1
|
Wu X, Li C, Ke C, Huang C, Pan B, Wan C. The activation of AMPK/PGC-1α/GLUT4 signaling pathway through early exercise improves mitochondrial function and mitigates ischemic brain damage. Neuroreport 2024; 35:648-656. [PMID: 38813901 DOI: 10.1097/wnr.0000000000002048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Mitochondria play a crucial role in maintaining cellular energy supply and serve as a source of energy for repairing nerve damage following a stroke. Given that exercise has the potential to enhance energy metabolism, investigating the impact of exercise on mitochondrial function provides a plausible mechanism for stroke treatment. In our study, we established the middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats and implemented early exercise intervention. Neurological severity scores, beam-walking test score, and weight were used to evaluate neurological function. The volume of cerebral infarction was measured by MRI. Nerve cell apoptosis was detected by TUNEL staining. Mitochondrial morphology and structure were detected by mitochondrial electron microscopy. Mitochondrial function was assessed using membrane potential and ATP measurements. Western blotting was used to detect the protein expression of AMPK/PGC-1α/GLUT4. Through the above experiments, we found that early exercise improved neurological function in rats after MCAO, reduced cerebral infarction volume and neuronal apoptosis, promoted the recovery of mitochondrial morphology and function. We further examined the protein expression of AMPK/PGC-1α/GLUT4 signaling pathway and confirmed that early exercise was able to increase its expression. Therefore, we suggest that early exercise initiated the AMPK/PGC-1α/GLUT4 signaling pathway, restoring mitochondrial function and augmenting energy supply. This, in turn, effectively improved both nerve and body function in rats following ischemic stroke.
Collapse
Affiliation(s)
- Xinyue Wu
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital
| | - Chen Li
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital
| | - Changkai Ke
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital
| | - Chuan Huang
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital
| | - Bingchen Pan
- Institute of Medical technology, Tianjin Medical University, Tianjin, China
| | - Chunxiao Wan
- Department of Rehabilitation Medicine, Tianjin Medical University General Hospital
| |
Collapse
|
2
|
Peng Q, Zeng W. The protective role of endothelial GLUT1 in ischemic stroke. Brain Behav 2024; 14:e3536. [PMID: 38747733 PMCID: PMC11095318 DOI: 10.1002/brb3.3536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE To provide thorough insight on the protective role of endothelial glucose transporter 1 (GLUT1) in ischemic stroke. METHODS We comprehensively review the role of endothelial GLUT1 in ischemic stroke by narrating the findings concerning biological characteristics of GLUT1 in brain in depth, summarizing the changes of endothelial GLUT1 expression and activity during ischemic stroke, discussing how GLUT1 achieves its neuroprotective effect via maintaining endothelial function, and identifying some outstanding blind spots in current studies. RESULTS Endothelial GLUT1 maintains persistent high glucose and energy requirements of the brain by transporting glucose through the blood-brain barrier, which preserves endothelial function and is beneficial to stroke prognosis. CONCLUSION This review underscores the potential involvement of GLUT1 trafficking, activity modulation, and degradation, and we look forward to more clinical and animal studies to illuminate these mechanisms.
Collapse
Affiliation(s)
- Qiwei Peng
- Department of Critical Care Medicine, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology)Ministry of EducationWuhanChina
| | - Weiqi Zeng
- Department of NeurologyThe First People's Hospital of FoshanFoshanChina
| |
Collapse
|
3
|
Li MC, Li MZ, Lin ZY, Zhuang YM, Wang HY, Jia JT, Lu Y, Wang ZJ, Zou HY, Zhao H. Buyang Huanwu Decoction promotes neurovascular remodeling by modulating astrocyte and microglia polarization in ischemic stroke rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117620. [PMID: 38141792 DOI: 10.1016/j.jep.2023.117620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Buyang Huanwu Decoction (BYHWD), one of the most commonly utilized traditional Chinese medicine prescription for treatment of cerebral ischemic stroke. However, the understanding of BYHWD on neurovascular repair following cerebral ischemia is so far limited. AIM OF THE STUDY This research investigated the influence of BYHWD on neurovascular remodeling by magnetic resonance imaging (MRI) technology and revealed the potential neurovascular repair mechanism underlying post-treatment with BYHWD after ischemic stroke. MATERIALS AND METHODS Male Sprague-Dawley rats were utilized as an ischemic stroke model by permanent occlusion of the middle cerebral artery (MCAO). BYHWD was intragastrically administrated once daily for 30 days straight. Multimodal MRI was performed to detect brain tissue injuries, axonal microstructural damages, cerebral blood flow and intracranial vessels on the 30th day after BYHWD treatment. Proangiogenic factors, axonal/synaptic plasticity-related factors, energy transporters and adenosine monophosphate-activated protein kinase (AMPK) signal pathway were evaluated using western blot. Double immunofluorescent staining and western blot were applied to evaluate astrocytes and microglia polarization. RESULTS Administration of BYHWD significantly alleviated infarct volume and brain tissue injuries and ameliorated microstructural damages, accompanied with improved axonal/synaptic plasticity-related factors, axonal growth guidance factors and decreased axonal growth inhibitors. Meanwhile, BYHWD remarkably improved cerebral blood flow, cerebral vascular signal and promoted the expression of proangiogenic factors. Particularly, treatment with BYHWD obviously suppressed astrocytes A1 and microglia M1 polarization accompanied with promoted astrocyte A2 and microglia M2 polarization. Furthermore, BYHWD effectively improved energy transporters. Especially, BYHWD markedly increased expression of phosphorylated AMPK, cyclic AMP-response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) accompanied by inactivation of the NF-κB. CONCLUSION Taken together, these findings identified that the beneficial roles of BYHWD on neurovascular remodeling were related to AMPK pathways -mediated energy transporters and NFκB/CREB pathways.
Collapse
Affiliation(s)
- Ming-Cong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Man-Zhong Li
- Department of pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, 100038, China
| | - Zi-Yue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yu-Ming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Han-Yu Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Jing-Ting Jia
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Zhan-Jing Wang
- Medical Imaging laboratory of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Hai-Yan Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
4
|
Lu Y, Li M, Zhuang Y, Lin Z, Nie B, Lei J, Zhao Y, Zhao H. Combination of fMRI and PET reveals the beneficial effect of three-phase enriched environment on post-stroke memory deficits by enhancing plasticity of brain connectivity between hippocampus and peri-hippocampal cortex. CNS Neurosci Ther 2024; 30:e14466. [PMID: 37752881 PMCID: PMC10916434 DOI: 10.1111/cns.14466] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
AIM The three-phase enriched environment (EE) intervention paradigm has been shown to improve learning and memory function after cerebral ischemia, but the neuronal mechanisms are still unclear. This study aimed to investigate the hippocampal-cortical connectivity and the metabolic interactions between neurons and astrocytes to elucidate the underlying mechanisms of EE-induced memory improvement after stroke. METHODS Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) or sham surgery and housed in standard environment or EE for 30 days. Memory function was examined by Morris water maze (MWM) test. Magnetic resonance imaging (MRI) was conducted to detect the structural and functional changes. [18 F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) was conducted to detect brain energy metabolism. PET-based brain connectivity and network analysis was performed to study the changes of hippocampal-cortical connectivity. Astrocyte-neuron metabolic coupling, including gap junction protein connexin 43 (Cx43), glucose transporters (GLUTs), and monocarboxylate transporters (MCTs), was detected by histological studies. RESULTS Our results showed EE promoted memory function improvement, protected structure integrity, and benefited energy metabolism after stroke. More importantly, EE intervention significantly increased functional connectivity between the hippocampus and peri-hippocampal cortical regions, and specifically regulated the level of Cx43, GLUTs and MCTs in the hippocampus and cortex. CONCLUSIONS Our results revealed the three-phase enriched environment paradigm enhanced hippocampal-cortical connectivity plasticity and ameliorated post-stroke memory deficits. These findings might provide some new clues for the development of EE and thus facilitate the clinical transformation of EE.
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Mingcong Li
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Yuming Zhuang
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Ziyue Lin
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
| | - Jianfeng Lei
- Core Facilities CenterCapital Medical UniversityBeijingChina
| | - Yuanyuan Zhao
- Core Facilities CenterCapital Medical UniversityBeijingChina
| | - Hui Zhao
- School of Traditional Chinese MedicineCapital Medical UniversityBeijingChina
- Beijing Key Lab of TCM Collateral Disease Theory ResearchBeijingChina
| |
Collapse
|
5
|
Chavda V, Lu B. Reverse Electron Transport at Mitochondrial Complex I in Ischemic Stroke, Aging, and Age-Related Diseases. Antioxidants (Basel) 2023; 12:antiox12040895. [PMID: 37107270 PMCID: PMC10135819 DOI: 10.3390/antiox12040895] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Stroke is one of the leading causes of morbidity and mortality worldwide. A main cause of brain damage by stroke is ischemia-reperfusion (IR) injury due to the increased production of reactive oxygen species (ROS) and energy failure caused by changes in mitochondrial metabolism. Ischemia causes a build-up of succinate in tissues and changes in the mitochondrial NADH: ubiquinone oxidoreductase (complex I) activity that promote reverse electron transfer (RET), in which a portion of the electrons derived from succinate are redirected from ubiquinol along complex I to reach the NADH dehydrogenase module of complex I, where matrix NAD+ is converted to NADH and excessive ROS is produced. RET has been shown to play a role in macrophage activation in response to bacterial infection, electron transport chain reorganization in response to changes in the energy supply, and carotid body adaptation to changes in the oxygen levels. In addition to stroke, deregulated RET and RET-generated ROS (RET-ROS) have been implicated in tissue damage during organ transplantation, whereas an RET-induced NAD+/NADH ratio decrease has been implicated in aging, age-related neurodegeneration, and cancer. In this review, we provide a historical account of the roles of ROS and oxidative damage in the pathogenesis of ischemic stroke, summarize the latest developments in our understanding of RET biology and RET-associated pathological conditions, and discuss new ways to target ischemic stroke, cancer, aging, and age-related neurodegenerative diseases by modulating RET.
Collapse
Affiliation(s)
- Vishal Chavda
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bingwei Lu
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
7
|
Liu F, Jiang X, Yang J, Tao J, Zhang M. A chronotherapeutics-applicable multi-target therapeutics based on AI: Example of therapeutic hypothermia. Brief Bioinform 2022; 23:6694809. [PMID: 36088545 PMCID: PMC9487598 DOI: 10.1093/bib/bbac365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/15/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Nowadays, the complexity of disease mechanisms and the inadequacy of single-target therapies in restoring the biological system have inevitably instigated the strategy of multi-target therapeutics with the analysis of each target individually. However, it is not suitable for dealing with the conflicts between targets or between drugs. With the release of high-precision protein structure prediction artificial intelligence, large-scale high-precision protein structure prediction and docking have become possible. In this article, we propose a multi-target drug discovery method by the example of therapeutic hypothermia (TH). First, we performed protein structure prediction for all protein targets of each group by AlphaFold2 and RoseTTAFold. Then, QuickVina 2 is used for molecular docking between the proteins and drugs. After docking, we use PageRank to rank single drugs and drug combinations of each group. The ePharmaLib was used for predicting the side effect targets. Given the differences in the weights of different targets, the method can effectively avoid inhibiting beneficial proteins while inhibiting harmful proteins. So it could minimize the conflicts between different doses and be friendly to chronotherapeutics. Besides, this method also has potential in precision medicine for its high compatibility with bioinformatics and promotes the development of pharmacogenomics and bioinfo-pharmacology.
Collapse
Affiliation(s)
- Fei Liu
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University , Hangzhou 310009, Zhejiang Province, China
- Institute of Emergency Medicine, Zhejiang University , Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Zhejiang University , Hangzhou 310009, Zhejiang Province, China
| | - Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University , Hangzhou 310009, Zhejiang Province, China
- Institute of Emergency Medicine, Zhejiang University , Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Zhejiang University , Hangzhou 310009, Zhejiang Province, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University , Hangzhou 310009, Zhejiang Province, China
- Institute of Emergency Medicine, Zhejiang University , Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Zhejiang University , Hangzhou 310009, Zhejiang Province, China
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University , Hangzhou 310009, Zhejiang Province, China
- Institute of Emergency Medicine, Zhejiang University , Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Zhejiang University , Hangzhou 310009, Zhejiang Province, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University , Hangzhou 310009, Zhejiang Province, China
- Institute of Emergency Medicine, Zhejiang University , Hangzhou 310009, Zhejiang Province, China
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Zhejiang University , Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
8
|
Neuroprotective Effects of Pharmacological Hypothermia on Hyperglycolysis and Gluconeogenesis in Rats after Ischemic Stroke. Biomolecules 2022; 12:biom12060851. [PMID: 35740974 PMCID: PMC9220898 DOI: 10.3390/biom12060851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke is a leading threat to human life. Metabolic dysfunction of glucose may play a key role in stroke pathophysiology. Pharmacological hypothermia (PH) is a potential neuroprotective strategy for stroke, in which the temperature is decreased safely. The present study determined whether neuroprotective PH with chlorpromazine and promethazine (C + P), plus dihydrocapsaicin (DHC) improved glucose metabolism in acute ischemic stroke. A total of 208 adult male Sprague Dawley rats were randomly divided into the following groups: sham, stroke, and stroke with various treatments including C + P, DHC, C + P + DHC, phloretin (glucose transporter (GLUT)-1 inhibitor), cytochalasin B (GLUT-3 inhibitor), TZD (thiazolidinedione, phosphoenolpyruvate carboxykinase (PCK) inhibitor), and apocynin (nicotinamide adenine dinucleotide phosphate oxidase (NOX) inhibitor). Stroke was induced by middle cerebral artery occlusion (MCAO) for 2 h followed by 6 or 24 h of reperfusion. Rectal temperature was monitored before, during, and after PH. Infarct volume and neurological deficits were measured to assess the neuroprotective effects. Reactive oxygen species (ROS), NOX activity, lactate, apoptotic cell death, glucose, and ATP levels were measured. Protein expression of GLUT-1, GLUT-3, phosphofructokinase (PFK), lactate dehydrogenase (LDH), PCK1, PCK2, and NOX subunit gp91 was measured with Western blotting. PH with a combination of C + P and DHC induced faster, longer, and deeper hypothermia, as compared to each alone. PH significantly improved every measured outcome as compared to stroke and monotherapy. PH reduced brain infarction, neurological deficits, protein levels of glycolytic enzymes (GLUT-1, GLUT-3, PFK and LDH), gluconeogenic enzymes (PCK1 and PCK2), NOX activity and its subunit gp91, ROS, apoptotic cell death, glucose, and lactate, while raising ATP levels. In conclusion, stroke impaired glucose metabolism by enhancing hyperglycolysis and gluconeogenesis, which led to ischemic injury, all of which were reversed by PH induced by a combination of C + P and DHC.
Collapse
|
9
|
Sharma V, Singh TG, Mannan A. Therapeutic implications of glucose transporters (GLUT) in cerebral ischemia. Neurochem Res 2022; 47:2173-2186. [PMID: 35596882 DOI: 10.1007/s11064-022-03620-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023]
Abstract
Cerebral ischemia is a leading cause of death in the globe, with a large societal cost. Deprivation of blood flow, together with consequent glucose and oxygen shortage, activates a variety of pathways that result in permanent brain damage. As a result, ischemia raises energy demand, which is linked to significant alterations in brain energy metabolism. Even at the low glucose levels reported in plasma during ischemia, glucose transport activity may adjust to assure the supply of glucose to maintain normal cellular function. Glucose transporters in the brain are divided into two groups: sodium-independent glucose transporters (GLUTs) and sodium-dependent glucose cotransporters (SGLTs).This review assess the GLUT structure, expression, regulation, pathobiology of GLUT in cerebral ischemia and regulators of GLUT and it also provides the synopsis of the literature exploring the relationship between GLUT and the various downstream signalling pathways for e.g., AMP-activated protein kinase (AMPK), CREB (cAMP response element-binding protein), Hypoxia-inducible factor 1 (HIF)-1, Phosphatidylinositol 3-kinase (PI3-K), Mitogen-activated protein kinase (MAPK) and adenylate-uridylate-rich elements (AREs). Therefore, the aim of the present review was to elaborate the therapeutic implications of GLUT in the cerebral ischemia.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Patiala, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, 140401, Patiala, Punjab, India.
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, 140401, Patiala, Punjab, India
| |
Collapse
|
10
|
Liu B, Zhao T, Li Y, Han Y, Xu Y, Yang H, Wang S, Zhao Y, Li P, Wang Y. Notoginsenoside R1 ameliorates mitochondrial dysfunction to circumvent neuronal energy failure in acute phase of focal cerebral ischemia. Phytother Res 2022; 36:2223-2235. [PMID: 35419891 DOI: 10.1002/ptr.7450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/03/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022]
Abstract
Due to sudden loss of cerebral blood circulation, acute ischemic stroke (IS) causes neuronal energy attenuation or even exhaustion by mitochondrial dysfunction resulting in aggravation of neurological injury. In this study, we investigated if Notoginsenoside R1 ameliorated cerebral energy metabolism by limiting neuronal mitochondrial dysfunction in acute IS. Male Sprague-Dawley rats (260-280 g) were selected and performed by permanent middle cerebral artery occlusion model. In vitro, the oxygen glucose deprivation (OGD) model of Neuro2a (N2a) cells was established. We found Notoginsenoside R1 treatment reduced rats' cerebral infarct volume and neurological deficits, with increased Adenosine triphosphate (ATP) level together with upregulated expression of glucose transporter 1/3, monocarboxylate transporter 1 and citrate synthase in brain peri-ischemic tissue. In vitro, OGD-induced N2a cell death was inhibited, cell mitochondrial morphology was improved. Mitochondrial amount, mitochondrial membrane potential, and mitochondrial DNA copy number were increased by Notoginsenoside R1 administration. Furthermore, mitochondrial energy metabolism-related mRNA array found Atp12a and Atp6v1g3 gene expression were upregulated more than twofold, which were also verified in rat ischemic tissue by quantitative polymerase chain reaction (qPCR) assay. Therefore, Notoginsenoside R1 administration increases cerebral glucose and lactate transportation and ATP levels, ameliorates neuronal mitochondrial function after IS. Notoginsenoside R1 may be a novel protective agent for neuronal mitochondria poststroke.
Collapse
Affiliation(s)
- Bowen Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Tingting Zhao
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Yiyang Li
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Yan Han
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macao SAR, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Yonghua Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| |
Collapse
|
11
|
Wang A, Cui T, Wang C, Zhu Q, Zhang X, Li S, Yang Y, Shang W, Wu B. Prognostic Significance of Admission Glucose Combined with Hemoglobin A1c in Acute Ischemic Stroke Patients with Reperfusion Therapy. Brain Sci 2022; 12:brainsci12020294. [PMID: 35204058 PMCID: PMC8869904 DOI: 10.3390/brainsci12020294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Elevated admission glucose and hemoglobin A1c (HbA1c) levels have been suggested to be associated with 90-day functional outcomes in acute ischemic stroke (AIS) patients with endovascular thrombectomy (EVT). However, whether the prognostic significance of admission glucose and that of HbA1c have a joint effect on patients with intravascular thrombolysis (IVT) and/or EVT remains unclear. This study aimed to explore the association between admission glucose combined with HbA1c and outcomes in patients with reperfusion therapy. Methods: Consecutive AIS patients treated with IVT and/or EVT between 2 January 2018 and 27 February 2021 in West China hospital were enrolled. Admission glucose and HbA1c levels were measured at admission. Participants were divided into four groups according to admission glucose level (categorical variable: <7.8 and ≥7.8 mmol/L) and HbA1c level (categorical variable: <6.5% and ≥6.5%): normal glucose and normal HbA1c (NGNA), normal glucose and high HbA1c (NGHA), high glucose and normal HbA1c (HGNA), and high glucose and high HbA1c (HGHA). The primary outcome was an unfavorable functional outcome defined as a modified Rankin Scale (mRS) ≥ 3. The secondary outcome was all-cause mortality at 90 days. Results: A total of 519 patients (mean age, 69.0 ± 13.4 years; 53.8% males) were included. Patients in the HGHA group had a significantly increased risk of unfavorable functional outcome (OR, 1.81; 95%CI, 1.01–3.23) and mortality (OR, 1.75; 95%CI, 1.01–3.06) at 90 days compared with those in the NGNA group after adjustment for confounders. There was no significant association between NGHA (OR, 0.43; 95%CI, 0.12–1.53) or HGNA (OR, 1.46; 95%CI, 0.84–2.56) and outcomes compared to the NGNA group. Conclusion: The combination of high admission glucose and high HbA1c level was significantly associated with unfavorable functional outcome and mortality at 90 days in AIS patients with reperfusion therapy.
Collapse
Affiliation(s)
- Anmo Wang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Ting Cui
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Changyi Wang
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qiange Zhu
- The Second Department of Neurology, Shanxi Provincial People’s Hospital, Xi’an 710068, China;
| | - Xuening Zhang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Shucheng Li
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Yuan Yang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Wenzuo Shang
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
| | - Bo Wu
- Center of Cerebrovascular Diseases, Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (A.W.); (T.C.); (X.Z.); (S.L.); (Y.Y.); (W.S.)
- Correspondence: ; Tel.: +86-189-8060-2142
| |
Collapse
|
12
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2022; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
13
|
Xie J, Kittur FS, Li PA, Hung CY. Rethinking the necessity of low glucose intervention for cerebral ischemia/reperfusion injury. Neural Regen Res 2021; 17:1397-1403. [PMID: 34916409 PMCID: PMC8771096 DOI: 10.4103/1673-5374.330592] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Glucose is the essential and almost exclusive metabolic fuel for the brain. Ischemic stroke caused by a blockage in one or more cerebral arteries quickly leads to a lack of regional cerebral blood supply resulting in severe glucose deprivation with subsequent induction of cellular homeostasis disturbance and eventual neuronal death. To make up ischemia-mediated adenosine 5′-triphosphate depletion, glucose in the ischemic penumbra area rapidly enters anaerobic metabolism to produce glycolytic adenosine 5′-triphosphate for cell survival. It appears that an increase in glucose in the ischemic brain would exert favorable effects. This notion is supported by in vitro studies, but generally denied by most in vivo studies. Clinical studies to manage increased blood glucose levels after stroke also failed to show any benefits or even brought out harmful effects while elevated admission blood glucose concentrations frequently correlated with poor outcomes. Surprisingly, strict glycaemic control in clinical practice also failed to yield any beneficial outcome. These controversial results from glucose management studies during the past three decades remain a challenging question of whether glucose intervention is needed for ischemic stroke care. This review provides a brief overview of the roles of cerebral glucose under normal and ischemic conditions and the results of managing glucose levels in non-diabetic patients. Moreover, the relationship between blood glucose and cerebral glucose during the ischemia/reperfusion processes and the potential benefits of low glucose supplements for non-diabetic patients are discussed.
Collapse
Affiliation(s)
- Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Farooqahmed S Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC, USA
| |
Collapse
|
14
|
Zhang S, Lachance BB, Mattson MP, Jia X. Glucose metabolic crosstalk and regulation in brain function and diseases. Prog Neurobiol 2021; 204:102089. [PMID: 34118354 DOI: 10.1016/j.pneurobio.2021.102089] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 01/11/2023]
Abstract
Brain glucose metabolism, including glycolysis, the pentose phosphate pathway, and glycogen turnover, produces ATP for energetic support and provides the precursors for the synthesis of biological macromolecules. Although glucose metabolism in neurons and astrocytes has been extensively studied, the glucose metabolism of microglia and oligodendrocytes, and their interactions with neurons and astrocytes, remain critical to understand brain function. Brain regions with heterogeneous cell composition and cell-type-specific profiles of glucose metabolism suggest that metabolic networks within the brain are complex. Signal transduction proteins including those in the Wnt, GSK-3β, PI3K-AKT, and AMPK pathways are involved in regulating these networks. Additionally, glycolytic enzymes and metabolites, such as hexokinase 2, acetyl-CoA, and enolase 2, are implicated in the modulation of cellular function, microglial activation, glycation, and acetylation of biomolecules. Given these extensive networks, glucose metabolism dysfunction in the whole brain or specific cell types is strongly associated with neurologic pathology including ischemic brain injury and neurodegenerative disorders. This review characterizes the glucose metabolism networks of the brain based on molecular signaling and cellular and regional interactions, and elucidates glucose metabolism-based mechanisms of neurological diseases and therapeutic approaches that may ameliorate metabolic abnormalities in those diseases.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, United States; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States.
| |
Collapse
|
15
|
Insulin in the Management of Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. World Neurosurg 2020; 136:e514-e534. [PMID: 31954893 DOI: 10.1016/j.wneu.2020.01.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/08/2020] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The role of tight glycemic control in the management of acute ischemic stroke remains uncertain. Our goal is to evaluate the effects of tight glucose control with insulin therapy after acute ischemic stroke. METHODS We searched PubMed, CENTRAL, and Embase for randomized controlled trials (RCTs) that evaluated the effects of tight glycemic control (70-135 mg/dL) in acute ischemic stroke. Analysis was performed using fixed-effects and random-effects models. Outcomes were death, independence, and modified Rankin Scale (mRS) score at ≥90 days follow-up, and symptomatic or severe hypoglycemia during treatment. RESULTS Twelve RCTs including 2734 patients were included. Compared with conventional therapy or placebo, tight glycemic control was associated with similar rates of mortality at ≥90 days follow-up (pooled odds ratio [pOR], 0.99; 95% confidence interval [CI], 0.79-1.22]; I2 = 0%), independence at ≥90 days follow-up (pOR, 0.95; 95% CI, 0.79-1.14; I2 = 0%) and mRS scores at ≥90 days follow-up (standardized mean difference, 0.014; 95% CI, -0.15 to 0.17; I2 = 0%). In contrast, tight glycemic control was associated with increased rates of symptomatic or severe hypoglycemia during treatment (pOR, 5.2; 95% CI, 1.7-15.9; I2 = 28%). CONCLUSIONS Tight glucose control after acute ischemic stroke is not associated with improvements in mortality, independence, or mRS score and leads to higher rates of symptomatic or severe hypoglycemia.
Collapse
|
16
|
Zhao L, Wang L, Lu M, Hu W, Xiu S. Hyperglycemia is associated with poor in-hospital outcome in elderly patients with acute ischemic stroke. Medicine (Baltimore) 2019; 98:e16723. [PMID: 31374068 PMCID: PMC6709290 DOI: 10.1097/md.0000000000016723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Fasting hyperglycemia is associated with poor neurologic outcome in acute ischemic stroke (AIS), but its relationship with in-hospital outcome in elderly patients remains largely unknown. To assess the association of in-hospital outcome with fasting plasma glucose (FPG) levels at admission in individuals with AIS.This retrospective propensity score-matched case-control study included patients aged over 60 years suffering from AIS and who were admitted to the emergency department from November 2013 to October 2016. Subjects were grouped into the poor-outcome and good-outcome groups based on mortality and intensive care unit (ICU) admission.The poor- and good-outcome groups comprised 74 and 1927 cases, respectively, before propensity score matching (PSM), and 74 and 296 cases, respectively, after PSM. Univariable logistic regression analysis showed that initial FPG after admission was associated with poor in-hospital outcome. Multivariable logistic regression analysis showed that initial FPG after admission was an independent predictor of poor in-hospital outcome (odds ratio = 1.11, 95% confidence interval: 1.037-1.188, P = .003).This study used PSM and strongly suggests that FPG is an independent predictive factor of poor in-hospital outcome in elderly patients with AIS. High initial FPG levels after admission may predict poor in-hospital outcome. Prospective studies are needed to confirm these findings.
Collapse
|
17
|
Bazzigaluppi P, Lake EM, Beckett TL, Koletar MM, Weisspapir I, Heinen S, Mester J, Lai A, Janik R, Dorr A, McLaurin J, Stanisz GJ, Carlen PL, Stefanovic B. Imaging the Effects of β-Hydroxybutyrate on Peri-Infarct Neurovascular Function and Metabolism. Stroke 2018; 49:2173-2181. [DOI: 10.1161/strokeaha.118.020586] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Paolo Bazzigaluppi
- From the Physical Sciences Platform (P.B., E.M.L., T.L.B., M.M.K., I.W., J.M., R.J., A.D., G.J.S., B.S.)
- Sunnybrook Research Institute, Toronto, Canada; Fundamental Neurobiology, Krembil Research Institute, Toronto, Canada (P.B., I.W., P.L.C.)
| | - Evelyn M. Lake
- From the Physical Sciences Platform (P.B., E.M.L., T.L.B., M.M.K., I.W., J.M., R.J., A.D., G.J.S., B.S.)
| | - Tina L. Beckett
- From the Physical Sciences Platform (P.B., E.M.L., T.L.B., M.M.K., I.W., J.M., R.J., A.D., G.J.S., B.S.)
| | - Margaret M. Koletar
- From the Physical Sciences Platform (P.B., E.M.L., T.L.B., M.M.K., I.W., J.M., R.J., A.D., G.J.S., B.S.)
| | - Iliya Weisspapir
- From the Physical Sciences Platform (P.B., E.M.L., T.L.B., M.M.K., I.W., J.M., R.J., A.D., G.J.S., B.S.)
- Sunnybrook Research Institute, Toronto, Canada; Fundamental Neurobiology, Krembil Research Institute, Toronto, Canada (P.B., I.W., P.L.C.)
| | | | - James Mester
- From the Physical Sciences Platform (P.B., E.M.L., T.L.B., M.M.K., I.W., J.M., R.J., A.D., G.J.S., B.S.)
- Biological Sciences (J.M.)
| | - Aaron Lai
- Department of Laboratory Medicine and Pathobiology (A.L., J.M.)
| | - Rafal Janik
- From the Physical Sciences Platform (P.B., E.M.L., T.L.B., M.M.K., I.W., J.M., R.J., A.D., G.J.S., B.S.)
- Department of Medical Biophysics (J.M., R.J., G.J.S., B.S.), University of Toronto, Canada
| | - Adrienne Dorr
- From the Physical Sciences Platform (P.B., E.M.L., T.L.B., M.M.K., I.W., J.M., R.J., A.D., G.J.S., B.S.)
| | - JoAnne McLaurin
- Department of Laboratory Medicine and Pathobiology (A.L., J.M.)
- Department of Medical Biophysics (J.M., R.J., G.J.S., B.S.), University of Toronto, Canada
| | - Greg J. Stanisz
- From the Physical Sciences Platform (P.B., E.M.L., T.L.B., M.M.K., I.W., J.M., R.J., A.D., G.J.S., B.S.)
- Department of Medical Biophysics (J.M., R.J., G.J.S., B.S.), University of Toronto, Canada
| | - Peter L. Carlen
- Sunnybrook Research Institute, Toronto, Canada; Fundamental Neurobiology, Krembil Research Institute, Toronto, Canada (P.B., I.W., P.L.C.)
| | - Bojana Stefanovic
- From the Physical Sciences Platform (P.B., E.M.L., T.L.B., M.M.K., I.W., J.M., R.J., A.D., G.J.S., B.S.)
- Department of Medical Biophysics (J.M., R.J., G.J.S., B.S.), University of Toronto, Canada
| |
Collapse
|
18
|
Autophagy- and MMP-2/9-mediated Reduction and Redistribution of ZO-1 Contribute to Hyperglycemia-increased Blood–Brain Barrier Permeability During Early Reperfusion in Stroke. Neuroscience 2018. [DOI: 10.1016/j.neuroscience.2018.02.035] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Qiao Z, Chen Z, Zhang S, Cui Z, Xu Z, Zhang W, Qian J. Naphthalimide-based fluorescent nanoprobes for the detection of saccharides. NEW J CHEM 2018. [DOI: 10.1039/c8nj03053g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent nano probes with different sizes were synthesized for saccharides. The particle size is a major factor that affects the performance.
Collapse
Affiliation(s)
- Zichun Qiao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhaoyang Chen
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Shuo Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhuoran Xu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
20
|
Al-Sarraf H, Malatiali S, Al-Awadi M, Redzic Z. Effects of erythropoietin on astrocytes and brain endothelial cells in primary culture during anoxia depend on simultaneous signaling by other cytokines and on duration of anoxia. Neurochem Int 2017; 113:34-45. [PMID: 29180303 DOI: 10.1016/j.neuint.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
Studies on animals revealed neuroprotective effects of exogenously applied erythropoietin (EPO) during cerebral ischemia/hypoxia. Yet, application of exogenous EPO in stroke patients often lead to haemorrhagic transformation. To clarify potential mechanism of this adverse effect we explored effects of EPO on viabilities of astrocytes and brain endothelial cells (BECs) in primary culture during anoxia of various durations, in the presence or absence of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang1), which are cytokines that are also released from the neurovascular unit during hypoxia. Anoxia (2-48 h) exerted marginal effects on BECs' viability and significant reductions in viability of astrocytes. Astrocyte-conditioned medium did not exert effects and exerted detrimental effects on BECs during 2 h and 24 h anoxia, respectively. This was partially reversed by inhibition of Janus kinase (Jak)2/signal transducer and activator of transcription (STAT)5 activation. Addition of rat recombinant EPO (rrEPO) during 2 h-6h anoxia was protective for astrocytes, but had no effect on BECs. Addition of rrEPO significantly reduced viability of BECs and astrocytes after 48 h anoxia and after 24 h-48 h anoxia, respectively, which was attenuated by inhibition of Jak2/STAT5 activation. Simultaneous addition of rrEPO and VEGFA (1-165) caused marginal effects on BECs, but a highly significant protective effects on astrocytes during 24-48 h anoxia, which were attenuated by inhibition of Jak2/STAT5 activation. Simultaneous addition of EPO, VEGFA 1-165 and Ang1 exerted protective effects on BECs during 24 h-48 h anoxia, which were attenuated by addition of soluble Tie2 receptor. These data revealed that EPO could exert protective, but also injurious effects on BECs and astrocytes during anoxia, which depended on the duration of anoxia and on simultaneous signaling by VEGF and Ang1. If these injurious effects occur in stroke patients, they could enhance vascular damage and haemorrhagic transformation.
Collapse
Affiliation(s)
- Hameed Al-Sarraf
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Slava Malatiali
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Mariam Al-Awadi
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Zoran Redzic
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
21
|
Sifat AE, Vaidya B, Abbruscato TJ. Blood-Brain Barrier Protection as a Therapeutic Strategy for Acute Ischemic Stroke. AAPS JOURNAL 2017; 19:957-972. [PMID: 28484963 DOI: 10.1208/s12248-017-0091-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a vital component of the neurovascular unit (NVU) containing tight junctional (TJ) proteins and different ion and nutrient transporters which maintain normal brain physiology. BBB disruption is a major pathological hallmark in the course of ischemic stroke which is regulated by the actions of different factors working at different stages of cerebral ischemia including matrix metalloproteinases (MMPs), inflammatory modulators, vesicular trafficking, oxidative pathways, and junctional-cytoskeletal interactions. These components interact further to disrupt maintenance of both the paracellular and transport barriers of the central nervous system (CNS) to worsen ischemic brain injury and the propensity for hemorrhagic transformation (HT) associated with injury and/or thrombolytic therapy with tissue-type plasminogen activator (tPA). We propose that these complex molecular pathways should be evaluated further so that they could be targeted alone or in combination to protect the BBB during cerebral ischemia. These types of novel interventions should be guided by advanced imaging techniques for better diagnosis of BBB damage which may exert significant therapeutic benefit including the extension of therapeutic window of tPA. This review will focus on the different stages and mechanisms of BBB damage in acute ischemic stroke and novel therapeutic strategies to target those pathways for better therapeutic outcome in stroke.
Collapse
Affiliation(s)
- Ali Ehsan Sifat
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA
| | - Bhuvaneshwar Vaidya
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA
| | - Thomas J Abbruscato
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter, Amarillo, Texas, 79106, USA.
| |
Collapse
|
22
|
Bergström U, Lindfors C, Svedberg M, Johansen JE, Häggkvist J, Schalling M, Wibom R, Katz A, Nilsson IAK. Reduced metabolism in the hypothalamus of the anorectic anx/anx mouse. J Endocrinol 2017; 233:15-24. [PMID: 28130409 DOI: 10.1530/joe-16-0383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
The anorectic anx/anx mouse exhibits a mitochondrial complex I dysfunction that is related to aberrant expression of hypothalamic neuropeptides and transmitters regulating food intake. Hypothalamic activity, i.e. neuronal firing and transmitter release, is dependent on glucose utilization and energy metabolism. To better understand the role of hypothalamic activity in anorexia, we assessed carbohydrate and high-energy phosphate metabolism, in vivo and in vitro, in the anx/anx hypothalamus. In the fasted state, hypothalamic glucose uptake in the anx/anx mouse was reduced by ~50% of that seen in wild-type (wt) mice (P < 0.05). Under basal conditions, anx/anx hypothalamus ATP and glucose 6-P contents were similar to those in wt hypothalamus, whereas phosphocreatine was elevated (~2-fold; P < 0.001) and lactate was reduced (~35%; P < 0.001). The anx/anx hypothalamus had elevated total AMPK (~25%; P < 0.05) and GLUT4 (~60%; P < 0.01) protein contents, whereas GLUT1 and GLUT3 were similar to that of wt hypothalamus. Interestingly, the activation state of AMPK (ratio of phosphorylated AMPK/total AMPK) was significantly decreased in hypothalamus of the anx/anx mouse (~60% of that in wt; P < 0.05). Finally, during metabolic stress (ischemia), accumulation of lactate (measure of glycolysis) and IMP and AMP (breakdown products of ATP) were ~50% lower in anx/anx vs wt hypothalamus. These data demonstrate that carbohydrate and high-energy phosphate utilization in the anx/anx hypothalamus are diminished under basal and stress conditions. The decrease in hypothalamic metabolism may contribute to the anorectic behavior of the anx/anx mouse, i.e. its inability to regulate food intake in accordance with energy status.
Collapse
Affiliation(s)
- Ulrika Bergström
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Charlotte Lindfors
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Marie Svedberg
- Department of Clinical NeuroscienceCenter for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Jeanette E Johansen
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Jenny Häggkvist
- Department of Clinical NeuroscienceCenter for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and BiophysicsKarolinska Institutet, Stockholm, Sweden
| | - Abram Katz
- Department of Physical TherapyAriel University, Ariel, Israel
| | - Ida A K Nilsson
- Department of Molecular Medicine and SurgeryKarolinska Institutet, Stockholm, Sweden
- Center for Molecular MedicineKarolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Glucose Transporters at the Blood-Brain Barrier: Function, Regulation and Gateways for Drug Delivery. Mol Neurobiol 2016; 54:1046-1077. [PMID: 26801191 DOI: 10.1007/s12035-015-9672-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/17/2015] [Indexed: 12/31/2022]
Abstract
Glucose transporters (GLUTs) at the blood-brain barrier maintain the continuous high glucose and energy demands of the brain. They also act as therapeutic targets and provide routes of entry for drug delivery to the brain and central nervous system for treatment of neurological and neurovascular conditions and brain tumours. This article first describes the distribution, function and regulation of glucose transporters at the blood-brain barrier, the major ones being the sodium-independent facilitative transporters GLUT1 and GLUT3. Other GLUTs and sodium-dependent transporters (SGLTs) have also been identified at lower levels and under various physiological conditions. It then considers the effects on glucose transporter expression and distribution of hypoglycemia and hyperglycemia associated with diabetes and oxygen/glucose deprivation associated with cerebral ischemia. A reduction in glucose transporters at the blood-brain barrier that occurs before the onset of the main pathophysiological changes and symptoms of Alzheimer's disease is a potential causative effect in the vascular hypothesis of the disease. Mutations in glucose transporters, notably those identified in GLUT1 deficiency syndrome, and some recreational drug compounds also alter the expression and/or activity of glucose transporters at the blood-brain barrier. Approaches for drug delivery across the blood-brain barrier include the pro-drug strategy whereby drug molecules are conjugated to glucose transporter substrates or encapsulated in nano-enabled delivery systems (e.g. liposomes, micelles, nanoparticles) that are functionalised to target glucose transporters. Finally, the continuous development of blood-brain barrier in vitro models is important for studying glucose transporter function, effects of disease conditions and interactions with drugs and xenobiotics.
Collapse
|
24
|
Zhang S, Song XY, Xia CY, Ai QD, Chen J, Chu SF, He WB, Chen NH. Effects of cerebral glucose levels in infarct areas on stroke injury mediated by blood glucose changes. RSC Adv 2016. [DOI: 10.1039/c6ra19715a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|