1
|
Mendoza ET, Villada M, Velásquez-Martínez MC. Voluntary Ethanol Intake and Anxiety Behavior in Wistar-Uis Rats. Int J Psychol Res (Medellin) 2024; 17:63-72. [PMID: 39376933 PMCID: PMC11456330 DOI: 10.21500/20112084.7060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 04/08/2024] [Indexed: 10/09/2024] Open
Abstract
Ethanol consumption is among the first five substances with higher risk associated with diseases, disability, and death in the world. Anxiety behavior has been linked to ethanol-addictive conduct. The aim of the present study was to evaluate three strains with differential anxiety behavior: a Wild-type strain; a "Reactive" strain, with an increase in anxiety-related behaviors; and a "Non-Reactive" strain, with lower anxiety-related behaviors, before and after the voluntary consumption of ethanol (10%) protocol. To evaluate anxiety, animals were exposed to the elevated plus-maze 24 h before and after the consumption protocol. On the voluntary consumption of ethanol protocol, the animals were exposed to a water and an ethanol bottle. The weight of the liquid consumed daily for 40 days was registered. Results: all strains increased ethanol vs water consumption: Wild-type: day 8; R: day 10; NR: day 31. Ethanol consumption reduced the number and percentage of open arms entries only on the Wild-type strain. Conclusion: anxiety can predispose to an increase in ethanol consumption and to the maintenance of anxiety-related behaviors.
Collapse
Affiliation(s)
- Elizabeth T Mendoza
- Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.Universidad Industrial de SantanderUniversidad Industrial de SantanderBucaramangaSantanderColombia
| | - María Villada
- Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.Universidad Industrial de SantanderUniversidad Industrial de SantanderBucaramangaSantanderColombia
| | - Maria Carolina Velásquez-Martínez
- Universidad Industrial de Santander, Bucaramanga, Santander, Colombia.Universidad Industrial de SantanderUniversidad Industrial de SantanderBucaramangaSantanderColombia
- Grupo de Neurociencias y Comportamiento UIS-UPB. Departamento de Ciencias Básicas, Escuela de Medicina, Facultad de Salud, Universidad Industrial de San tander, Bucaramanga, Santander, Colombia.Universidad Industrial de SantanderGrupo de Neurociencias y Comportamiento UIS-UPB. Departamento de Ciencias BásicasEscuela de Medicina, Facultad de SaludUniversidad Industrial de San tanderBucaramangaSantanderColombia
| |
Collapse
|
2
|
Khani F, Pourmotabbed A, Veisi M, Hosseinmardi N, Fathollahi Y, Azizi H. Adolescent morphine exposure impairs dark avoidance memory and synaptic potentiation of ventral hippocampal CA1 during adulthood in rats. Life Sci 2023; 314:121344. [PMID: 36587788 DOI: 10.1016/j.lfs.2022.121344] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/12/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Adolescence is a neurobiological critical period for neurodevelopmental processes. Adolescent opioid exposure can affect cognitive abilities via regional-specific lasting changes in brain structure and function. The current study was therefore designed to assess the long-term effects of adolescent morphine exposure on dark avoidance memory and synaptic plasticity of the ventral hippocampal CA1. Adolescent Wistar rats received escalating doses of morphine for 10 days. Morphine injections were started with an incremental dose of 2.5 mg/kg to reach a dose of 25 mg/kg. 30 days after the last injection, inhibitory memory and in vitro field potential recording were evaluated. Also, the weight of the animals was measured during drug and post-drug exposure. We found that adolescent morphine exposure decreased weight gain during morphine and post-morphine exposure. Passive avoidance memory was impaired in the morphine group. Moreover, adolescent morphine exposure caused an increase in baseline synaptic responsiveness and failed long-term potentiation (LTP) in the ventral hippocampal CA1 during adulthood. In the morphine group, the mean values of the field excitatory postsynaptic potential (fEPSP) slopes required to elicit a half-maximal population spike (PS) amplitude were significantly greater than that of the saline group. Therefore, adolescent morphine exposure has a durable effect on memory functions, synaptic activity, and plasticity of ventral hippocampal CA1. Adults with adolescent morphine exposures may experience maladaptive behaviors and cognitive disabilities.
Collapse
Affiliation(s)
- Fatemeh Khani
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Pourmotabbed
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozhgan Veisi
- Department of Physiology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Azizi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Capri KM, Maroni MJ, Deane HV, Pierre A, Adams AM, Goncalves FL, Meyer AS, Seggio JA. Effects of time of day and constant light on the behavioral responses and ethanol metabolism to acute alcohol administration in male Black Swiss mice. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1543640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kimberly M. Capri
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Marissa J. Maroni
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Hannah V. Deane
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Audeline Pierre
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Abigail M. Adams
- Department of Mathematics, Bridgewater State University, Bridgewater, MA, USA
| | - Fatiana L. Goncalves
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Andrew S. Meyer
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Joseph A. Seggio
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| |
Collapse
|
4
|
Gelineau RR, Arruda NL, Hicks JA, Monteiro De Pina I, Hatzidis A, Seggio JA. The behavioral and physiological effects of high-fat diet and alcohol consumption: Sex differences in C57BL6/J mice. Brain Behav 2017; 7:e00708. [PMID: 28638713 PMCID: PMC5474711 DOI: 10.1002/brb3.708] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Animal studies can be a great tool to investigate sex differences in a variety of different ways, including behavioral and physiological responses to drug treatments and different "lifestyle variables" such as diets. Consumption of both high-fat diets and alcohol is known to affect anxiety behaviors and overall health. This project investigated how high-fat diet and alcohol access and its combination affected the behavior and physiology of male and female C57BL/6J mice. METHOD Mice were separated into three food groups: high-fat diet, 10% fat diet, and regular chow, and each group was paired with either water or 10% alcohol. Behavioral assays included diet and alcohol preference, light-dark box, open field, and feeding and drinking measurements. Physiological measures included glucose tolerance tests and measurement of brain-derived neurotrophic factor, insulin, and leptin levels. RESULTS Females and males differed in the open field, as male mice decreased activity, while females increased activity when consuming high-fat diet. While females consumed more ethanol than males, alcohol consumption was able to improve glucose tolerance and increase anxiety in both sexes. Lastly, females were more resistant to the physiological changes caused by high-fat diet than males, as females consuming high-fat diet exhibited decreased insulin secretion, less change to brain-derived neurotrophic factor levels, and better glucose tolerance than males consuming high-fat diet. CONCLUSION These results suggest that the response to high-fat diet and alcohol consumption is sex dependent and that males are more affected both behaviorally and physiologically by high-fat diet compared to females.
Collapse
Affiliation(s)
- Rachel R Gelineau
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Nicole L Arruda
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Jasmin A Hicks
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | | | - Aikaterini Hatzidis
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| | - Joseph A Seggio
- Department of Biological Sciences Bridgewater State University Bridgewater MA USA
| |
Collapse
|
5
|
Spear LP. Consequences of adolescent use of alcohol and other drugs: Studies using rodent models. Neurosci Biobehav Rev 2016; 70:228-243. [PMID: 27484868 DOI: 10.1016/j.neubiorev.2016.07.026] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/08/2016] [Accepted: 07/22/2016] [Indexed: 10/21/2022]
Abstract
Studies using animal models of adolescent exposure to alcohol, nicotine, cannabinoids, and the stimulants cocaine, 3,4-methylenedioxymethampethamine and methamphetamine have revealed a variety of persisting neural and behavioral consequences. Affected brain regions often include mesolimbic and prefrontal regions undergoing notable ontogenetic change during adolescence, although it is unclear whether this represents areas of specific vulnerability or particular scrutiny to date. Persisting alterations in forebrain systems critical for modulating reward, socioemotional processing and cognition have emerged, including apparent induction of a hyper-dopaminergic state with some drugs and/or attenuations in neurons expressing cholinergic markers. Disruptions in cognitive functions such as working memory, alterations in affect including increases in social anxiety, and mixed evidence for increases in later drug self-administration has also been reported. When consequences of adolescent and adult exposure were compared, adolescents were generally found to be more vulnerable to alcohol, nicotine, and cannabinoids, but generally not to stimulants. More work is needed to determine how adolescent drug exposure influences sculpting of the adolescent brain, and provide approaches to prevent/reverse these effects.
Collapse
Affiliation(s)
- Linda Patia Spear
- Department of Psychology, Developmental Exposure Alcohol Research Center (DEARC), Binghamton University, Binghamton, NY, United States.
| |
Collapse
|
6
|
Ros-Simó C, Moscoso-Castro M, Ruiz-Medina J, Ros J, Valverde O. Memory impairment and hippocampus specific protein oxidation induced by ethanol intake and 3, 4-Methylenedioxymethamphetamine (MDMA) in mice. J Neurochem 2013; 125:736-46. [DOI: 10.1111/jnc.12247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 02/20/2013] [Accepted: 03/21/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Clara Ros-Simó
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| | - Maria Moscoso-Castro
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| | - Jéssica Ruiz-Medina
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| | - Joaquim Ros
- Departament de Ciències Mèdiques Bàsiques; IRBLLEIDA; Universitat de Lleida; Lleida Spain
| | - Olga Valverde
- Grup de Recerca en Neurobiologia del Comportament (GReNeC), Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Parc de Recerca Biomèdica de Barcelona; Barcelona Spain
| |
Collapse
|
7
|
Molet J, Bouaziz E, Hamon M, Lanfumey L. Early exposure to ethanol differentially affects ethanol preference at adult age in two inbred mouse strains. Neuropharmacology 2012; 63:338-48. [PMID: 22521807 DOI: 10.1016/j.neuropharm.2012.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/19/2012] [Accepted: 03/30/2012] [Indexed: 11/18/2022]
Abstract
Although the acute effects of ethanol exposure on brain development have been extensively studied, the long term consequences of juvenile ethanol intake on behavior at adult age, regarding especially ethanol consumption, are still poorly known. The aim of this study was to analyze the consequences of ethanol ingestion in juvenile C57BL/6J and DBA/2J mice on ethanol intake and neurobiological regulations at adulthood. Mice were given intragastric ethanol at 4 weeks of age under different protocols and their spontaneous ethanol consumption was assessed in a free choice paradigm at adulthood. Both serotonin 5-HT(1A) and cannabinoid CB1 receptors were investigated using [(35)S]GTP-γ-S binding assay for the juvenile ethanol regimens which modified adult ethanol consumption. In DBA/2J mice, juvenile ethanol ingestion dose-dependently promoted adult spontaneous ethanol consumption. This early ethanol exposure enhanced 5-HT(1A) autoreceptor-mediated [(35)S]GTP-γ-S binding in the dorsal raphe nucleus and reduced CB1 receptor-mediated G protein coupling in both the striatum and the globus pallidus at adult age. In contrast, early ethanol ingestion by C57BL/6J mice transiently lowered spontaneous ethanol consumption and increased G protein coupling of postsynaptic 5-HT(1A) receptors in the hippocampus but had no effect on CB1 receptors at adulthood. These results show that a brief and early exposure to ethanol can induce strain-dependent long-lasting changes in both behavior toward ethanol and key receptors of central 5-HT and CB systems in mice.
Collapse
Affiliation(s)
- Jenny Molet
- INSERM UMR 894, Centre de Psychiatrie et Neurosciences, F-75013 Paris, France
| | | | | | | |
Collapse
|
8
|
Spanos M, Besheer J, Hodge CW. Increased sensitivity to alcohol induced changes in ERK Map kinase phosphorylation and memory disruption in adolescent as compared to adult C57BL/6J mice. Behav Brain Res 2012; 230:158-66. [PMID: 22348893 DOI: 10.1016/j.bbr.2012.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/31/2012] [Accepted: 02/06/2012] [Indexed: 12/18/2022]
Abstract
Adolescence is a critical period of brain development that is accompanied by increased probability of risky behavior, such as alcohol use. Emerging research indicates that adolescents are differentially sensitive to the behavioral effects of acute ethanol as compared to adults but the neurobiological mechanisms of this effect remain to be fully elucidated. This study was designed to evaluate effects of acute ethanol on extracellular signal-regulated kinase phosphorylation (p-ERK1/2) in mesocorticolimbic brain regions. We also sought to determine if age-specific effects of ethanol on p-ERK1/2 are associated with ethanol-induced behavioral deficits on acquisition of the hippocampal-dependent novel object recognition (NOR) test. Adolescent and adult C57BL/6J mice were administered acute ethanol (0 0.5, 1, or 3g/kg, i.p.). Brains were removed 30-min post injection and processed for analysis of p-ERK1/2 immunoreactivity (IR). Additional groups of mice were administered ethanol (0 or 1g/kg) prior to the NOR test. Analysis of p-ERK1/2 IR showed that untreated adolescent mice had significantly higher levels of p-ERK1/2 IR in the nucleus accumbens shell, basolateral amygdala (BLA), central amygdala (CeA), and medial prefrontal cortex (mPFC) as compared to adults. Ethanol (1g/kg) selectively reduced p-ERK1/2 IR in the dentate gyrus and increased p-ERK1/2 IR in the BLA only in adolescent mice. Ethanol (3g/kg) produced the same effects on p-ERK1/2 IR in both age groups with increases in CeA and mPFC, but a decrease in the dentate gyrus, as compared to age-matched saline controls. Pretreatment with ethanol (1g/kg) disrupted performance on the NOR test specifically in adolescents, which corresponds with the ethanol-induced inhibition of p-ERK1/2 IR in the hippocampus. These data show that adolescent mice have differential expression of basal p-ERK1/2 IR in mesocorticolimbic brain regions. Acute ethanol produces a unique set of changes in ERK1/2 phosphorylation in the adolescent brain that are associated with disruption of hippocampal-dependent memory acquisition.
Collapse
Affiliation(s)
- Marina Spanos
- Neurobiology Curriculum, School of Medicine, University of North Carolina at Chapel Hill, Thurston-Bowles Building, CB #7178, Chapel Hill, NC 27599, United States
| | | | | |
Collapse
|
9
|
Maldonado-Devincci AM, Alipour KK, Michael LA, Kirstein CL. Repeated binge ethanol administration during adolescence enhances voluntary sweetened ethanol intake in young adulthood in male and female rats. Pharmacol Biochem Behav 2010; 96:476-87. [PMID: 20637794 PMCID: PMC4197847 DOI: 10.1016/j.pbb.2010.07.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/07/2010] [Accepted: 07/10/2010] [Indexed: 11/29/2022]
Abstract
Binge alcohol consumption is a rising concern in the United States, especially among adolescents. During this developmental period alcohol use is usually initiated and has been shown to cause detrimental effects on brain structure and function as well as cognitive/behavioral impairments in rats. Binge models, where animals are repeatedly administered high doses of ethanol typically over a period of three or four days cause these effects. There has been little work conducted aimed at investigating the long-term behavioral consequences of repeated binge administration during adolescence on later ethanol-induced behavior in young adulthood and adulthood. The repeated four-day binge model may serve as a good approximate for patterns of human adolescent alcohol consumption as this is similar to a "bender" in human alcoholics. The present set of experiments examined the dose-response and sex-related differences induced by repeated binge ethanol administration during adolescence on sweetened ethanol (Experiment 1) or saccharin (Experiment 2) intake in young adulthood. In both experiments, on postnatal days (PND) 28-31, PND 35-38 and PND 42-45, ethanol (1.5, 3.0 or 5.0 g/kg) or water was administered intragastrically to adolescent rats. Rats underwent abstinence from PND 46-59. Subsequently, in young adulthood, ethanol and saccharin intake were assessed. Exposure to any dose of ethanol during adolescence significantly enhanced ethanol intake in adulthood. However, while female rats had higher overall g/kg intake, males appear to be more vulnerable to the impact of adolescent ethanol exposure on subsequently increased ethanol intake in young adulthood. Exposure to ethanol during adolescence did not alter saccharin consumption in young adulthood in male or female rats. Considering that adolescence is the developmental period in which ethanol experimentation and consumption is usually initiated, the present set of experiments demonstrate the importance of elucidating the impact of early binge-pattern ethanol exposure on the subsequent predisposition to drink later in life.
Collapse
Affiliation(s)
| | - Kent K. Alipour
- Department of Psychology, Cognitive and Neurosciences, University of South Florida 4202 E. Fowler Avenue Tampa, FL 33620
| | | | - Cheryl L. Kirstein
- Department of Psychology, Cognitive and Neurosciences, University of South Florida 4202 E. Fowler Avenue Tampa, FL 33620
- Department of Physiology and Molecular Pharmacology, University of South Florida College of Medicine, Tampa, FL 33612
| |
Collapse
|
10
|
Baratz R, Rubovitch V, Frenk H, Pick CG. The influence of alcohol on behavioral recovery after mTBI in mice. J Neurotrauma 2010; 27:555-63. [PMID: 20001584 DOI: 10.1089/neu.2009.0891] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the United States 258,000 people were injured in 2004 in motor vehicle accidents that were caused by drivers under the influence of alcohol. The majority of these drivers were binge drinkers, most notably young people who tend to drink heavily during the weekends, but rarely drink alcohol during the week. Since a large proportion of the injuries involved head injuries, the present study aimed at investigating the influence of binge alcohol drinking on mild traumatic brain injury (mTBI) in an animal model. Mice had access to 0%, 7.5%, 15%, or 30% alcohol solutions for 48 consecutive hours once a week for 4 weeks as the sole source of fluids (the remaining time they drank water). Three experiments were done. For the first one (alcohol-mTBI-alcohol) the animals were subjected to a controlled mTBI injury by applying a closed-head weight drop, or a sham procedure. After the mTBI/sham-mTBI the animals got alcohol and /water for the same regimen for 4 additional weeks. In the second experiment (alcohol only) after the 4 weeks of drinking blood samples were collected, at the same time as the animals that underwent sham-mTBI or mTBI procedures. In the third experiment (mTBI-alcohol) the mice were subjected to mTBI/sham-mTBI without any treatment, and after mTBI they had alcohol for 4 weeks in the same regimen as in the previous experiments. At the end of the pharmacological treatment all animals were assessed using different behavioral tests. mTBI mice exhibited lower memory ability in the Y-maze, higher anxiety in the elevated plus maze, and lower retention in the passive avoidance test than sham-mTBI animals. Alcohol reversed these effects at all doses. The results suggest that alcohol drinking before trauma might have a protective effect on recovery from brain trauma, but not if consumed after the trauma.
Collapse
Affiliation(s)
- Renana Baratz
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
11
|
Przybycien-Szymanska MM, Rao YS, Pak TR. Binge-pattern alcohol exposure during puberty induces sexually dimorphic changes in genes regulating the HPA axis. Am J Physiol Endocrinol Metab 2010; 298:E320-8. [PMID: 19952347 PMCID: PMC2822472 DOI: 10.1152/ajpendo.00615.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Maternal alcohol consumption during critical periods of fetal brain development leads to devastating long-term consequences on adult reproductive physiology, cognitive function, and social behaviors. However, very little is known about the long-term consequences of alcohol consumption during puberty, which is perhaps an equally dynamic and critical period of brain development. Alcohol abuse during adulthood has been linked with an increase in clinically diagnosed anxiety disorders, yet the etiology and neurochemical mechanisms of alcohol-induced anxiety behavior is unknown. In this study, we determined the effects of binge ethanol exposure during puberty on two critical central regulators of stress and anxiety behavior: corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP). Our results showed that ethanol increased plasma corticosterone (CORT) levels in both sexes, yet binge-treated animals had significantly lower CORT levels than animals exposed to a single dose, suggesting that the hypothalamo-pituitary-adrenal (HPA) axis habituated to the repeated stressful stimuli of ethanol. Binge ethanol exposure also significantly increased CRH and AVP gene expression in the paraventricular nucleus of males, but not females. Overall, our results demonstrate that binge ethanol exposure during puberty changes the central expression of stress-related genes in a sex-specific manner, potentially leading to permanent dysregulation of the HPA axis and long-term behavioral consequences.
Collapse
|
12
|
Repeated ethanol exposure affects the acquisition of spatial memory in adolescent female rats. Behav Brain Res 2009; 202:225-31. [PMID: 19463705 DOI: 10.1016/j.bbr.2009.03.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/19/2009] [Accepted: 03/28/2009] [Indexed: 01/29/2023]
Abstract
Ethanol has been reported to disrupt spatial learning and memory in adolescent male rats. The present study was undertaken to determine the effects of ethanol on the acquisition of spatial memory in adolescent female rats. Adolescent female rats were subjected to repeated ethanol or saline treatments, and spatial learning was tested in the Morris water maze. For comparison, adult female rats were subjected to similar ethanol treatment and behavioral assessments as for adolescent rats. Ethanol-treated adolescent rats took longer and swam greater distances to find the hidden platform than saline controls. In the probe trial, ethanol-treated adolescent rats showed a trend towards reduced time spent in the target quadrant, and made significantly fewer target location crossings than saline-treated controls. Adult saline-treated control rats did not learn the spatial memory task as well as the adolescent saline-treated rats. Although ethanol in adult rats increased both latency and swim distance to find the platform, in the probe trial there was no difference between ethanol-treated adult rats and age-matched saline controls. Ethanol did not alter swim speed or performance in the cued visual task at either age. Together, these data suggest that ethanol specifically impairs the acquisition of spatial memory in adolescent female rats. Since adult females did not learn the task, ethanol-induced alterations in water maze performance may not reflect true learning and memory dysfunction.
Collapse
|
13
|
Disorders in memory and learning in offspring of alcoholized female rats, and a possibility for correction of these changes. NEUROPHYSIOLOGY+ 2008. [DOI: 10.1007/s11062-008-9025-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Schulteis G, Archer C, Tapert SF, Frank LR. Intermittent binge alcohol exposure during the periadolescent period induces spatial working memory deficits in young adult rats. Alcohol 2008; 42:459-67. [PMID: 18760715 DOI: 10.1016/j.alcohol.2008.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/26/2008] [Accepted: 05/28/2008] [Indexed: 10/21/2022]
Abstract
Human and animal studies suggest adolescence is a period of heightened sensitivity to adverse cognitive sequelae of alcohol exposure. The present study assessed the effects of intermittent binge ethanol intoxication during the periadolescent period of Wistar rats on subsequent performance in a Morris water maze spatial navigation task. On postnatal days 32-56, rats were exposed to ethanol or air 3 days/week via vapor inhalation chambers. Acquisition of spatial navigation was assessed beginning 5 days after the final day of exposure, with 3 days of training in the Morris Water maze (four trials per day spaced at 90-s intertrial intervals [ITIs]). Rats were placed into the water maze at one of four positions along the perimeter, with a different release position to begin each trial. A probe trial assessed retention of platform location on the day after the final set of training trials. Four days after this probe trial, rats entered a working memory phase in which the platform was in a new location each day and a variable ITI of 1, 2, or 4 h was inserted between Trials 1 and 2; Trials 3 and 4 followed at 90-s intervals after Trial 2 on each day. The "savings" in latency to find the platform and distance traveled before finding it from Trial 1 to Trial 2 on each day served as an index of working memory. Ethanol-exposed rats showed similar acquisition of spatial navigation as control rats during training, as well as similar retention of platform location during the probe trial. However, rats exposed to average blood alcohol level (BAL) >200 mg% showed accelerated forgetting, with decreased retention of platform location at the 2-h ITI (P < .05), compared to control rats. Therefore, a 4-week history of intermittent ethanol exposure at BAL in excess of 200 mg% during periadolescence led to a working memory deficit in young adult rats, demonstrated by accelerated forgetting of novel information. These behavioral data are consistent with findings from adolescent human studies, indicating that binge-style alcohol exposure during the periadolescent stage of development is associated with deficits in retention of information.
Collapse
|
15
|
Abreu-Villaça Y, Nunes F, do E Queiroz-Gomes F, Manhães AC, Filgueiras CC. Combined exposure to nicotine and ethanol in adolescent mice differentially affects anxiety levels during exposure, short-term, and long-term withdrawal. Neuropsychopharmacology 2008; 33:599-610. [PMID: 17460612 DOI: 10.1038/sj.npp.1301429] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Smoking and consumption of alcoholic beverages are frequently associated during adolescence. This association could be explained by the cumulative behavioral effects of nicotine and ethanol, particularly those related to anxiety levels. However, despite epidemiological findings, there have been few animal studies of the basic neurobiology of the combined exposure in the adolescent brain. In the present work we assessed, through the use of the elevated plus maze, the short- and long-term anxiety effects of nicotine (NIC) and/or ethanol (ETOH) exposure during adolescence (from the 30th to the 45th postnatal day) in four groups of male and female C57BL/6 mice: (1) Concomitant NIC (nicotine free-base solution (50 microg/ml) in 2% saccharin to drink) and ETOH (ethanol solution (25%, 2 g/kg) i.p. injected every other day) exposure; (2) NIC exposure; (3) ETOH exposure; (4) Vehicle. C57BL/6 mice were selected, in spite of the fact that they present slower ethanol metabolism, because they readily consume nicotine in the concentration used in the present study. During exposure (45th postnatal day: PN45), our results indicated that ethanol was anxiolytic in adolescent mice and that nicotine reverted this effect. Short-term drug withdrawal (PN50) elicited sex-dependent effects: exposure to nicotine and/or ethanol was anxiogenic only for females. Although neither nicotine nor ethanol effects persisted up to 1 month postexposure (PN75), the coadministration elicited an anxiogenic response. In spite of the fact that generalizations based on the results from a single strain of mice are prone to shortcomings, our results suggest that the deficient response to the anxiolytic effects of ethanol in adolescents co-exposed to nicotine may drive higher ethanol consumption. Additionally, increased anxiety during long-term smoking and drinking withdrawal may facilitate relapse to drug use.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcântara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
16
|
Pascual M, Blanco AM, Cauli O, Miñarro J, Guerri C. Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci 2007; 25:541-50. [PMID: 17284196 DOI: 10.1111/j.1460-9568.2006.05298.x] [Citation(s) in RCA: 283] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Adolescent brain development seems to be important for the maturation of brain structures and behaviour. Intermittent binge ethanol drinking is common among adolescents, and this type of drinking can induce brain damage. Because we have demonstrated that chronic ethanol treatment induces inflammatory processes in the brain, we investigate whether intermittent ethanol intoxication enhances cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in adolescent rats, and whether these mediators induce brain damage and cause permanent cognitive dysfunctions. Adolescent rats were exposed to ethanol (3.0 g/kg) for two consecutive days at 48-h intervals over 14 days. Levels of COX-2, iNOS and cell death were assessed in the neocortex, hippocampus and cerebellum 24 h after the final ethanol administration. The following day or 20 days after the final injection (adult stage), animals were tested for different behavioural tests (conditional discrimination learning, rotarod, object recognition, beam-walking performance) to assess cognitive and motor functions. Our results show that intermittent ethanol intoxication upregulates COX-2 and iNOS levels, and increases cell death in the neocortex, hippocampus and cerebellum. Furthermore, animals treated with ethanol during adolescence exhibited behavioural deficits that were evident at the end of ethanol treatments and at the adult stage. Administration of indomethacin, a COX-2 inhibitor, abolishes the induction of COX-2 and iNOS expression and cell death, preventing ethanol-induced behavioural deficits. These findings indicate that binge pattern exposure to ethanol during adolescence induces brain damage by inflammatory processes and causes long-lasting neurobehavioural consequences. Accordingly, administering indomethacin protects against ethanol-induced brain damage and prevents detrimental ethanol effects on cognitive and motor processes.
Collapse
Affiliation(s)
- Maria Pascual
- Department of Cellular Pathology, Centro de Investigación Príncipe Felipe, Avda. Autopista del Saler, 16. 46013-Valencia, Spain
| | | | | | | | | |
Collapse
|
17
|
Ennaceur A, Michalikova S, Chazot PL. Models of anxiety: responses of rats to novelty in an open space and an enclosed space. Behav Brain Res 2006; 171:26-49. [PMID: 16678277 DOI: 10.1016/j.bbr.2006.03.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 03/06/2006] [Accepted: 03/14/2006] [Indexed: 01/01/2023]
Abstract
Exposure to novelty has been shown to induce anxiety responses in a variety of behavioural paradigms. The purpose of the present study was to investigate whether exposition of naïve rats to novelty would result in a comparable or a different pattern of responses in an open space versus enclosed space with or without the presence of an object in the centre of the field. Lewis and Wistar rats of both genders were used to illustrate and discuss the value and validity of these anxiety paradigms. We examined a wide range of measures, which cover several aspects of animals' responses. The results of this study revealed significant differences between the behaviour of animals in an open space and in the enclosed space. It also revealed significant differences in animal's responses to the presence and absence of an object in the open space and in the enclosed space. In the enclosed space, rats spent most of their time in the outer area with lower number of exits and avoided the object area except when there was an object, while in the open space rats displayed frequent short duration re-entries in the outer area and spent longer time in the object area in presence of an object. The time spent in the inner area (away from the outer area and the object area) was significantly longer and the number of faecal boli was significantly higher in the open space than in the enclosed space. In the present report, we will discuss the fundamental differences between enclosed space and open space models, and we will examine some methodological issues related to the current animal models of human behaviour in anxiety. In the enclosed space, animals can avoid the potential threat associated with the centre area of a box and chose the safety of walls and corners, whereas, in the open space animals have to avoid every parts of the field from which there was no safe escape. The response of animals to novelty in an open space model appears more relevant to anxiety than in an enclosed space. The present studies revealed no correlations between the measures of behaviour in enclosed space and the measures of behaviour in open space, which suggest that these two models do not involve the same construct. Our results suggest that the enclosed space model involves avoidance responses while the open space model involves anxiety responses. The open space model can be very useful in understanding the underlying neural mechanisms of anxiety responses, and in assessing the effects of potential anxiolytic drugs.
Collapse
Affiliation(s)
- A Ennaceur
- University of Sunderland, Sunderland Pharmacy School, UK.
| | | | | |
Collapse
|
18
|
Sircar R, Sircar D. Adolescent Rats Exposed to Repeated Ethanol Treatment Show Lingering Behavioral Impairments. Alcohol Clin Exp Res 2005; 29:1402-10. [PMID: 16131847 DOI: 10.1097/01.alc.0000175012.77756.d9] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Repeated ethanol treatment has been reported to differentially affect water maze performance in adolescent and adult rats. The present study was undertaken to determine the age-specific reversal of ethanol-induced deficit in water maze performance. METHODS Adolescent and adult male rats were subjected to repeated ethanol or saline treatments. Experimental rats were injected daily with 2 g/kg ethanol (intraperitoneally) for five consecutive days (Days 1-5) and tested in the hidden platform task of the Morris water maze 30 minutes after ethanol treatment; control rats received isovolumetric saline. On the last training day, all rats were tested in the probe trial and in the cued visual task. After an ethanol-free period of 4-25 days, rats were retested in the water maze. RESULTS Adolescent ethanol-treated rats had significantly higher latencies and swam greater distances to find the hidden platform, compared to age-matched saline control rats. Ethanol rats also showed increased hug time, i.e., spent significantly more time near the periphery of the pool than control rats. In the probe trial, compared to adolescent saline rats, ethanol rats spent less time in the target quadrant. However, there was no difference between ethanol- and saline-treated rats in the swim speed or in the visual task performance. Experimental and control rats were retested in the water maze 4 days (Day 9), 7 days (Day 12), and 25 days (Day 30) after the last ethanol/saline treatment; no injections were given on those days. Ethanol-treated rats continued to do poorly on all retest days. Ethanol treatment in adult male rats acutely increased latency and distance to find the hidden platform, but unlike adolescent alcohol rats, their performance in the probe trial did not differ from adult saline rats. Also, swim speed and visual task performance of adult rats were significantly affected by ethanol exposure. During retesting, their performance did not differ from adult control rats. CONCLUSIONS Adolescent rats exposed to ethanol showed deficits in water maze performance, had increased hug time, and failed to catch up with control rats during the weeks after the ethanol treatment period was over. Adult alcohol rats showed some behavioral dysfunction (increased latency and distance to find the hidden platform) but had problems swimming, and in the probe trial they performed as well as control rats. Also, in adult rats, ethanol-induced impairments were quickly reversed after the ethanol treatment was over, a finding that suggests impaired motor coordination more than a true learning deficit. Together, these data indicate that repeated ethanol treatment in adolescent rats, but not adult rats, show long-term impairments in maze performance.
Collapse
Affiliation(s)
- Ratna Sircar
- Laboratory for Developmental Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
19
|
Avena NM, Carrillo CA, Needham L, Leibowitz SF, Hoebel BG. Sugar-dependent rats show enhanced intake of unsweetened ethanol. Alcohol 2004; 34:203-9. [PMID: 15902914 DOI: 10.1016/j.alcohol.2004.09.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rats show signs of dependence on sugar when it is available intermittently, including bingeing, withdrawal, and cross-sensitization with amphetamine. In the current study, we sought to determine whether sugar-dependent rats would show increased intake of unsweetened ethanol and, conversely, whether intermittent access to ethanol would augment sugar consumption. In Experiment 1, with intermittent versus ad libitum access to ethanol, Sprague-Dawley rats were given escalating concentrations of ethanol (1%, 2%, 4%, 7%, and 9%) over the course of 20 days. Rats in the intermittent ethanol access group, with 12-h daily access, consumed more 4%, 7%, and 9% ethanol during the first hour of access, and more 9% ethanol daily, than did rats in the ad libitum ethanol access group. In Experiment 2, with ethanol as a gateway to sugar intake, the rats from Experiment 1 were switched to 10% sucrose with 12-h daily access for 1 week. Rats in the intermittent ethanol access group consumed significantly more sugar than was consumed by rats in a control group with no prior ethanol experience. In Experiment 3, with sugar as a gateway to ethanol to determine whether sugar dependence leads to increased ethanol intake, four groups were maintained for 21 days according to the following designations: intermittent access to sugar and chow, ad libitum access to sugar and chow, intermittent access to chow, or ad libitum access to chow. Four days later, all groups were switched to intermittent ethanol access, as described in Experiment 1. The group with intermittent access to sugar and chow consumed the most 9% ethanol, supporting the suggestion that sugar dependence alters a rat's proclivity to drink ethanol. These results may relate to the co-morbidity between binge-eating disorders and alcohol intake and the tendency of people abstaining from alcohol to consume excessive amounts of sugar. In conclusion, bingeing on either ethanol or sugar fosters intake of the other.
Collapse
Affiliation(s)
- Nicole M Avena
- Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|