1
|
Gou T, Hu M, Xu M, Chen Y, Chen R, Zhou T, Liu J, Guo L, Ao H, Ye Q. Novel wine in an old bottle: Preventive and therapeutic potentials of andrographolide in atherosclerotic cardiovascular diseases. J Pharm Anal 2023; 13:563-589. [PMID: 37440909 PMCID: PMC10334359 DOI: 10.1016/j.jpha.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) frequently results in sudden death and poses a serious threat to public health worldwide. The drugs approved for the prevention and treatment of ASCVD are usually used in combination but are inefficient owing to their side effects and single therapeutic targets. Therefore, the use of natural products in developing drugs for the prevention and treatment of ASCVD has received great scholarly attention. Andrographolide (AG) is a diterpenoid lactone compound extracted from Andrographis paniculata. In addition to its use in conditions such as sore throat, AG can be used to prevent and treat ASCVD. It is different from drugs that are commonly used in the prevention and treatment of ASCVD and can not only treat obesity, diabetes, hyperlipidaemia and ASCVD but also inhibit the pathological process of atherosclerosis (AS) including lipid accumulation, inflammation, oxidative stress and cellular abnormalities by regulating various targets and pathways. However, the pharmacological mechanisms of AG underlying the prevention and treatment of ASCVD have not been corroborated, which may hinder its clinical development and application. Therefore, this review summarizes the physiological and pathological mechanisms underlying the development of ASCVD and the in vivo and in vitro pharmacological effects of AG on the relative risk factors of AS and ASCVD. The findings support the use of the old pharmacological compound ('old bottle') as a novel drug ('novel wine') for the prevention and treatment of ASCVD. Additionally, this review summarizes studies on the availability as well as pharmaceutical and pharmacokinetic properties of AG, aiming to provide more information regarding the clinical application and further research and development of AG.
Collapse
Affiliation(s)
- Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Min Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuchen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Rong Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Junjing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
2
|
Gonçalves WA, Ferreira RCM, Rezende BM, Mahecha GAB, Gualdron M, de Macedo FHP, Duarte IDG, Perez AC, Machado FS, Cruz JS, Romero TRL. Endogenous opioid and cannabinoid systems modulate the muscle pain: A pharmacological study into the peripheral site. Eur J Pharmacol 2021; 901:174089. [PMID: 33826922 DOI: 10.1016/j.ejphar.2021.174089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022]
Abstract
The participation of the peripheral opioid and cannabinoid endogenous systems in modulating muscle pain and inflammation has not been fully explored. Thus, the aim of this study was to investigate the involvement of these endogenous systems during muscular-tissue hyperalgesia induced by inflammation. Hyperalgesia was induced by carrageenan injection into the tibialis anterior muscles of male Wistar rats. We padronized an available Randal-Sellito test adaptation to evaluate nociceptive behavior elicited by mechanical insult in muscles. Western blot analysis was performed to evaluate the expression levels of opioid and cannabinoid receptors in the dorsal root ganglia. The non-selective opioid peptide receptor antagonist (naloxone) and the selective mu opioid receptor MOP (clocinnamox) and kappa opioid receptor KOP (nor-binaltorphimine) antagonists were able to intensify carrageenan-induced muscular hyperalgesia. On the other hand, the selective delta opioid receptor (DOP) antagonist (naltrindole) did not present any effect on nociceptive behavior. Moreover, the selective inhibitor of aminopeptidases (Bestatin) provoked considerable dose-dependent analgesia when intramuscularly injected into the hyperalgesic muscle. The CB1 receptor antagonist (AM251), but not the CB2 receptor antagonist (AM630), intensified muscle hyperalgesia. All irreversible inhibitors of anandamide hydrolase (MAFP), the inhibitor for monoacylglycerol lipase (JZL184) and the anandamide reuptake inhibitor (VDM11) decreased carrageenan-induced hyperalgesia in muscular tissue. Lastly, MOP, KOP and CB1 expression levels in DRG were baseline even after muscular injection with carrageenan. The endogenous opioid and cannabinoid systems participate in peripheral muscle pain control through the activation of MOP, KOP and CB1 receptors.
Collapse
Affiliation(s)
- William A Gonçalves
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Renata C M Ferreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Barbara M Rezende
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - German A B Mahecha
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Melissa Gualdron
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Flávio H P de Macedo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Igor D G Duarte
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Andrea C Perez
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Fabiana S Machado
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil
| | - Thiago R L Romero
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Brazil.
| |
Collapse
|
3
|
Stolzman S, Hoeger Bement M. Lean mass predicts conditioned pain modulation in adolescents across weight status. Eur J Pain 2016; 20:967-76. [PMID: 26762576 DOI: 10.1002/ejp.821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is a wide continuum of conditioned pain modulation (CPM) in adults with older adults experiencing an attenuated CPM response compared with younger adults. Less is known for adolescents and the role of anthropometrics. METHODS Fifty-six adolescents (15.1 ± 1.8 years; 32 normal weight and 24 overweight/obese; 27 boys) completed in a CPM session that included anthropometric testing. Pressure pain thresholds were measured at the nailbed and deltoid muscle (test stimuli) with the foot submerged in a cool or ice water bath (conditioning stimulus). Weight status, body composition (Dual-energy X-ray absorptiometry scan), physical activity levels and clinical pain were also evaluated. RESULTS The CPM response in adolescents was similar across sites (nailbed vs. deltoid), weight status (normal vs. overweight/obese) and sex. CPM measured at the deltoid muscle was positively associated with left arm lean mass but not fat mass; lean mass of the arm uniquely predicted 10% of the CPM magnitude. CPM measured at the nailbed was positively correlated with physical activity levels. CONCLUSIONS These results suggest that lean mass and physical activity levels may contribute to endogenous pain inhibition in adolescents across weight status.
Collapse
Affiliation(s)
- S Stolzman
- Clinical & Translational Rehabilitation Health Sciences PhD Program, Department of Physical Therapy, Marquette University, Milwaukee, USA
| | - M Hoeger Bement
- Clinical & Translational Rehabilitation Health Sciences PhD Program, Department of Physical Therapy, Marquette University, Milwaukee, USA
| |
Collapse
|
4
|
Opioid Facilitation of β-Adrenergic Blockade: A New Pharmacological Condition? Pharmaceuticals (Basel) 2015; 8:664-74. [PMID: 26426025 PMCID: PMC4695804 DOI: 10.3390/ph8040664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 01/07/2023] Open
Abstract
Recently, propranolol was suggested to prevent hyperlactatemia in a child with hypovolemic shock through β-adrenergic blockade. Though it is a known inhibitor of glycolysis, propranolol, outside this observation, has never been reported to fully protect against lactate overproduction. On the other hand, literature evidence exists for a cross-talk between β-adrenergic receptors (protein targets of propranolol) and δ-opioid receptor. In this literature context, it is hypothesized here that anti-diarrheic racecadotril (a pro-drug of thiorphan, an inhibitor of enkephalinases), which, in the cited observation, was co-administered with propranolol, might have facilitated the β-blocker-driven inhibition of glycolysis and resulting lactate production. The opioid-facilitated β-adrenergic blockade would be essentially additivity or even synergism putatively existing between antagonism of β-adrenergic receptors and agonism of δ-opioid receptor in lowering cellular cAMP and dependent functions.
Collapse
|
5
|
Liu IM, Cheng JT. Mediation of Endogenous β-Endorphin in the Plasma Glucose-Lowering Action of Herbal Products Observed in Type 1-Like Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2010; 2011:987876. [PMID: 19095661 PMCID: PMC3147137 DOI: 10.1093/ecam/nen078] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 11/14/2008] [Indexed: 01/01/2023]
Abstract
Recently, there have been advances in the development of new substances effective in managing diabetic disorders. Opioid receptors couple multiple systems to result in various biological effects, although opioids are best known for analgesia. In the present review, we used our recent data to describe the advance in plasma glucose-lowering action of herbal products, especially the mediation of β-endorphin in glucose homeostasis of insulin-deficient diabetes. In type 1-like streptozotocin-induced diabetic rats, we identified many products purified from herbs that show a dose-dependent plasma glucose-lowering action. Increase in β-endorphin secretion from the adrenal gland may activate peripheral opioid μ-receptors (MOR) to enhance the expression of muscle glucose transporters and/or to reduce hepatic gluconeogenesis at the gene level, thereby leading to improved glucose utilization in peripheral tissues for amelioration of severe hyperglycemia. It has also been observed that stimulation of α(1)-adrenoceptors (α(1)-ARs) in the adrenal gland by some herbal products is responsible for the increase in β-endorphin secretion via a phospholipase C-protein kinase dependent pathway. However, an increase in β-endorphin secretion from the adrenal gland by herbal products can function via another receptor. New insights into the mediation of endogenous β-endorphin activation of peripheral MOR by herbal products for regulation of glucose homeostasis without the presence of insulin have been established. Therefore, an increase in β-endorphin secretion and/or direct stimulation of peripheral MOR via an insulin-independent action might serve as the potential target for development of a therapeutic agent or promising adjuvant in intensive plasma glucose control.
Collapse
Affiliation(s)
- I M Liu
- Department of Pharmacy, Tajen University, Yen-Pou, Ping Tung Shien, Taiwan
| | | |
Collapse
|
6
|
Yu BC, Chang CK, Su CF, Cheng JT. Mediation of beta-endorphin in andrographolide-induced plasma glucose-lowering action in type I diabetes-like animals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2007; 377:529-40. [PMID: 18080810 DOI: 10.1007/s00210-007-0240-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 11/26/2007] [Indexed: 11/29/2022]
Abstract
In the present study, we investigated the mechanism(s) for glucose-lowering action of andrographolide in streptozotocin-induced diabetic rats (STZ-diabetic rats). Andrographolide lowered plasma glucose concentrations in a dose-dependent manner and increased plasma beta-endorphin-like immunoreactivity (BER) dose-dependently in diabetic rats. Both of these responses to andrographolide were abolished by the pretreatment of animals with prazosin or N-(2-(2-cyclopropylmethoxy) ethyl) 5-choro-alpha-dimethyl-1H-indole-3-thylamine (RS17053) at doses sufficient to block alpha1-adrenoceptors (ARs). Also, andrographolide enhanced BER release from isolated rat adrenal medulla in a concentration-related manner that could be abolished by alpha1-ARs antagonists. Bilateral adrenalectomy in STZ-diabetic rats eliminated the activities of andrographolide, including the plasma glucose-lowering effect and the plasma BER-elevating effect. Andrographolide failed to lower plasma glucose in the presence of opioid micro-receptor antagonists and in the opioid micro-receptor knockout diabetic mice. Treatment of STZ-diabetic rats with andrographolide resulted in the reduced expression of phosphoenolpyruvate carboxykinase (PEPCK) in liver and an increased expression of the glucose transporter subtype 4 (GLUT 4) in soleus muscle. These effects were also blocked by opioid micro-receptor antagonists. In conclusion, our results suggest that andrographolide may activate alpha1-ARs to enhance the secretion of beta-endorphin which can stimulate the opioid micro-receptors to reduce hepatic gluconeogenesis and to enhance the glucose uptake in soleus muscle, resulting in a decrease of plasma glucose in STZ-diabetic rats. However, the roles of other endogenous opioid peptides or the mixture of several opioid peptides in the activation of opioid micro-receptors associated with the plasma glucose-lowering action of andrographolide, should be considered and need more investigation in the future.
Collapse
Affiliation(s)
- Bu Chin Yu
- Institute of Basic Medical Science, and Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan, 70101, Republic of China
| | | | | | | |
Collapse
|
7
|
Maresh CM, Sökmen B, Kraemer WJ, Hoffman JR, Watson G, Judelson DA, Gabaree-Boulant CL, Deschenes MR, Vanheest JL, Armstrong LE. Pituitary–adrenal responses to arm versus leg exercise in untrained man. Eur J Appl Physiol 2006; 97:471-7. [PMID: 16685546 DOI: 10.1007/s00421-006-0198-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2006] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to examine pituitary-adrenal (PA) hormone responses [beta-endorphin (beta-END), adrenocorticotropic hormone (ACTH) and cortisol] to arm exercise (AE) and leg exercise (LE) at 60 and 80% of the muscle-group specific VO2 peak. Eight healthy untrained men (AE VO2 peak=32.4+/-3.0 ml kg(-1) min(-1), LE VO2 peak=46.9+/-5.3 ml kg(-1) min(-1)) performed two sub-maximal AE and LE tests in random order. Plasma beta-END, ACTH and cortisol were not different (P>0.05) between AE and LE at either exercise intensity; the 60% testing elicited no changes from pre-exercise (PRE) values. For 80% testing, plasma beta-END, ACTH and cortisol were consistently, but not significantly, greater during LE than AE. In general, plasma beta-END and ACTH were higher (P<0.05) during 80% exercise, than PRE, for both AE and LE. Plasma cortisol was elevated (P<0.05) above PRE during 80% LE, and following 80% for both AE and LE. Plasma ACTH was higher (P<0.05) during 80% LE and AE versus 60% LE and AE, respectively. Plasma beta-END and cortisol were significantly higher during and immediately after 80% LE than 60% LE. Thus, plasma beta-END, ACTH and cortisol responses were similar for AE and LE at the two relative exercise intensities, with the intensity threshold occurring somewhere between 60 and 80% of VO2 peak. It appears that the smaller muscle mass associated with AE was sufficient to stimulate these PA axis hormones in a manner similar to LE, despite the higher metabolic stress (i.e., plasma La-) associated with LE.
Collapse
Affiliation(s)
- Carl M Maresh
- Human Performance Laboratory, Department of Kinesiology, University of Connecticut, 2095 Hillside Road, Unit 1110, Storrs, 06269-1110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
9
|
Khan S, Evans AAL, Hughes S, Smith ME. Beta-endorphin decreases fatigue and increases glucose uptake independently in normal and dystrophic mice. Muscle Nerve 2005; 31:481-6. [PMID: 15704144 DOI: 10.1002/mus.20286] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
beta-Endorphin and a C-terminal analogue have been shown to decrease muscle fatigue and increase glucose uptake in muscles of normal mice. In order to provide evidence whether these peptides might be useful in muscle-wasting conditions and whether the two actions of the peptides are interdependent, the effect of beta-endorphin on muscle fatigue and glucose uptake was studied using isolated hemidiaphragm preparations of dystrophic mice as well as normal mice. Muscle contractions were elicited by high-frequency stimulation of the phrenic nerve. Glucose uptake was measured using (nonmetabolizable) 2-deoxy-D-[1-(3)H]glucose. beta-Endorphin and the C-terminal analogue reduced fatigue in normal muscles of males but not females. Insulin had no effect in either sex. The peptides increased 2-deoxyglucose uptake in contracting and noncontracting muscles of normal males and females. beta-Endorphin reduced fatigue and increased deoxyglucose uptake in dystrophic muscles. The effect on fatigue was not due to increased glucose uptake, as the energy substrate present was pyruvate. Nerve stimulation released beta-endorphin immunoreactivity from intramuscular nerves of dystrophic mice. It is hypothesized that beta-endorphin released from motor nerves as well as from the pituitary could be responsible for improving muscle function during exercise. beta-Endorphin or analogues could have therapeutic use in muscle-wasting disease.
Collapse
Affiliation(s)
- Salim Khan
- Department of Physiology, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
10
|
Wörl J, Neuhuber WL. Enteric co-innervation of motor endplates in the esophagus: state of the art ten years after. Histochem Cell Biol 2005; 123:117-30. [PMID: 15729553 DOI: 10.1007/s00418-005-0764-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2004] [Indexed: 01/26/2023]
Abstract
The existence of a distinct ganglionated myenteric plexus between the two layers of the striated tunica muscularis of the mammalian esophagus represented an enigma for quite a while. Although an enteric co-innervation of vagally innervated motor endplates in the esophagus has been repeatedly suggested, it was not possible until recently to demonstrate this dual innervation. Ten years ago, we were able to demonstrate that motor endplates in the rat esophagus receive a dual innervation from both vagal nerve fibers originating in the brain stem and from varicose enteric nerve fibers originating in the myenteric plexus. Since then, a considerable amount of data could be raised on enteric co-innervation and its occurrence in a variety of species, including humans, its neurochemistry, spatial relationships on motor endplates, ontogeny, and possible roles during esophageal peristalsis. These data underline the significance of this newly discovered innervation component, although its function is still largely unknown. The aim of this review is to summarize current knowledge about enteric co-innervation of esophageal striated muscle and to provide some hints as to its functional significance.
Collapse
Affiliation(s)
- Jürgen Wörl
- Anatomy Institute, University of Erlangen-Nuremberg, Krankenhausstrasse 9, D-91054, Erlangen, Germany.
| | | |
Collapse
|