAR antagonist; 25 mg/kg; SE + KET), CI-1041 (a GluN2B-containing NMDAR antagonist; 10 mg/kg; SE + CI group) or CP-101,606 (a NMDAR antagonist with great selectivity for NMDAR composed by GluN1/GluN2B diheteromers; 10 mg/kg; SE + CP group). Seven days after SE, brains were removed for Fluoro-Jade C staining and Iba1/ED1 immunolabeling. GluN2B-containing NMDAR blockade by CI-1041 or CP-101,606 did not terminate LiCl-pilocarpine-induced seizures. SE + SAL group presented intense neurodegeneration and Iba1+/ED1+ double-labeling in hippocampus (CA1 and dentate gyrus; DG) and amygdala (MePV nucleus). Administration of CP-101,606 did not alter this pattern. However, GluN2B-containing NMDAR blockade by CI-1041 reduced neurodegeneration and Iba1+/ED1+ double-labeling in hippocampus and amygdala similar to the reduction observed for SE + KET group. Our results indicate that GluN2B-containing NMDAR are involved in SE-induced neurodegeneration and microglial recruitment and activation, and suggest that stopping epileptic activity is not a condition required to prevent short-term brain damage in young animals.
Collapse
Affiliation(s)
- Cássio Morais Loss
- Cellular Neurochemistry Laboratory, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Cellular Biochemistry Laboratory, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Natã Sehn da Rosa
- Cellular Neurochemistry Laboratory, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Régis Gemerasca Mestriner
- Neurorehabilitation and Neural Repair Research Group, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Léder Leal Xavier
- Laboratory of Cell and Tissue Biology, School of Sciences, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diogo Losch Oliveira
- Cellular Neurochemistry Laboratory, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
Song X, He R, Han W, Li T, Xie L, Cheng L, Chen H, Xie M, Jiang L. Protective effects of the ROCK inhibitor fasudil against cognitive dysfunction following status epilepticus in male rats. J Neurosci Res 2018; 97:506-519. [PMID: 30421453 DOI: 10.1002/jnr.24355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/30/2018] [Accepted: 10/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaojie Song
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
- Department of Neurology Children’s Hospital of Chongqing Medical University Chongqing China
| | - Rong He
- Pediatric department University‐Town Hospital of Chongqing Medical University Chongqing China
| | - Wei Han
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
| | - Tianyi Li
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
- Department of Neurology Children’s Hospital of Chongqing Medical University Chongqing China
| | - Lingling Xie
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
- Department of Neurology Children’s Hospital of Chongqing Medical University Chongqing China
| | - Li Cheng
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
| | - Hengsheng Chen
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
| | - Mingdan Xie
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
| | - Li Jiang
- Pediatric Research Institute Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics Chongqing China
- Department of Neurology Children’s Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
19
|
Zenki KC, Kalinine E, Zimmer ER, dos Santos TG, Mussulini BHM, Portela LVC, de Oliveira DL. Memantine decreases neuronal degeneration in young rats submitted to LiCl-pilocarpine-induced status epilepticus. Neurotoxicology 2018; 66:45-52. [DOI: 10.1016/j.neuro.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/08/2018] [Accepted: 03/09/2018] [Indexed: 12/25/2022]
|
20
|
Alba-Ferrara L, Kochen S, Hausmann M. Emotional Prosody Processing in Epilepsy: Some Insights on Brain Reorganization. Front Hum Neurosci 2018; 12:92. [PMID: 29593517 PMCID: PMC5859098 DOI: 10.3389/fnhum.2018.00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/26/2018] [Indexed: 11/27/2022] Open
Abstract
Drug resistant epilepsy is one of the most complex, multifactorial and polygenic neurological syndrome. Besides its dynamicity and variability, it still provides us with a model to study brain-behavior relationship, giving cues on the anatomy and functional representation of brain function. Given that onset zone of focal epileptic seizures often affects different anatomical areas, cortical but limited to one hemisphere, this condition also let us study the functional differences of the left and right cerebral hemispheres. One lateralized function in the human brain is emotional prosody, and it can be a useful ictal sign offering hints on the location of the epileptogenic zone. Besides its importance for effective communication, prosody is not considered an eloquent domain, making resective surgery on its neural correlates feasible. We performed an Electronic databases search (Medline and PsychINFO) from inception to July 2017 for studies about prosody in epilepsy. The search terms included “epilepsy,” “seizure,” “emotional prosody,” and “vocal affect.” This review focus on emotional prosody processing in epilepsy as it can give hints regarding plastic functional changes following seizures (preoperatively), resection (post operatively), and also as an ictal sign enabling the assessment of dynamic brain networks. Moreover, it is argued that such reorganization can help to preserve the expression and reception of emotional prosody as a central skill to develop appropriate social interactions.
Collapse
Affiliation(s)
- Lucy Alba-Ferrara
- Facultad de Ciencias Biomedicas, Austral University, Buenos Aires, Argentina.,Estudios en Neurociencias y Sistemas Complejos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Florencio Varela, Argentina
| | - Silvia Kochen
- Estudios en Neurociencias y Sistemas Complejos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Florencio Varela, Argentina
| | - Markus Hausmann
- Science Labs, Department of Psychology, Durham University, Durham, United Kingdom
| |
Collapse
|
21
|
Keck M, van Dijk RM, Deeg CA, Kistler K, Walker A, von Rüden EL, Russmann V, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on cell stress, extracellular matrix and angiogenesis. Neurobiol Dis 2018; 112:119-135. [PMID: 29413716 DOI: 10.1016/j.nbd.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
Abstract
Information about epileptogenesis-associated changes in protein expression patterns is of particular interest for future selection of target and biomarker candidates. Bioinformatic analysis of proteomic data sets can increase our knowledge about molecular alterations characterizing the different phases of epilepsy development following an initial epileptogenic insult. Here, we report findings from a focused analysis of proteomic data obtained for the hippocampus and parahippocampal cortex samples collected during the early post-insult phase, latency phase, and chronic phase of a rat model of epileptogenesis. The study focused on proteins functionally associated with cell stress, cell death, extracellular matrix (ECM) remodeling, cell-ECM interaction, cell-cell interaction, angiogenesis, and blood-brain barrier function. The analysis revealed prominent pathway enrichment providing information about the complex expression alterations of the respective protein groups. In the hippocampus, the number of differentially expressed proteins declined over time during the course of epileptogenesis. In contrast, a peak in the regulation of proteins linked with cell stress and death as well as ECM and cell-cell interaction became evident at later phases during epileptogenesis in the parahippocampal cortex. The data sets provide valuable information about the time course of protein expression patterns during epileptogenesis for a series of proteins. Moreover, the findings provide comprehensive novel information about expression alterations of proteins that have not been discussed yet in the context of epileptogenesis. These for instance include different members of the lamin protein family as well as the fermitin family member 2 (FERMT2). Induction of FERMT2 and other selected proteins, CD18 (ITGB2), CD44 and Nucleolin were confirmed by immunohistochemistry. Taken together, focused bioinformatic analysis of the proteomic data sets completes our knowledge about molecular alterations linked with cell death and cellular plasticity during epileptogenesis. The analysis provided can guide future selection of target and biomarker candidates.
Collapse
Affiliation(s)
- Michael Keck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Kistler
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
22
|
Song XJ, Han W, He R, Li TY, Xie LL, Cheng L, Chen HS, Jiang L. Alterations of Hippocampal Myelin Sheath and Axon Sprouting by Status Convulsion and Regulating Lingo-1 Expression with RNA Interference in Immature and Adult Rats. Neurochem Res 2018; 43:721-735. [PMID: 29383653 DOI: 10.1007/s11064-018-2474-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/02/2017] [Accepted: 01/11/2018] [Indexed: 11/24/2022]
Abstract
Seizure-induced brain damage is age-dependent, as evidenced by the different alterations of neural physiopathology in developing and mature brains. However, little is known about the age-dependent characteristics of myelinated fiber injury induced by seizures. Considering the critical functions of oligodendrocyte progenitor cells (OPCs) in myelination and Lingo-1 signaling in regulating OPCs' differentiation, the present study aimed to explore the effects of Lingo-1 on myelin and axon in immature and adult rats after status convulsion (SC) induced by lithium-pilocarpine, and the differences between immature and adult brains. Dynamic variations in electrophysiological activity and spontaneous recurrent seizures were recorded by electroencephalogram monitoring after SC. The impaired microstructures of myelin sheaths and decrease in myelin basic protein caused by SC were observed through transmission electron microscopy and western blot analysis respectively, which became more severe in adult rats, but improved gradually in immature rats. Aberrant axon sprouting occurred in adult rats, which was more prominent than in immature rats, as shown by a Timm stain. This damage was improved or negatively affected after down or upregulating Lingo-1 expression. These results demonstrated that in both immature and adult brains, Lingo-1 signaling plays important roles in seizure-induced damage to myelin sheaths and axon growth. The plasticity of the developing brain may provide a potential window of opportunity to prevent the brain from damage.
Collapse
Affiliation(s)
- Xiao-Jie Song
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Wei Han
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Rong He
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China
| | - Tian-Yi Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China
| | - Ling-Ling Xie
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China.,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China
| | - Li Cheng
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Heng-Sheng Chen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China
| | - Li Jiang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, China. .,Department of Neurology, Children's Hospital of Chongqing Medical University, No.136 Zhongshan 2nd Road, Chongqing, 400014, China.
| |
Collapse
|
23
|
Immature Status Epilepticus: In Vitro Models Reveal Differences in Cholinergic Control and HFO Properties of Adult CA3 Interictal Discharges in Temporal vs Septal Hippocampus. Neuroscience 2018; 369:386-398. [DOI: 10.1016/j.neuroscience.2017.11.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/30/2017] [Accepted: 11/16/2017] [Indexed: 01/31/2023]
|
24
|
Wang Y, Liu L, Chen H, Cheng L, Jiang L. Influence of the epileptiform discharge microenvironment on the differentiation of oligodendrocyte precursor cells. Brain Res 2018; 1679:53-63. [DOI: 10.1016/j.brainres.2017.11.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/01/2017] [Accepted: 11/20/2017] [Indexed: 11/28/2022]
|
25
|
Uemori T, Toda K, Seki T. Seizure severity-dependent selective vulnerability of the granule cell layer and aberrant neurogenesis in the rat hippocampus. Hippocampus 2017; 27:1054-1068. [PMID: 28608989 DOI: 10.1002/hipo.22752] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Abstract
The pilocarpine-induced status epilepticus rodent model has been commonly used to analyze the mechanisms of human temporal lobe epilepsy. Recent studies using this model have demonstrated that epileptic seizures lead to increased adult neurogenesis of the dentate granule cells, and cause abnormal cellular organization in dentate neuronal circuits. In this study, we examined these structural changes in rats with seizures of varying severity. In rats with frequent severe seizures, we found a clear loss of Prox1 and NeuN expression in the dentate granule cell layer (GCL), which was confined mainly to the suprapyramidal blade of the GCL at the septal and middle regions of the septotemporal axis of the hippocampus. In the damaged suprapyramidal region, the number of immature neurons in the subgranular zone was markedly reduced. In contrast, in rats with less frequent severe seizures, there was almost no loss of Prox1 and NeuN expression, and the number of immature neurons was increased. In rats with no or slight loss of Prox1 expression in the GCL, ectopic immature neurons were detected in the molecular layer of the suprapyramidal blade in addition to the hilus, and formed chainlike aggregated structures along the blood vessels up to the hippocampal fissure, suggesting that newly generated neurons migrate at least partially along blood vessels to the hippocampal fissure. These results suggest that seizures of different severity cause different effects on GCL damage, neurogenesis, and the migration of new neurons, and that these structural changes are selective to subdivisions of the GCL and the septotemporal axis of the hippocampus.
Collapse
Affiliation(s)
- Takeshi Uemori
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Keiko Toda
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| | - Tatsunori Seki
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
26
|
Han W, Song X, He R, Li T, Cheng L, Xie L, Chen H, Jiang L. VEGF regulates hippocampal neurogenesis and reverses cognitive deficits in immature rats after status epilepticus through the VEGF R2 signaling pathway. Epilepsy Behav 2017; 68:159-167. [PMID: 28193596 DOI: 10.1016/j.yebeh.2016.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/02/2016] [Accepted: 12/12/2016] [Indexed: 01/17/2023]
Abstract
Epilepsy is the most common chronic disease in children, who exhibit a higher risk for status epilepticus (SE) than adults. Hippocampal neurogenesis is altered by epilepsy, particularly in the immature brain, which may influence cognitive development. Vascular endothelial growth factor (VEGF) represents an attractive target to modulate brain function at the neurovascular interface and is a double-edged sword in seizures. We used the lithium-pilocarpine-induced epilepsy model in immature Sprague-Dawley rats to study the effects of VEGF on hippocampal neurogenesis in the acute phase and on long-term cognitive behaviors in immature rats following status epilepticus (SE). VEGF correlates with cell proliferation in the immature brain after SE. By preprocessing VEGF in the lateral ventricles prior to the induction of the SE model, we found that VEGF increased the proliferation of neural stem cells (NSCs) and promoted the migration of newly generated cells via the VEGF receptor 2 (VEGFR2) signaling pathway. VEGF also inhibited cell loss and reversed the cognitive deficits that accompany SE. Based on our results, VEGF positively contributes to the initial stages of neurogenesis and alleviates cognitive deficits following seizures; moreover, the VEGF/VEGFR2 signaling pathway may provide a novel treatment strategy for epilepsy.
Collapse
Affiliation(s)
- Wei Han
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaojie Song
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Rong He
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Tianyi Li
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li Cheng
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Lingling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Chongqing 400014, China
| | - Hengsheng Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li Jiang
- Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China; Department of Neurology, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Road, Chongqing 400014, China.
| |
Collapse
|
27
|
Tegethoff M, Stalujanis E, Belardi A, Meinlschmidt G. Chronology of Onset of Mental Disorders and Physical Diseases in Mental-Physical Comorbidity - A National Representative Survey of Adolescents. PLoS One 2016; 11:e0165196. [PMID: 27768751 PMCID: PMC5074457 DOI: 10.1371/journal.pone.0165196] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/08/2016] [Indexed: 01/10/2023] Open
Abstract
Background The objective was to estimate temporal associations between mental disorders and physical diseases in adolescents with mental-physical comorbidities. Methods This article bases upon weighted data (N = 6483) from the National Comorbidity Survey Adolescent Supplement (participant age: 13–18 years), a nationally representative United States cohort. Onset of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition lifetime mental disorders was assessed with the fully structured World Health Organization Composite International Diagnostic Interview, complemented by parent report. Onset of lifetime medical conditions and doctor-diagnosed diseases was assessed by self-report. Results The most substantial temporal associations with onset of mental disorders preceding onset of physical diseases included those between affective disorders and arthritis (hazard ratio (HR) = 3.36, 95%-confidence interval (CI) = 1.95 to 5.77) and diseases of the digestive system (HR = 3.39, CI = 2.30 to 5.00), between anxiety disorders and skin diseases (HR = 1.53, CI = 1.21 to 1.94), and between substance use disorders and seasonal allergies (HR = 0.33, CI = 0.17 to 0.63). The most substantial temporal associations with physical diseases preceding mental disorders included those between heart diseases and anxiety disorders (HR = 1.89, CI = 1.41 to 2.52), epilepsy and eating disorders (HR = 6.27, CI = 1.58 to 24.96), and heart diseases and any mental disorder (HR = 1.39, CI = 1.11 to 1.74). Conclusions Findings suggest that mental disorders are antecedent risk factors of certain physical diseases in early life, but also vice versa. Our results expand the relevance of mental disorders beyond mental to physical health care, and vice versa, supporting the concept of a more integrated mental-physical health care approach, and open new starting points for early disease prevention and better treatments, with relevance for various medical disciplines.
Collapse
Affiliation(s)
- Marion Tegethoff
- Division of Clinical Psychology and Psychiatry, Department of Psychology, University of Basel, Basel, Switzerland
- * E-mail:
| | - Esther Stalujanis
- Division of Clinical Psychology and Psychiatry, Department of Psychology, University of Basel, Basel, Switzerland
| | - Angelo Belardi
- Division of Clinical Psychology and Psychiatry, Department of Psychology, University of Basel, Basel, Switzerland
| | - Gunther Meinlschmidt
- Division of Clinical Psychology and Epidemiology, Department of Psychology, University of Basel, Basel, Switzerland
- Faculty of Medicine, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
28
|
Ni H, Zhang LEL, Ren SY, Sun BL. Long-term expression of zinc transporters in hippocampus following penicillin-induced developmental seizures and its regulation by E-64d. Exp Ther Med 2016; 12:208-214. [PMID: 27347040 PMCID: PMC4906967 DOI: 10.3892/etm.2016.3276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/19/2016] [Indexed: 11/06/2022] Open
Abstract
Autophagy has been shown to be involved in the pathophysiology of developmental seizure-induced brain damage. The present study aimed to examine whether E-64d, an autophagy inhibitor, was able to facilitate developmental seizure-induced hippocampal mossy fiber sprouting, in particular sprouting-associated zinc transporter signals. Recurrent seizures were induced by penicillin every other day in Sprague-Dawley rats from postnatal day 21 (P21). Rats were randomly assigned into the control group (CONT), recurrent seizure group (RS) and the seizure plus E-64d group (E64D). The expression levels of beclin-1 and B-cell lymphoma 2 were analyzed at 1.5, 3, 6 and 24 h after the last seizures using western blot analysis. At P51, mossy fiber sprouting and the mRNA expression levels of zinc transporter 2 (ZnT-2), ZnT-4, ZnT-5, ZnT-6, ZnT-7, divalent cation transporter 1, Zrt-Irt-like protein 6 (ZIP-6), ZIP-7, cathepsin D and cathepsin L in the rat hippocampus were assessed using Timm staining and reverse transcription-quantitative polymerase chain reaction analysis, respectively. Reduced hippocampal mossy fiber sprouting were detected in the E-64d-treated rats compared with the non-treated control. In parallel with these observations, there was a marked reduction in the mRNA expression levels of ZnT-4 at P51 in the E-64d-treated rat hippocampus compared with the non-treated seizure group. Linear correlation analysis showed significant inter-relationship among ZIP-7, ZnT-4, ZnT-5, ZnT-7, cathepsin D and cathepsin L. These results indicate that the ZnT-4/ZIP-7/cathepsin signaling pathway serves a crucial function in the neuroprotective effects of E-64d. Thus, E-64d may offer a novel strategy for the development of therapeutic interventions for developmental seizure-induced brain damage.
Collapse
Affiliation(s)
- Hong Ni
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - LE-Ling Zhang
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Shou-Yun Ren
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Department of Neurology, Affiliated Hospital of Taishan Medical College, Taian, Shandong 271000, P.R. China
| |
Collapse
|
29
|
Balestrini S, Clayton LMS, Bartmann AP, Chinthapalli K, Novy J, Coppola A, Wandschneider B, Stern WM, Acheson J, Bell GS, Sander JW, Sisodiya SM. Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy. J Neurol Neurosurg Psychiatry 2016; 87:396-401. [PMID: 25886782 PMCID: PMC4819648 DOI: 10.1136/jnnp-2015-310521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter 'integrity'. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy. METHODS Three hundred people with epilepsy attending specialist clinics and 90 healthy controls were included in this cross-sectional cohort study. RNFL imaging was performed using spectral-domain optical coherence tomography (OCT). Drug resistance was defined as failure of adequate trials of two antiepileptic drugs to achieve sustained seizure freedom. RESULTS The average RNFL thickness and the thickness of each of the 90° quadrants were significantly thinner in people with epilepsy than healthy controls (p<0.001, t test). In a multivariate logistic regression model, drug resistance was the only significant predictor of abnormal RNFL thinning (OR=2.09, 95% CI 1.09 to 4.01, p=0.03). Duration of epilepsy (coefficient -0.16, p=0.004) and presence of intellectual disability (coefficient -4.0, p=0.044) also showed a significant relationship with RNFL thinning in a multivariate linear regression model. CONCLUSIONS Our results suggest that people with epilepsy with no previous exposure to vigabatrin have a significantly thinner RNFL than healthy participants. Drug resistance emerged as a significant independent predictor of RNFL borderline attenuation or abnormal thinning in a logistic regression model. As this is easily assessed by OCT, RNFL thickness might be used to better understand the mechanisms underlying drug resistance, and possibly severity. Longitudinal studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Simona Balestrini
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK Neuroscience Department, Polytechnic University of Marche, Ancona, Italy
| | - Lisa M S Clayton
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - Ana P Bartmann
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - Krishna Chinthapalli
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - Jan Novy
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - Antonietta Coppola
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - Britta Wandschneider
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - William M Stern
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - James Acheson
- Department of Neuro-Ophthalmology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Gail S Bell
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK Stichting Epilepsie Instellingen Nederland, Heemstede (SEIN), Heemstede, The Netherlands
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, UK
| |
Collapse
|
30
|
Leite IS, Castelhano ASS, Cysneiros RM. Effect of diazepam on sociability of rats submitted to neonatal seizures. Data Brief 2016; 7:686-91. [PMID: 27054178 PMCID: PMC4802817 DOI: 10.1016/j.dib.2016.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 11/28/2022] Open
Abstract
Status epilepticus (SE), an acute condition characterized by repetitive or ongoing seizures activity, may produce long-term deleterious consequences. Previous data demonstrated that Wistar rats subjected to neonatal SE displayed autistic behavior, characterized by social play impairment, low preference by novelty, deficit in social discrimination; anxiety related behavior and stereotyped behavior with no changes in locomotor activity (doi: http://dx.doi.org/10.1007/s00702-010-0460-1, doi: http://dx.doi.org/10.3389/fnbeh.2013.00036, doi: http://dx.doi.org/10.1007/s00702-014-1291-2[1], [2], [3]). Taking into account the bi-directional relationship between the state of anxiety and social interaction (doi: http://dx.doi.org/10.1007/s10567-009-0062-3[4]), we evaluated the impact of the state of anxiety on social interaction. Male Wistar rats at postnatal day 9 were subjected to pilocarpine-induced neonatal SE (380 mg/kg, ip) and the controls received 0.9% saline (0.1 ml/10 g). The groups received saline or diazepam (1.0 mg/kg) 45 min prior each behavioral testing that started from 60 days of postnatal life. In the open field, rats subjected to neonatal seizure exhibited less central zone activity as compared to animals treated with diazepam, with no changes in the total locomotor activity. In elevated plus maze, rats subjected to neonatal seizure and treated with diazepam exhibited higher locomotor activity and spent more time on the open arms as compared to untreated animals. In approach phase of sociability paradigm, animals subjected to neonatal seizures similarly to controls, regardless the treatment, spent more time with social stimulus as compared to non social stimulus. In social novelty phase of sociability paradigm, animals subjected to neonatal seizures differently of controls, regardless the treatment, spent similar time with familiar and novel stimulus.
Collapse
Affiliation(s)
- Ingrid Stanize Leite
- Developmental Disabilities Graduate Program, Laboratory of Neurobiology, Mackenzie Presbyterian University, Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Adelissandra S S Castelhano
- Developmental Disabilities Graduate Program, Laboratory of Neurobiology, Mackenzie Presbyterian University, Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| | - Roberta M Cysneiros
- Developmental Disabilities Graduate Program, Laboratory of Neurobiology, Mackenzie Presbyterian University, Rua da Consolação, 930. Prédio 28, CEP 01302-907 São Paulo, SP, Brazil
| |
Collapse
|
31
|
Acute Hyperammonemia Induces NMDA-Mediated Hypophosphorylation of Intermediate Filaments Through PP1 and PP2B in Cerebral Cortex of Young Rats. Neurotox Res 2016; 30:138-49. [PMID: 26936604 DOI: 10.1007/s12640-016-9607-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/20/2016] [Accepted: 02/10/2016] [Indexed: 11/27/2022]
Abstract
In the present work, we studied the effects of toxic ammonia levels on the cytoskeleton of neural cells, with emphasis in the homeostasis of the phosphorylating system associated with the intermediate filaments (IFs). We used in vivo and in vitro models of acute hyperammonemia in 10- and 21-day-old rats. In the in vivo model, animals were intraperitoneally injected with ammonium acetate (7 mmol/Kg), and the phosphorylation level of the cytoskeletal proteins was analyzed in the cerebral cortex and hippocampus 30 and 60 min after injection. The injected ammonia altered the IF phosphorylation of astrocytes (GFAP and vimentin) and neurons (neurofilament subunits of low, middle, and high molecular weight, respectively: NFL, NFM, and NFH) from cerebral cortex of 21-day-old rats. This was a transitory effect observed 30 min after injection, recovering 30 min afterward. Phosphorylation was not altered in the cerebral cortex of 10-day-old pups. The homeostasis of hippocampal IFs was preserved at the studied ages and times. In the in vitro model, cortical slices of 10- and 21-day-old rats were incubated with 0.5, 1, or 5 mM NH4Cl, and the phosphorylation level of the IF proteins was analyzed after 30 min. The IF phosphorylation was not altered in cortical slices of 10-day-old rats; however, in cortical slices of 21-day-old pups, 5 mM NH4Cl induced hypophosphorylation of GFAP and vimentin, preserving neurofilament phosphorylation levels. Hypophosphorylation was mediated by the protein phosphatases 1 (PP1) and 2B (PP2B), and this event was associated with Ca(2+) influx via N-methyl-D-aspartate (NMDA) glutamate receptors. The aim of this study is to show that acute ammonia toxicity targets the phosphorylating system of IFs in the cerebral cortex of rats in a developmentally regulated manner, and NMDA-mediated Ca(2+) signaling plays a central role in this mechanism. We propose that the disruption of cytoskeletal homeostasis could be an endpoint of the acute hyperammonemia in the developing brain. We believe that these results contribute for better understanding the molecular basis of the ammonia toxicity in brain.
Collapse
|
32
|
1 H NMR metabolomics to study the effects of diazepam on anisatin induced convulsive seizures. J Pharm Biomed Anal 2016; 117:184-94. [DOI: 10.1016/j.jpba.2015.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 11/22/2022]
|
33
|
Pascual JM, Ronen GM. Glucose Transporter Type I Deficiency (G1D) at 25 (1990-2015): Presumptions, Facts, and the Lives of Persons With This Rare Disease. Pediatr Neurol 2015; 53:379-93. [PMID: 26341673 PMCID: PMC4609610 DOI: 10.1016/j.pediatrneurol.2015.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND As is often the case for rare diseases, the number of published reviews and case reports of glucose transporter type I deficiency (G1D) approaches or exceeds that of original research. This can indicate medical interest, but also scientific stagnation. METHODS In assessing this state of affairs here, we focus not on what is peculiar or disparate about G1D, but on the assumptions that have reigned thus far undisputed, and critique them as a potential impediment to progress. To summarize the most common G1D phenotype, we trace the 25-year story of G1D in parallel with the natural history of one of two index patients, identified in 1990 by one of us (G.M.R.) and brought up to date by the other (J.M.P.) while later examining widely repeated but little-scrutinized statements. Among them are those that pertain to assumptions about brain fuels; energy failure; cerebrospinal glucose concentration; the purpose of ketogenic diet; the role of the defective blood-brain barrier; genotype-phenotype correlations; a bewildering array of phenotypes; ictogenesis, seizures, and the electroencephalograph; the use of mice to model the disorder; and what treatments may and may not be expected to accomplish. RESULTS We reach the forgone conclusion that the proper study of mankind-and of one of its ailments (G1D) -is man itself (rather than mice, isolated cells, or extrapolated inferences) and propose a framework for rigorous investigation that we hope will lead to a better understanding and to better treatments for this and for rare disorders in general. CONCLUSIONS These considerations, together with experience drawn from other disorders, lead, as a logical consequence, to the nullification of the view that therapeutic development (i.e., trials) for rare diseases could or should be accelerated without the most vigorous scientific scrutiny: trial and error constitute an inseparable couple, such that, at the present time, hastening the former is bound to precipitate the latter.
Collapse
Affiliation(s)
- Juan M. Pascual
- Rare Brain Disorders Program, Departments of Neurology and Neurotherapeutics, Physiology and Pediatrics, and Eugene McDermott Center for Human Growth and Development / Center for Human Genetics. The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gabriel M. Ronen
- Department of Pediatrics, McMaster Child Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
34
|
Reis KP, Heimfarth L, Pierozan P, Ferreira F, Loureiro SO, Fernandes CG, Carvalho RV, Pessoa-Pureur R. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation. Alcohol 2015; 49:665-74. [PMID: 26314629 DOI: 10.1016/j.alcohol.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity.
Collapse
Affiliation(s)
- Karina Pires Reis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Luana Heimfarth
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Rônan Vivian Carvalho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
35
|
Pascual JM. Glut1 Deficiency (G1D). Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
36
|
Castelhano ASS, Ramos FO, Scorza FA, Cysneiros RM. Early life seizures in female rats lead to anxiety-related behavior and abnormal social behavior characterized by reduced motivation to novelty and deficit in social discrimination. J Neural Transm (Vienna) 2014; 122:349-55. [PMID: 25139483 DOI: 10.1007/s00702-014-1291-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/05/2014] [Indexed: 11/08/2022]
Abstract
Previously, we demonstrated that male Wistar rats submitted to neonatal status epilepticus showed abnormal social behavior characterized by deficit in social discrimination and enhanced emotionality. Taking into account that early insult can produce different biological manifestations in a gender-dependent manner, we aimed to investigate the social behavior and anxiety-like behavior in female Wistar rats following early life seizures. Neonate female Wistar rats at 9 days postnatal were subject to pilocarpine-induced status epilepticus and the control received saline. Behavioral tests started from 60 days postnatal and were carried out only during the diestrus phase of the reproductive cycle. In sociability test experimental animals exhibited reduced motivation for social encounter and deficit in social discrimination. In open field and the elevated plus maze, experimental animals showed enhanced emotionality with no changes in basal locomotor activity. The results showed that female rats submitted to neonatal status epipepticus showed impaired social behavior, characterized by reduced motivation to novelty and deficit in social discrimination in addition to enhanced emotionality.
Collapse
|
37
|
Outcome of pediatric epilepsies in adulthood. HANDBOOK OF CLINICAL NEUROLOGY 2014. [PMID: 23622229 DOI: 10.1016/b978-0-444-52891-9.00084-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
A good understanding of the long-term outcome of epileptic disorders that have begun in infancy or childhood allows the practitioner to choose the best medical management and to adjust it throughout the life of the patient. The identification of risk factors of poor outcome is crucial, the issue being to prevent or minimize their impacts by appropriate interventions. However, knowledge on the natural course and long-term outcome of pediatric epilepsies is fragmentary for a lot of them for reasons that the authors discuss in this chapter. After reviewing general considerations on outcome for the epilepsies persisting throughout life, the authors will discuss the present state of knowledge on specific aspects concerning some pediatric epilepsy syndromes. These disorders have been chosen because they are representative of the wide range of potential outcomes that can be observed in adults.
Collapse
|
38
|
Pierozan P, Fernandes CG, Dutra MF, Pandolfo P, Ferreira F, de Lima BO, Porciúncula L, Wajner M, Pessoa-Pureur R. Biochemical, histopathological and behavioral alterations caused by intrastriatal administration of quinolic acid to young rats. FEBS J 2014; 281:2061-73. [DOI: 10.1111/febs.12762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/03/2014] [Accepted: 02/19/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Paula Pierozan
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Carolina G. Fernandes
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Márcio F. Dutra
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Biologia Celular, Embriologia e Genética; Centro Ciências Biológicas; Universidade Federal de Santa Catarina; Florianópolis SC Brasil
| | - Pablo Pandolfo
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
- Departamento de Neurobiologia; Instituto de Biologia; Universidade Federal Fluminense; Niterói RJ Brasil
| | - Fernanda Ferreira
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Bárbara O. de Lima
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Lisiane Porciúncula
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Moacir Wajner
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica; Instituto de Ciências Básicas da Saúde; UFRGS; Porto Alegre RS Brasil
| |
Collapse
|
39
|
Post-seizure α-tocopherol treatment decreases neuroinflammation and neuronal degeneration induced by status epilepticus in rat hippocampus. Mol Neurobiol 2014; 50:246-56. [PMID: 24488645 DOI: 10.1007/s12035-014-8648-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023]
Abstract
Vitamin E (as α-tocopherol, α-T) was shown to have beneficial effects in epilepsy, mainly ascribed to its antioxidant properties. Besides radical-induced neurotoxicity, neuroinflammation is also involved in the pathophysiology of epilepsy, since neuroglial activation and cytokine production exacerbate seizure-induced neurotoxicity and contribute to epileptogenesis. We previously showed that α-T oral supplementation before inducing status epilepticus, markedly reduces astrocytic and microglial activation, neuronal cell death and oxidative stress in the hippocampus, as observed 4 days after seizure. In order to evaluate the possibility that such a neuroprotective and anti-inflammatory effect may also provide a strategy for an acute intervention in epilepsy, in this study, seizures were induced by single intaperitoneal injection of kainic acid and, starting from 3 h after status epilepticus, rats were treated with an intraperitoneal bolus of α-T (250 mg/kg b.w.; once a day) for 4 days, that was the time after which morphological and biochemical analyses were performed on hippocampus. Post-seizure α-T administration significantly reduced astrocytosis and microglia activation, and decreased neuron degeneration and spine loss; these effects were associated with the presence of a lowered lipid peroxidation in hippocampus. These results confirm and further emphasize the anti-inflammatory and neuroprotective role of α-T in kainic acid-induced epilepsy. Moreover, the findings show that post-seizure treatment with α-T provides an effective secondary prevention against post-seizure inflammation-induced brain damages and possibly against their epileptogenic effects.
Collapse
|
40
|
Rossi AR, Angelo MF, Villarreal A, Lukin J, Ramos AJ. Gabapentin administration reduces reactive gliosis and neurodegeneration after pilocarpine-induced status epilepticus. PLoS One 2013; 8:e78516. [PMID: 24250797 PMCID: PMC3826740 DOI: 10.1371/journal.pone.0078516] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 09/18/2013] [Indexed: 01/22/2023] Open
Abstract
The lithium-pilocarpine model of epilepsy reproduces in rodents several features of human temporal lobe epilepsy, by inducing an acute status epilepticus (SE) followed by a latency period. It has been proposed that the neuronal network reorganization that occurs during latency determines the subsequent appearance of spontaneous recurrent seizures. The aim of this study was to evaluate neuronal and glial responses during the latency period that follows SE. Given the potential role of astrocytes in the post-SE network reorganization, through the secretion of synaptogenic molecules such as thrombospondins, we also studied the effect of treatment with the α2δ1 thrombospondin receptor antagonist gabapentin. Adult male Wistar rats received 3 mEq/kg LiCl, and 20 h later 30 mg/kg pilocarpine. Once SE was achieved, seizures were stopped with 20 mg/kg diazepam. Animals then received 400 mg/kg/day gabapentin or saline for either 4 or 14 days. In vitro experiments were performed in dissociated mixed hippocampal cell culture exposed to glutamate, and subsequently treated with gabapentin or vehicle. During the latency period, the hippocampus and pyriform cortex of SE-animals presented a profuse reactive astrogliosis, with increased GFAP and nestin expression. Gliosis intensity was dependent on the Racine stage attained by the animals and peaked 15 days after SE. Microglia was also reactive after SE, and followed the same pattern. Neuronal degeneration was present in SE-animals, and also depended on the Racine stage and the SE duration. Polysialic-acid NCAM (PSA-NCAM) expression was increased in hippocampal CA-1 and dentate gyrus of SE-animals. Gabapentin treatment was able to reduce reactive gliosis, decrease neuronal loss and normalize PSA-NCAM staining in hippocampal CA-1. In vitro, gabapentin treatment partially prevented the dendritic loss and reactive gliosis caused by glutamate excitotoxicity. Our results show that gabapentin treatment during the latency period after SE protects neurons and normalizes PSA-NCAM probably by direct interaction with neurons and glia.
Collapse
Affiliation(s)
- Alicia Raquel Rossi
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Maria Florencia Angelo
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alejandro Villarreal
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Jerónimo Lukin
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Alberto Javier Ramos
- Instituto de Biología Celular y Neurociencia “Prof. E. De Robertis”, Facultad de Medicina, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
41
|
The PPARγ agonist rosiglitazone prevents neuronal loss and attenuates development of spontaneous recurrent seizures through BDNF/TrkB signaling following pilocarpine-induced status epilepticus. Neurochem Int 2013; 63:405-12. [DOI: 10.1016/j.neuint.2013.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 07/14/2013] [Accepted: 07/22/2013] [Indexed: 12/17/2022]
|
42
|
Neuroprotective effects of anti-high-mobility group box 1 antibody in juvenile rat hippocampus after kainic acid-induced status epilepticus. Neuroreport 2013; 24:785-90. [DOI: 10.1097/wnr.0b013e328363fed3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Mlsna LM, Koh S. Maturation-dependent behavioral deficits and cell injury in developing animals during the subacute postictal period. Epilepsy Behav 2013; 29:190-7. [PMID: 23973645 PMCID: PMC3927371 DOI: 10.1016/j.yebeh.2013.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 11/17/2022]
Abstract
Prolonged early-life seizures are associated with disruptions of affective and cognitive function. Postictal disturbances, temporary functional deficits that persist for hours to days after seizures, have not yet been thoroughly characterized. Here, we used kainic acid (KA) to induce status epilepticus (SE) in immature rats at three developmental stages (postnatal day (P) 15, 21, or 30) and subsequently assessed spatial learning and memory in a Barnes maze, exploratory behavior in an open field, and the spatiotemporal distribution of cell injury during the first 7-10 days of the postictal period. At 1 day post-SE, P15-SE rats showed no deficit in the Barnes maze but were hyperexploratory in an open field compared with their littermate controls. In contrast, P21- and P30-SE rats exhibited markedly impaired performance in the Barnes maze and exhibited significantly reduced open field exploration suggestive of anxiety-like behavior. These behavioral changes were transient in P15 rats but more persistent in P21 and enduring in P30 rats after KA-SE. The time course of behavioral deficits in P21 and P30 rats was temporally correlated with the presence of neuronal injury in the lateral septal nuclei, amygdala, and ventral subiculum/CA1, regions involved in modulation of the hypothalamic-pituitary-adrenal stress response.
Collapse
Affiliation(s)
- Lauren M Mlsna
- Neurobiology Program, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL 60614, USA
| | | |
Collapse
|
44
|
Nardou R, Ferrari DC, Ben-Ari Y. Mechanisms and effects of seizures in the immature brain. Semin Fetal Neonatal Med 2013; 18:175-84. [PMID: 23702158 DOI: 10.1016/j.siny.2013.02.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The developing immature brain is not simply a small adult brain but rather possesses unique physiological properties. These include neuronal ionic currents that differ markedly from those in the adult brain, typically being longer-lasting and less selective. This enables immature heterogeneous neurons to connect and fire together but at the same time, along with other features may contribute to the enhanced propensity of the developing brain to become epileptic. Indeed, immature neurons tend to readily synchronize and thus generate seizures. Here, we review the differences between the immature and adult brain, with particular focus on the developmental sequence of γ-aminobutyric acid that excites immature neurons while being inhibitory in the normal adult brain. We review the mechanisms underlying the developmental changes to intracellular chloride levels, as well as how epileptiform activity can drive pathologic changes to chloride balance in the brain. We show that regulation of intracellular chloride is one important factor that underlies both the ease with which seizures can be generated and the facilitation of further seizures. We stress in particular the importance of understanding normal developmental sequences and how they are interrupted by seizures and other insults, and how this knowledge has led to the identification of potential novel treatments for conditions such as neonatal seizures.
Collapse
|
45
|
Castelhano ASS, Cassane GDST, Scorza FA, Cysneiros RM. Altered anxiety-related and abnormal social behaviors in rats exposed to early life seizures. Front Behav Neurosci 2013; 7:36. [PMID: 23675329 PMCID: PMC3648772 DOI: 10.3389/fnbeh.2013.00036] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 04/17/2013] [Indexed: 02/06/2023] Open
Abstract
Neonatal seizures are the most common manifestation of neurological dysfunction in the neonate. The prognosis of neonatal seizures is highly variable, and the controversy remains whether the severity, duration, or frequency of seizures may contribute to brain damage independently of its etiology. Animal data indicates that seizures during development are associated with a high probability of long-term adverse effects such as learning and memory impairment, behavioral changes and even epilepsy, which is strongly age dependent, as well as the severity, duration, and frequency of seizures. In preliminary studies, we demonstrated that adolescent male rats exposed to one-single neonatal status epilepticus (SE) episode showed social behavior impairment, and we proposed the model as relevant for studies of developmental disorders. Based on these facts, the goal of this study was to verify the existence of a persistent deficit and if the anxiety-related behavior could be associated with that impairment. To do so, male Wistar rats at 9 days postnatal were submitted to a single episode of SE by pilocarpine injection (380 mg/kg, i.p.) and control animals received saline (0.9%, 0.1 mL/10 g). It was possible to demonstrate that in adulthood, animals exposed to neonatal SE displayed low preference for social novelty, anxiety-related behavior, and increased stereotyped behavior in anxiogenic environment with no locomotor activity changes. On the balance, these data suggests that neonatal SE in rodents leads to altered anxiety-related and abnormal social behaviors.
Collapse
|
46
|
Laurén HB, Ruohonen S, Kukko-Lukjanov TK, Virta JE, Grönman M, Lopez-Picon FR, Järvelä JT, Holopainen IE. Status epilepticus alters neurogenesis and decreases the number of GABAergic neurons in the septal dentate gyrus of 9-day-old rats at the early phase of epileptogenesis. Brain Res 2013; 1516:33-44. [PMID: 23623775 DOI: 10.1016/j.brainres.2013.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/20/2013] [Accepted: 04/14/2013] [Indexed: 01/03/2023]
Abstract
The effects of a prolonged seizure, i.e. status epilepticus (SE), on neurogenesis of dentate granule cells (DGCs) in the immature dentate gyrus (DG) and possible changes in the phenotypes of the newborn neurons have remained incompletely characterized. We have now studied neurogenesis of DGCs in 9-day-old (postnatal, P9) rats 1 week after kainate (KA)-induced SE using 5-bromo-2-deoxyuridine (BrdU) immunostaining. The phenotype characterization of the newborn cells was carried out by immunofluorescence double labeling using doublecortin (DCX) and nestin as markers for immature cells, and glial fibrillary acid protein (GFAP) as a marker for glial cells. Newborn GABAergic neurons were further identified with antibodies for parvalbumin, glutamate decarboxylase 67 (GAD67), and the GABAA receptor α1 subunit, and mRNA expression of GABAergic and immature neurons was measured with quantitative real-time PCR (qPCR) in the DG. Our results show that the number of newborn as well as GABAergic neurons was significantly decreased after SE in the superior blade of the septal DG. The majority of the newborn BrdU-stained neurons co-expressed DCX, but neither nestin nor GFAP. In both experimental groups, newborn neurons were frequently localized in close contact, but not co-localized, with the cells positively stained for the GABAergic cell markers. Nestin and calretinin mRNA expression were significantly increased after SE. Our results suggest that SE-induced disruption of DGC neurogenesis and decreased number of GABAergic neurons could modify the connectivity between these cells and disturb the maturation of the GABAergic neurotransmission in the immature DG at the early epileptogenic phase.
Collapse
Affiliation(s)
- H B Laurén
- Department of Pharmacology, Drug Development and Therapeutics, Itäinen Pitkäkatu 4 B, 20014 University of Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Expression profiles of hippocampal regenerative sprouting-related genes and their regulation by E-64d in a developmental rat model of penicillin-induced recurrent epilepticus. Toxicol Lett 2012; 217:162-9. [PMID: 23266720 DOI: 10.1016/j.toxlet.2012.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 11/22/2022]
Abstract
E-64d (a calpain and autophagy inhibitor) has previously been shown safe for the treatment of Alzheimer's disease in humans. In the present study, the potential protective mechanism of E-64d on hippocampal aberrant mossy fiber sprouting was examined in a developmental rat model of penicillin-induced recurrent epilepticus. A seizure was induced by penicillin every other day in Sprague-Dawley rats from postnatal day 21 (P21). The rats were randomly assigned into the control group (CONT1), the control plus E-64d (CONT2), the seizure group (EXP1) and the seizure plus E-64d (EXP2). On P51, mossy fiber sprouting and related gene expression in hippocampus were assessed by Timm staining and real-time RT-PCR methods, respectively. To validate the RT-PCR results, western blot analysis was performed on selected genes. E-64d obviously suppressed the aberrant mossy fiber sprouting in the supragranular region of dentate gyrus and CA3 subfield of hippocampus. Among the total twelve genes, six genes were strongly up- (MT-3, ACAT1, clusterin and ApoE) or down- (ZnT-1 and PRG-3) regulated by developmental seizures (EXP1) compared with that in the CONT1. Up-regulation of ApoE and Clusterin was blocked by pretreatment with E-64d both in mRNA and protein levels. Further, E-64d-pretreated seizure rats (EXP2) showed a significant downregulation of mRNA expression of PRG-1, PRG-3 and PRG-5, cathepsin B and ApoE, as well as up-regulated nSMase and ANX7 in hippocampus when compared with EXP1 rats. The results of the present study suggest that E-64d, an elective inhibitor of calpain and autophagy, is potentially useful in the treatment of developmental seizure-induced brain damage both by regulating abnormal zinc signal transduction and through the modulation of altered lipid metabolism via ApoE/clusterin pathway in hippocampus.
Collapse
|
48
|
Zhu XB, Wang YB, Chen O, Zhang DQ, Zhang ZH, Cao AH, Huang SY, Sun RP. Characterization of the expression of macrophage inflammatory protein-1α (MIP-1α) and C-C chemokine receptor 5 (CCR5) after kainic acid-induced status epilepticus (SE) in juvenile rats. Neuropathol Appl Neurobiol 2012; 38:602-16. [DOI: 10.1111/j.1365-2990.2012.01251.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Loss CM, Córdova SD, de Oliveira DL. Ketamine reduces neuronal degeneration and anxiety levels when administered during early life-induced status epilepticus in rats. Brain Res 2012; 1474:110-7. [PMID: 22885341 DOI: 10.1016/j.brainres.2012.07.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/24/2012] [Indexed: 12/11/2022]
Abstract
Status epilepticus (SE) when occurred during brain development can cause short- and long-term consequences, which are frequently associated with NMDA-mediated glutamatergic excitotoxicity. In the present work, we investigated the putative neuroprotective role of ketamine, an NMDA receptor antagonist, on early life SE-induced acute neuronal death and long-term behavioral abnormalities. Male Wistar rats (16 postnatal days) were induced to SE by LiCl-pilocarpine i.p. administration (3 mEq/kg; 60 mg/kg, respectively). Fifteen or 60min after pilocarpine injection, animals received a ketamine administration (22.5mg/kg i.p.). Neuronal degeneration was assessed 24h after SE induction. Another subset of animals was destined to behavioral tasks in adulthood (75-80 postnatal days). Fluoro-Jade C labeling revealed a marked neuronal death on CA1 hippocampal subfield, habenula, thalamus and amygdala in SE animals. Ketamine post-SE onset treatment prevented neuronal death in all regions assessed. In the elevated plus maze, SE induced an increase in anxiety-like behaviors whereas ketamine administration during seizures was able to prevent this alteration. Ketamine administration in non-SE animals resulted in high anxiety levels. There were no observed differences among groups in the open field task in all parameters analyzed. Our results suggest that ketamine post-SE onset treatment was effective in preventing acute and long-standing alterations caused by SE early in life, which indicates a putative role of glutamatergic system on SE-induced brain damage as well as long-lasting behavioral consequences.
Collapse
Affiliation(s)
- Cássio Morais Loss
- Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, Brazil.
| | | | | |
Collapse
|
50
|
Chapman KE, Raol YH, Brooks-Kayal A. Neonatal seizures: controversies and challenges in translating new therapies from the lab to the isolette. Eur J Neurosci 2012; 35:1857-65. [PMID: 22708596 PMCID: PMC3383637 DOI: 10.1111/j.1460-9568.2012.08140.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neonatal seizures have unique properties that have proved challenging for both clinicians and basic science researchers. Clinical therapies aimed at neonatal seizures have proven only partially effective and new therapies are slow to develop. This article will discuss neonatal seizures within the framework of the barriers that exist to the development of new therapies, and the challenges inherent in bringing new therapies from the bench to the bedside. With the European Union and USA creating national collaborative project infrastructure, improved collaborative resources should advance clinical research on urgently needed new therapies for this disorder.
Collapse
Affiliation(s)
- Kevin E Chapman
- Department of Pediatrics, Section of Pediatric Neurology, University of Colorado School Of Medicine, Children's Hospital Colorado, 13123 East 16th Ave, B155, Aurora, CO 80045, USA
| | | | | |
Collapse
|